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Resumen en Castellano

La tesis consiste en tres caṕıtulos independientes de investigación en economı́a de la

información. El primer caṕıtulo estudia cómo el sesgo poĺıtico se sostiene en un mer-

cado de medios de comunicación. El segundo caṕıtulo describe la realización de un

experimento en el laboratorio en el cual investigo la utilización de recomendaciones ses-

gadas por determinados sujetos. El tercer caṕıtulo busca v́ınculos entre dos diferentes

formas de modelar heterogeneidad en juegos de transmisión de información, siendo: (i)

preferencias no comunes y creencias comunes, o (ii) preferencias comunes y creencias

no comunes. Se analiza cuándo y bajo qué circunstancias los dos tipos de modelos son

equivalentes.

El caṕıtulo 1 da comienzo con la observación de que votantes frecuentemente se

suscriben a medios de comunicación que tienen más sesgo poĺıtico que ellos mismos.

Primero, muestro que eso es natural en un mercado es decir: un monopolista siempre

elegirá el sesgo máximo y a pesar de que la competencia ayudará a disminuir el sesgo del

mercado t́ıpicamente, no lo suprimirá por completo. En el caso ĺımite de un mercado

grande con competencia perfecta, el sesgo del mercado será exactamente igual al sesgo

de los votantes. Estos resultados analizan el lado de la oferta del mercado. Añadimos

a esto un análisis del lado de la demanda del mercado. Es posible, que los votantes

demanden medios que son más sesgados que ellos mismos, bien porque tengan mucha

confianza en sus ideas poĺıticas o bien porque exista cierta incertidumbre sobre el sesgo

de las medios.

El caṕıtulo 2 es una prueba experimental de cómo utilizamos consejos de otras per-

sonas que tienen un sesgo comparado con nosotros. Para ello, se les pide a los sujetos

del experimento que estimen la probabilidad de sacar una bola negra de una caja que
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contiene 10 bolas que son ó negras ó blancas. La distribución de los colores es incierta.

Cuando los sujetos toman el papel del Recibidor observan la estimación de otro sujeto

(el Consejero) que tiene información privada sobre el contenido de la caja pero cuya

estimación es sesgada. No obstante, es fácil ajustar la estimación para eliminar el sesgo.

Encuentro que recibidores le dan más peso al consejo del consejero si el sesgo es pequeño

aunque todos los consejeros son igualmente informativos a priori. Además, en una ex-

tensión les permito a los recibidores que elijan al consejero, sabiendo sólo el sesgo de

ése. Los recibidores les dan más peso a los consejeros en este caso (comparado con el

caso en el que los consejeros se asignan exógenamente) aunque, aqúı como antes, todos

los consejeros son igualmente informados a priori. Sin embargo, este efecto está sólo

presente cuando recibidores eligen el consejero con menos sesgo. Interpreto el primer

resultado como un tipo de homofilia - a los recibidores les gustan más los consejeros que

son más similares a ellos - y el segundo resultado como un efecto de ilusión de control -

los recibidores les dan más peso a consejeros cuando los pueden elegir.

El caṕıtulo 3 trata dos diferentes formas de modular la heterogeneidad entre ju-

gadores en juegos de transmisión de información. Tales juegos normalmente se carac-

terizan por dos jugadores: un Recibidor (R) y un Consejero (S). S tiene información

privada sobre el estado del mundo y le manda un mensaje a R que toma una acción

que afecta a los dos. Hay dos fuentes de heterogeneidad: las preferencias y las creencias

de los jugadores. En la mayoŕıa de los casos los jugadores tienen o preferencias no co-

munes y creencias comunes (CB) o preferencias comunes y creencias no comunes (CP).

El caṕıtulo investiga bajo qué circunstancias un modelo del tipo CB tiene un modelo

del tipo CP que es equivalente. Esto es importante por dos razones: Primero, la elección

entre modelos del tipo CB y del tipo CP es a veces arbitraria en el sentido de que no

hay ninguna intuición que favorezca al uno o al otro. En este caso, es importante com-

prender cuando los dos enfoques son equivalentes. Segundo, aún cuando una situación

favorece a uno de los dos, es importante saber cómo el enfoque afecta los resultados.

Dos modelos son equivalentes si cumplen dos condiciones: (i) Equivalencia de Elección,

que implica que en el modelo CB tanto como en el modelo CP los jugadores eligen la

misma acción condicionada en la información, y (ii) Equivalencia de Estrategia, que

implica que en el modelo CB tanto como en el modelo CP los jugadores eligen la misma
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estrategia en equilibrio. Primero, investigo el caso de espacios de acciones y de estados

del mundo que son discretos. Entonces, cualquier modelo CB siempre tiene un modelo

CP equivalente si el espacio de estados es lo suficientemente grande comparado con el

espacio de acciones. En el caso de que sean continuos los espacios identifico condiciones

de suficiencia para que un modelo CB tenga un modelo CP equivalente. Por último,

expongo que ni siquiera si los dos modelos son equivalentes según la definición empleada,

no implica que otras propiedades sean iguales.
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Introduction

The thesis consists of three independent chapters on information transmission in eco-

nomics. The first chapter studies how political bias is sustained in a media market. The

second chapter describes an laboratory experiment on using biased recommendations.

The third chapter considers two different approaches to modeling player heterogeneity

in information transmission games: either non-common preferences and common prior

beliefs or common preferences and non-common priors. It is analyzed when and under

what circumstances the two approaches can be seen as equivalent.

Chapter 1. The chapter starts with the observation that voters often subscribe

to news from media that have more extreme views (bias) than the voters themselves.

First, we show how this is natural in a market setting. In particular, a monopolist

will always choose to be maximally biased and although competition generally helps to

reduce bias it will typically not eradicate it. In the limit case of a large market with

perfect competition between media, news bias will be exactly equal to voter bias. These

results provide us with an supply-side explanation for why media tends to be more

biased than the voters they cater to. We extend this with an analysis of the demand-

side. It is possible that voters prefer more biased news media because they are either

very confident in their beliefs or because there is uncertainty about media bias.

Chapter 2. The chapter is an experimental test of how we use the biased advice

of others to form our own beliefs. In the experiment, subjects are asked to estimate

the probability of drawing a black ball from a cage, which has an uncertain distribution

of black and white balls. In the role of Receivers they observe the estimate of another
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subject (the Sender) who has private information about the composition of the urn but

whose estimate is biased. The bias is exogenous, observable and easily adjustable. We

find that Receivers place higher weight on the Sender’s estimate when the bias is small

although there is no reason to do this; all Senders are equally informative a priori. In

an extension we allow Receivers to choose between two Senders knowing only their bias.

Receivers place more weight on the Sender’s estimate in this case (compared to the

case where the Sender is exogenously assigned) although, again, all Senders are equally

informative a priori. However, this effect is only present whenever Receivers choose the

Sender with the smallest bias. We interpret the first result as the existence of a type

of homophily - more similar Senders are given higher weight - and the second result as

an “illusion of control” effect - the Receiver places higher weight on the estimate of the

Sender when he can choose him.

Chapter 3. The chapter digresses on two different approaches for modeling player

heterogeneity in information transmission games. Such games normally feature an ac-

tion taken by the Receiver and a payoff relevant state variable about which the Sender

has private information. There are two sources of heterogeneity: player preferences con-

ditional on the true state and player prior beliefs about the state. In most cases, players

either have different preferences and common prior beliefs (CB) or common preferences

but different prior beliefs (CP). The paper investigates under what circumstances a CB

model has an equivalent CP model. This is important for two reasons. First, the choice

between a CP or a CB model is sometimes arbitrary in the sense that there is no intuition

to favor one or the other. In this case it is important to understand if and when the two

approaches are equivalent. Second, even when the particular setting favors one of the

approaches, it is important to understand how that approach affects results. To analyze

equivalence we define two concepts: (i) Choice-Equivalence, which implies that in both

models players want to take the same action conditional on available information, and

(ii) Strategy-Equivalence, which means that in both models the players have the same

equilibrium strategies. We find that when the state and action spaces are discrete then

for any CB model an equivalent CP model always exists if the state space is sufficiently

large relative to the action space. When the spaces are continuous we identify sufficient
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conditions for the existence of equivalent models and identify a group of CB models that

always have an equivalent CP model. Last, we argue that even equivalence obtains in

the above sense, other properties may still be different, and in particular we show in an

example that even when a CP and a CB model are equivalent they do not generate the

same preferences for information.
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Chapter 1

The Market for Biased News

1.1 Introduction

1.1.1 Motivation

The current US news market is abundant in news sources with a clear political bias

and there is plenty of evidence of slanting. Take for example ex-CBS producer Bernie

Goldberg’s [23] story of liberal slant in his former employer or the alleged personal

influence on news coverage wielded by Fox News Chairman Roger Ailes.1 Economic

studies with various measures of bias have shown the news market to exhibit a general

liberal bias with Fox News notably standing out on the conservative side (Groseclose and

Milyo [27]; DellaVigna and Kaplan [16]; Lott and Hassett [31]2). A remarkable feature of

the news market is the popularity of some of the very biased news shows. For instance,

according to the Pew Research Center’s 2010 Media Consumption Survey3, 34% of

Republican voters regularly watch conservative talk shows4 and 45% regularly watch Fox

News. Yet only around 15% of Republicans characterize themselves as very conservative.

Similar examples could be constructed for Democrats. We want to investigate this

disconnect between the bias of voters and the news sources they subscribe to and offer

1See http://www.guardian.co.uk/media/2011/aug/10/roger-ailes-fox-news-murdoch.
2Published by the conservative American Enterprise Institute.
3See http://www.people-press.org/2010/09/12/americans-spending-more-time-following-the-news/.
4The O’Reilly Factor, Rush Limbaugh, Sean Hannity, Glenn Beck.
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supply- as well as demand-side explanations for why this may be so.

In particular we construct a model in which voters care about a single issue, the state

of the climate, and must decide whether to vote for or against investing in renewable

energy. To obtain information about climate change they can access a news market with

potentially several news networks and subscribe to one of their news shows.5 Each news

show features one journalist who observes private information (for instance a scientific

report on climate change) and sends a cheap talk message. We use the pronominal

convention that voters are denoted by He and journalists by She. Voters and journalists

have the same preferences but non-common prior beliefs about the state of the climate.

We refer to the expectation of the prior as bias and assume that it is observable. Net-

works care only about maximizing their market share. The timing is as follows. First

networks observe voter and journalist bias and hire journalists. Voters then observe

news show bias and choose which show (if any) to subscribe to. Journalists observe

their private information and send a cheap talk message through their show. Finally

voters cast their ballot. We say that voters who are a priori for/against investing in

renewable energy are liberal/conservative and refer to the most biased voters as extrem-

ists, to the less biased voters as moderates and to the unbiased (in the sense of being a

priori indifferent between investing or not) as neutrals.

The key intuition is that the more biased a journalist is, the stronger a signal she

sends when she makes a recommendation that goes against her prior beliefs. Hence, the

more conservative she is the more informative she will be if she recommends investing

in renewable energy and vice versa. This implies that the voter will always prefer a

journalist with the same direction of bias as himself (liberals prefer liberals, conservatives

prefer conservatives). As an example, imagine a voter who is initially against investing

in renewable energy but who is also a concerned citizen and wants to learn if he is right

or wrong. If The New York Times (liberal) supports investing in renewable energy he

puts it down to its liberal bias and he will not change his vote. On the other hand,

if the Washington Post (conservative) recommends the investment the voter concludes

that they must have observed a strong signal favoring investment and changes his vote.

This incentive to learn when his prior is wrong implies that he will find the Washington

5Here we say news shows although this may also refer to newspapers or internet news sources.
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Post more informative than The New York Times a priori.6

We show that a monopolist with two news shows chooses to be maximally biased in

the sense that he captures the most extreme voters on both sides of the market. The

reason for this is that if a biased voter subscribes to news from a given network so will

all voters that are more moderate than him and hence a monopolist can capture the

extremists without losing subscribers at the center. Hence, moderates do not discipline

a monopolist. In the duopoly equilibrium the market bias is smaller: both networks are

always at most as biased as the monopoly network since there is an incentive to move

toward the center to capture market shares. Since there is no price competition the

only cost of moving toward the center is the potential loss of biased subscribers. If we

assume that the distribution of voter types is discrete and symmetric we can show that

in fact only the relative number of extremists and neutrals matter to market bias. This

provides us with a supply-side explanation for media bias and why moderate voters

might be unable to induce networks to deliver less biased news although they would

prefer it. Moving on to triopoly we show that the market bias is not necessarily reduced

compared to duopoly and hence there is no monotonic relation between market bias

and market size. In particular, if we make assumptions on the voter distribution that

reflect data on US ideology we can show that at least one side of the market (and in

some prominent cases both sides) will be more biased in triopoly than in duopoly. As

the market grows very large each network focuses on a single voter group and hence

the market bias corresponds exactly to the a priori voter bias. Thus, a social planner

who cares only about market bias will not necessarily want more competition. He will

have to weigh up two aspects: increased market bias implies that moderates subscribe

to more biased news but it also brings some extremists (who would never subscribe to

moderate news) to subscribe whereas before they did not. The net effect is not clear. If

the social planner is concerned with the welfare of voters as measured by their utility,

a monotonicity condition tells us that extreme voters gain and moderate voters loose

when the market becomes more biased.

We also explore possible demand-side explanations for why moderates choose very

biased news sources and focus on two cases: heterogenous prior precision and un-

6The intuition is very similar to Cukierman and Tommasi [14] and Suen [45].
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certainty about journalist bias. When prior precision is heterogenous we show that

stubborn/confident (high prior precision) voters prefer more biased media and open-

minded/unconfident (low prior precision) voters prefer less biased media. The reason is

that the more confident the voter is the stronger a signal he needs to change his mind

and according to the previous intuition he can only get such a signal from a more biased

journalist. Returning to the example, a very confident conservative with moderate bias

might prefer Fox News over The Washington Post because only Fox can send him a

strong enough signal to convince him to invest in renewable energy. This also carries

over to the market setting where an increase in voter prior precision leads to more bias

in equilibrium.

When there is uncertainty about journalist bias and only average bias is known the

optimal journalist type for all voters is unambiguously more biased than in the absence

of uncertainty. This is because the uncertainty makes the journalist’s message less

informative to the voter who therefore needs a more biased journalist to convince him.

However, even though voters demand more biased news the market need not become

more biased. When the market is moderately biased an increase in uncertainty leads to

less market bias in equilibrium whereas when the market is very biased an increase in

uncertainty leads to more market bias in equilibrium. The reason is that uncertainty

has a two-fold effect on a voter’s propensity to subscribe to a journalist who is more

moderate than himself. On the one hand, as uncertainty increases the voter has less

information about the signal observed by the journalist, which diminishes his gain from

subscribing to her show. On the other hand, there is also a smaller probability that

her signal was very moderate (so that he should not follow her recommendation), which

augments his gain from subscribing to her show. When the voter is moderate the former

effect dominates and news shows move toward the center and when he is extreme the

latter effect dominates and news shows move away from the center.

1.1.2 Discussion of Model

Voters and journalists have common preferences but different priors. This assumption

seems to well describe issues such as climate change: if everybody agreed that climate

change is caused by fossil fuel combustion we would supposedly all want to invest in
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renewable energy. What differs are our beliefs about climate change. So if a conservative

wants to invest less in renewable energy than a liberal, it is because he believes climate

change to be less likely. If the true state of the climate was known they would both

want to do the same. Several information transmission papers incorporate non-common

priors. Che and Kartik [11] consider players with different prior expectations, endoge-

nous information acquisition and verifiable messages and show that receivers may prefer

senders that have a different prior than themselves. Admati and Pfleiderer [1] model

cheap talk with identical preferences but where the Sender is possibly overconfident

about the informativeness of his signal and the message space is discrete. Kawamura

[29] extends the model by adding bias in preferences and not restricting the message

space. In the present paper we introduce a variant of our model that has a similar flavor

to these latter two papers in that we allow voters and journalists to have different levels

of confidence in their beliefs. Suen [45] is perhaps closest to the idea of this paper. He

shows that the bias of both the optimal advisor and the set of acceptable advisors is

increasing in the receivers own bias.

Voters acquire network news at zero marginal cost, which reflects that news are often

either acquired through internet at zero cost or on television where different networks

form part of a package of channels and therefore can be observed without incurring

further costs. We assume that networks care only about maximizing their market share

which corresponds to a situation in which their main source of revenue is advertising.

This is important since networks will only be competing on their positioning in the mar-

ket and not on prices. We therefore deviate from other models of news markets such as

Mullainathan and Shleifer [34], Baron [4] and Gentzkow and Shapiro [22]. Mullainathan

and Shleifer analyze Hotelling-competition on prices and positioning. They assume that

news consumers have an intrinsic preference for news that are slanted toward their own

position whereas in our model such preferences are derived from a desire to obtain the

best information. Baron models news organizations that set prices and choose how much

discretion to allow their journalists. Journalists always fully exercise this discretion to

misrepresent news (their desire to do so could for instance be out of career concerns).

Gentzkow and Shapiro take a different approach in which media may be of high or low

quality and low quality media slant news toward consumers’ priors in order to appear to

15



be of high quality. Mullainathan and Shleifer find that duopoly competition can lead to

higher bias than monopoly whereas Gentzkow and Shapiro find that competition tends

to decrease bias.

We choose to model information transmission in the model as cheap talk although

evidence such as a scientific report is normally freely available to the public. The ra-

tionale is that although the evidence is accessible it often requires significant effort and

knowledge to read and understand. Therefore, for the vast majority of the public, mes-

sages about complicated subjects such as climate change are effectively unverifiable.

