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Abstract—In the last years, support vector machines (SVMs)
have shown excellent performance in many applications, espe-
cially in the presence of noise. In particular, SVMs offer several
advantages over artificial neural networks (ANNs) that have
attracted the attention of the speech processing community.
Nevertheless, their high computational requirements prevent
them from being used in practice in automatic speech recognition
(ASR), where ANNs have proven to be successful. The high
complexity of SVMs in this context arises from the use of
huge speech training databases with millions of samples and
highly overlapped classes. This paper suggests the use of a
weighted least squares (WLS) training procedure that facilitates
the possibility of imposing a compact semiparametric model on
the SVM, which results in a dramatic complexity reduction.
Such a complexity reduction with respect to conventional SVMs,
which is between two and three orders of magnitude, allows the
proposed hybrid WLS-SVC/HMM system to perform real-time
speech decoding on a connected-digit recognition task (SpeechDat
Spanish database). The experimental evaluation of the proposed
system shows encouraging performance levels in clean and noisy
conditions, although further improvements are required to reach
the maturity level of current context-dependent HMM-based
recognizers.

Index Terms—Robust ASR, additive noise, hybrid ASR, hidden
Markov models (HMMs), machine learning, artificial neural
networks (ANNs), support vector machines (SVMs), ANN/HMM,
SVM/HMM, real-time ASR, compact SVM.

I. INTRODUCTION

H IDDEN Markov models (HMMs) have become the most
employed core technique for automatic speech recogni-

tion (ASR). However, the HMM-based ASR systems seem
to be close to reaching their limit of performance. Hybrid
systems based on a combination of artificial neural networks
(ANNs) and HMMs, referred to as hybrid ANN/HMM [1]–
[3], provide significant performance improvements in noisy
conditions [4], [5]. However, progress on this paradigm has
been hindered by their training computational requirements,
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which were excessive at the time these systems were proposed,
and the inherent difficulty of competing with a technique that
has been fine tuned during decades.

Support vector machines (SVMs) [6] have shown superior
performance than ANNs in a variety of tasks. There are two
fundamental reasons: first, the SVM training process is guaran-
teed to converge to the global minimum of the associated cost
function; and second, SVMs exhibit superior generalization
capability. This last property allows SVMs to make more
accurate decisions in noisy environments, which is a valuable
characteristic in the field of automatic speech recognition.
Inspired by these potential strengths, several authors have
suggested the use of SVMs in ASR [7]–[13]. However, a
key difficulty still remains: though hybrid SVM/HMM sys-
tems [10]–[12] are able to deal with the time variability
of speech utterances and reasonable solutions for multiclass
classification and probability estimation have been proposed,
the resulting SVMs are too complex and computationally
demanding to allow for real-time speech recognition.

This problem is actually twofold: first, the maximum num-
ber of samples that can be used for the SVM training is limited
to a few millions; second, large speech databases with highly
overlapped classes lead to huge models that must be evaluated
at the decoding phase. In this work, the first problem is
alleviated by randomly selecting a balanced subset of training
samples, which significantly reduces the computational cost
of the training process while causing negligible reduction
in performance, as it was previously demonstrated in the
ANN/HMM paradigm [5]. However, further research on this
issue is required for the proposed system to manage more
demanding ASR tasks. It is the second of the above-mentioned
problems that actually hinders the possibility of real-time
decoding of speech utterances. This issue constitutes the focus
of the present paper.

The complexity of SVMs in a hybrid SVM/HMM speech
recognition system must be notably reduced in order to achieve
a real-time operation. To this end, we propose here the
use of compact SVMs. Specifically, we suggest training the
SVMs through a weighted least squares (WLS) procedure [14]
that converges to the original solution obtained by quadratic
programming (QP) techniques. The WLS procedure does not
produce any complexity reduction per se, but facilitates the
possibility of selecting an a priori target complexity by impos-
ing a compact semiparametric model on the SVM [15], [16],
which is expressed in terms of a reduced set of representative
vectors. To this end, a sequential selection approach based on
the approximate linear dependence (ALD) condition [17], [18]
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is employed to obtain a set of nearly independent vectors in
the feature space. The use of these techniques leads to support
vector classifiers (denoted as WLS-SVC) that are compact
enough for the decoding system to operate in real-time on a
medium-complexity speech recognition task, while maintain-
ing its performance. Namely, the computational burden at the
decoding stage, in terms of kernel evaluations, is reduced by
between two and three orders of magnitude with respect to the
baseline SVM/HMM system. Moreover, experimental results
in clean and noisy conditions show similar or even better
performance than standard monophone-based HMM ASR sys-
tems, while using only 13% of the full training dataset. Finally,
it should be noted that the proposed WLS-SVC/HMM system
constitutes a very promising starting point for the development
of practical SVM-based ASR, but substantial improvements
are still required. Specifically, both the training procedure
when dealing with very large speech databases and the way to
take full benefit of contextual information should be improved
in order to reach the performance of state-of-the-art context-
dependent HMM-based recognizers.

The rest of this paper is organized as follows. Hybrid
systems for ASR are presented in Section II with special
emphasis on the state-of-the-art of hybrid SVM/HMM speech
recognition. Next, our proposal is described in Section III,
which consists of a brief review of the WLS-SVC formulation
and a description of the data selection methods employed to
obtain a balanced subset of training samples and an adequate
base of centroids for the compact SVM. Finally, experiments
and results are presented in Section IV followed by conclu-
sions and suggested future lines of research.

II. HYBRID SYSTEMS FOR AUTOMATIC SPEECH
RECOGNITION

A. Motivation

The discrimination ability of ANNs was soon recognized as
a desirable characteristic that could contribute to the improve-
ment of ASR systems. However, the duration variability of
the speech instances corresponding to the same class hindered
the straightforward application of ANNs. To overcome this
problem, a variety of different architectures and novel training
algorithms that combined HMMs with ANNs were proposed in
the late 1980s and early 1990s. The fundamental advantage of
this approach is the introduction of a discriminative technique
(ANN) into a generative system (HMM) that retains its ability
to handle the temporal variability of the speech signal. For a
comprehensive survey of these techniques, see [3].

In this paper we have focused on the architecture, initially
proposed by Bourlard and Morgan [1], [2], that applies ANNs
to estimate the HMM emitting state likelihoods previously
provided by Gaussian mixture models (GMMs). The authors
exploited the well-known capability of feed-forward networks,
such as multilayer perceptrons (MLPs), of estimating a pos-
teriori probabilities when trained in classification mode (see
[19] for the fundamentals of MLPs). The specific formulation
will be introduced in Section II-B.

Though at the time this approach was suggested the use of
these MLPs in speech recognition was still a challenging issue

from a computational point of view, the following remarkable
advantages were identified (from [20]):
• Model accuracy: ANNs have greater flexibility to provide

more accurate acoustic models.
• Local discrimination ability (at a frame level): MLPs are

trained to obtain class boundaries instead of providing an
accurate (generative) model for each particular class.

• Parsimonious use of parameters: all the classes share the
same ANN parameters (this does not hold for every ANN,
but it does for MLPs).

• HMMs and ANNs exhibit complementary abilities for
ASR tasks, which lead to higher recognition rates, espe-
cially under noisy conditions.

• Adaptation techniques have also been proposed (for ex-
ample, speaker adaptation as in [21]–[23]).