All the above papers on news markets feature cheap talk although in Baron journalists

have only limited discretion to distort news and in Gentzkow and Shapiro some news

sources always truly report the news. In an extension of the model we allow for un-

certainty about the journalist’s prior, which can be related to information transmission

when sender preferences are uncertain (Stein [44]; Wolinsky [48]; Morgan and Stocken

[33]; Kydd [30]) and noisy information transmission (Blume, Board and Kawamura [5]).

These papers generally find that a small amount of uncertainty or noise improves the

informativeness of the equilibrium. In our model the effect may go either way as the

voters’ preferences move ambiguously with the level of uncertainty.

Our model has voters subscribing to news only to obtain information (which is

different to for instance Mullainathan and Shleifer). A common objection is that people

perceive news as entertainment and simply prefer to be confirmed in their beliefs. Again

we appeal to data from the Pew Research Center’s 2010 Media Consumption Survey,

where regular consumers of a given news source are asked for their reason to turn to

the source.7 The Colbert Report, the Daily Show, USA Today and the morning shows

are the only shows for which at least 15% of the regular viewers state that they mainly

watch the show for entertainment. This is hardly surprising given that these shows

are staged as entertainment shows. We conclude that, at least according to consumers

themselves, entertainment is not an important motivation for following the news.

The particulars of the model are set in terms of news and voters but we imagine the

results to carry over to any situation in which a profit maximizing organization hires

7Question 82a-x of the survey.
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agents to provide information to a third party who must take a (binary) action. These

could be consultancy firms and companies, rating agencies and investors or political

think tanks and politicians.

Section 1.2 introduces the model. Section 1.3 describes the demand for news and

identifies voters’ preferred journalist types. Section 1.4 analyzes market outcomes. First

we focus on monopoly versus duopoly. Then it is shown that the results do not vary

monotonically with the number of firms and finally the limit case of a large market

with many firms is analyzed. Section 1.5 introduces uncertainty about journalist bias

and heterogeneity between voters and journalists in the precision of their prior beliefs.

Comparative statics are derived on how these extensions affect market bias. Section 3.6

concludes. All proofs are relegated to Section 1.7.

1.2 A Model of a News Market

1.2.1 Payoffs

Let θ be a random variable supported on R which, for illustration, represents the state

of the climate, such that if θ < 0 climate change is important and we should invest in

renewable energy whereas if θ > 0 the extent of climate change is too small to affect us.

The voter (he) and the journalist (she) have the same quadratic utility function

u(y, θ) = −(y − θ)2,

where y ∈ {−γ, γ} is the ballot cast by the voter. Here y = γ > 0 corresponds to

voting against investing in renewable energy and y = −γ to voting for investing. We

want to make two observations about the utility function. (i) The quadratic utility

function captures a situation in which there are convexly increasing costs to making the

wrong decision. Thus we are implicitly making the assumption that it is equally costly

to err on both sides. An alternative example to illustrate this is that climate change

is occurring and voters must choose the best response (for instance, either emphasize

investment in technology or carbon trading). (ii) This is not a voting model in the sense

that voters’ utility depends on winning a referendum: voters gain utility from doing
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“the right thing”. That is to say, if they believe that climate change is indeed occurring,

they gain utility from voting for investing in renewable energy regardless of whether

they win the referendum or not.

The news market consists of a discrete and non-empty set N of N news networks.

Each network n ∈ N seeks only to maximize its market share sn ∈ [0, 1]. As discussed

above, this corresponds to a situation in which networks generate income only from

advertising. We also assume that voters subscribe to at most one (and possibly zero)

news shows at zero cost. Perhaps the best illustration of this setup is a person who likes

to watch the news on TV each night. He only watches one show, for instance because

he does not have time for more or because the shows overlap and he owns no recording

device. He can also choose to turn the TV off. Hence, he will either watch the show

that gives him the most utility or, if he does not expect to learn anything useful from

any of the shows, he will spend his evening in other activities.

One important consequence of the setup is that networks are always focussed on

capturing new subscribers and not on providing better content for existing subscribers.

A change in strategy that increases market share but uniformly lowers the utility of all

existing subscribers is always beneficial and thus networks search for the lowest common

denominator.

1.2.2 Information Structure

Before observing any information players have normally distributed prior beliefs over

the state of the climate. The beliefs of a type-b voter are given by

θ
b∼ N(b, 1).

The voter’s bias is parametrized by b, his prior expectation of θ. Denote the density

function of the beliefs by fb(θ). To facilitate the interpretation we refer to voters with

b > 0 as conservatives and voters with b < 0 as liberal.8 On the other hand, a type-β

8Although there seems to be a general perception that liberals are “tree-huggers” and conservatives

are against climate change investments (believing for example that climate change is not happening or

that the market will automatically solve the problem) this is of course a gross simplification but we

hope that the reader will bear with it for the sake of exposition.
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journalist has beliefs

θ
β∼ N(β, 1).

Journalist bias is parametrized by β, her prior expectation of θ. We make two assump-

tions about beliefs that will be relaxed later. First we have assumed that journalist bias

is known. In Section 1.5.1 we extend the model to allow the bias the be unobservable but

drawn from a commonly known distribution. Second we have assumed that the preci-

sion of voters’ and journalists’ priors is the same. In Section 1.5.2 we allow this to differ

and give precision the interpretation of confidence or stubbornness. These assumptions

have no implications on the qualitative results of Section 1.4 but by introducing them

we can do comparative statics on the market equilibrium to analyze how it moves with

different levels of confidence and bias uncertainty. The private information of journalists

(for instance a climate report) takes the form of an unbiased and normally distributed

signal x, which is the same for all journalists.

x ∼ N(θ, 1).

The precision of the signal has no qualitative effect on the results and therefore we set

it equal to one to save on notation. Let the density function of x conditional on θ be

denoted by λ(·|θ). A priori a type-b voter will believe x to be distributed with the

following density function.

lb(x) ≡
∫ ∞
−∞

λ(x|t)fb(t) dt.

This is a normal distribution with expectation b and variance 2. Often it will useful

to express quantities in terms of l(·) ≡ l0(·) such that the beliefs of a type-b voter are

given by lb(x) = l(x − b). Observe that this is one of the important implications of

modeling bias in beliefs rather than in preferences. Bias in beliefs affect not only the

preferred action conditional on x but also the expectation of the distribution of x. Bias

in preferences, on the other hand, affects only the conditional preferred action. This

will be important for several results since, the more biased a voter is, the more likely he

thinks it is that he will receive a message that confirms his prior beliefs. Consequently, he

will have a stronger preference for same-bias journalists than if beliefs were independent

of bias.
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1.2.3 Distribution of Voters

Voter types are characterized by their prior beliefs, which are summarized by b. We

assume that bias is bounded such that b ≤ b ≤ b and distributed according to π(b),

which may have continuous or discrete support. When b and b′ have the same sign we

say that voter type b is more moderate than type b′ if |b| < |b′|. Furthermore, we always

assume that there are voters on both sides of the market, i.e. π(b) > 0 for some b > 0

and π(b′) > 0 for some b′ < 0.

When the support is discrete then b ∈ {bk}Kk=K and we define πk ≡ π(bk) for k ∈
{K, ...,K}. We use the index k to represent the direction of bias such that bk < 0 for

k < 0 and bk > 0 for k > 0 with b0 = 0 and order the groups such that k′ > k if bk′ > bk.

In this case, we define a symmetric voter population by K = K = K, b−k = bk and

π−k = πk.

1.2.4 Timing

The timing of the game is as follows.

Stage 1: The owner of network n ∈ N hires a journalist of bias βn ∈ R.9

Stage 2: The voter observes the bias of each network n ∈ N and subscribes to at most

one. If a discrete voter group is indifferent between several networks we assume

that it splits evenly between them.

Stage 3: Journalists observe the realization x of their private information, update

beliefs and send a cheap talk message mn ∈M to their subscribers.

Stage 4: Voters cast their ballot y.

All aspects of the game except x are common knowledge. As is shown below journalists

will always send one of two messages and therefore we can assume without loss of gen-

erality that M = {−γ, γ} such that the message is to be understood as a recommended

action. Our setup corresponds to a model in which journalists know that they are better

9Other papers such as Baron [4] discuss journalists as being generally biased in one direction but to

simplify we assume that news networks can choose freely any type of journalist.
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informed than voters and once in Stage 3 the audience of each network is fixed such

that the best a journalist can do is to try to persuade her audience to vote for her pre-

ferred action. The equilibrium concept employed is Perfect Bayesian Equilibrium. Since

there is no uncertainty about voters’ type, sequential rationality implies that the players

cannot commit to any other strategy than playing the Bayesian Nash Equilibrium10 in

Stages 3 and 4. If the set of voters that subscribe to a given network is non-empty the

journalist of the network will have only one consistent strategy, which is to truthfully

reveal his preferred action but not the exact value of the signal. This strategy does not

depend on the size nor the composition of the audience.

1.3 The Information Transmission Game

In this section we analyze Stages 3 and 4 of the game, which will pin down the demand

side of the market. For each voter group we identify two journalist types that will play

a role in the market equilibrium. First we identify the optimal journalist type for each

voter type. This journalist type will be important when a voter group is sufficiently

large such that networks are willing to choose their bias solely to attract this group and

disregard other voters. Second we define the least informative journalist type of a voter

as the journalist type that makes the voter exactly indifferent between following the

message of the journalist or ignoring her. This type will help us to bound the market

bias in monopoly and duopoly.

1.3.1 Equilibrium of the Information Transmission Game

Conditional on x, a type-β journalist has posterior expectation (β + x)/2. Using the

bias-variance decomposition and the updating formula for normally distributed priors

with normally distributed data, we can calculate a type-β journalist’s expected utility

10Bayesian Nash Equilibrium in this case consists of a signaling rule for the journalist and an action

rule for each voter with the properties that (i) conditional on the action rules of their subscribers, the

journalists’ signaling rules maximize their expected utility, and (ii) conditional on the signaling rule of

the journalist of the network to which a voter subscribes, his action rule maximizes his expected utility.
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conditional on x, y and her type as

UJ
β (y, x) = −

(
y − β + x

2

)2

− 1.

Having observed x, the journalist wants y to be chosen by the voter so as to maximize

UJ
β (y, x), which corresponds to minimizing the absolute value of (y − (β + x)/(2)). In

equilibrium at most two actions can be induced and therefore the optimal strategy mβ(x)

of a utility-optimizing type-β journalist reduces to

mβ(x) =

{
−γ whenever x < −β
γ whenever x ≥ −β.

This is always an equilibrium strategy regardless of the audience of the network. If the

audience is empty the journalist is indifferent between any two strategies. If the audience

is non-empty the only strategies that maximize her expected utility are strategies that

induce y = mβ(x) conditional on x and therefore this is essentially the unique equilibrium

strategy. Observe that in equilibrium the journalist truthfully reveals her own preference

over the actions. What she does not reveal is the intensity of her preference. Conditional

on x and y, the expected utility of a type-b voter is

UV
b (y, x) = −

(
y − b+ x

2

)2

− 1.

Letting yb be the default action for a type b-voter (i.e. yb = −γ if b < 0 and yb = γ if

b ≥ 0) the utility gain from following the message of the news source is defined by

G(b, β) ≡
∫ −∞
−∞

[
UV
b (mβ(x), x)− UV

b (yb, x)
]
lb(x) dx.

This function is symmetric in b around 0 and therefore we can focus on the case where

b ≥ 0 (i.e. the voter is “conservative”) without loss of generality. In this case yb = γ and

therefore the voter only potentially changes his action whenever m = −γ. Hence, we

can write his gain as G(b, β) =
∫ −β
−∞

[
UV
b (−γ, x)− UV

b (γ, x)
]
lb(x) dx. Calculating this

we arrive at

G(b, β) = −4γ

∫ −β
−∞

b+ x

2
lb(x) dx.

= −2γ

∫ −β−b
−∞

(2b+ z)l(z) dz. (1.1)
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The voter should follow the message whenever the gain is positive and will prefer the

news source with the highest gain. Hence, this function is a sufficient statistic for

determining voter behavior. Observe that the integrant in the first line is the voter’s

posterior expectation of the state given x weighted by the density of x, and that this

density is evaluated using the voter’s prior beliefs. Thus priors affect expected gains not

only through the expectation of the state conditional on the signal but also in through

the assessment of how likely each signal is.

1.3.2 Some Comparative Statics of News Demand

In this subsection we make a number of observations that will be useful in the further

analysis and which are interesting in their own right. It is straightforward to identify the

voter’s preferred journalist type and show that gains are monotonic in their distance to

the optimal type. We can then show that (i) moderates gain more in optimum, (ii) for

each voter there is a unique journalist type β that gives zero gains and this type is more

moderate than the voter, and (iii) if two journalist types are spaced equally far from a

voter the voter prefers the most extreme type. Let the voter’s preferred journalist-type

be denoted

β∗(b) ≡ arg max
β∈R

G(b, β).

Take the derivative of (1.1) with respect to β to obtain G2(b, β) = −2γ(b−β)l(−β− b).
It follows from the first-order condition G2(·) = 0 and by checking the second-order

condition that the voter’s preferred journalist type is the type that has the same bias

as the voter, which is not surprising given the symmetry of the setup.

β∗(b) = b.

It follows that in the baseline version of the model there is no demand-side incentive for

bias to be extreme. The result seems almost self-evident but we shall see in Section 1.5

how the preferred type changes when we introduce different levels of prior confidence

and uncertainty about journalist bias. From G2(·) it is also easy to see that the gain is

monotonic around the optimal type.

G2(b, β) > 0 for β < β∗(b) and G2(b, β) < 0 for β > β∗(b). (M)

23



This is important since competition will often take place at the center (b = 0). Given

that G(0, β) is symmetric around β = 0 we can deduce from (M) that the network with

the smallest absolute bias will win the central group. Denote the gain at the optimum

for a type-b voter by G∗(b) ≡ G(b, β∗(b)). Substituting we get G∗(b) = −2γ
∫ −2b

−∞ (2b +

z)l(z) dz and taking the derivative with respect to b and applying the Envelope Theorem

we arrive at

G′∗(b) = −4γ

∫ −2b

−∞
l(z) dz.

This is clearly decreasing in b for b > 0 and increasing in b for b < 0, which leads to the

following observation.

Observation 1. Moderates gain more in optimum. I.e., G′∗(b) > 0 for b < 0 and

G′∗(b) < 0 for b > 0.

Information is more valuable to moderates because they are more likely to make use

of it, that is to say, to change their mind. An extremist will consider it unlikely that

his preferred news source will receive a signal strong enough to send a message that

recommends him to switch away from his default action. Therefore he expects to gain

less than a moderate.

Notice that the gain can also be negative. However, negative gain occurs only if the

journalist is more moderate than the voter. To see this, notice that the limit of G(b, β)

as β goes to infinity is −4bγ and as β goes to negative infinity is zero. It then follows

from (M) that there can at most be one crossing and that for b > 0 (b < 0) this occurs

for some β < β∗(b) (β > β∗(b)) whereas for b = 0 there is no crossing. Thus for each

b 6= 0 there is a unique journalist type which yields exactly zero gain. This type will

play an important role in the determination of the market equilibrium and therefore we

denote it by β0(b) such that

G(b, β0(b)) = 0.

We call this journalist type the least informative journalist for a type-b voter and ap-

plying the above analysis we can state the following observation.

Observation 2. For each voter type, the least informative journalist is always more

moderate than the voter. I.e., β0(b) < b for b > 0 and β0(b) > b for b < 0.
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It is interesting to consider this for a moment. A biased voter will always want to

follow the message sent by an even more biased journalist but he may not want to follow

a less biased journalist. The reason is that an extremely conservative/liberal journalist

is always informative to a conservative/liberal voter when she sends a message that goes

against her prior, since in this case the journalist reveals a great deal of information (the

set of signals that could have induced this message is small). The same is not necessarily

true for a more moderate journalist or a journalist who is biased in the other direction.

Yet, even though an extremely biased journalist always gives positive gain to voters of

the same direction of bias, the overall expected gain from subscribing to her may be

very small since there is only a very small probability that she sends a message that

goes against her prior. The majority of the time she will send a message that confirms

her prior and thus be uninformative.

If two news networks are available, how will voters choose between them? When the

two news sources are either more moderate or more extreme than the voter we know

from the monotonicity of the gain function that he will choose the one that is closest

to his optimal type. When one is more moderate and the other is more extreme the

answer is less straightforward. Suppose there are two networks, L and R, with biases

βL and βR such that βR > βL. If voters of type b are indifferent between subscribing to

L and R then they must have the same gain from the two networks.

G(b, βL)−G(b, βR) = 0. (1.2)

It is shown in the proof of Corollary 2 that (1.2) always has a unique solution, which

we denote by the function b(βL, βR). It can be checked that b(·) is a continuous and

monotonically increasing in both arguments. Recall that the derivative of the gain with

respect to the journalist type when b > 0 is G2(b, β) = −2γ(b−β)l(−β−b). Since l(·) is

a normal distribution with zero mean and hence symmetric around β = −b whereas the

utility function is symmetric around β = b, the derivative is asymmetric around β = b.

In particular for any ε > 0 we have G2(b, b− ε) +G2(b, b+ ε) > 0. Combining this with

βL < b(βL, βR) < βR and (M) we arrive at the following observation.

Observation 3. The indifferent voter is always closer to the most biased journalist.

I.e., suppose |βR| > |βL|. Then |βR − b(βL, βR)| > |βL − b(βL, βR)|.

25



Why? Effectively, voters are concerned about making mistakes. Take the example

of a conservative (b > 0) voter. Without any message he will vote against investing

in renewable energy. If a journalist is less conservative than the voter there will be

signals for which the journalist recommends investing but the voter would have preferred

not investing. If the journalist is more conservative there will be signals for which the

journalist recommends not investing but the voter would have preferred investing. Given

the symmetry of the utility function both types of mistakes are equally costly to the

voter. But because his beliefs about the distribution of the signal x are derived from

his prior he beliefs the first case to be more likely, and therefore he prefers the more

conservative journalist.

1.4 The Market for News

In this section we analyze Stages 1 and 2. From the previous section we know the

strategy of journalists and we have identified two journalist types for each voter type

- the optimal journalist and the least informative journalist. Particularly the least

informative journalist type will be important for determining the market equilibrium.

We will be interested in analyzing which bias is chosen by networks as well as the

welfare that voters obtain: previous work suggests that competition can both augment

and diminish bias and that it is not necessarily conducive to welfare.

The main analysis of the section is a comparison of monopoly and duopoly compe-

tition. To make the comparison more interesting, we will assume that the monopolist

manages two news shows whereas each duopolist network manages one show. This is to

capture the idea of a large market in which a monopolist would ideally want to cover

both sides of the spectrum to maximize his profits. We analyze examples of a triopoly to

show that the relationship between bias and market size is not monotonic and suggest

why this might be so. Lastly we look at the limit case of a fully competitive news market

in which there are enough media such that at least one network caters directly for the

bias of each voter group.

Since the gain function gives us the expected utility gain from following a message

a natural measure of a type-b voter’s welfare is the following.
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Definition The welfare of a type-b voter in the news market N is

Wb = max
n∈N
{G(b, βn), 0}.

The voter’s welfare in a news market N is the maximum gain he can achieve if this is

positive and zero if this is negative, since he can always choose not to pay attention

to the news. Any voter can potentially obtain strictly positive welfare a priori since

G(b, β∗(b)) > 0 for all b but in a given market this may not be possible if the media are

too biased away from the voter’s own bias.

Although we have assumed that news can be acquired at zero cost we want to rule

out equilibria in which voters acquire news although they do not intend to follow them.

We therefore make the following assumption.

Assumption 1. If type-b voters have negative gain from following the advice of a type-β

news network (G(b, β) < 0) they do not subscribe to it.

This assumption implies that whenever a voter cannot obtain a positive expected

gain from subscribing to a network he chooses not to do so (even though subscription is

costless in our model). We can think of this in terms of a model where the voter has a

subscription cost c. The above assumption then corresponds to the limit case as c→ 0.

Before starting the analysis we establish a lemma which will be the backbone of the

results in this section.

Lemma 1. If a given voter has positive gain from a network then so do all voters who

are more moderate. I.e., if b′ > 0 and G(b′, β) > 0 then G(b, β) > 0 for all 0 ≤ b < b′.

Conversely for b′ < 0.

Lemma 1 implies that in the absence of competition networks will choose their bias

to attract extremists. Whenever they have the extremists on board, the moderates will

follow. This is important because it implies that behavior will not resemble that of,

for instance, a Hotelling model in which attracting extremists comes with the potential

cost of losing moderates. In our model moderate voters cannot discipline a monopolist

and drive him toward the center. This observation is essential for our comparison of

monopoly and duopoly. The lemma is somewhat stark and stems from the fact that
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we assume that all voters subscribe as long as they have positive gain. If for instance

subscription is probabilistic and this probability depends on the size of the gain, it is

possible that the incentive to increase the subscription probability of moderate voters

would be greater than the incentive to attract extremists and in this setting networks

could be disciplined by moderate voters even in the absence of competition.

To have a reference point for market bias we identify the most moderate journalist

type that is informative to the most extreme voter on both sides. In particular, β ≡ β0(b)

and β ≡ β0(b). As we shall see, these are the smallest biases a monopolist will choose and

the largest biases that a duopolist will choose. However, when we increase competition

further and move to triopoly, it is possible that some network will strictly prefer β < β

or β > β. As competition increases networks abandon the small-market strategy of

attracting a large audience and begin to focus on smaller groups and on choosing a

news bias that is closer to these voters’ bias.

1.4.1 Monopoly versus Duopoly

First we will compare monopoly and duopoly to show that market bias clearly diminishes

under duopoly. Then we will move on to triopoly to show that generally speaking the

case is not so clear and that under reasonable assumptions about the voter distribution,

triopoly will lead to more bias at the extremes and less at the center. To make the

comparison between the monopoly and the duopoly cases fair, we assume that the

monopolist owns two news shows, L and R, and hires one journalist for each show, with

respective bias βML and βMR . Without loss of generality let βML ≤ βMR . We can then show

the following.

Proposition 1. The monopolist chooses any βML and βMR to cover the whole market.

I.e. βML ≤ β and βMR ≥ β.

The key to this result is Lemma 1: moderate voters do not discipline the monopolist.

Rather, the situation is the opposite - in monopoly the extremists dictate the market.

The assumption of the monopolist owning two networks is also important. If he only

owns one then it might be optimal to locate at the center and the comparative statics

with duopoly case would be very different. If we assume that there is a fixed cost of
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running a network then the case we consider is the case in which there are sufficiently

many extreme voters such that a monopolist cannot cover a large part of the market with

just one news show. In this case it will be profitable to set up a second show but never

more, since with two shows the monopolist can cover the entire market. As an example

of organizations with multiple news outlets, Rupert Murdoch’s News Corporation owns a

variety of British papers from the serious The Times and The Sunday Times to tabloids

News of the World (before it was dismantled) and The Sun, all of a different profile and

supporting both the Labour Party and the Conservative Party.11

We now analyze the situation of two independent networks, L and R, who each

choose one journalist to maximize their own market share. Denote the biases chosen in

equilibrium by βDL and βDR . To avoid less interesting cases where the voter population

is so skewed that networks compete only on one side of the spectrum, we suppose that

βDL ≤ 0 ≤ βDR . If the voter distribution is continuous then the two networks will be

in direct competition, in the sense that they can steal market shares from one another

by moving closer to the center. This will always be true because of Lemma 1 but may

not be true in other models. Returning to the example of Hotelling competition, two

vendors may be sufficiently far from each other such that their pools of potential buyers

do not overlap. In our model there is always overlap at the center and therefore there

is always competition. It follows that it will never be optimal to set β < β or β > β.

We summarize this in the following proposition.

Proposition 2. If voter distribution is continuous, market bias is less extreme in

duopoly than in monopoly. I.e.

β ≤ βDL and βDR ≤ β. (1.3)

If the voter distribution is discrete and symmetric with π0 > 0 the same result holds.

In the present model, competition has the potential to make news less biased since

networks will be competing for the moderate voters. If instead we were in a situation

where the monopolist chooses only one outlet and places himself at the middle the

11See for instance http://en.wikipedia.org/wiki/Rupert_Murdoch.

29



proposition would have been the other way around, i.e. competition would increase or

maintain bias. But this would have been an effect of the quantity of news shows rather

than competition. We can make a comparison here to two other papers that consider

monopoly versus duopoly competition in the news market. Mullainathan and Shleifer

[34] andfind that duopoly is more biased than monopoly. There are two reasons for the

difference between our result and theirs. First, in Mullainathan and Shleifer duopolists

differentiate themselves to charge a higher price. In our model, only market shares

are important and therefore there is no incentive to differentiate. Second, they use a

Hotelling model with intrinsic preference for bias in which the transport cost implies

that if a news network is sufficiently biased it may loose the moderate subscribers. This

will never happen in our model as shown in Lemma 1: given that we see messages as

the result of an information transmission game an extreme news network will always be

informative when it sends a signal opposite to its prior.

The following corollary to Proposition 2 states a condition that allows us to identify

equilibrium bias in a special case. Let β0
k ≡ β0(bk).

Corollary 1. Suppose the voter population is discrete and symmetric with k∗ ≡ max{k ∈
N : πk ≥ π0/2}. In any duopoly equilibrium,

βDL = −β0
k∗ and βDR = β0

k∗ .

For symmetric distributions this corollary tells us when the duopoly news market is

maximally biased, i.e. when (1.3) holds with equality. This will occur whenever

πK ≥
π0

2
.

The corollary is interesting in that it tells us that in symmetric equilibria the market

bias is determined by the relation of neutrals to extremists. Even if an extremely large

group of moderates exists it will not influence equilibrium bias if only the extremists are

sufficiently many compared to the neutrals. To see why the corollary holds, observe that

when the voter distribution is symmetric networks will be competing over the central

group of voters (b = 0) while trying to hold on to as many of the biased voters as

possible. Suppose we start from a symmetric position and let k and k be the most

extreme group of voters that buy from R and L, respectively. In this case each network
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has half of the neutral group, i.e. π0/2, and a small deviation toward the center would

allow them to gain the whole group, i.e. a gain of π0/2 in market share. Such a deviation

is costless for R if βR > β0
k

and carries the cost of πk if βR = β0
k
. Clearly, in the first

case R will always make the deviation and in the second case he will make the deviation

if π0/2 > πk.

Until now we have been concerned with the bias of the news market. The goal of

a social planner may be to diminish news market bias, either because bias is viewed as

intrinsically bad or to incur voters to make better collective decisions. But the social

planner may also be concerned with the welfare of voters, as measured by their gain.

The following corollary to Proposition 2 tells us how welfare is affected by competition.

Corollary 2. Suppose the monopoly and duopoly equilibria are not identical. Then

in duopoly welfare is lower for extreme voters and higher for moderate voters than in

monopoly. In particular, there exists b′ ≥ 0 and b′′ ≤ 0 such that WD
b > WM

b for

b′ < b < b′′ and WD
b < WM

b for b < b′ and b > b′′.

The result is intuitive. We know from (M) that a voter’s gain is monotonically de-

creasing in the distance between her bias and that of the network. Therefore the duopoly

is necessarily better for voters at the center because it is less biased. Furthermore, we

know that the monopolist bias equals the minimally biased network for the most ex-

treme type. Hence, for this type the monopoly is already too moderate and therefore

he loses out further in duopoly when network bias becomes more moderate.

1.4.2 Increasing Competition

In this section we will first provide a class of voter distributions for which we can say

that increasing competition increases the bias at the extremes. We will argue that the

type of distributions that we are considering here are close to the empirical distribution

of political bias in the United States. Afterwards we will show a counterexample with

a discrete voter distribution and consider why the results are different.
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Competition Increases Bias When the Voter Distribution Is Single-Peaked

In this section we will consider a class of voter distributions that satisfy |b|, |b| ≤ 1

and that π(·) is (weakly) single-peaked with peak at b̃ such that π′(b) ≥ 0 for b ≤ b̃

and π′(b) ≤ 0 for b ≥ b̃. The first assumption says that we need bias to be at most

one standard deviation away from neutrality - recall that voters’ beliefs have variance

1. This assures that the normal distribution is concave at the points where we need to

evaluate it to prove the lemma below. The second assumption implies that networks

have more to gain the closer they move to the peak of the voter distribution. As

Table 1.1 illustrates the assumption of a single-peaked population matches (coarsely)

the distribution of ideology in the US, which has a small peak at “moderates” and is

skewed towards conservatism. We first consider what happens when a network moves

Table 1.1: US Political Ideology

Very Liberal Liberal Moderate Conservative Very Conservative

4.4% 14.3% 40.1% 33.3 % 7.9%

Source: Pew Research Centers 2010 Media Consumption Survey.

closer to another. It is not clear from the setup of the model how networks react to

increased competition: do they stand their ground or do they withdraw? There is no

clear intuition here. If L moves closer to R then R looses market share at the center

and this market share could be won back by R if he moves closer to the center but this

comes at price in terms of loosing market shares on the extreme. If we suppose that L

and R are initially in an equilibrium then R will only compete and move towards the

center if in the new situation b(·) is more responsive than before, i.e. if R can gain more

market share by moving toward the center than before. Will this be the case? The

following lemma derives the comparative static.

Lemma 2. Suppose b ∈ [−1, 1] and let βR > |βL| ≥ 0. Then competition decreases the

closer L and R are together in the sense that

b21(βL, βR) < 0.
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Since b2(·) > 0 the lemma states that network R gains less market share from moving

towards the center the closer L is to him and hence if the voter distribution is uniform

networks will always move in the same direction. I.e. if L moves to the right R, rather

than moving to the left to compete for his market, will resign and also move to the right.

Hence, what keeps the networks from both moving towards the middle is the discipline

of extreme voters who might cancel their subscription if networks become too moderate.

The lemma is driven by the fact that the closer the networks are to each other the less

responsive is b(·). However, as L moves closer to R then b(·) increases and this has an

ambiguous affect on the derivative which is, however, dominated by the first effect.

Suppose the two networks L and R are in an equilibrium in which they choose biases

βDL and βDR . Now a third network M enters the market and we assume, without loss of

generality, that βTR ≥ βTM ≥ βTL and |βDR | ≥ |βDL |. I.e. the new network enters between

the two old networks and in duopoly, R is the most biased network. There are two

cases. In the first case βTR ≥ βTM ≥ βDR or βTL ≤ βTM ≤ βDL . That is to say, in triopoly the

network M is more extreme than R or L was in duopoly. In this case, by assumption

one side of the market becomes more biased. In the other case βDR ≥ βTM ≥ βDL . Then,

by Lemma 2, R will have less incentive to compete toward the center and unless it was

already maximally biased (βR = β) it will move toward the extreme. This establishes

that at least one of the two original networks L and R becomes more biased in triopoly.

To see that it is possible that both L and R become more extreme suppose that the

duopoly equilibrium is symmetric such that βDR = −βDL and that βTM = 0. Then by

Lemma 2, βTL ≤ βDL and βDR ≤ βTR, with the inequalities holding strict if not already L

and R are maximally biased (βR = β and βL = β). We summarize this in the following

proposition.

Proposition 3. Suppose |b|, |b| ≤ 1 and that π(·) is (weakly) single-peaked. Without

loss of generality, let βTM ≥ 0. Then either

βTL ≤ βDL ≤ βTM ≤ βDR ≤ βTR,

or

βTL ≤ βTM ≤ βDL ≤ βTR ≤ βDR .
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The proposition states that a new entrant always creates more bias on at least one

side of the market although he will also create less bias towards the center. It follows

that competition (in the sense of moving from duopoly to triopoly) can not uniformly

diminish bias - there will always be at least one side of the market that becomes more

biased. We can relate this finding to some data. DellaVigna and Kaplan [16] estimate

that after its introduction to the American news market Fox News persuaded 3 to

8 percent of its non-Republican voters to vote Republican. This appears to be an

example of a new player entering a news market, which was to some extent disciplined

by moderate voters initially, and “scooping up” the more biased consumers on one side

of the spectrum, thus adding bias to the market.

The effect observed in triopoly suggests it will always be impossible to add a new

entrant without making some networks more biased (although others may become less

biased). Thus, a social planner interested in diminishing news market bias will need to

specify an objective function to make decisions. In the above case, the planner must

weigh two effects: (i) the gain/loss from those who subscribe to networks that become

less/more biased, (ii) the gain/loss from those who did not/ did subscribe in duopoly who

do/do not subscribe in triopoly. The second effect is not considered by the proposition:

making news markets more desirable in some cases since it means that extremists who,

in the absence of subscribing to any news, are completely rigid in their opinions may

actually respond to the signal.

A Counterexample

In this section we give a counterexample to the result of the previous section and try to

explain why this occurs. We furthermore establish a simple limit result for large voter

populations.

Suppose that the voter distribution is symmetric and that, apart from the neutral

group, on each side of the spectrum there is a group of very biased voters and a group

of moderate voters. The key is that the neutral group, although being the biggest voter

group, is not large enough to discipline voters neither in duopoly nor in triopoly. In

duopoly the two networks choose each their side of the market which they dominate

whereas in triopoly one network is neutral and the two biased networks must choose
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between targeting the moderate or the extreme group. Since the former group is larger

they choose a moderate bias. This results in the following counterexample to the result

of the previous section, which is proved in the appendix.

Example 1. Suppose K = 2 and G(b1, 0) > G(b1, β
0(b2)), G(b2, β

∗(b1)) < 0 and π0/2 <

π2 < π1 < π0. Then if a biased voter subscribes to news he always finds the media more

extreme in duopoly than in triopoly. In particular,

β0(b−2) = βDL < βTL < βTM = 0 < βTR < βDR = β0(b2).

In this case, the smaller news market bias in triopoly comes at a price: extremists

will not subscribe to news. Thus they will always vote according to their prior. As

mentioned in the previous section, a social planner comparing the two situations must

weigh the bias of the moderate groups against the participation of the extreme groups.

The difference to the result of the previous section is due to the following: as soon as

one of the networks choose the central position (β = 0) the other networks must choose

between attracting moderates or extremists and hence the marginal argument of Lemma

2 has no effect. Two arguments make the result of the previous section more realistic

in our view. First, the result of this section relies very much on the discreteness of the

voter distribution. In reality, we believe that voter distributions are more resemblant of

continuous distributions. Second, the distributional assumptions of the example do not

match the data of the previous section. In particular, the extreme groups are smaller in

the data than required for the example. Using distributional assumptions that reflect

the data the duopolists would move toward the center to fight for the large neutral group

and the result of the example would not hold.

Having established that the bias of the news market is not monotonically changing in

the number of networks we investigate the limit case of a large market with many news

providers. If the number of networks is large enough the only equilibrium is that each

voter group is covered by at least one network that has exactly the preferred bias of that

group. The reason is simple. When there are sufficiently many networks the best each

one can do is to focus on one voter group and the optimal bias level for each network is

then the preferred bias of its target group. If not the preferred bias was chosen, another
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network could steal this group entirely. We formalize this in the following proposition.