Thanks to the improvement of computational capabilities,
the last decade has witnessed an emergence of variants of this
model that profited from the aforementioned advantages. In
particular, hybrid systems have been found very appropriate
and flexible for introducing all sorts of information missing in
the classical HMM paradigm. From the parameterization point
of view, features do not need to be uncorrelated because the
network learns the local correlation between its input units.
This has been used to include alternative features such as
spectro-temporal parameters obtained by frequency filtering
(FF) [4] or linear prediction [24], [25], or speech production
knowledge in the form of articulatory features which led to
more robust systems [26]–[28]. Most noteworthy, the possi-
bility of augmenting the time-span in the feature extraction
procedure together with the various methods available for
combining these features (multistream, concatenation, prob-
abilistic, etc.) has broadened the choices for phonetic context
dependency representation [29], [30]. The addition of tran-
sitional units (diphones) is another economical alternative to
triphone units for the inclusion of context-dependent acoustic
modeling in the hybrid approach [31], [32].

As a drawback, we can mention that most implementations
rely on an initial segmentation of the training set at the level
of the classes considered by the ANN. That is, each training
frame must have its corresponding class label (phoneme,
state of phoneme, etc.). However, large databases are rarely
manually labeled at a phoneme level because of the enormous
human effort necessary for the task. Therefore, most state-of-
the-art hybrid recognizers perform an initial forced alignment
with conventional HMMs. This alignment becomes the ground
truth for the training of the ANN. We have made use of
this approach and further subdivided the phonemes into three
sections (initial, middle, and final) making a finer segmentation
attending to the distribution of the frames into the states of the
HMMs employed for forced alignment. Further re-alignments
using the models trained at each iteration would improve the
segmentation of the training database, but this issue is beyond
the scope of this work.

B. Problem Formulation

It is well known that the speech recognition problem can
be stated as finding the sequence of words W̃ that maximizes
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the probability P (W |X), where X = x1, . . . , xT is the
sequence of input observation features. This problem is usually
factorized using Bayes’ theorem as:

P (W |X) ∝ P (X|W )P (W ) (1)

where the a priori probabilities P (W ) are modeled using a
language model and the likelihoods P (X|W ) are estimated
by the HMMs. Here, W is modeled as a sequence of states
W = q1, . . . , qL, where each state describes the probability
of occurrence of an input feature vector xt by means of
an emission probability density function p (xt|ql). Hybrid
SVM/HMM systems substitute Gaussian mixture models for
support vector machines to provide robust a posteriori proba-
bilities p (ql|xt), of class ql given the feature vector xt. True
emission likelihoods can be obtained from the probabilities
provided by SVMs by using Bayes’ rule:

p (xt|ql)
p (xt)

=
p (ql|xt)
p (ql)

(2)

The a priori probability p (xt) can be dropped from the
equation as its value is the same for every class. Therefore,
the a posteriori probabilities should be normalized by the class
priors to obtain what are called scaled likelihoods. However,
it will be noted later in this paper that such a normalization
is unnecessary when balanced training datasets are used.

C. Hybrid SVM/HMM Systems

This section presents a description of the hybrid
SVM/HMM systems proposed in the last years and their
practical limitations, which justify, in our opinion, the interest
of the work presented in this paper. For a more detailed review
on the use of support vector machines for ASR, including
systems and difficulties, refer to [33], [34].

Hybrid systems based on discriminative models like arti-
ficial neural networks have demonstrated good performance
in automatic speech recognition. Nevertheless, support vector
machines offer several theoretical advantages that have at-
tracted the attention of many speech processing researchers in
the last years. Firstly, they are capable of dealing with samples
of a very high dimensionality. Secondly, their convergence to
the global minimum of the cost function is guaranteed by
means of QP techniques. Finally, the maximum margin so-
lution provides SVMs with superior generalization capability,
which should result in improved robustness in the presence
of noise. In our opinion, these characteristics make SVMs a
promising future alternative to Gaussian mixture models and
artificial neural networks for the problem of acoustic modeling
in robust speech recognition.

However, the application of support vector machines to
automatic speech recognition is not straightforward. There are
mainly two reasons for the scarce use of SVMs in this field.
First, the high computational cost of SVMs and their difficulty
to handle large databases prevent them from being used in
speech recognition. Second, SVMs are static classifiers that
need fixed-dimension input vectors, so they cannot directly
deal with the variable time duration of speech units.

The first problem has been avoided or even ignored in
the great majority of works in the field, whereas several

solutions can be found in the literature for the latter. Some of
them perform a previous processing of the speech or feature
sequence in order to obtain fixed dimension vectors that fit
the SVM input. This normalization can be achieved by means
of simple uniform [35] or non-uniform [36], [37] feature
sequence resampling procedures. Other authors apply the so-
called triphone model approach, which assumes that speech
segments corresponding to phones are composed of a fixed
number of sections (3 in most cases). Feature vectors in each
segment are averaged and the results are then concatenated to
form a fixed-dimension vector [38]–[40].

Preliminary versions of the hybrid SVM/HMM systems
currently employed were proposed in [9], [41], [42] and [43],
all of them comprising a two step decoding process. In [9],
[41], [42], hidden Markov models are used to generate pho-
netic level alignments on the speech utterance. The previously
mentioned triphone model approach is then applied to extract
fixed-dimension feature vectors from each segment. On the
other hand, the system described in [43] operates on a frame
by frame basis. In both cases, the support vector classifier
uses the feature vectors obtained in the previous step to
generate segmental or instantaneous phoneme decisions, which
are incorporated into a Viterbi decoding stage that rescores a
N-best list provided by Gaussian mixture models in the first
step.

A major drawback of all of these systems is the requisite for
a previous segmentation of the speech utterances. In contrast
to current one-pass hybrid systems, these speech recognizers
require an HMM-based forced alignment in both training and
recognition phases to achieve such a segmentation. This fact
makes the practical application of support vector machines in
automatic speech recognition difficult, since a double decoding
process must be done. To overcome this problem, some authors
proposed the combination of SVMs and HMMs in hybrid
systems inspired by the ANN/HMM framework [1], [2]. The
basis of this approach is to merge SVMs and HMMs into
a single hybrid SVM/HMM system that benefits from their
complementary abilities for ASR tasks, namely: the capability
of HMMs to handle the time variability of speech and the
discrimination power provided by support vector machines.

Hybrid SVM/HMM systems like those proposed in [10],
[11], [44] replace Gaussian mixture models with support
vector machines as probabilistic estimators in the acoustic
modeling phase. Thus, SVMs estimate the HMM state emis-
sion probabilities that will be employed by a Viterbi decoder to
obtain the transcription of the speech utterance. These systems
work on a frame by frame basis and therefore do not need a
previous segmentation of the speech utterances in the decoding
stage, which is performed in a single step. In this case, only
an initial state level alignment of the training set is required
to obtain labeled feature vector examples for the multiclass
SVM to be trained. A conventional GMM/HMM-based system
is used for that purpose.

These systems achieve a similar or even slightly better per-
formance than standard baseline HMM-based systems in clean
conditions. Nonetheless, the high computational cost of SVMs
has prevented them from becoming a viable alternative to
conventional systems for robust automatic speech recognition.
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The computational burden of support vector machines affects
hybrid SVM/HMM systems in two ways. Firstly, it limits to
a few millions the maximum number of samples that can be
used in the training stage of the SVM. Secondly, large speech
databases with highly overlapped classes lead to huge models,
with too many support vectors whose kernel functions must
be evaluated at the decoding phase. The former problem could
limit the performance of the hybrid SVM/HMM recognition
system, whereas the latter hinders a real-time decoding of the
speech utterances.