Let π ≡ min πk and nk = min{n ∈ N : πk/n ≤ π}.

Proposition 4. Suppose the voter distribution is discrete with N ≥
∑
nk. Then the

news market is completely covered. I.e. in equilibrium, for any k there exists n ∈ N

such that βn = β∗k.

In the limit the bias of the news market is exactly equal to the bias of the voters. Re-

call that with fewer networks it is possible that the news market is completely unbiased.

Thus it is not obvious that the preferred market structure from the point of view of a

social planner is more competition. However, voter welfare is clearly maximized in the

limit case as the following corollary shows.

Corollary 3. Suppose the voter distribution is discrete with N ≥
∑
nk. Then the

welfare of all voter groups is maximized. I.e. for all k then Wk = maxβ Gk(β) > 0.

Since each voter group has access to their preferred network-type they choose to

subscribe and obtain their maximum expected gain. Hence, voters would always prefer

the limit case of the very competitive news market. We could think of the very com-

petitive market as an approximation to the US news market in which a large number of

nationally available networks provide news coverage from a variety of different political

points of view. The smaller markets are more akin of most European countries in which

news markets are dominated by a large public network and a smaller number of private

networks.

1.5 Demand-Side Bias: Adding Journalist Uncer-

tainty and Voter Stubbornness to the Model

Until now we have considered competition as the driving force of news bias and assumed

that voters and journalists differ only in their prior expectation of the state of the

world. However, it is also possible that news bias is created on the demand side. In

this section we explore two channels through which this can happen and investigate

whether increased demand for biased news also leads to more biased news in the market
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equilibrium. We focus on discrete distributions and let Gk(β) ≡ G(bk, β) and lk(·) ≡
lbk(·).

First we consider uncertainty about journalist bias. Voters may not always know the

exact bias of journalists but rather have a more or less precise idea about it. There could

be many reasons for this. For instance, The New York Times employs many journalists

and each of them have a different bias. Readers will probably not know the bias of

each journalist but have a good idea about the average. Alternatively, each journalist

may have a different bias on different issues and only the average bias is observable.

The precise technology of the uncertainty is not important, we merely assume that

such uncertainty exists and show that this leads voters to demand more extreme news

networks. The intuition is that the uncertainty adds more noise to the messages that

networks send and therefore voters place less weight on them and need a stronger signal

in order to switch away from their a priori preferred action.

Second we increase the heterogeneity between voters and journalists by allowing

them to differ in the precision of their prior, which we can interpret as their confidence

or stubbornness. The more stubborn voters are, the less prone they are to changing

their opinion. Therefore their optimal network bias is more extreme since more biased

networks provide stronger signals.

1.5.1 Journalist Bias Uncertainty

In this section we allow for uncertainty about the bias of the journalist. Voters and

networks must make decisions based on the observable average bias of the journalist

and their knowledge of the distribution of her true bias. In particular, we assume that

the bias distribution of a type-β journalist is

β ∼ N(β, 1/φ). (1.4)

The parameter β is the expected bias of the journalist and φ is the precision of the

distribution from which β is drawn. This is common knowledge between all players. To

analyze news demand in this setting we attack the problem a bit differently. Conditional

on x the journalist has posterior expectation µ = (β + x)/2 and hence x = 2µ − β.

Let z ≡ 2µ − β = x − (β − β). Then z is normally distributed with expectation
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θ and precision φ/(1 + φ). Hence, type-k voters’ posterior beliefs over θ conditional

on z are normally distributed with expectation (bk + φ/(1 + φ)z)/(1 + φ/(1 + φ)) =

((1 + φ)bk + φ(µ − β))/(1 + 2φ) and precision 1 + φ/(1 + φ). Furthermore, a type-k

voter a priori expects z to be distributed normally with expectation bk and precision

φ/(2φ+ 1). Denote the distribution of type-k voters’ beliefs about z by qk(·). Since the

journalist sends the signal m = −γ whenever x < β, which corresponds to z < −β, we

can write the gain function as

Gk(β) = −4γ

∫ −β
−∞

(1 + φ)bk + φz

1 + 2φ
qk(z) dz. (1.5)

This function is very similar to the gain function of the simple version of the model

except it depends only on β and the uncertainty parameter φ, and not the true value

of β. Notice that the weight of the voter’s prior is increasing in uncertainty. We then

derive the following observation.

Observation 4. Suppose journalist bias is unobserved but commonly known to be dis-

tributed according to (1.4). The optimal expected journalist type for a type-k voter is

β∗k =
1 + φ

φ
bk.

Notice from the observation that whenever there is uncertainty voters prefer journal-

ists that are more biased than themselves. The intuition is the following. In the simple

version of the model voters could make a direct inference about x conditional on the

message received from the journalist. However, when uncertainty is present voters must

instead make a similar inference about the variable z. But as we have shown above z is

a more noisy signal about the state of the world than x (z has precision φ/(1 + φ) < 1)

and therefore the voter assigns lower weight to this message. Consequently he needs a

stronger signal to switch away from his a priori preferred action and for this he needs

a journalist who he thinks is more extremely biased on average. As an example, if the

voter is conservative but finds it hard to determine whether journalists are too liberal

or too conservative he prefers a journalist that he expects to be more conservative than

himself such that if he receives the message “invest in renewable energy” he feels confi-

dent that this message is due to the information contained in the scientific report x and
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not due to the journalist’s bias. We next establish a lemma that will aid in determining

the comparative statics.

Lemma 3. Suppose journalist bias is unobserved but commonly known to be distributed

according to (1.4). Then for all voter types, the least informative journalist-type is

increasing in uncertainty for moderate voters and decreasing in uncertainty for extreme

voters.

In particular, suppose φ̃ < φ (more uncertainty under φ̃) and denote by β̃0
k and β0

k

the respective least informative journalist types of a type-k voter. Suppose bk ≥ 0. Then

there exists b > 0 such that for bk < b

β̃0
k < β0

k .

Furthermore, there exists b > 0 such that for bk > b then

β̃0
k > β0

k .

Conversely for bk ≤ 0.

The lemma follows as increasing uncertainty produces two effects of opposite sign.

First the voter places more weight on his prior and less on the information derived

from then news message which diminishes his expected gain. Second his posterior after

receiving the message moves away from his prior, which augments his expected gain.

When the voter is extreme the first effect dominates and it is less likely that he subscribes

to news. When the voter is moderate the second effect dominates and it is more likely

that he subscribes. Recall that k∗ ≡ max{k ∈ N : πk ≥ π0/2}. We can then directly

derive the following proposition.

Proposition 5. Suppose journalist bias is unobserved but commonly known to be dis-

tributed according to (1.4) and that the population is symmetric. Let φ̃ < φ, such that

there is more uncertainty under φ̃, and denote by −β̃L = β̃R and −βL = βR = β0
k∗

the respective symmetric equilibria. If bk∗ < b then equilibrium bias is decreasing in

uncertainty. I.e.

βDL < β̃DL and β̃DR < βDR .
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On the other hand, if bk∗ > b then equilibrium bias is increasing in uncertainty. I.e.

β̃DL < βDL and βDR < β̃DR .

Despite the unambiguous effect of journalist uncertainty on the optimal news bias

demanded by voters the effect on the equilibrium may go either way. The reason for

this is to be found in Lemma 3, which shows that the unambiguousness of the optimal

journalist type does not carry over to the effect on the least informative journalist

type. This may become more or less extreme as uncertainty grows and since the least

informative journalist-type (rather than the optimal journalist-type) determines the

market equilibrium there is ambiguity. If the marginal voter (the most biased voter

who subscribes to news) is relatively moderate an increase in journalist bias uncertainty

will imply that the marginal voter pays more attention to news in general and hence

networks can move closer to the center without losing their marginal audience, which

they will do in order to compete for the neutral voters. On the other hand, if the

marginal voter is relatively extreme an increase in journalist bias uncertainty implies

that the marginal voter pays less attention to news and hence networks become more

biased in order to attract him.

1.5.2 Voters of Different Prior Precision

So far voters and journalists have differed only in their expectation of the state but in

this section we want to explore how the situation changes if they also have different

levels of prior precision. Imagine two different voters who both think that on average

there is some degree of climate change occurring but not enough for us to need to invest

in renewable energy. One of them may feel very unsure about his beliefs and in reality

places equal probability on the events of large, moderate or small climate change. We can

think of this voter as unconfident or open-minded. The other voter on the contrary feels

very sure about his beliefs and places very low probabilities on any other interpretation

of events. This voter may be thought of as confident or stubborn. The question is

whether these two voters have the same preferences for news and how the composition

of confidence in the voter population affects the competitive equilibrium. To investigate
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this we assume that the prior beliefs of a type-k voter are distributed according to

θ
k∼ N(bk, 1/pk). (1.6)

Hence, bk remains k’s prior expectation of θ and pk ∈ R+ is the precision of his prior

beliefs, which measures his confidence or stubbornness. The precision of journalists’

beliefs remains one and hence if pk < 1 the voter is open-minded and if pk > 1 he is

stubborn. Conditional on x a type-k voter has posterior expectation

µk(x) =
pkbk + x

pk + 1
. (1.7)

The precision parameter acts as a weight on his prior expectation. Following the same

steps as previously we can derive the gain function of a type-k voter.

Gk(β) = −4γ

∫ −β
−∞

pkbk + x

pk + 1
lk(x) dx. (1.8)

Notice that pk will also affect lk(·), voter k’s beliefs about the distribution of x, but for

the purpose of identifying the optimal journalist bias this does not matter. As can be

seen directly from (1.8) the gain is increasing for x < −pkbk, which leads to the following

observation.

Observation 5. Suppose voter beliefs are given by (1.6). The optimal journalist type

for a type-k voter is

β∗k = pkbk.

The observation identifies the optimal journalist bias as being the voter’s own bias

modified by his degree of stubbornness and hence he always prefers to get his news from

a source that has the same direction of bias as himself. If the voter is stubborn he

prefers a journalist who is more biased than himself. Conversely, if he is open-minded

he prefers the journalist to be more moderate. The following lemma shows that this

comparative static also carries over to the least informative journalist type.

Lemma 4. Suppose that voters potentially have different prior precisions such that their

beliefs are distributed according to (1.6). Then the bias of the least informative journalist

type is increasing in voter stubbornness.
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In particular, let p̃k′ > pk′ for some k′ with everything else equal and denote by β̃0
k

and β0
k the respective least informative journalist types of a type-k voter. Suppose bk > 0.

Then

β̃0
k > β0

k .

Conversely for bk < 0.

We observed earlier that the prior precision affects the voter’s beliefs about the

distribution of x but whereas this was not important for the optimal journalist type it

plays a role for the least informative journalist type. The more confident k is the more

tightly he expects x to be distributed around bk. At the same time he will place more

weight on his own prior beliefs and these two effects will both decrease his gain. This

together with (M) implies that news sources will have to move closer to the preferences

of high confidence voters in order to attract them, which yields the result. As we know

that the least informative journalist type conditions the duopoly market equilibrium

this lemma leads the following proposition.

Proposition 6. Suppose that voters potentially have different prior precisions such that

their beliefs are distributed according to (1.6) and that the population is symmetric. Let

p̃k′ > pk′ for some k′ with everything else equal and denote by −β̃L = β̃R and −βL = βR

the respective symmetric equilibria. In equilibrium media bias is more extreme the more

stubborn voters are. I.e.

β̃DL < βDL and βDR < β̃DR .

The effect of increasing voter stubbornness is to unambiguously increase the news

market bias in duopoly. This is consistent with the intuition that stubborn voters are

more likely to seek self-confirming news sources only that here the result is derived as an

optimal choice on part of the voters rather than being assumed as an intrinsic preference.

In duopoly it is the most extreme audience group who determines the equilibrium and

therefore if bias and stubbornness are correlated moderate voters suffer even further.
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1.6 Conclusion

This article has sought explanations for why moderately biased voters often subscribe

to very biased news shows. Our results suggest that this is natural in a setting where

news are purely observed for their informational value (not for entertainment) and where

journalists are conscientious in the sense that they report the news honestly according

to their own beliefs. The key mechanism that brings about this link is that moderates

have little ability discipline networks. Hence, networks will stage their news shows to

cater to the tastes of the most biased voters and in doing so they will also capture more

moderate voters. The result is that most voters will tend to observe a news source that

is more biased than themselves. Although market bias does not change monotonically

with the number of networks we observe that in the limit as the number of networks

grows large the market bias converges to the prior bias of the voters. We also suggest

possible demand-side factors that can drive the disconnect between voter and news show

bias. When there is uncertainty about journalist bias or when voters are very stubborn

we observe that moderates prefer more biased news shows. In the first case however,

even though voters’ optimal news source bias is increasing in uncertainty the effect on

the market is ambiguous.
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1.7 Proofs

Proof of Lemma 1. Let Lb(a) ≡
∫ a
−∞ lb(s) ds and lb(x|a) ≡ lb(x)/Lb(a) such that we can

write G(·) as

G(b, β) = −2γLb(−β)

[
b+

∫ −β
−∞

xlb(x| − β) dx

]
.

Suppose G(b, β) = 0 and choose b′ < b. Then

G(b, β) = −2γLb(−β)

[
b+

∫ −β
−∞

xlb(x| − β) dx

]
= −2γLb′(−β)

[
b+

∫ −β
−∞

xlb(x| − β) dx

]
< −2γLb′(−β)

[
b′ +

∫ −β
−∞

xlb(x| − β) dx

]
< −2γLb′(−β)

[
b′ +

∫ −β
−∞

xlb′(x| − β) dx

]
= G(b′, β).

The second equality follows because G(b, β) = 0 implies that the term in the bracket is

zero. The first inequality follows since b′ < b and the second since the integral is the

conditional expectation of x given x < −β and this is increasing in b.

Proof of Proposition 1. Suppose βMR = β. If βML > β, then by definition of β the

monopolist has market share s < 1. On the other hand, as a direct consequence of

Lemma 1, if he sets βML = β he will have market share s = 1. The same argument

applies for βMR < β.

Proof of Proposition 2. As is argued in the text, when the voter distribution is contin-

uous it will never be optimal to set βDL < beta since in this case L could move towards

the center and gain market share, since b1(βL, βR) > 0, without loosing any market

share in the extreme as long as βDL ≤ beta. Hence, in an equilibrium we must always

44



have βDL ≥ beta. Similarly for R. To see the discrete case, notice that β = −β for

symmetric voter distributions. Suppose βDR = −βDL > β. Then L and R split the central

group. But by moving slightly toward the center, either L or R could gain the entire

central group without loosing any other groups. Hence, this cannot be an equilibrium.

If βDR > −βDL ≥ β then L has the entire central group and R could gain π0/2 by setting

βDR = −βDL . Hence, this cannot be an equilibrium either. The same argument holds if

−βDL > βDR ≥ β. Thus, we must have β ≤ βDL ≤ βDR ≤ β. This yields the result.

Proof of Corollary 1. Observe that if βDL = −β0
k∗ and βDR = βDL = −β0

k∗ , a deviation

towards the center can at most give them πk∗ − π0/2. This yields the result.

Proof of Corollary 2. First we state and prove the following lemma.

Lemma 5. The indifferent voter function b(βL, βR) always exists and is increasing in

both arguments. I.e. the indifferent voter is unique for all βL and βR and b1(·) > 0 and

b2(·) > 0.

Proof. Notice that

G(b, βL)−G(b, βR) = −2γLb(−βR,−βL)

[
b+

∫ −βL
−βR

xlb(x| − βR,−βL) dx

]
.

The proof of uniqueness of b can then be completed by considering b such that G(b, βL)−
G(b, βR) = 0 and following the same steps as in Lemma 1 to show that G(b′, βL) <

G(b, βR) for b′ > b and G(b′′, βL) > G(b, βR) for b′′ < b. Furthermore, since βL ≤
b(βL, βR) ≤ βR then G2(b, βL) > 0 and G2(b, βR) < 0. This together with the above

result implies that if β′L ≥ βL and β′R ≥ βR with at least one of the inequalities holding

strict, then b(β′L, β
′
R) > βL, βR).

If the equilibria are not identical then by Proposition 2 either βML ≤ βDL or βDR ≤ βMR
or both hold with strict inequality. Consider βMR and βDR . From Lemma 5 we know that

βMR ≥ b(βDR , β
M
R ) ≥ βDR ≥ 0. Hence, b′′ = b(βDR , β

M
R ). Similar for βML and βDL .
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Proof of Lemma 2. Let D(βL, βR, b) ≡ G(b, βL) − G(b, βR) and b0 = b(βL, βR). Then

by definition D(βL, βR, b0) = 0. We denote the partial derivatives of D(·) by Di ≡
Di(βL, βR, b0) for i = 1, 2, 3. Using the notation lL = l(−βL − b0), lR = l(−βR − b0) and

L =
∫ −βL−b0
−βR−b0

l(z) dz we can write these derivatives as follows.

D1 = 2γ(b0 − βL)lL

D2 = 2γ(b0 − βR)lR

D3 = D1 −D2 − 4γL.

The first derivative of b(·) with respect to βR can then be obtained by implicit differen-

tiation.

b2(βL, βR) = −D2

D3

=
(βR − b0)lR

2L− [(b0 − βL)lL + (βR − b0)lR]
.

Since the factor 2γ cancels out it is convenient to use the shorthand di = Di/(2γ),

such that the derivative above can be written −d1/d3. The second derivative can be

computed by the chain rule.

b21(βL, βR) = b21(βL, βR)|b=b0 + b1(βL, βR)× ∂2b(βL, βR)

∂βR∂b0

.

As should be clear, the first term measures the effect of changing βL when keeping b0

constant and the second term captures the change in b0 and its effect. First we notice

that if h is the density function of a normal distribution with variance σ2 its derivative

has the following property h′(z) = −h(z)z/σ2. It follows that (βR−b0)l′R = (β2
R−b2

0)lR/2

and (βR − b0)l′R = (β2
R − b2

0)lR/2. We then calculate the derivatives.

b1(βL, βR) = −d1

d3

= −(b0 − βL)lL
d3

b21(βL, βR)|b=b0 = − lLlR
d2

3

(
1 +

b2
0 − β2

L

2

)
(βR − b0)

∂2b(βL, βR)

∂βR∂b0

=
lL
d2

3

[(
1 +

β2
R − b2

0

2

)
d3 − (βR − b0)d33

]
,
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where d33 is the derivative of d3 with respect to b0, i.e. d33 = D33/(2γ). This is equal to

d33 = lR ·
(

3 +
β2
R − b2

0

2

)
− lL ·

(
3− b2

0 − β2
L

2

)
.

Putting this together we arrive at the following.

b21(βL, βR) =
lLlR
d3

3

[(βR − b0)(b0 − βL)d33 −Bd3] ,

where

B =

(
1 +

b2
0 − β2

L

2

)
(βR − b0) +

(
1 +

β2
R − b2

0

2

)
(b0 − βL).

First, notice that since b(−βR, βR) = 0, b1(·) > 0 and βR ≥ |βL| then we must have

b0 ≥ 0. Hence, βR − b0 ≥ b0 − βL ≥ 0 by Observation 3 and (βR − b0)/(βR − βL) ≥
1/2 ≥ (b0 − βL)/(βR − βL).

To determine the sign of the derivative we need to use the property that if h is

the density function of a normal distribution with variance σ2 its second derivative is

h′′(z) = [(y/σ2)2−1]h(z). Hence, the distribution function is concave whenever |y| ≤ σ2.

Hence, given the assumption that b ∈ [−1, 1] we must have b0, β ∈ [−1, 1] and therefore

l(·) is concave over the interval [−βR − b0,−βL − b0].

Using the concavity property we can establish that L > (βR − βL)(1
2
lL + 1

2
lR) ≥

(b0 − βL)lL + (βR − b0)lR. This allows us to upper bound d3.

d3 = [(b0 − βL)lL + (βR − b0)]− 2L < −L < −(βR − βL)lL/2 < 0.

Furthermore, since βR ≥ |βL| then β2
R ≥ β2

L and therefore

d33 ≥ −
(

3 +
b2

0 − β2
L

2

)
lL.
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Combining this we can upper bound b21(·) by l2LlR/d
3
3(βR − βL) times

B − (βR − b0)(b0 − βL)

βR − βL

(
3 +

β2
R − b2

0

2

)
=(βR − b0)

(
1 +

b2
0 − β2

L

2
− 2

b0 − βL
βR − βL

)
+ (b0 − βL)

(
1 +

β2
R − b2

0

2
− βR − b0

βR − βL

(
1 +

b2
0 − β2

L

2

))
≥(βR − b0)

(
b2

0 − β2
L

2

)
+ (b0 − βL)

(
β2
R − b2

0

2
− βR − b0

βR − βL
b2

0 − β2
L

2

)
≥0.

The first inequality holds since 1 ≥ (βR − b0)/(βR − βL) ≥ 1/2 ≥ (b0 − βL)/(βR − βL).

The second holds, since either b2
0 − β2

L ≥ 0 and in this case β2
R − b2

0 ≥ b2
0 − β2

L and both

terms are positive. Or b2
0−β2

L < 0, in which case (βR−b0)(b2
0−β2

L)+(b0−βL)(β2
R−b2

0) =

(βR − b0)(b0 − βL)(2b0 + βL + βR) ≥ 0.

Proof of Example 1. We need to check duopoly against triopoly.

Duopoly. In duopoly βDL = β0
−2 and βDR = β0

2 , which yields sL = sR = π2 + π1 +

π0/2. There is no incentive to move towards the center to capture the entire neutral

group since π0/2 < π2.

Triopoly. On the other hand, in triopoly βTL = β∗−1, βM = 0 and βTR = β∗1 which

gives sL = sR = π1 and sM = π0. By deviating to the left L can obtain π2 and

by deviating to the right he can obtain π0/2. Since π1 > π2 > π0/2 none of these

deviations are profitable. Idem for R. M can either obtain π1/2 or π2. Neither of these

are greater than π0 and therefore M has no profitable deviation.

Proof of Proposition 4. Suppose that for some k′ there is no n ∈ N such that βn = β∗k′ .

By assumption, some network n′ must have market share sn′ < π ≤ πk and hence

βn′ = β∗k′ constitutes a profitable deviation. This is a contradiction.
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Proof of Corollary 3. The result follows since for all k, βn = β∗k for some n ∈ N and β∗k
maximizes the gain of group k voters.

Proof of Observation 4. Differentiate (1.5) with respect to β.

G′k(β) = 4γ

[
(1 + φ)bk − φβ

1 + 2φ

]
qk(−β).

The observation follows directly.

Before proving the results of Section 1.5 let us first establish a useful lemma.

Lemma 6. Suppose H(t) and H̃(t) are the probability distribution functions of two

normal distributions with the same expectation µ and precision τ and τ̃ , respectively,

where τ < τ̃ .

H̃(t|c, d) < H(t|c, d) whenever c < t ≤ d < µ (1.9)

H̃(c) < H(c) for all c < µ (1.10)

H̃(µ− ε, µ+ ε) > H(µ− ε, µ+ ε) for all ε > 0 (1.11)

Proof. Let hτ (·) denote the respective density functions and notice that

hτ (t2)

hτ (t1)
= e−τ [(t2−µ)2−(t1−µ)2]/2. (1.12)

If t1 < t2 < µ it follows from (1.12) that hτ (t2)/hτ (x1) is increasing in τ , implying that

hτ (·) has the MLR-property in τ for t < µ. This property implies (1.9) and (1.10). Last,

(1.11) follows from (1.10).
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Proof of Lemma 3. Suppose bk ≥ 0 and φ̃ < φ. Let qk(·| − β) denote the density of k’s

beliefs over z conditional on z < −β on φ and let q̃k(·| − β) denote the same density

conditional on φ̃. Similarly let G̃k(·) and Gk(·) be evaluated under φ̃ and φ. Let β
′

satisfy Gk(β
′
) = 0. Multiplying this condition by −4γ(1+2φ)/φ on both sides we arrive

at
1 + φ

φ
bk +

∫ −β′
−∞

z qk(z| − β
′
) dz = 0. (1.13)

Since bk ≥ 0 the first term in (1.13) is non-negative and hence the integral must be

non-positive. As bk → 0 then∫ −β′
−∞

z q̃k(z| − β
′
)−

∫ −β′
−∞

z qk(z| − β
′
)→ ε.

By Lemma 6 then ε < 0. On the other hand, as bk → 0 then [(1+φ̃)/φ̃−(1+φ)/φ]bk → 0.

Hence, by the continuity of all the terms there exists b such that the left-hand side of

(1.13) is negative for bk < b and hence G̃k(β
′
) > 0. Let β

′′
satisfy G̃k(β

′′
) = 0 and notice

that β
′
< β∗k < β̃∗k and β

′′
< β̃∗k . Therefore, by (M), then G̃′k(β) > 0 for all β between

β
′

and β
′′
. Thus β

′′
< β

′
. This establishes the first part of the lemma.

As bk → ∞ then for any z1 < z2 < bk or bk < z2 < z1 we have qk(z2)/qk(z1) → ∞
and thus qk(·| − β

′
) converges to a distribution which is degenerate at z = −β′. Hence,

as bk →∞ then∫ −β′
−∞

z q̃k(z| − β
′
)−

∫ −β′
−∞

z qk(z| − β
′
)→ −β′ − (−β′) = 0.

On the other hand, as bk → ∞ then [(1 + φ̃)/φ̃ − (1 + φ)/φ]bk → ∞. Hence, by the

continuity of all the terms there exists b such that the left-hand side of (1.13) is positive

for bk > b and hence G̃k(β
′
) < 0. Thus if β

′′
satisfies G̃k(β

′′
) = 0 then β

′′
> β

′
by the

same argument as above. This establishes the second part of the lemma. The proof is

identical for b < 0.

Proof of Proposition 5. The proposition follows directly from Corollary 1 and Lemma

3.
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Proof of Observation 5. Differentiate (1.8) with respect to β.

G′k(β) = 4γµk(−β)lk(−β) = 4γ
pbk − β
p+ 1

lk(−β). (1.14)

The observation follows directly.

Proof of Lemma 4. Let Lk(c, d) be the probability assigned by voter k to the event

that x ∈ [c, d] and let lk(x|c, d) for x ∈ [c, d] denote the density of the correspond-

ing conditional distribution of the voter’s beliefs over x. Furthermore, let Lk(d) ≡
limc→−∞ Lk(c, d) and lk(x|d) ≡ limc→−∞ lk(x|c, d). Suppose G(β) ≥ 0. The two first

properties of Lemma 6 tell us that the conditional distributions can be ranked by first

order stochastic dominance in p. Let l̃(·) be equal to lk(·) evaluated under p̃k and l(·)
equal to lk(·) evaluated under pk, and similarly for L(·) and µ(·). Suppose b > 0. There

are two cases. First, suppose −β ≤ b and drop the k subscript. Then

G̃(β) = −4γL̃(−β)

∫ −β
−∞

µ̃(x)l̃(x| − β) dx

< −4γL̃(−β)

∫ −β
−∞

µ̃(x)l(x| − β) dx

< −4γL̃(−β)

∫ −β
−∞

µ(x)l(x| − β) dx

≤ −4γL(−β)

∫ −β
−∞

µ(x)l(x| − β) dx

= G(β) = 0.

The first inequality follows from (1.10) and the fact that µ̃(x) is an increasing function,

the second since µ(x) is increasing in p for b ≥ x and the equality from (1.10) and

G(β) ≥ 0. Hence, for any news source with −β ≤ b and a voter who has non-negative

expected gain, the expected gain of the voter is decreasing in his prior precision, p. To

take care of the second case, let −β > b > 0. Define β′ ≡ 2b− β > 0 and notice that β

and β′ are symmetric around b, i.e.

−(−β′ − b) = −β − b > 0. (1.15)
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Then

G̃(β) = G̃(β′)− 4γL̃(−β′,−β)

∫ −β
−β′

µ̃(x)l̃(x| − β′,−β) dx

= G̃(β′)− 4γL̃(−β′,−β)b

< G(β′)− 4γL̃(−β′,−β)b

< G(β′)− 4γL(−β′,−β)b

= G(β).

The integral in the first line is equal to b by (1.15) and the fact that l̃(·| − β′,−β) is

symmetric around b. The first inequality follows from the first case (since −β′ ≤ b),

and the second from (1.11) and (1.15). Thus we have established that for any b such

that the voter subscribes to news, the gain G(β) is decreasing in p. Hence, if β′ and β′′

satisfy G(β′) = 0 and G̃(β′′) = 0 then β′′ > β′. The proof is identical for b < 0.

Proof of Proposition 6. There are three cases. First suppose k′ > k∗. In this case we

know from Corollary 1 that πk′ < π0/2 and hence changing pk′ does not influence the

equilibrium. Second, suppose k′ = k∗. From Lemma 4 we know that for k′ ≥ 0 then

β̃0
k′ > β0

k′ and hence β̃DL < βDL and β̃DR > βDR . Last, suppose k′ < k∗. If πk′ < π0/2

then the equilibrium always remains the same by Corollary 1. Suppose on the contrary

πk′ ≥ π0/2. Denote by k̃ the reordering of the groups under p̃k with k̃′ corresponding

to the new position of category k′. If k̃′ < k̃∗ the equilibrium remains the same. If

k̃′ ≥ k̃∗ then β̃DL < βDL and β̃DR > βDR by Corollary 1 and Lemma 4. This completes the

proof.
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Chapter 2

Using Information with a Known

Bias in the Lab

2.1 Introduction

We all receive copious amounts of information from other people in the form of advice.

Most often this advice, even in the absence of strategic motives, is biased. A friend

who recently crashed his car is probably more likely than average to advice you to buy

insurance. And receiving a bad review of an airline from a relative who is afraid of flying

might not tell you so much about the quality of the airline. In this paper we ask the

following question:

if advisors are biased but bias is publicly known and easily adjusted for, will

people give higher weight to similarly biased advisors?

We investigate this by setting up an experiment where subjects estimate probabilities.

They take either the role of Receivers or Senders. We will use the pronominal convention

that Receivers are denoted by He and Senders by She. Receivers observe the advice

of a Sender who has private information. The Sender is only rewarded according to

the accuracy of her own estimate and hence she has no incentive to lie. Sender and

Receiver may have different biases but this is publicly known and easily adjusted for.
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After receiving the Sender’s advice the Receiver makes his own estimate. The following

example illustrates what we mean by easily adjustable bias.

Example. A manager has two project evaluators. Suppose that, from the man-

ager’s point of view, one evaluator is very optimistic (say that he always overestimates

the probability of success by 20% compared to the manager) and the other is slightly

optimistic (say he overestimates by 10% compared to the manager) but otherwise they

are equally good. The manager’s job should then be easy: he just divides the estimate

of the former by 1.2 and the estimate of the latter by 1.1. There is no objective reason

for him to give more weight to the opinion of the more similar evaluator (the slightly

optimistic).

In the paper we estimate the weight that Receivers give to Senders’ advice and refer

to this as trust. We then analyze how trust depends on the difference in the bias of

the Sender and the Receiver and show that the answer to the question posed above

is affirmative: Receivers trust similarly biased Senders more. Furthermore, we provide

evidence on some of the contextual factors that affect trust: the experiment allows us

to investigate how trust varies when the Sender makes “extreme estimates” and when

we allow Receivers to choose the Sender, knowing only her bias.

Preview of experiment. The experiment is illustrated in Figure 2.1. Subjects

estimate the probability of drawing a black ball from a cage containing only black and

white balls.1 In particular, 6 balls are known and 4 balls are unknown and either all

black or all white (i.e. X1 = X2 = X3 = X4) with known probability. Subjects play two

roles in the experiment. As Senders they observe a sample drawn with replacement from

the 10 balls in the cage YS before estimating the probability of drawing a black ball

from YS. We call these estimates SenderEst. Senders are only rewarded based on their

own estimate and therefore have no incentives to lie. As Receivers they have no sample

but instead learn the estimate of a sender (SenderEst). This estimate is transmitted

1They are rewarded according to a scoring rule which depends only on the estimate and the color

of a randomly drawn ball.
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YR =

ReceiverBias︷ ︸︸ ︷
xxxxxxxx.

State︷ ︸︸ ︷
xxxxx.~~���~�������
��
X1���X2

���X3���X4

-

NoSample︷ ︸︸ ︷
xxxxxxxx.