Up to our knowledge, only the work in [12], [45] has ad-
dressed in a systematic manner the issue of the computational
burden involved in hybrid SVM/HMM systems. This work
focuses on identifying the indispensable binary classifiers,
among those that form the multiclass SVM, that should be
evaluated during the decoding stage to obtain accurate enough
acoustic decisions. Thus, a dynamic selection method that
picks out the most relevant binary SVMs and discards those
less influential for the decision is proposed. On average, this
method enables the evaluation of only 14% of the binary
classifiers and reduces the recognition time between 90 and
180 times, with no performance degradation. However, this
system still operates five-to-ten times slower than real-time
speech recognition.

III. REAL-TIME HYBRID SVM/HMM AUTOMATIC
SPEECH RECOGNITION

This section is devoted to the presentation of a new hy-
brid system that constitutes a promising starting point for
the development of real-time SVM-based robust automatic
speech recognition. This work is based on that described in
[11], where a preliminary hybrid SVM/HMM system takes
advantage of the discrimination power provided by SVMs to
estimate robust emission probabilities, while keeping the capa-
bility of HMMs to handle the variable time duration of speech
utterances. The drawback of its high computational burden at
the decoding stage is faced in this work, with the result of a
speech recognition system that is now capable of performing
real-time speech decoding on a medium-complexity ASR task
while achieving similar or even better results than context-
independent HMM-based recognizers.

The approach proposed in this paper is based on the use
of a compact semiparametric model for the SVM. A WLS
procedure is then used to train the compact SVM. This
procedure is carefully described in this section, in addition
to some other practical issues related to the implementation
of the hybrid SVM/HMM system.

A. Support Vector Machines

The support vector machine is a well-known statistical
learning method, first proposed in [46] as an extension of the
generalized portrait method for the construction of non-linear
classifiers and regressors. Its formulation is based on Statistical
Learning Theory (SLT) and implements the structural risk
minimization (SRM) criterion [47], a principle that bounds
overfitting by setting a trade-off between the model complexity
and its empirical risk. This leads to the maximum margin

solution, which endows the SVM with a higher generalization
ability and, presumably, improved robustness in the presence
of noise compared to other machine learning methods.

The support vector classifier (SVC) assigns a label y ∈
{±1} to the input vector x according to the following function:

f (x) = wTφ (x) + b (3)

where φ (x) : <d 7→ <H is a nonlinear function that maps
input vector x into a feature space of a higher (possibly
infinite) dimensionality. The vector w denotes the separating
hyper-plane in such a space and b represents the bias with
respect to the origin.

The reason that gives the SVM good generalization proper-
ties is that its formulation involves a joint minimization of both
empirical and structural risks. Structural risk minimization is
equivalent to the minimization of the norm of vector w. Thus,
the solution to the SVM is given by the minimization of the
following quadratic problem:

min
w,b,ξi

1

2
‖w‖2 + C

n∑
i=1

ξi,

subject to yi
(
wTφ (xi) + b

)
≥ 1− ξi; ∀i = 1, . . . , n

ξi ≥ 0; ∀i = 1, . . . , n (4)

where xi ∈ <d (i = 1, . . . , n) are the training vectors with
labels yi ∈ {±1}. The variables ξi represent the error for
every input vector and C sets the compromise between the
minimization of empirical and structural risks.

This problem is usually solved using the Wolfe dual [48],
where Lagrange multipliers αi are found according to:

max
αi

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

yiyjαiαjφ
T (xi)φ (xj)

subject to
n∑
i=1

αiyi = 0

0 ≤ αi ≤ C; ∀i = 1, . . . , n (5)

The optimum decision boundary w is given by:

w =
n∑
i=1

αiyiφ (xi) (6)

Only those training vectors with associated Lagrange mul-
tiplier αi 6= 0 will contribute to determining the decision
boundary, thus receiving the name of support vectors. The
mapping function φ (x) is seldom explicitly known. However,
the optimization problem in (5) is set in terms of dot products
φT (xi)φ (xj), which can be evaluated using a Mercer kernel
function K (·, ·). The Mercer Theorem [49] states that a map-
ping function φ and a function K(xi,xj) = φT (xi)φ (xj)
exist if and only if K(·, ·) is positive semidefinite. By means
of the so-called kernel trick, the output of the SVM finally
adopts the following expression:

f (x) =
n∑
i=1

αiyiK (xi,x) + b (7)
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B. Multiclass SVMs and Probability Estimation

Support vector machines are binary classifiers in their
original formulation, whereas the acoustic modeling stage in
ASR can be stated as a multiclass problem. Nevertheless, there
exist several ways to solve k-class problems using SVMs.
True multiclass solutions reformulate the SVM equations to
consider all classes at once in a single optimization problem
[50]–[52]. Other methods are based on the combination of
a number of binary classifiers, each of them trained inde-
pendently from the others. On the one hand, the one-versus-
the-rest approach trains k binary classifiers that compare
each class against the rest. To test for a new vector all the
classifiers are evaluated and the test sample is assigned to the
classifier (class) with the largest output. On the other hand,
the one-versus-one method trains k(k−1)

2 binary classifiers,
each of them comparing two classes. In the test phase, all
of the classifiers are evaluated and then a voting scheme
or a multiclass probability estimation method is adopted to
assign the test sample to its corresponding class. Besides these
methods, there exist other multiclass approaches such as the
directed acyclic graph [53] or the error-correcting output codes
[54], [55], less used in practice.

The choice of a suitable multiclass SVM method heavily
depends on the specific characteristics of the problem at hand.
Both the size of the database and the complexity of the
speech recognition task addressed in this work advise using
the one-versus-one approach. Several arguments support this
statement. Firstly, this method is preferred when dealing with
large training datasets (see [56] for a detailed discussion) due
to the fact that SVM’s computational burden at the training
step is approximately quadratic in the number of samples. The
computational load of the task addressed in this paper is too
large (in terms of memory requirements) for one-versus-the-
rest and true multiclass SVMs, as they must handle some
million training samples at once. In contrast, although the
one-versus-one method must train more binary classifiers than
the other approaches, each classifier is trained with a smaller
fraction of the database. Secondly, each binary classifier in the
one-versus-one approach deals with a more simple, balanced
and easily separable problem. Finally, the reduction of the
whole multiclass problem into smaller binary classification
tasks allows for the use of larger training datasets, which
provide more varied acoustical information for the speech
recognition task.

In this work, the classes considered by the support vector
machine correspond to the states of the phoneme hidden
Markov models. As will be shown later in this paper, 18
Spanish context-independent phonemes are modeled by 3-state
HMMs, which leads to 54 acoustic classes. Thus, 1431 binary
classifiers must be trained according to the one-versus-one
approach.

A multiclass support vector machine is used in the hybrid
approach to estimate HMM-state emission probabilities. SVMs
do not directly provide calibrated posterior probabilities but
class labels. Nevertheless, several methods have been proposed
to obtain these probabilities from SVM outputs. One of the
most widely employed when dealing with multiclass problems,

which is implemented by the LibSVM toolbox [57] used in
this work, is based on the calculation of Platt’s probabilities
[58] for every binary classifier. This method assumes roughly
exponential class-conditional densities between the margins
in each binary classifier. Bayes’ rule on two exponentials
suggest using a sigmoidal parametric model for the posterior
probability. Thus, assuming that a one-versus-one multiclass
approach is used, Platt’s probabilities of x belonging to class
i are calculated for every binary SVM (i, j) as follows:

rij (x) =p (y = i|y = i or j, fij (x)) =

=
1

1 + exp (aijfij (x) + bij)

rji (x) =p (y = j|y = i or j, fij (x)) = 1− rij (x) (8)

where fij (x) is the output of the binary classifier (i, j) for
sample x. The sigmoid’s parameters aij and bij are estimated
discriminatively by maximizing the log-likelihood function
over training data.

These binary probabilities rij (x) ∀i, j = 1, . . . , k must be
translated into multiclass a posteriori probabilities p (qi|x) =
p (y = i|x) ∀i = 1, . . . , k. To this end, a version of the
Refregier-Vallet method based on the Bradley-Terry model
is used [59]. The following optimization problem must be
solved once for each input pattern x in order to obtain the
corresponding posterior probabilities:

min
p

1

2

k∑
i=1

k∑
j:j 6=i

(rjip (qi|x)− rijp (qj |x))2

subject to
k∑
i=1

p (qi|x) = 1

p (qi|x) ≥ 0; ∀i = 1, . . . , k (9)

where p (x) = [p (q1|x) , . . . , p (qk|x)]T . This problem is
convex and can be solved by means of a simple iterative
method.

C. Data Selection and Balancing

Software tools employed at present to train support vector
machines can only deal with a maximum of a few million
training samples. In the state-of-the-art HMM-based frame-
work, however, large databases containing several hundred
hours of recorded speech have become an indispensable basis
for relevant performance improvements. This makes the re-
search in the hybrid SVM/HMM framework extremely difficult
due to the huge computer memory requirements of SVMs and
the large amount of time spent on tuning, training and testing
these models. Thus, a reduction of the size of the datasets
employed for training the SVMs becomes essential.

It is worth mentioning that such a reduction should be
done by taking into account the particular characteristics of
the speech database. Namely, the non-uniform distribution of
the sounds of a given language and their different temporal
durations lead to highly imbalanced classes. This means that
certain phonemes are overrepresented in the speech databases
in comparison to others, which results in skewed classification
problems. In our case, two main consequences of imbalanced
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data can be stressed. First, especial care must be taken
with respect to the minority classes, as scarce and/or short
phonemes are usually the key to distinguish among confusable
sets of words. Second, highly imbalanced problems can bias
the solution obtained by the support vector machine to the
most populated class.

Data selection is a common practice among the machine
learning community, where several techniques have been pro-
posed in the last years to deal with imbalanced data (see
[60]–[62] for an overview). However, the need for whole
speech training utterances complicates the application of these
techniques in conventional HMM-based ASR. This problem is
overcome by hybrid systems, where theoretically i.i.d. training
samples are presented individually to the classifier. Some
practical examples in the ANN/HMM context can be found
in [63], [64].

In this work a simple selection method based on a random
downsampling of the majority classes in the whole original
training database is used to produce fully-balanced reduced
training sets. As a result, all classes (states of phonemes)
are represented by the same number of training samples,
which is given by the less populated class. Despite being
a straightforward solution, the balanced approach presents
several beneficial consequences. First, and most important,
it reduces the computational burden in the training stage
significantly without a loss of performance. Second, it over-
comes the problem of training the support vector machine
with imbalanced datasets that may affect the determination
of the optimal decision boundary. Finally, this simple solution
provides the desired emission likelihoods as the outputs of
the SVM. The problem of obtaining scaled likelihoods from a
posteriori probabilities in the hybrid ANN/HMM context was
an open issue since mismatches between the a priori proba-
bilities of the training and test databases led to inconsistent
results [1], [4], [20], [63], [65], [66]. In [5] it is shown that
scaled likelihoods should always be estimated using the prior
probabilities from the training data. In our case, the balancing
of the training set enables the interpretation of the outputs of
the SVM as scaled likelihoods without the need of applying
any corrections.

D. Review of the WLS-SVC Formulation

The computational burden of SVMs at the decoding stage
depends on the number of support vectors, that is, those
training samples that are present in (7) with αi 6= 0. In
the standard SVM formulation, support vectors are given
by the resolution method. This leads to huge machines that
cannot be used in real complex applications such as speech
recognition, where one can find a large number of training
samples distributed through a number of highly overlapped
classes.

This drawback can be overcome by means of an alternative
training procedure [14], which solves a series of weighted least
squares problems that converges to the support vector classifier
solution. This method, called WLS-SVC, does not produce
any complexity reduction per se. However, it is more versatile
than traditional QP schemes and, additionally, facilitates the

possibility of developing compact solutions through the use
of a preset compact model for the SVM [15], [16]. A brief
description of the WLS-SVC algorithm is presented below. A
more detailed derivation of the mathematical formulation can
be found in [14], [15], [67]. Furthermore, its convergence to
the original SVC solution is proven in [68].

Let us revisit the primal formulation defined by (4). The
linear constraints in that expression can be incorporated into
the so-called Lagrangian functional with associated Lagrange
multipliers αi and µi, respectively:

LP =
1

2
‖w‖2 +

n∑
i=1

ξi (C − αi − µi)+

+
n∑
i=1

αi
[
1− yi

(
wTφ (xi) + b

)]
(10)

The second term in (10) vanishes as KKT conditions must
hold (see references [69] and [70], page 131, for more details).
After several operations, the Lagrangian can be seen as a
weighted least squares functional plus a Tikhonov regulariza-
tion term [71]:

LP =
1

2
‖w‖2 + 1

2

n∑
i=1

aiei
2 (11)

where:

ai =
2αi

1− yi (wTφ (xi) + b)
=

2αi
eiyi

(12)

and ei = yi −
(
wTφ (xi) + b

)
is the error for the training

vector xi.
The minimization of (11) with respect to w and b cannot

be done in a single step because ai depends on w. Thus, the
following iterative WLS procedure was proposed in [14]:

1) Minimize (11) with respect to w and b, assuming that
ai holds fixed.

2) Update ai using ei and KKT conditions.
3) Repeat until convergence.
The minimization of (11) produces the following system:[

ΦDaΦT + I Φa

aTΦT aT1

] [
w
b

]
=

[
ΦDay
aTy

]
(13)

where Φ = [φ (x1) | . . . |φ (xn)], a = [a1, . . . , an]
T and Da

is a diagonal matrix with (Da)ii = ai ∀i = 1, . . . , n.
The solution

[
wT b

]T
of the above system of equations is

expressed in terms of the nonlinear mapping function φ (x),
which is seldom explicitly known. Fortunately, the representer
theorem [72] states that vector w can be expressed as a linear
combination of the training samples:

w =
n∑
i=1

βiφ (xi) = Φβ (14)

where β = [β1, . . . , βn]
T . Replacing its expression in (13)

and after several algebraic transformations (see [67], Appendix
A.1) follows: [

K + Da
−1 1

1T 0

] [
β
b

]
=

[
y
0

]
(15)
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where K = ΦTΦ is the kernel matrix. The solution
[
βT b

]T
of the above system of equations must be obtained in every
step of the WLS procedure. The value of the coefficients ai
can be obtained by forcing KKT conditions to hold. Knowing
that:

ξi =

{
0 if eiyi < 0

eiyi if eiyi ≥ 0
(16)

ai can be obtained as follows:

ai =

{
0 if eiyi < 0
2C
eiyi

if eiyi ≥ 0
(17)

In practice, a maximum value for ai is imposed to avoid
numerical problems when eiyi goes to zero. This limitation is
equivalent to a numerical regularization of the kernel matrix.

The output of the WLS-SVC described above adopts the
following expression:

f (x) =
n∑
i=1

βiK (xi,x) + b (18)

where it is worth noting that βi converges asymptotically to
αiyi in (7) and, therefore, the WLS-SVC converges to the
original SVM.