- Receiver observes
SenderEst

- ReceiverEst

YS =
~~~~~����
��
X1���X2

���X3���X4

xxxxxxxx.︸ ︷︷ ︸
SenderBias

xxxxx.︸ ︷︷ ︸
State

- n? n? n?
xxxxxxxx.︸ ︷︷ ︸

Sample

- SenderEst

6

Figure 2.1: Experimental Setup

mechanically. The Receiver then estimates the probability of drawing a black ball from

YR. We denote this estimate by ReceiverEst. Importantly,

i. Sender and Receiver are in the same State (i.e. {X1, ..., X4} are the same for both)

such that the Sender’s estimate is relevant to the Receiver, and

ii. Sender and Receiver may have different Bias. I.e. the 6 balls of known color may

be different (in Figure 2.1, ReceiverBias = 3 and SenderBias = 5).

All this is public information such that if the Receiver believes the Sender to have made

a correct estimate his own best estimate is

SenderEst− (SenderBias−ReceiverBias)/10.

Research questions. We are interested in measuring the effect of the distance

between the two biases.

BiasDist = |SenderBias−ReceiverBias|.

We then ask the following questions: First, does BiasDist matter? In particular, will

Receivers realize that they can easily correct for the Sender’s bias or will they be less

likely to use her estimate the greater is BiasDist. Second, what if the Sender makes an

unreasonable estimate? In Figure 2.1 the Sender has at least 5 and at most 9 black balls

55



out of the 10 balls in YS. Hence, if SenderEst is smaller than 0.5 or greater than 0.9,

the estimate is logically impossible given any type of generalized Bayesian updating.

We analyze how Receivers respond to such estimates. Lastly, we introduce a new stage

(stage 3) in the experiment where Receivers can choose between two Senders, knowing

only SenderBias. Will Receivers place more or less weight on Sender estimates when

they can choose the Sender?

Results. The analysis is carried out at two levels: aggregate and disaggregated

(subject) level. The results indicate that:

i. Bias matters. The evidence that the weight given by Receivers to Senders is

decreasing in BiasDist is strong at the aggregate level (Section 2.3) although less

so at the disaggregated level (Section 2.5.1).

ii. Extreme estimates are generally not trusted. Receivers trust extreme estimates

much less but still give them positive weight. In 60− 70% of the cases an extreme

estimate contains qualitative information about the sample that has been observed

by the Sender so Receivers seem to be right in not discarding these estimates

completely. (Section 2.5.2).

iii. Choosing the Sender. Receivers trust Senders more in stage 3 (where they have

chosen the Sender knowing only his bias) than in stage 2 (where the Sender is

exogenously given). We show that this effect is only present when the Receiver

chooses the most similar Sender. (Section 2.5.3).

The experiment is motivated by theoretical work in Rudiger [39], where a Sender-

Receiver game with non-common priors is analyzed. Different biases induce different ex

post preferences but under common knowledge and truthful information transmission

bias should not matter. We intend to test this hypothesis.

Applications. The setup is relevant to a number of situations apart from the

above example, for instance media and news consumers, stock market reports and in-

vestors, consultants and firms, job market references and employers. More generally,
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the experiment will be relevant to any type of relationship where an agent with private

information but a different bias transmits information to a principal. In the discussion

in Section 3.6 we will return to some of these applications and compare them to our

results.

Probability updating in experiments. The literature on bias and heuristics

in probability updating is extensive. We will not review all of these articles here but

only mention some of the most related findings. When estimating objective probabili-

ties many subjects suffer from baserate neglect2 : Kahneman and Tversky [46] identify

several heuristics including a type of baserate neglect; Griffin and Tversky [26] ana-

lyze the difference between weight and strength of evidence and use it to explain over-

and underconfidence in probability estimates; Grether and El-Gamal [25, 18] investigate

generalized Bayesian updating and find that many subjects use updating rules consis-

tent with baserate neglect. When predicting the behavior of others, subjects tend to be

“conservative”: Huck and Weizsacker [28] test whether subjects are able to correctly

predict the actions of others and find that predictions are good on average but are sys-

tematically conservative, in the sense of beliefs being distorted toward a uniform prior.

Context affects updating : Charness, Karni and Levin [10, 9] test updating in a setting

which resembles a two-armed bandit problem and find that subjects are much less likely

to make updating mistakes when: (i) the Bayesian choice is reinforced by a good payoff

history, (ii) payments do not depend on outcomes and (iii) references to success and

failure are eliminated. In the discussion of Section 3.6 we return to comment on how

our results compare to the literature.

Information transmission in experiments. The literature on strategic infor-

mation transmission experiments has been surveyed by Crawford [12] but our setting will

be non-strategic and therefore the most related area is the literature on advice-giving.

Evidence shows that advice is a strong force in the creation of norms and conventions

in intergenerational games : “word-of-mouth”-learning is often far more influential in

2Baserate neglect refers to ignoring “base” or prior probabilities. I.e., placing to much weight on

the evidence of data in updating.
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creating social norms than learning from history (Schotter and Sopher [42]); in a trust

game, allowing subjects to pass on advice tends to decrease trust (amount sent) but

increase trustworthiness (amount returned) (Schotter and Sopher [40]); advice induces

the creation of conventions in the ultimatum game (Schotter and Sopher [41]). Advice

tends to improve learning and decision making : Çelen, Kariv and Schotter [7] find that

receiving advice augments the tendency to herding in a sequential choice experiment

but also that payoffs are higher with advice and approach those achieved under perfect

information; Progrebna [37] presents an interesting empirical side-kick to the experi-

mental evidence. Contestants in a particular Italian game show generally make better

decisions when they follow the audience’s advice but do not choose to do so very often.

Higher weight given to advice of similar advisors : Nyarko, Schotter and Sopher [35] set

up an experiment with a market for data and advice, where the background (gender

and major) of the advisor is known. They find a tendency for subjects to bid more for

the information of advisors with the same background as themselves, even when this

information consists of unprocessed data, strongly suggesting the presence of some sort

of homophily.

Our experiment is closest to Nyarko, Schotter and Sopher’s experiment on advice

giving but is different in that we induce a bias which is completely exogenous and then

test how subjects deal with it. To our knowledge this has not been done before. The

setup is closely related to many of the above experiments (e.g. outcomes determined

by draws of balls from a “bingo cage”) but we ask subjects to estimate the probability

of an outcome (drawing a black ball) rather than soliciting a state probability, as for

instance in Grether’s experiment.

The paper proceeds as follows. Section 2.2 describes the setup of the experiment.

In Section 2.3 we carry out an initial analysis of the aggregate data to gain intuition.

Section 2.4 describes in detail the econometrics used to disentangle risk attitudes and

probability estimates. Section 2.5 presents the results at subject level. In Section 3.6

we discuss the results and their relation to the findings of the existing literature.
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2.2 An Experiment on Probability Estimation

2.2.1 Setup

The objective of subjects is to estimate the probability of drawing a black ball from a

cage which contains 10 balls: 6 balls (referred to as Bias) are of known color and 4 balls

are unknown (referred to as State). With probability π all the 4 balls in State are

black and with probability 1 − π they are all white. The state probabilities alternate

between π = 1/2 and π = 2/3.

Stage 1. In stage 1 the subject observes a Sample of 3 balls drawn with re-

placement from the 10 balls in Bias ∪ State. Another ball y is then drawn from the

cage with all balls replaced. The subject is asked to estimate the probability that

y is black. Let (b, w) denote a cage with b black balls and w white balls and let

S ≡ #{black balls in Sample} and Bias ≡ #{black balls in Bias}. Table 2.1 sum-

marizes stage 1.

Table 2.1: Setup Stage 1

1. Bias known 2. Mixed Cage 3. Draw Sample and y

State unknown with replacement

Bias = (Bias, 6−Bias) ↗ Sample = (S, 3− S)

→ Bias ∪ State

State = (4, 0) or (0, 4) ↘ y

Stage 2. In stage 2 subjects (Receivers) have no sample but observe the stage 1

estimate (SenderEst) of another subject (the Sender) who has faced the same state

but possibly had a different bias. Refer to the example in Figure 2.1. As in the intro-

duction, we refer to the Bias of the Sender as SenderBias and that of the Receiver as

ReceiverBias.
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Stage 3. In stage 3 the only difference to stage 2 is that the subject can choose

between two Senders, SenderA and SenderB, with different SenderBias. When choos-

ing he knows only SenderABias and SenderBBias but not the estimates of the two

Senders.

Table 2.2 recaps the stages. Screen prints are included in the appendix, Section 2.7.3

Table 2.2: Stages

Stage 1 Stage 2 Stage 3

Sample Yes No No

Observe Estimate from Sender No Yes Yes

Choose Sender No No Yes

Rounds 20 30 10

2.2.2 Scoring Rule

Subjects were paid for 5 randomly chosen rounds (out of the total of 60) in order

to limit wealth effects. Payoffs were calculated according to a quadratic scoring rule.

In particular, if the subject indicated a probability of q that y is black, he received

the following remuneration (expressed in experimental currency, ECU, which was later

exchanged at ECU 5,000 = 1 EUR).

w(q) =

{
100 ∗ (1− (1− q)2) if y is black

100 ∗ (1− q2) if y is white.

Under risk neutrality the quadratic scoring rule is incentive compatible, which is why it

was chosen. However, it is often seen that subjects are not risk neutral even over small

stakes and therefore we estimate risk attitudes as part of our analysis. Before finalizing

an estimate subjects could easily check their potential scores by one click of a button.

3Notice that in the experiment, the colors were red and black and subjects were asked to estimate

the probability of drawing a red ball.

60



2.2.3 Sessions

To collect data 4 sessions of the experiment were carried out with a total of 66 subjects

(excluding a number of unpaid pilots with graduate students and a small paid pilot with

undergraduate students). All sessions took place in the experimental lab of Universidad

Carlos III de Madrid. The subjects where drawn at random from a pool of roughly 1,000

students who had signed up to be contacted. The usual precautions where taken so as to

not inform subjects about the contents of the experiment on forehand. A participation

fee of EUR 4 was paid on top of any winnings from the experiment. Subjects were

mainly undergraduate students from the economics, business and engineering faculties.

The gender distribution was 59% males and 41% females.

Table 2.3: Sessions

Session Date Input Dataa Subjects

S0 31/11/2010 Pilotsb 18

S1 01/12/2010 (a.m.) S0 18

S2 01/12/2010 (p.m.) S0 11

S3 02/12/2010 S0 19

a The input data refers to the SenderEst given to subjects in

stage 2 of the experiment. These are estimates from other

subjects who have done the experiment at another time.
b The data for this session was taken mainly from a paid pilot

experiment and supplemented with data from an unpaid

pilot with graduate students.

Subjects were given a short description of the experiment upon arrival and then lead

into to the lab and allowed to start. The experiment was completely computerized and

programmed using Urs Fischbacker’s ZTree. When finished they were asked to wait while

payments were prepared and then paid individually before leaving. Students generally

used between 45 minutes and 1 1/2 hours to complete the task with a few being faster

or slower but were not allowed to leave before at least 45 minutes had passed. Average
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winnings were EUR 11.96 with a standard deviation of 0.8.4

2.2.4 Feedback and Matching

There is no feedback on the true state of the world at any stage of the experiment. In

stages 2 and 3 Receivers are informed that they are matched with a new Sender each

round to rule out learning effects.

2.2.5 Benchmarks

To fix a target against which to evaluate subjects we use three measures. Recall that

with probability π then State is 4 black balls and otherwise 4 white balls. First, it

seems probable that some Receivers will ignore the Sender’s advice and focus on the

prior probability of drawing a black ball. This is given by

Prior =
Bias

10
+ π · 4

10
. (2.1)

On the other hand, if the Receiver believes the Sender to have made a correct estimate

the maths of the second stage are simple: if the Sender’s estimated probability of drawing

a black ball is given by SenderEst, the Receiver’s corresponding estimate should be

AdjEst = SenderEst+
ReceiverBias− SenderBias

10
. (2.2)

It is also possible that the Receiver makes a mistake by failing to realize that he must

correct for the bias difference, and just uses SenderEst as his estimate. This gives us

three targets to evaluate subjects against:

i. The trusting type who uses AdjEst.

ii. The trusting type who fails to adjust correctly and uses SenderEst.

iii. The untrusting type, who uses Prior as his estimate.

4The standard deviation is quite low reflecting the low power of the quadratic scoring rule. However,

most subjects did not seem to notice this given that they spent a great deal of time in completing the

task.

62



Furthermore, we will be interested in testing whether the weight given by Receivers to

Senders depends on the distance in their bias. Recall that

BiasDist = |ReceiverBias− SenderBias|.

We also want to test whether the weight changes when the Sender’s estimate is clearly

not Bayesian. E.g., in the example in Figure 2.1 the Sender has at least 5 and at most

9 black balls in his cage. Estimates below 0.5 or above 0.9 cannot be said to follow any

type of generalized Bayesian updating. We refer to this as an extreme estimate.

ExtremeEst = 1− I(SenderBias/10 < SenderEst < (SenderBias+ 4)/10).

2.2.6 Hypotheses

The following main hypotheses are tested in the experiment. Since the Sender’s informa-

tiveness does not change with her bias, theory would predict that BiasDist should not

affect the weight the Receiver gives to the Sender. Neither should choosing the Sender

(Stage 3). On the other hand, we hypothesize that observing an extreme estimate leads

the Receiver to give lower weight to the Sender.

H1. The weight given to Sender estimates does not depend on BiasDist. See Section

2.5.1 for evidence on this.

H2. Extreme estimates (measured by ExtremeEst = 1) are given lower weight. See

Section 2.5.2 for evidence on this.

H3. Choosing the Sender in stage 3 does not change the weight placed on his estimate.

See Section 2.5.3 for evidence on this.

2.3 Preliminary Analysis: Aggregated Data

Before moving on to a more detailed statistical analysis we first look at a simple linear

regression using the targets described in Section 2.2.5. While not taking account for risk

63



Table 2.4: Regression Results

Dep.Var.: ReceiverEst− Prior
Stage 2 Stage 3

AdjEst− Prior 0.385 0.531

(5.30)∗∗∗ (5.34)∗∗∗

(AdjEst− Prior)×BiasDist -0.271 -0.648

(-3.41)∗∗ (-3.06)∗∗

(AdjEst− Prior)× ExtremeEst -0.170 -0.178

(-4.06)∗∗∗ (-2.10)∗

SenderEst− AdjEst 0.119 0.108

(3.34)∗∗ (2.87)∗∗

Constant 0.012 0.006

(2.26)∗ (0.79)

R2 0.167 0.192

Observations 1980 480

t-statistics in parentheses. Standard errors clustered around subjects.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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attitudes and the fact that variables are limited to the unit interval this analysis gives

a good idea of what to expect. The results are presented in Table 2.4.

In each column of Table 2.4 the dependent variable is the deviation of the Receiver’s

estimate from the prior probability (OwnEst − Prior). The coefficient on AdjEst −
Prior is a measure of how much the Receiver trusts the Sender and we allow this

to interact with BiasDist and ExtremeEst. The term SenderEst − AdjEst captures

whether Receivers fail to adjust for the difference in bias. This coefficient should evaluate

to 0 if Receivers do the maths perfectly and 1 if they completely fail to take the relative

bias into account.

How do the hypotheses fare? Table 2.4 provides us with the first evidence. H1:

Weight placed on Sender estimate is decreasing in BiasDist. The results for stage 2 and 3

indicate that Receivers place less weight on the Sender’s estimate the greater the distance

in bias (the coefficient on the term (AdjEst−Prior)×BiasDist). H2: Extreme estimates

receive lower weight. In both stages less weight is placed on estimates that are extreme

(the coefficient on the term (AdjEst− Prior)×ExtremeEst). H3: Difference between

stages not significant. Receivers seem to place higher weight on Sender’s estimates

in stage 3 than in stage 2 (compare the coefficients on AdjEst − Prior). But when

estimating the model for stages 2 and 3 jointly and including a set of interaction terms

for stage 2 we cannot reject the null-hypothesis that the coefficient on AdjEst− Prior
is the same in stages 2 and 3 (p-value= 0.087). Hence, the evidence from the regressions

rejects H1 but not H2 and H3. We return to the hypotheses in Section 2.5.

Do Receivers realize that the Sender’s estimate is valuable? If subjects

did not understand the purpose of the exercise the coefficient on AdjEst−Prior should

not be significant. It turns out to be significant and have the expected sign. However,

SenderEst−AdjEst is also significant (although with a small coefficient) and therefore

there are indications that Receivers do not always do the adjustment well.

Learning. Two dummy variables, for periods 11-20 and 21-30 respectively, were

interacted with AdjEst − Prior in stage 2. None of these were significant suggesting

that there were little or no learning effects.
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Do Receivers give lower weight to relatively biased Senders out of com-

putational concerns? One could argue that perhaps Receivers place high weight

on Senders with no relative bias out of computational concerns: the formula for bias

correction is always the same but of course no computation is needed when there is

no relative bias. To test whether subjects respond to the actual size of the relative

bias or merely the presence of relative bias, we augment the stage 2 regression with an

interaction term between the weight placed on the Sender’s estimate and the dummy

IsBiased = I(|SenderBias − ReceiverBias| 6= 0). The results are presented in Table

2.8. The new interaction term does not enter significantly whereas the interaction be-

tween the weight placed on the Sender and BiasDist is still significant. This indicates

that what matters is the size of the relative bias and hence Receivers do not seem to be

motivated by computational concerns.

The above analysis falls short on two points. First, it uses standard regression

techniques without imposing any restrictions on parameters or adjusting for the fact that

the dependent variable is limited to [0,1]. Second, it does not account for heterogeneity

between subjects. The methodology proposed in the next section attempts to deal with

these shortcomings.

2.4 Methodology for Disaggregated Analysis

The family of updating rules that we allow for in this section is quite large and includes

as special cases pure Bayesianism as well as conservatism (overweighting prior) and

baserate neglect (overweighting data) but is not based on a generalized Bayesian model

of the type considered by for instance Grether and El-Gamal. While such a model could

have been used it does not have the same normative properties as the pure Bayesian

model.5 Therefore we have preferred an alternative which seems more intuitive although

we see no reason it should be better or worse than the generalized Bayesian approach.

5The classic objection against the generalized Bayesian approach is: if subjects are not Bayesian

why should they err in a Bayesian manner?
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2.4.1 Risk Attitudes and Probability Estimates

We concurrently estimate the risk attitude and the probability updating model of Re-

ceivers.