Unlike with standard QP training methods, we can take ad-
vantage of the WLS formulation to fix a priori the complexity
of the support vector machine. Compact machines can be im-
plemented by imposing an alternative simple semiparametric
model on vector w:

w =
r∑
i=1

γiφ (ci) = Ψγ (19)

where Ψ = [φ (c1) | . . . |φ (cr)], γ = [γ1, . . . , γr]
T and

r << n. Vectors ci should form an orthogonal base for the
training samples in the feature space. As the calculation of
such a base can be hard, iterative sample selection methods,
clustering techniques or PCA analysis can be used to select
a set of representative centroids for the training database. In
this case, the compact WLS-SVC solution obtained is just an
approximation of the original SVC:

f (x) =
r∑
i=1

γiK (ci,x) + b (20)

It should be noted, however, that the complexity of the
compact WLS-SVC is not given by the number of support
vectors anymore, but by the number of centroids.

By substituting (19) in (13), multiplying it by
[
ΨT 0
0T 1

]
and reordering terms, the following system is obtained:[

KT
ΦDaKΦ + KΨ KT

Φa
aTKΦ aT1

] [
γ
b

]
=

[
KT

ΦDay
aTy

]
(21)

where KΦ = ΦTΨ is the kernel matrix of the training samples
and the centroids and KΨ = ΨTΨ is the kernel matrix of
the centroids. This system of equations must be solved with
respect to the solution

[
γT b

]T
in every step of the WLS

procedure, assuming fixed values for ai. Next, their values
must be updated according to (17).

The experimental results in Section IV-C show that efficient
base selection methods, as that described in detail in Section
III-E, enable important complexity reductions when using
the compact support vector machine (up to 500 times and
even higher), without a significant decrease in its recognition
accuracy. Thus, the practical interest of the compact hybrid
WLS-SVC/HMM system is demonstrated, achieving real-time
speech decoding in a connected-digit recognition task with
similar performance to that of the baseline SVM/HMM recog-
nition systems.

E. Base Selection for Compact Multiclass SVMs
The hybrid SVM/HMM speech recognition systems de-

scribed in Section II-C are still far from performing a real-
time decoding. The main reason is that hard problems like au-
tomatic speech recognition, with millions of training samples
and highly overlapped classes, result in huge support vector
machines when using conventional QP training techniques.
To alleviate this drawback, we suggest controlling the com-
plexities of the SVMs by imposing a semiparametric compact
model on the weight vector w, as shown in Eq. (19). A WLS
procedure is then used to train the compact SVM.

The key point, therefore, lies in finding a reduced yet
representative set of centroids for the compact WLS-SVC.
As previously stated, there exist a number of alternative
procedures to the exhaustive search for an orthogonal base of
vectors, which may be a hard problem. Several techniques such
as clustering or PCA have been employed in other application
contexts to obtain suitable bases for the semiparametric model
[16].

In this work, a sequential selection approach based on
the approximate linear dependence (ALD) condition is used
to obtain a set of nearly independent vectors in the feature
space. This procedure has been designed to exploit the specific
distribution of the training samples in the feature space and
the one-versus-one multiclass architecture employed in this
work. Firstly, our selection method aims at reducing both intra-
class redundancy and inter-class overlap in order to achieve
a small base of representative centroids. The origin of this
overlap is twofold: the coarticulation effects that make the
boundaries of the classes quite blurry, which is augmented
by the fact of using three different classes per phoneme, and
the segmentation errors produced by the baseline HMM-based
system that performs the initial forced alignment. Secondly,
remarkable complexity reductions are achieved by forcing all
the binary classifiers in the multiclass SVM to share a unique
small base of centroids. It may seem surprising that the set
of centroids of a given binary classifier can contain samples
belonging to other different classes. This fact is explained,
however, by the overlap existing between different classes that
allows certain training samples to be represented by feature
vectors from other classes.

It is worth highlighting the use of a unique base of centroids
for the multiclass SVM, as it allows us to achieve larger
complexity reductions than other methods previously pub-
lished in the literature. For example, a similar approach based
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on approximating the SVM decision surface by a reduced
set expansion was proposed by Burges in [73]. Although
this method has demonstrated good performance for binary
classification tasks in the speech recognition framework [74],
it fails to achieve the large complexity reductions required in
this work since different support sets are obtained for each
binary classifier. The same conclusion holds for the kernel
online algorithm by Orabona et al. [75], where each support
vector is shared by only two binary classifiers.

Basing on the ALD condition, the training samples are
sequentially added to the base of centroids if their projection
error exceeds a preset threshold. Specifically, given a set
of centroids {c1, . . . , cm} and a new training sample x,
there exists an optimal linear combination of the elements of
the base, with projection coefficients oi, that minimizes the
following squared error:

δ = min
o

∥∥∥∥∥
m∑
i=1

oiφ (ci)− φ (x)

∥∥∥∥∥
2

(22)

Solving (22) yields the optimal value of o [18]:

o = K−1Ψ kΦ (23)

and the residual:

δ = K (x,x)− kTΦo (24)

where KΨ is the kernel matrix of the m centroids in the base
and kΦ denotes the kernel vector of the centroids and the
training sample x: (kΦ)i = K (ci,x) ∀i = 1, . . . ,m. In our
selection approach, a new training sample x will be added to
the base of centroids if δ > νg , where νg is a preset accuracy
threshold (growing threshold). Otherwise, the sample will not
be added to the base of centroids as it can be represented with
a negligible approximation error by the current m centroids.

Once the key fundamentals of the base selection method
used in this work have been presented, we proceed to describe
it in more detail. The selection procedure consists of the
following sequential sample addition (growing) and deletion
(pruning) processes:
Intra-class selection. Firstly, samples belonging to each class
are processed independently to obtain a set of centroids C

(i)
class

for every class i = 1, . . . , k. This process aims at reducing the
intra-class redundancy and consists of the following steps:
• A temporary base C

(i)
class t is initialized with the first

training sample in class i.
• Training samples belonging to class i are processed

sequentially in order to compute their ALD residual δ
(24) with respect to C

(i)
class t. A new training sample will

be added to the temporary base if its residual δ is greater
than the growing threshold νg .

• The projection coefficients vector o is computed for every
training sample in class i. Their absolute values are then
accumulated in a variable denoted by oacc1.

• The components of oacc1 are normalized with respect
to the maximum. Those centroids in C

(i)
class t with an

accumulated projection coefficient (oacc1)i lower than
a pruning threshold νp are removed from the list. The
remaining vectors will form the base C

(i)
class for class i.

Inter-class selection. Secondly, the centroids in all the k bases
C

(i)
class are put together in a single temporary base Ctotal

and then processed to eliminate the inter-class overlap. This
procedure is similar to the previous one and consists of the
following steps:
• A temporary base Ctotal t is initialized with the first

vector in Ctotal.
• The centroids in Ctotal are processed sequentially in

order to compute their ALD residual δ (24) with respect
to Ctotal t. A new centroid will be added to Ctotal t if
its residual δ is greater than the growing threshold νg .

• The projection coefficients vector o is computed for
every sample in Ctotal. Their absolute values are then
accumulated in a variable denoted by oacc2.

• The components of oacc2 are normalized with respect
to the maximum. Those centroids in Ctotal t with an
accumulated projection coefficient (oacc2)i lower than
the pruning threshold νp are removed from the list.
The remaining vectors will form the definitive base of
centroids C for the semiparametric model in the compact
WLS-SVC formulation.

As previously stated, the same base of centroids C is
employed in all the binary classifiers of the multiclass SVM.

It will be shown in Section IV that such a simple selection
method leads to compact hybrid WLS-SVC/HMM recogni-
tion systems that are now capable of performing a real-time
decoding of the speech utterances on a medium-complexity
connected-digit recognition task. Namely, it will be shown in
Table III that the complexity of the compact support vector
machines (in terms of the number of centroids in the base) is
266 to 497 times lower than the complexity of the conventional
SVMs (in terms of the number of support vectors).

IV. EXPERIMENTS AND RESULTS

This section starts with a description of the experimental
setup. Then, we present some experimental results that show
the benefits of the proposed compact hybrid WLS-SVC/HMM
system with respect to the baseline systems.

A. Database

1) Description: The well-known SpeechDat Spanish
database [76] is used to assess the performance of the proposed
system. This large vocabulary (more than 24, 000 words)
continuous speech recognition database comprises recordings
from 4, 000 Spanish speakers recorded at 8 kHz over the
PSTN using an E-1 interface, in a noiseless office environment.
This database comprises 160, 000 utterances with isolated
and connected digits, natural numbers, spellings, city and
company names, common application words, phonetically rich
sentences, etc. Most items are read and some of them are
spontaneously spoken.

The database is partitioned into three main sets: training
set (80%), development or validation set (8%), and test set
(12%). The original database is then processed to eliminate
the silence samples placed at the beginning and end of the
sentences, using the time marks in the database label files.
As a result, the training set used for the baseline HMM-based
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systems contains approximately 50 hours of continuous speech
from 3, 146 speakers (71, 046 utterances).

The development set contains 7, 436 utterances from 350
different speakers (5 hours of voice after preprocessing) with
the same varied content as the training data set. A subset
is used to select the word insertion log-probability for the
Viterbi decoder, since we have found this value very sensitive
to different noisy conditions, and the training parameters of
the support vector machines (C, kernel parameters, growing
and pruning thresholds, etc.).

The test set employed for validation corresponds to the
connected-digit recognition task of the SpeechDat database,
which comprises 2, 122 utterances and 19, 855 digits (5 hours
of processed speech) from 499 different speakers. The number
of recognized phonemes is restricted to the 18 present in
Spanish digits (we have dropped the samples corresponding to
the remaining 14 phonemes from the data set used for training
the SVMs). The number of discarded samples represents just
8.8% of the samples in the whole training set.

Finally, it is worth noting that the experimental setup
employed for validation is a trade-off between algorithmic
approach suitable for continuous speech recognition and com-
putational tractability using current SVM software implemen-
tation. First, the connected-digit task described in this work
is set from a continuous speech recognition point of view, so
that the proposed approach itself is scalable to more complex
tasks. Second, the size of the SpeechDat database (50 hours
of speech) allows us to investigate the different configurations
described in the paper while extracting significant conclusions
from the experimentation.

2) Database Contamination: The robustness of the hybrid
SVM/HMM ASR systems has been tested in clean conditions
and in the presence of additive noise. For that purpose, white
and babble noises extracted from the NOISEX-92 database
[77] were added to the clean speech signals at four different
signal-to-noise ratios (SNRs), namely 12 dB, 9 dB, 6 dB, and
3 dB. Only the testing and development subsets have been
corrupted in the way previously stated, whereas the acoustic
models (GMMs and SVMs) have been estimated or trained
using only clean speech.

3) Feature Extraction: We use a conventional parameteri-
zation based on 12 MFCCs (Mel-Frequency Cepstral Coeffi-
cients) plus the energy coefficient, and their first and second
derivatives. Thus, a 39-dimensional feature vector is computed
every 10 ms using an analysis window of 25 ms. We have
employed the Cambridge University Hidden Markov Toolkit
(HTK) [78] for this purpose.

The cepstral coefficients are then normalized on an utterance
basis, a necessary task for noisy environments, where training
and testing conditions do not match. Besides, this normaliza-
tion is advisable to facilitate the convergence of SVMs. Thus,
every parameter is normalized in mean and variance (CMVN)
according to the following expression:

x̂
(i)
t =

x
(i)
t − µ(i)

σ(i)
(25)

where x(i)t represents the ith component of the feature vector
corresponding to frame t, and µ(i) and σ(i) are the estimated

mean and standard deviation from the whole utterance, respec-
tively, for the ith component.

4) Data Balancing and Context: As mentioned in Section
III-C, the computational limitations of current SVM software
implementations forced us to extract two reduced balanced
data subsets (3 and 6 hours of speech) for the training of the
SVMs. The new training datasets are extracted from the whole
(non-balanced) SpeechDat training set by selecting phone
samples randomly so that each class is equally represented.
Consequently, these acoustic units appear in general contexts
and not only in those observed in the test. In addition, a large
percentage of the discarded samples correspond to silence
segments (as silences represent approximately 34% of the
original training set). Table I summarizes the distribution of
data into these sets.

It is worth mentioning that hybrid speech recognition sys-
tems clearly benefit from the use of context information [29].
For scalability reasons, the use of context-dependent speech
units is not straightforward. However, context information can
be included in this case by joining adjacent feature vectors
together into a single input vector, since SVMs can handle
vectors of a very high dimensionality. The empirical study
in the hybrid ANN/HMM ASR framework presented in [5]
suggests an optimal context length of 3 frames, which roughly
corresponds to the mean duration of the acoustic units (states
of phoneme).

B. Baseline Systems
1) Baseline HMM Systems: A standard left-to-right HMM-

based recognition system implemented using HTK, similar
to that described in [79], is employed to produce a forced
alignment necessary to obtain the labels for the SVMs, as
SpeechDat is not phonetically labeled. More sophisticated
techniques could be included in the recognizer, with minimal
impact on the overall conclusions of this work.

Each of the 32 context-independent phone models consists
of 3 active states (plus initial and final non-emitting states)
where emission probabilities are modeled by a mixture of
32 Gaussians. The training process of the acoustic models
consists of several steps, including an initial bootstrap models
training, segmentation of the training set using those models,
and iterative re-estimation of the parameters of the HMM.

This system is employed to produce the state-level seg-
mentation of the training set used for the hybrid SVM/HMM
systems, i.e., we label each frame with one of the possible
54 states (corresponding to 17 phones plus silence). To avoid
the potential appearance of empty states, the HMM topology
does not allow to obviate any of the states except in the /sil/
model whose central state is designed to model short pauses
and allows a jump from the first emitting state to the last one
and vice versa.

The results of a triphone-based HMM system are also
included for the sake of completeness. This system, also based
on [79], defines 5, 357 triphone models with three active
states modeling the emission probabilities by a mixture of 32
Gaussians.

The word error rates (WER) obtained for the baseline
HMM recognizers in clean conditions are 2.41% for the
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TABLE I
SUMMARY OF THE DATASETS EMPLOYED IN THE PAPER. THE THREE TRAINING SETS (NB–NON-BALANCED-, B1–BALANCED 1-, AND B2–BALANCED

2-) DIFFER IN THE PORTION OF THE AVAILABLE DATASET USED. DEVELOPMENT AND TEST SETS ARE THE SAME FOR ALL OF THE EXPERIMENTS.

Dataset
Train Development Test

# frames Distribution # frames Distribution # frames Distribution
NB 16, 378, 624 Non-Balanced

1, 682, 065 Non-Balanced 1, 656, 102 Non-BalancedB1 1, 080, 000 Balanced
B2 2, 160, 000 Balanced

monophone-based system and 1.87% for the triphone-based
one. Previously published results on comparable tasks prove
that the performances of our baseline HMM-based systems are
in the state-of-the-art. Namely, the word error rate reported in
[80] for a connected-digit recognition task using a triphone-
based HMM system is 2.17%.

As we will show in a more detailed comparison in Section
IV-C, the SVM-based ASR systems present similar or even
better results in noisy conditions than the baseline monophone-
based HMM system. However, there is still a gap with respect
to the performance of context-dependent HMM systems. In
our opinion, a more effective procedure for the SVM-based
systems to take full benefit of contextual information should
be developed in order to overcome this gap.