Risk Attitude. Even though stakes are fairly small in each period we want to

allow for the possibility that subjects are not risk neutral (and as it turns out, they are

not). To estimate risk attitudes we use the following specification.6

RiskAdjEst =
(RawEst)α

(RawEst)α + (1−RawEst)α
, (2.3)

where RawEst is the uncorrected probability estimate of the subject and RiskAdjEst

is the risk adjusted probability estimate given α. The subject is risk-averse for α > 1,

risk-neutral for α = 1 and risk-seeking for α < 1.

Probability updating model. For the Receiver’s estimate we consider a family of

updating rules, which are convex combinations of the adjusted Sender estimate (AdjEst),

the prior probability (Prior) and the unadjusted Sender estimate (SenderEst). The

Receiver’s predicted estimate is then

PredEst = δ · Prior + (1− δ) · AdjSenderEst
+ (1− δ) · τ · (SenderEst− AdjSenderEst).

(2.4)

The weight given by the Receiver to the estimate of the Sender is parametrized by 1−δ.
This measures the trust the Receiver places in the estimate of the Sender. If the Receiver

trusts the Sender to have made a correct estimate he should set δ = 0. On the other

hand, if he does not trust the Sender at all he should stick to his prior and set δ = 1. If

the Receiver correctly adjusts for the bias difference between the two then τ = 0. We

6Recall that w(·) is the scoring rule. Our risk-adjustment can be seen as following from the solution

to the subject’s maximization problem with respect to RawEst when he has a power utility function

of the type

u(w(RawEst)) = − 1

2(α+ 1)
[−(w(RawEst)− 1)]α+1.

The specification was chosen because it works well with risk-seeking behavior.
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allow him to make mistakes such that τ > 0 if he underadjusts and uses the Sender’s

“biased” estimate rather than the adjusted estimate.

Error structure. We suppose that subjects make random errors when calculating

these estimates and that the errors follow a truncated normal distribution such that the

likelihood of the Receiver’s risk adjusted estimate being RiskAdjEst when the proba-

bility updating model predicts PredEst is given by a truncated normal distribution.

l(PredEst, RiskAdjEst) =
1
σ
φ(PredEst−RiskAdjEst

σ
)

Φ(1−RiskAdjEst
σ

)− Φ(−RiskAdjEst
σ

)
, (2.5)

where φ is the standard normal density function with distribution function Φ and stan-

dard deviation σ. We then substitute (2.4) into (2.5) and estimate the model by maxi-

mum likelihood.

Testing hypotheses. To test our hypotheses we make δ flexible and let it depend

on two variables which were introduced in Section 2.2.5: the relative bias between

Receiver and Sender, BiasDist, and the dummy variable indicating extreme estimates,

ExtremeEst. We make the restriction δ ∈ [0, 1] by using a link function

δ = W (δ0 + δ1BiasDist+ δ2ExtremeEst), (2.6)

where W (·) = exp(·)/(1 + exp(·)). To make the results easier to analyze we use the

following (marginal) measures

δcons = w(δ0) : baseline trust

δdist = w(δ0 + δ1 · 0.1)− w(δ0) : marginal BiasDist effect

δob = w(δ0 + δ2)− w(δ0) : marginal ExtremeEst effect.

Thus, δ = δcons in (2.4) if Receiver and Sender have the same bias and the Sender’s

estimate is not extreme. δdist is the marginal effect of increasing BiasDist from 0 to 1

when ExtremeEst = 0. And δob is the marginal effect of the Sender’s estimate being

extreme when BiasDist = 0.
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2.5 Results

2.5.1 H1: Does Relative Bias Matter?

Recall that δdist measures the marginal effect of BiasDist on trust. The null-hypothesis

is that δdist = 0, i.e. that BiasDist should not matter to how much the Receiver trusts

the Sender and the most intuitive alternative hypothesis is that δdist > 0, implying that

Receivers trust Sender estimates less the greater the relative bias. Figure 2.2 represents

the individual estimates of δdist from stage 2 and 3. The figure indicates a great deal

of difference between the two stages: whereas stage 2 estimates are closely distributed

around 0, stage 3 estimates are almost all positive.

Figure 2.2: Effect of Bias on Prior Weight in Stages 2 and 3
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In stage 2, a t-test of the hypothesis that the mean of the distribution of δdist is zero

is not rejected (t = −0.61) but using a more conservative Wilcoxon sign-rank test we

can reject the null-hypothesis in favor of the mean being negative (z = −2.68). This

goes against the intuition we had initially. However, of the 66 subjects as many as 20

have δcons > 0.95. This implies that they can hardly increase the weight they give to

their prior. If we restrict the sample to subjects with δcons < 0.95 we get a z-value of
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−1.95 and for δcons < 0.8 we have z-value −0.05.

In stage 3 subjects were faced with the same problem, except that they had chosen

the Sender themselves. Yet in stage 3 the sign-rank test indicates that the mean of the

individual δdist is positive (z = 5.00) and this effect remains significant when we restrict

the test to the subsamples mentioned above.

Result 1. There is only weak evidence of Receivers responding to relative bias in stage 2

(evidence only found in aggregate analysis, not in individual estimates) whereas in stage

3 there is strong evidence that Receivers trust Senders less the greater the difference in

bias (both at aggregate and individual level).

There are at least a couple of possible explanations for why results are stronger in

stage 3: (a) Learning effect. In Section 2.3 we tested for within-stage learning effects

and found nothing. It also seems unlikely that after 30 periods in stage 2 subjects

should suddenly learn in the 10 periods of stage 3. We therefore discard this option. (b)

Salience. In stage 3 Receivers are asked to choose between two Senders with different

bias. This draws attention to the bias and therefore it is possible that relative bias has a

larger effect simply because of increased salience. If this is the case, it seems reasonable

to use stage 3 results since they tell us that whenever Receivers pay attention to relative

bias they are likely to be affected by it.

2.5.2 H2: Extreme Estimates

We hypothesize that Receivers will trust Senders less when these are outside of the

rational risk-neutral interval (ExtremeEst = 1) and thus represent, if taken at face

value, a logical impossibility (for instance estimating a 90% chance of drawing a black

ball when there can be at most 7 black balls in the cage). This translates into δob > 0

with the alternative hypothesis that δob ≤ 0. We want to consider the possibility that the

inequality is reversed for the following reason: it might well be that Receivers interpret

an extreme Sender estimate as indicating that the Sender has observed an extreme

sample, i.e. either 0 or 3 black balls. If the Receiver believes this to be true he is less

uncertain about what information to extract and in this case it makes sense to trust the

Sender more.
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Figure 2.3 represents the distribution of the individual estimates of δob in stage 2.

The distribution seems to be right-skewed and has positive mean. A t-test on the mean

of the individual estimates rejects the null-hypothesis of δob = 0 (t = 2.70 and 67

degrees of freedom) but a Wilcoxon sign-rank test just fails to reject the null at the 5%

significance level (z = 1.94). In stage 3 the mean is positive but neither of the two tests

rejects the null.

Figure 2.3: Extreme Estimates and Prior Weight in Stage 2
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Would Receivers be right to trust extreme Senders less? Table 2.5 presents the

distribution of sample information conditional on estimates being above or below the

rational interval. If extreme estimates provided strong sample information then we

should see the distribution being concentrated around the upper-left and the lower right

cell, respectively. In the first row there is a slight tendency toward this - an estimate

below the lower bound is more likely when the sample has no red balls but there is a lot

of noise still. In the second row there is no such tendency. To support this evidence we

check how many times Senders at least go in the right direction when making extreme

estimates, i.e. when he is above the rational interval then Post − Prior > 0 and vice

versa. This happens in 69% of the cases when the estimates are above the rational

interval and 62% of the cases when it is below.
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We conclude that extreme estimates are quite noisy although more than half the

time they indicate the correct direction of the updating. Taking this evidence together

it seems reasonable that Receivers trust such estimates less without discounting them

completely.

Table 2.5: Sample Distribution in Stage 1 Condi-

tional on “Estimation Error”

# red balls in sample 0 1 2 3

SenderEst < LowerBounda .33 .24 .24 .20

SenderEst > UpperBoundb .29 .20 .22 .29

a LowerBound = BS/10.
b UpperBound = (BS + 4)/10.

Result 2. There are strong indications at the aggregate level but less strong indications

at the subject level that Receivers trust extreme Sender estimates less. They would be

partially right in doing so, in that extreme estimates contain a great deal of noise rather

than being signals of “extreme” samples.

2.5.3 H3: Choosing the Sender in Stage 3

Allowing Receivers to choose the Sender has an effect

We saw earlier that Receivers tend to behave differently in stage 3, although the nature

of the task is identical to stage 2 except that Receivers can choose their Sender in stage

3. There does not seem to be an a priori reason to act differently in the two stages, yet

this is exactly what we observe. Figure 2.4 documents this. Generally, Receivers trust

Senders more in stage 3 (δcons is lower). A sign-rank test confirms this (z-value 5.07).

Result 3. Receivers place more weight on Sender estimates when they can choose the

Sender (stage 3) than when they cannot (stage 2).

There seems to be a psychological effect of having chosen the Sender. Even though

this choice could in no way affect the Sender’s estimate and Receivers would know
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Figure 2.4: Prior Weight in Stages 2 and 3
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this (since they know that Senders were chosen from another session) they trust them

more. It could be a question of framing: drawing attention to the Sender makes her

information more salient. But the choice could also give Receivers an illusion of control,

making them feel erroneously that their choice affects the informativeness of the Sender.

The additional evidence below shows that the effect is almost exclusively limited to

those Receivers that choose the Sender with the smallest relative bias. This favors the

hypothesis of illusion of control over salience, since salience is the same for all subjects

whereas illusion of control can reasonably be thought to be correlated with choosing the

Sender with the smallest relative bias.

Additional evidence: Is stage 3 behavior related to whether the Receiver

chooses the most similar Sender?

In stage 3 Receivers choose the Sender with the smallest BiasDist 49% of the time. This

almost seem random so we want to investigate if Receivers act the same or differently

in the two cases. It seems logical that the Receivers who for one reason or another care

about relative bias are the ones that will choose the Sender with the smallest relative

bias in stage 3. We test this by creating two dummy variables: S3 = I(Stage = 3)
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and MinBiasS3 = MinBias × S3 where MinBias is equal to 1 if in stage 3 if the

Receiver chooses the Sender with the smallest BiasDist and 0 otherwise. We then take

the model in Table 2.4 and run stage 2 and 3 jointly with all 4 explanatory variables

interacted with the two dummies.

The results show the following. (i) The interaction betweenMinBiasS3 and (AdjEst−
Prior) is positive and significant (p = 0.007). This indicates that Receivers who

chose the most similar Sender trusted more in Stage 3 than in Stage 2. (ii) The

interaction between (AdjEst − Prior) × BiasDist and MinBiasS3 is significantly

negative (p < 0.001). Thus, Receivers who chose the most similar Sender punished

BiasDist more in Stage 3 than in Stage 2. (iii) The interaction between MinBiasS3

and (AdjEst − Prior) × ExtremeEst is negative and significant (p = 0.020). Hence,

Receivers who chose the most similar Sender punished ExtremeEst more in Stage 3

than in Stage 2. This translates into the following results.

Result 4. Receivers who choose the most similar Sender are on average

i. more trusting,

ii. more sensitive to BiasDist (i.e. relative bias is punished more), and

iii. more sensitive to ExtremeEst (i.e. extreme estimates are punished more).

2.5.4 Comments

Analysis of Stage 1 Behavior

First, we define some benchmarks for evaluating stage 1. Suppose 3 balls are drawn

with replacement from a population of 10 balls of which b are black. Denote by B(x, b)

the probability that out of these 3 balls x are black. Recall that State can be either all

black balls or all white balls. Given the subject’s Bias and a sample with S black balls

the probability that the state is all black is

PBlack =
π ·B(S,Bias+ 4)

π ·B(S,Bias+ 4) + (1− π) ·B(S,Bias)
.
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Hence, the Bayes posterior probability of drawing a black ball is

Post = PBlack ×
Bias+ 4

10
+ (1− PBlack)×

Bias

10
.

We want to allow for baserate neglect as well, which corresponds to using the likelihood

LBlack = B(S,Bias+ 4)/(B(S,Bias+ 4) +B(S,Bias)) instead of PBlack, such that

Like = LBlack ×
Bias+ 4

10
+ (1− LBlack)×

Bias

10
.

Table 2.6 shows the result of a regression of OwnEst−Prior on these benchmarks, where

Prior is as defined previously. If subjects use the Bayesian posterior the coefficient on

Post − Prior should be 1. If they use the Bayesian prior the coefficient should be 0.

It turns out to be 0.574 and significantly different to zero. Hence, subjects do use the

information contained in the sample but are, on aggregate, not fully Bayesian updaters.

We have included the term Like− Post to allow for baserate neglect. Results indicate

that baserate neglect is not present in the aggregate data.

Table 2.6: Stage 1 Regression Results

Dep.Var.: OwnEst− Prior
Post− Prior 0.574

(3.31)∗∗

Like− Post -0.134

(-0.90)

Constant -0.007

(-0.97)

R2 0.091

Observations 1320

t-statistics in parentheses. Standard errors clustered around subjects.

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Remark 1. On aggregate subjects use some of the sample information but do not do

full Bayesian updating. Furthemore, there is no evidence of baserate neglect.
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Linking Stage 1 and 2 Behavior

It seems plausible that there is a connection between stage 1 and stage 2 behavior but

the nature of this link is less obvious. Subjects that are more Bayesian in stage 1 might

expect others to behave similarly. Or they may believe that they are smarter than others

and not pay attention to them.

To assess this we first need to estimate an individual level model for stage 1. Recall

the benchmarks Prior, Post and Like from Section 2.5.4. As in the analysis of stages 2

and 3 we consider a family of updating rules which are essentially a convex combination

of the three benchmarks. The subject’s predicted estimate is then

PredEst = γP · Prior + (1− γP ) · Post
+ (1− γP ) · γL · (Like− Post).

(2.7)

We make the restriction γP , γL ∈ [0, 1]. Hence, γP is the weight placed on the prior

versus the posterior probability and γL is included to allow for baserate neglect. Thus,

if the subject is completely “Bayesian” then γP = γL = 0. If he uses only the prior and

ignores the sample then γP = 1 and γL = 0. If he is Bayesian but suffers from baserate

neglect then γP = 0 and γL > 0. We substitute (2.7) into (2.5) and estimate the model

for each subject by maximum likelihood. We then regress individual estimates of γP

from stage 1 on δcons, δdist and δob from stage 2. The results are presented in Table 2.7.

There is a positive and significant correlation between γP and δcons. I.e., the more

weight a subject places on his prior in stage 1 the more he does so in stage 2. Turning

this around, it implies that the more “Bayesian” a subject is in the first stage, the more

he trusts the Sender in the second stage. Looking closer at the data this effect seems

to stem from a group of very conservative subjects who always follow their prior and

disregard any other information. There are also positive correlations between γP and

respectively δdist and δob, although these are less significant. This seems to imply that

subjects who are more conservative in stage 1 punish more severely Senders who have

different biases or have made extreme estimates in stage 2 and give their estimates lower

weight.

Remark 2. There is a positive correlation between the weight that subjects place on
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Table 2.7: Regression of Stage 1 Prior Weight on Stage 2 Parameters

OLS Reg. Results γP

δcons 0.307

(3.31)∗∗

δdist 0.690

(2.23)∗

δob 0.256

(2.20)∗

Constant 0.598

(7.68)∗∗∗

R2 0.193

Observations 66

t statistics in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

their prior in stages 1 and 2. Expressed differently, the more “Bayesian” subjects are in

stage 1, the more they trust Senders in stage 2.

Risk-attitude

Turning shortly to risk attitudes, Figure 2.5 plots the distribution of the individual

estimates of the risk parameter α in stage 1 and 2. The distribution is quite diffuse,

with a peak in both stages just below 0.5. The vast majority of subjects have α < 1

which implies risk-seeking behavior. It seems reasonable that this is due to the small

stakes employed in our experiment. A sign-rank test does not reject the null-hypothesis

of the difference between stage 1 and stage 2 values of α being zero (although only

barely with z-value 1.87), so there does not seem to be any material differences in risk

attitudes in the two stages.
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Figure 2.5: α-estimates in Stages 1 and 2
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Remark 3. Subjects are generally risk-seeking and seem to have the same risk attitude

in stage 1 and 2.

2.6 Discussion

2.6.1 Main Findings Corroborated by Literature

Homophily and trust. Whereas Nyarko, Schotter and Sopher [35] find a tendency

for homophily - being more trusting of advisors that have similar personal characteristics

- we want to construct a setting where there is no motive for trusting one Sender more

than another. Although the evidence is somewhat mixed there are indications that

trust is not independent of bias, even in our experiment where bias is exogenous and

easily correctable. This is reminiscent of other laboratory regularities such as money

illusion and framing effects. However, we also find evidence that many subjects generally

trust advice very little or ignore it altogether. This corroborates Nyarko, Schotter and

Sopher’s finding that subjects generally prefer data over advice and Progrebna [37] who

shows that game show contestants often do not follow the audience’s advice even though

this is in general quite informative. It is also in line with Huck and Weizsacker [28] where
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predictions on other subjects’ behavior are found to be distorted toward a conservative

uniform prior.

Updating with affect. It is striking that when we introduce a small element of

choice in the experiment in stage 3 we observe that: (i) trust is generally higher, (ii)

relative bias is punished more, and (iii) extreme estimates are trusted less. We also show

that this effect seems be driven by the cases where the Receiver actually chooses the

most similar Sender. Subjects seem to suffer from “illusion of control”: although their

choice is not related to the informational content of the advice they still become more

trusting and at the same time more sensitive to relative bias and extreme estimates.

This corresponds well to Charness, Karni and Levin [10, 9] who find that subjects make

more updating mistakes in the presence of affect (which they test by including/excluding

references to outcomes as successes).

Baserate neglect. A stylized fact of probability updating experiments is that a

large group of subjects suffer from baserate neglect (too much weight on data) and a

smaller group from conservatism (too much weight on prior). We find conservatism to

be more predominant in our experiment, which illustrates that the results are very much

subject to the particular setup.

2.6.2 How Do the Results Relate to Empirics?

Media bias. Our finding that similar Senders are trusted more can be related to

the effect of news on political opinions. Take the example of the US stimulus package of

February 2009, which included $288.000 millions in tax cuts (37% of the total package).

This is a hard fact that leaves little, if any, room for interpretation in the media. Yet