2) Baseline LibSVM/HMM System: A baseline hybrid
SVM/HMM speech recognition system, based on the conven-
tional formulation of the support vector machine, has been
built for comparison purposes. This hybrid system is based
on [11] and employs an SVM to estimate the HMM emission
probabilities that will be used by a Viterbi decoder to obtain
the transcription for the speech utterances.

The SVMs have been trained with the balanced data sets
specified in Table I using the LibSVM toolbox. In this work
we employ the versatile Gaussian kernel function:

K (x,x′) = exp

(
−‖x− x′‖2

2σ2

)
(26)

The optimal values for the training parameters C and σ were
obtained empirically through a validation process that uses a
subset of the development set described in Table I. Different
values of the training parameters must be used for each of the
context lengths, namely: C = 1.0, σ = 32 for a context length
of 1 frame, and C = 2.0, σ = 128 for a context length of 3
frames.

The complexity of the SVM (samples that become support
vectors with their corresponding Lagrange multipliers α) is
determined by the training algorithm. In this case, the support
vectors represent at least 69.87% and 65.36% of the balanced
training sets when a context length of 1 and 3 frames is used,
respectively. The dimension of the input feature vectors also
depends on the context length employed in the experiments,
leading to 39 and 117-dimensional training samples. The
outputs of the SVM provide 54 a posteriori probabilities
corresponding to each of the states in our system.

3) Compact WLS-SVC/HMM System: The structure of this
system is similar to that of the previous one, but in this case
the weighted least squares procedure described in Section III

is used to train compact SVMs. A modified version of the
software LibSVM has been employed for this purpose.

Different values for the training parameters were obtained
for each context length through a validation process similar to
that described before: C = 8.0, σ = 128, νg = 0.325, νp = 0
for a context length of 1 frame, and C = 8.0, σ = 512,
νg = 0.21, νp = 0 for a context length of 3 frames.

As previously stated, the complexity of the compact SVM
can be fixed a priori by imposing a semiparametric model on
vector w. The growing (νg) and pruning (νp) thresholds con-
trol the number of centroids that form the base for the model.
Their optimal values result from a compromise between size
and accuracy in the SVM. In this case, the centroids represent
a maximum of 0.22% and 0.26% of the balanced training sets
when a context length of 1 and 3 frames is used, respectively.
It will be shown in the next section that such a huge reduction
in the complexity of the support vector machine allows a real-
time decoding of the speech utterances.

C. Experimental Results

Once the experimental setup has been described in detail
in the previous sections, we proceed to present a performance
comparison of the proposed compact WLS-SVC/HMM recog-
nizer with both baseline LibSVM/HMM and standard HMM-
based systems. Table II shows the word error rates obtained
by these systems in a connected-digit recognition task. The
conventional HMM-based recognition systems were trained
using the whole non-balanced dataset (NB). For computational
reasons, the hybrid SVM/HMM systems were trained using
the two balanced subsets (B1 and B2) described in Table I.
Context windows of 1 and 3 frames have been considered since
previous works in the field have demonstrated the benefits
derived from the inclusion of acoustic context in the hybrid
approach.

In our opinion, the results in Table II show the potential of
hybrid SVM/HMM systems. This fact is especially evident in
noisy conditions, where the best LibSVM/HMM recognition
system outperforms the baseline monophone-based HMM
system. Furthermore, the improvements are statistically sig-
nificant in five out of eight cases. The proposed compact
WLS-SVC/HMM recognizer provides (statistically significant)
better results than the monophone-based HMM system for
white noise at 3 and 6 dB and equivalent performance (i.e.,
within the confidence intervals) for the remaining cases. It
is worth mentioning that the proposed hybrid SVM/HMM
systems provide competitive performance on this task, while
using much less training samples, namely a maximum of
13% of the samples in the whole non-balanced dataset (NB)
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TABLE II
PERFORMANCE COMPARISON OF HMM, LIBSVM/HMM AND WLS-SVC/HMM RECOGNITION SYSTEMS IN NOISY CONDITIONS. WORD ERROR
RATES (WER) WITH 95% CONFIDENCE INTERVALS (CI) ARE SHOWN FOR DIFFERENT NOISE ENVIRONMENTS, ACOUSTIC CONTEXTS (1 AND 3

FRAMES) AND TRAINING DATASETS (B1, B2 AND NB).

Noise type & SNR

Recognizer Context Trn. Set Clean White Babble
12 dB 9 dB 6 dB 3 dB 12 dB 9 dB 6 dB 3 dB

HMM-monophones 1 NB 2.41 ±
0.21

5.34 ±
0.31

7.13 ±
0.36

10.31±
0.42

14.77±
0.49

4.18 ±
0.28

6.36 ±
0.34

10.79±
0.43

18.26±
0.54

HMM-triphones 1 NB 1.87 ±
0.19

3.10 ±
0.24

4.37 ±
0.28

6.69 ±
0.35

10.32±
0.42

3.02 ±
0.24

4.67 ±
0.29

8.10 ±
0.38

14.96±
0.50

1 B1 2.82 ±
0.23

5.81 ±
0.33

7.90 ±
0.38

10.90±
0.43

15.72±
0.51

4.75 ±
0.30

6.84 ±
0.35

11.29±
0.44

19.40±
0.55

LibSVM/HMM

B2 2.57 ±
0.22

5.34 ±
0.31

7.34 ±
0.36

10.43±
0.43

15.29±
0.50

4.54 ±
0.29

6.58 ±
0.34

10.90±
0.43

19.04±
0.55

3 B1 2.42 ±
0.21

4.70 ±
0.29

6.32 ±
0.34

9.24 ±
0.40

14.05±
0.48

4.25 ±
0.28

6.36 ±
0.34

10.46±
0.43

17.48±
0.53

B2 2.14 ±
0.20

4.42 ±
0.29

6.12 ±
0.33

9.02 ±
0.40

13.71±
0.48

4.09 ±
0.28

6.02 ±
0.33

9.95 ±
0.42

17.04±
0.52

1 B1 2.94 ±
0.23

5.45 ±
0.32

7.12 ±
0.36

9.93 ±
0.42

14.27±
0.49

4.71 ±
0.29

6.97 ±
0.35

11.01±
0.44

18.58±
0.54

WLS-SVC/HMM

B2 2.74 ±
0.23

5.26 ±
0.31

7.01 ±
0.36

9.88 ±
0.42

14.21±
0.49

4.62 ±
0.29

6.66 ±
0.35

10.76±
0.43

18.81±
0.54

3 B1 2.64 ±
0.22

4.96 ±
0.30

6.61 ±
0.35

9.49 ±
0.41

13.79±
0.48

4.68 ±
0.29

6.64 ±
0.35

10.53±
0.43

17.60±
0.53

B2 2.62 ±
0.22

4.80 ±
0.30

6.47 ±
0.34

9.20 ±
0.40

13.51±
0.48

4.48 ±
0.29

6.51 ±
0.34

10.46±
0.43

17.49±
0.53

employed for training the Gaussian mixture models in the con-
ventional HMM recognizers. Thus, support vector machines
seem to be a promising future alternative to conventional
acoustic modeling techniques in automatic speech recognition.
However, it is worth noting that, nowadays, the proposed
SVM-based systems benefit from the inclusion of a three-
frame context window less than HMM-based systems do from
the use of triphone models, as shown in Table II. Therefore,
we think that more elaborate methods for the inclusion of
contextual information in the SVM-based hybrid architecture
are required to overcome current context-dependent HMM-
based recognizers. As previously stated, several interesting
alternatives can be found in [29]–[32].

Comparing now the two hybrid SVM-based systems, it
can be said that the WLS-SVC/HMM recognition system
proposed in this paper provides similar performance to the
baseline LibSVM/HMM recognizer. Comparable word error
rates are achieved by both systems, with the LibSVM/HMM
system outperforming our proposal only in clean conditions
(B2 training set and 3 frames context length). However, the
compact WLS-SVC/HMM recognizer entails a much lower
computational burden that allows it to perform a real-time de-
coding of the speech utterances. Table III shows a comparison
of the decoding stage complexity for these systems.

The complexity of the acoustic models for each of the
four speech recognition systems described above is determined
by different sets of parameters. The model size for the
baseline monophone-based HMM system (1, 728 Gaussians)
result from 54 states, each one modeled by a mixture of
32 Gaussians. The model size of the triphone-based HMM
system is 123, 776 Gaussians, since several models share
certain states. In the case of the hybrid LibSVM/HMM and

WLS-SVC/HMM systems, their complexities are given by
the number of support vectors in (6) and the number of
centroids in (19), respectively. However, both values can be
expressed in terms of the number of Gaussians to be evaluated
at the decoding stage, due to the fact that such a kernel
function has been employed in the SVMs. Table III shows
how support vectors represent a large proportion of the training
datasets in the case of the LibSVM-based system. This is an
inherent result in speech recognition, where large datasets with
highly overlapped classes lead to huge SVMs. In contrast, the
weighted least squares training procedure allows us to impose
a preset compact model that controls the size of the WLS-
SVC. Consequently, the complexity of the acoustic model in
the WLS-SVC/HMM system is reduced by between two and
three orders of magnitude with respect to that of the baseline
hybrid recognizer.

Decoding times for the speech recognition systems, refer-
enced to real-time (RT) performance, are also presented in
Table III1. From these results, it can be seen that the proposed
compact WLS-SVC/HMM recognizer achieves similar perfor-
mance to the baseline LibSVM/HMM system with a much
lower complexity. The reduction in decoding time is propor-
tional to the reduction of the model sizes. Although these
recognition times are still higher than those of the conventional
HMM-based systems, the proposed hybrid recognizer is able
to perform a real-time decoding of the test set in three out of

1Due to the huge computational burden of the LibSVM/HMM recognizer,
all of the decoding time measures in Table III were taken over a reduced
test set and then extrapolated. For this purpose, a PC equipped with an Intel
Core 2 Duo E8400 processor at 3 GHz and 3 GB of RAM was employed.
Nonetheless, word error rates shown in Table II were obtained over the whole
test set. For the LibSVM/HMM case, a computer grid was employed.
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TABLE III
COMPARISON OF THE COMPLEXITY OF HMM, LIBSVM/HMM AND WLS-SVC/HMM RECOGNITION SYSTEMS AT THE DECODING STAGE. ACOUSTIC

MODEL SIZES, IN TERMS OF THE NUMBER OF GAUSSIAN FUNCTIONS TO EVALUATE, AND DECODING TIMES, REFERENCED TO REAL-TIME (RT)
PERFORMANCE, ARE PRESENTED FOR ALL OF THE RECOGNITION SYSTEMS.

Recognizer Context Trn. Set Size (# Gaussians) Decoding Time (xRT)

HMM-monophones 1 NB 1, 728 0.08

HMM-triphones 1 NB 123, 776 0.13

LibSVM/HMM
1 B1 790, 138 25.03

B2 1, 509, 230 47.36

3 B1 748, 671 50.64

B2 1, 411, 881 not available

WLS-SVC/HMM
1 B1 2, 346 0.75

B2 3, 039 0.81

3 B1 2, 814 0.97

B2 3, 674 1.31

four cases. It is worth noting that although the complexities
of the HMM-based systems are similar or even higher than
those of the WLS-SVC/HMM systems, the decoding time of
the latter is considerably higher. The reason is that all of the
Gaussian kernels must be evaluated in the multiclass SVM
to obtain a single posterior probability. On the other hand,
only those models corresponding to active nodes in the Viterbi
search must be evaluated at a given time in the HMM-based
systems.

Finally, we would like to highlight a subset of results
selected from Table II. For that purpose these results are
replicated graphically in Fig. 1. First, let us compare the
results achieved by the WLS-SCV/HMM system for the two
training databases (B1 and B2). Although the size of the
training database has a notable influence on the decoding
complexity, since it determines the number of centroids, the
differences in performances are small and not statistically
significant. Therefore, the proposed system can be trained
using a really small database. Second, since the contextual
information has a noticeable influence on the system perfor-
mance, we focus our attention on the results achieved using
a three-frame context window (denoted as w3). We can see
that the proposed WLS-SVC/HMM system attains competitive
performance with respect to the monophone-based HMM
system in both clean and noisy conditions, while reducing
the complexity of the SVM/HMM system enough to allow
for real-time speech recognition. In our opinion, these results
represent an important step forward for SVM-based speech
recognition, although further research in this framework is
still required to allow for practical application of the proposed
system in more demanding ASR tasks.

V. CONCLUSION AND FURTHER WORK

The hybrid speech recognition framework has demonstrated
its capability to overcome some of the limitations of HMM-
based recognizers. Support vector machines have several ad-
vantages over classical artificial neural networks, especially
in noisy conditions. However, their computational burden
has prevented them from being used in practice in ASR,
although several preliminary hybrid systems can be found in
the literature [10]–[12]. In this paper, we suggest the use of a

weighted least squares training procedure [14] that allows us to
control the complexity of the resulting SVM (denoted as WLS-
SVC) by imposing a preset compact model. Other practical
issues related to the application of SVMs in automatic speech
recognition are also addressed. An exhaustive experimental
study based on a connected-digit recognition task reveals the
proposed hybrid WLS-SVC/HMM recognizer as a promising
starting point for the development of preliminary SVM-based
ASR systems. Specifically, we would like to highlight the
following conclusions:
• Competitive performance with respect to standard

monophone-based HMM systems has been obtained in
clean and noisy conditions. Furthermore, statistically sig-
nificant better results have been obtained in a few noisy
cases.

• Real-time speech decoding has been achieved by means
of compact support vector machines.

• Only a small subset (from 6.5% to 13%) of the full
training set (NB) is required to obtain competitive results
on the selected task, which partially alleviates the inherent
complexity of SVMs at the training stage.

Once we have implemented a first hybrid WLS-SVC/HMM
system that is able to perform real-time speech decoding on a
medium-complexity connected-digit recognition task, further
research lines open up in order to improve its performance
and to extend it to large-scale ASR. In particular:
• Development of better procedures for the selection of the

base of centroids for the compact WLS-SVC in order to
obtain larger reductions in the complexity of the SVM-
based recognizers and better recognition performance.

• Analysis of more suitable multiclass architectures and
probability estimation methods for the speech recognition
problem at hand.

• Use of more adequate spectral feature representations and
adoption of more elaborate methods for the inclusion of
contextual information in the hybrid architecture such as
[29]–[32], which should contribute to overcome the gap
with respect to triphone-based HMM systems.

Finally, the use of specific techniques for sequence data
prediction such as structured SVMs (e.g. Hidden Markov
Support Vector Machines [81], Maximum Margin Markov
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Fig. 1. Comparison of the most remarkable results for HMM, LibSVM/HMM and WLS-SVC/HMM recognition systems in noisy conditions. Abbreviation
w3 denotes three-frame context length. B1 and B2 denote the training datasets. Vertical segments represent 95% confidence intervals (CI).

Networks [82], Kernel Conditional Graphical Models [83]) is
also among our future research lines.
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[14] F. Pérez-Cruz, A. Navia-Vázquez, J. L. Rojo-Álvarez, and A. Artés-
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