according to data from the Pew Research Center [8] more frequent viewing of Fox News is

correlated with less knowledge about this fact whereas more frequent viewing/reading

of the other media is correlated with better knowledge. A study by DellaVigna and

Kaplan [16] goes further than this and establishes evidence of causality. They use the

gradual introduction of Fox News across US states for identification and show that the

introduction of Fox News was associated with a right-swing in voting. Since there is no
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scarcity of news media in the US, this effect seems to be tied to the slant on news rather

than the provision of new information. If news consumers give higher weight to media

with the same bias as themselves, merely introducing a conservative news source could

have an effect on opinions, as seems to have been the case with Fox News.

Stock markets. Numerous studies deal with bias in stock market recommenda-

tions: Dische [17] documents that stock market analysts update in the right direction

but with too small magnitude (conservatism); Capstaff, Paudyal and Rees [6] find indica-

tions of a deliberate optimistic bias in stock market forecasts; De Bondt and Forbes [15]

show evidence consistent with herding, overoptimism and overreaction in forecasts. And

Balboa, Gómez-Sala and López-Espinosa [3] find that there are significant differences

in recommendation bias across countries and that using de-biased recommendations is

more profitable, providing an empirical parallel to our results.

Another well-known phenomenon in stock markets is the tendency to invest in com-

panies that have a presence in the investor’s home market (the so-called “home-bias”).

In the most literal sense, our results suggest that investors may trust forecasters in their

home market more because they tend to be subject to the same bias. Thus they may

prefer to invest in home market stocks thereby creating the home-bias.

2.6.3 Policy Implications

We have argued that the evidence from our experiment shows that trust in advice

depends on how that piece of advice was acquired. This is relevant, not just to economic

modeling, but also to regulators seeking for instance to limit effects of advertisement

or trying to “nudge” people into making sounder decisions by providing them with

(truthful) information. Given that regulators and the people they regulate will often

have different biases that shape their opinions and that this bias is often transparent it

seems integral to analyze how people update based on biased advice. Taking our results

at face value, such regulators should indeed be worried about the bias that they are

perceived to have and can potentially increase the effect attained by their messages by

allowing people to choose between different information sources.
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2.7 Tables and Figures

2.7.1 Tables

Table 2.8: Regression Results

Dep.Var.: OwnEst− Prior
Stage 2

AdjEst− Prior 0.484

(5.65)∗∗∗

(AdjEst− Prior)× IsBiased -0.111

(-1.76)

(AdjEst− Prior)×BiasDist -0.246

(-2.94)∗∗

(AdjEst− Prior)× ExtremeEst -0.171

(-4.08)∗∗∗

SenderEst− AdjEst 0.119

(3.34)∗∗

Constant 0.0120

(2.23)∗

R2 0.167

Observations 1980

t statistics in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Chapter 3

Equivalence of Non-Common Priors

and Non-Common Preferences in

Information Transmission

3.1 Introduction

3.1.1 Motivation

The literature on strategic information transmission largely features players with either

non-common preferences and common prior beliefs (CB) or non-common priors and

common preferences (CP). In some applications one framework may be preferred over

another. A CB model captures situations such as the game played between a newspa-

per journalist and an editor. The journalist may have an incentive to exaggerate his

information to gain a “scoop” whereas the editor is more concerned with the reputation

of the newspaper. Both players know this and the bias of the journalist has nothing to

do with his beliefs. He simply has an incentive to misrepresent his information, even

if this information perfectly reveals the true state of affairs. On the other hand, CP

models describe situations where players have the same preferences conditional on the

state of the world but different a priori beliefs. For instance, investment in renewable

energy. If we knew the true state of the climate we would supposedly all agree on the
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correct action but the state is uncertain and since our prior beliefs differ we interpret

information differently, which leads us to prefer different actions. In other applications,

however, we may not have a preference for one framework or the other. As an example,

differences in investment behavior can be modeled as different beliefs as well as different

risk attitudes.

On a practical level both types of models often result in similar expected utility

functions and therefore a reasonable question is if we can always find models of both

types that yield the same results, in some sense. If we can, then the difference between

the two frameworks reduces to a question of interpretation and we can transfer the

results we know in one type of models to the other. Since CB models are dominant in

the literature (see Section 3.1.2) and more results are available for this type of models

we investigate the question: for which classes of CB models can we always find an

“equivalent” CP model? We consider two measures of equivalence between CB and CP

models. Models can be equivalent in the sense that they induce the same individual

choice functions. We call this Choice-Equivalence. They can also be equivalent in

the sense that in equilibrium players have the same strategies. We call this Strategy-

Equivalence. Perhaps surprisingly, neither is sufficient nor necessary for the other. We

say that two models are equivalent if they satisfy both types of equivalence.

Our results show that in a discrete world a CB model always has an equivalent CP

model when the state space is sufficiently large compared to the action space. In effect,

the size of the state space determines how much latitude we have for specifying individual

behavior in a CP model, since utilities must be the same. If the state space is too small,

certain patterns of behavior that are possible in a CB model are not replicable in a CP

model. Moving on to continuous action and state spaces we show a set of sufficiency

conditions for equivalence and identify a class of CB models that satisfy these. Last, we

show that equivalence in our sense does not imply that other properties of the models

are necessarily the same. We construct an example in which the Sender is characterized

by his “competence”, i.e. the precision of the signal he observes, and show that even

when a CB and a CP model are equivalent the Receiver has a stronger preference for

more competent Senders in the CP model than in the CB model.
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3.1.2 Modeling Player Heterogeneity in the Information Trans-

mission Literature

The information transmission literature traditionally features players with common pri-

ors but different preferences (CB models). The strand of the literature which is occupied

with cheap talk games is heavily influenced by the CB-model of Crawford and Sobel [13]

and their approach has been used in general. For instance, Gal-Or [20, 21] on information

sharing in oligopoly, Farrell and Gibbons [19] on cheap talk with two audiences, Stein

[44] on central banks and policy announcements, Watson [47] on information transmis-

sion with two-sided information, Morgan and Stocken [33] on stock recommendations

when there is uncertainty about the recommender’s type, Ottaviani and Sørensen [36]

on reputational cheap talk, etc. Models of verifiable information are generally also set

in a CB framework, for example Milgrom and Roberts [32], Austen-Smith [2], Seidmann

and Winter [43], Wolinsky [48]. One notable exception is Che and Kartik [11] who

analyze the interaction between non-common beliefs and non-common preferences and

show that the two are different when information acquisition is costly to the Sender.

In the cheap talk literature non-common priors have been modeled in early work by

Green and Stokey [24] (circulated in 1980 although only published in 2007) who incor-

porate both different preferences and different priors and show that improvements in the

information structure do not in general improve welfare. But although they allow for

non-common priors they do not exploit their structure actively. This, on the other hand,

is done by Admati and Pfleiderer [1] who analyze overconfident Senders and show that

overconfidence may actually eliminate less informative equilibria and improve informa-

tion transmission. Kawamura [29] extends this framework to include underconfidence

and shows that an overconfident Sender reveals more accurate information when the

signal is close to his prior expectation whereas an underconfident Sender reveals more

accurate information when the signal is further away from his prior expectation. This

is somewhat related to Gentzkow and Shapiro [22] who model a news market and find

that news media slant their messages toward the priors of consumers to appear to be

of higher quality. In this setting the prior is important in that it governs not just the

preferences of consumers but also their expectation of what message they will observe.

Rudiger [38] uses a model of non-common priors explain why voters tend to choose news
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sources that have more extreme views than the voters themselves.

The paper proceeds as follows. Section 3.2 describes the model and formally intro-

duces the measures of equivalence. Section 3.3 analyzes equivalence when the action

and state spaces are discrete and derives a sufficiency condition for equivalence which

depends on the relative size of the two spaces. Section 3.4 moves on to continuous ac-

tion and state spaces and identifies a class of CB models that always have an equivalent

CP model. Section 3.5 presents an example in which the Sender has a certain level of

competence (probability of observing the true state of the world) and shows that even

when a CB and a CP model attain equivalence in the sense described above the Receiver

has different preferences over Sender-types in the two models. Section 3.6 concludes.

3.2 Setup

3.2.1 Model

There are two players, the Sender (S) and the Receiver (R). The setup is standard: S

observes payoff relevant information in the form of the realization (x ∈ S) of a random

variable. He sends a cheap talk (non-verifiable) message m ∈ M to R who then takes

an action y ∈ Y, which affects both players. The players have utility functions ui(y, θ),

i = R, S, which depend on the action y and a state variable, θ ∈ Θ. We make the

standard assumptions that for each θ there is a unique y that maximizes utility and

that this utility maximizing action is increasing in θ (the sorting condition). If Y and Θ

are continuous and ui(·) is twice-differentiable this corresponds to the familiar derivative

assumptions: for each θ then ui1(·) = 0 for only one y and ui12(·) > 0 for all y.

The players’ prior beliefs over the state have probability density pi(θ) and their

common beliefs over the data-generating process (dgp) have conditional density λ(x|θ).
We suppose that the dgp satisfies the increasing likelihood ratio property (ILR). In

particular, if x′ > x and θ′ > θ then λ(x′|θ′)/λ(x|θ′) ≥ λ(x′|θ)/λ(x|θ) with strict

inequality for some θ, θ′ ∈ Θ and x, x′ ∈ S. We require beliefs about the dgp to be

common for two reasons. First, although some work considers different beliefs about

the dgp (Admati and Pfleiderer [1]; Kawamura [29]) the by far most common setup
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considers players that agree about the interpretation of data but disagree about prior

state probabilities. Second, if we consider the extreme case where we can choose the

dgp freely for each player the problem we consider is trivial. Hence, what we consider in

this paper is in reality the subspace of problems in which the dgp is commonly agreed

upon. For instance, imagine that x ∈ {Heads, Tails} is the flip of a coin and the state

θ ∈ [0, 1] indicates the probability of Heads. Both players agree, for instance, that if

θ = 1/2 the coin is fair, but they might have different beliefs about the probability of

this.

Letting pi(θ|x) ≡ pi(θ)λ(x|θ)/
∫

Θ
pi(t)λ(x|t) dt, the expected utilities are given by

U i(y, x) ≡
∫

Θ

ui(y, t)pi(t|x) dt.

Our assumptions on u(·) together with ILR imply that there exists a unique choice

function yi∗(x) ≡ maxy U
i(y, x) which will be increasing in x. In particular, if Y and

S are continuous and ui(·) twice-derivable the assumptions imply that for all x then

U i
1(·) = 0 for only one y and U i

12(·) > 0 for all y. A priori, the players believe the signal

x to be distributed according to the density function li(x), which is derived from their

prior beliefs and the dgp. If the variables are continuous this is given by

li(x) ≡
∫

Θ
λ(x|t)pi(t) dt∫∫

Θ×S λ(s|t′)pi(t′) dt′ ds
.

The solution concept employed is Bayesian Nash Equilibria. In particular, (i) S’s strat-

egy σ(m|x) specifies a distribution of messages for each x and R’s strategy y(m) specifies

an action for each message m; and (ii) S chooses σ(m|x) to maximize his expected utility

given y(m) and R chooses y(m) to maximize his expected utility given σ(m|x). Since

in equilibrium each message will correspond to an action we can ease notation by in-

terpreting the message m as a recommended action1. Thus M = Y and we can reduce

S’s strategy to a deterministic function m(x), which specifies a message m ∈ Y for each

signal x ∈ S.

1In particular, any other equilibrium induces the same relationship between x and y and is thus

economically equivalent. Crawford and Sobel [13] refer to this as the equilibrium being essentially

unique.
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A model is constituted by the 5-tuple {ui(·), pi(·), λ(·)}i=R,S. The purpose of the

paper is to investigate “common prior and non-common utility” and “non-common

prior and common utility” models, which we define precisely as follows.

Definition Common Prior Beliefs (CB). A CB model is defined by the two players

having a common prior, i.e. pR(θ) = pS(θ) for all θ ∈ Θ.

Definition Common Preferences (CP). A CP model is defined by the two players hav-

ing common preferences, i.e. uR(y, θ) = uS(y, θ) for all y ∈ Y and θ ∈ Θ.

The exercise we want to perform consists of starting with a CB model, characterized

by {ui(·), p(·), λ(·)}, and investigate whether we can find a CP model, {u(·), pi(·), λ(·)},
that is equivalent in a sense we will make precise in the next section.

3.2.2 A Measure of Equivalence

Definition

In this section we introduce two measures of equivalence between models. First, models

that are equivalent in the sense that players want to take the same action for all x ∈ S.

We refer to this as Choice-Equivalence. This is an interesting measure in that it tells us

when two models deliver the same individual behavior of the players if they act on their

own. One of the points we want to make is that this is neither necessary nor sufficient for

them to act the same in the two models when we introduce the information transmission

game. In particular, even if a CP model and a CB model are Choice-Equivalent the

equilibrium strategies that obtain in each model need not be the same. Therefore we

define a second measure of equivalence, which is that in both models the two players

have the same equilibrium strategies. We refer to this as Strategy-Equivalence. The

two measures are defined formally as follows.

Definition Choice-Equivalence. Two models are Choice-Equivalent if the choice func-

tions yi∗(x), i = R, S, are the same in both models for all x ∈ S.

Definition Strategy-Equivalence. Two models are Strategy-Equivalent if in equilibrium

the strategy functions m(x) and y(m) are the same in both models for all m ∈M and

x ∈ S.
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Two models are equivalent if they satisfy both Choice- and Strategy-Equivalence. The

contrast between the two types of equivalence is that for Choice-Equivalence the players’

prior expectations over the distribution of the signal li(·) do not matter - once x is

realized their preferred action depends only on the conditional distribution of θ given

x. In the information transmission game this is not so, since in general S’s equilibrium

strategy will be to only reveal the partition of S to which the signal belongs (as in

Crawford and Sobel). Hence, R must infer the distribution of x conditional on this

partition and for that purpose he uses li(·). This places a strong restriction on the set

of priors and utility functions we can consider and hence in some cases it may be that

there exist no utility function and prior beliefs that yield Strategy-Equivalence.

Examples

We offer two examples to illustrate the difference between the two kinds of equiva-

lence. Suppose that Y = S = {L,H} and Θ = {L,M,H} with the dgp given by

λ(L|L) = λ(H|H) = 1 and λ(M |H) = λ(M |L) = 1/2. Hence, with probability a

half the signal reveals the true state and with probability a half the signal is x = M ,

which is uninformative about the state. Suppose a CB model in which R’s and S’s

utilities are given by uR(H,H) = 2/3, uS(H,H) = 4/3, uR(L,L) = uS(L,L) = 1 and

uR(s, t) = uS(s, t) = 0 for s, t ∈ {L,H} and s 6= t. The common prior gives equal weight

to both states, p(H) = 1/2. This implies that the common beliefs over the distribution

of x are l(L) = l(H) = 1/4 and l(M) = 1/2. Obviously yi∗(L) = L and yi∗(H) = H since

these signals are completely informative. Moreover, yR∗ (M) = L and yS∗ (M) = H as the

players attach equal probability to both states when x = M but have different utilities.

Thus there is a conflict of interest.

In an informative equilibrium the only credible strategy for S is m(L) = L and

m(M) = m(H) = H. Given x ∈ {M,H} the posterior probability of the high state is

Pr(θ = H|x ∈ {M,H}) = [(1/2) ∗ (1/2) + (1/4) ∗ (1)]/(1/2 + 1/4) = 2/3.

Thus conditional on m = H then R has expected utility (2/3) ∗ (2/3) = 4/9 from

choosing y = H and expected utility (1/3) ∗ (1) = 1/3 from choosing y = L and he

chooses y = H. Hence there exists an informative equilibrium with m(x) as above and
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y(m) = m. Notice that the signals x = L and x = H reveal the true state perfectly and

therefore, regardless of beliefs, players will take the same actions conditional on these

signals. It follows that for Choice-Equivalence we need only investigate behavior when

x = M . The first example is a rather trivial demonstration of the fact that we can

obtain the same equilibrium strategies with a CP model even if the choice functions are

not the same.

Example 2. Suppose a CP model with u(·) = uS(·) and pR(·) = pS(·) = p(·). Clearly,

yS∗ (·) is the same as in the CB model above and therefore also m(·). Since yR∗ (·) = yS∗ (·)
the equilibrium is obviously informative. Hence, the two models are Strategy-Equivalent.

But now yR∗ (L) = L and yR∗ (M) = yR∗ (H) = H so the models are not Choice-Equivalent.

This example is particularly simple since everything is discrete. R’s strategy specifies

a discrete action as a function of the discrete message he receives from S. All we do in

the example is to maintain S’s strategy and vary R’s choice function. This implies that

the two models are not Choice-Equivalent. But since we have only varied incentives

slightly the equilibrium of the information transmission game remains the same and

therefore there is Strategy-Equivalence. This is perhaps not so surprising. It is more

counterintuitive that we can construct two models that are Choice-Equivalent but not

Strategy-Equivalent. The next example illustrates this.

Example 3. Suppose a CP model with pS(·) = p(·) and u(·) = uS(·) such that yS∗ (·)
and m(·) are as in the CB model above. But now suppose pR(H) = 1/6. Clearly yR∗ (·)
is as before and therefore the models are Choice-Equivalent. But now lR(L) = 5/12,

lR(M) = 1/2 and lR(H) = 1/12. R’s estimated probability of θ = H conditional on

x = H is 1 and conditional on x = M is 1/6 and hence

PrR(θ = H|x ∈ {M,H}) = [(1/2) ∗ (1/6) + (1/12) ∗ (1)]/(1/2 + 1/12) = 2/7.

Thus when m = H then R has expected utility (2/7)∗(4/3) = 8/21 from choosing y = H

and expected utility (3/7)∗ (1) = 9/21 from choosing y = L. Therefore R always chooses

y = L, no matter what message S sends and the models are not Strategy-Equivalent.

In both models S has a lower cutoff point for switching from y = L to y = H than

does R. In the CB model this is so because S has more utility than R from correctly
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predicting θ = H. But in the CP model this occurs because S places a higher prior

probability on θ = H. Since R’s utility from correctly predicting θ = H is higher in the

CP model, Choice-Equivalence obtains only because R places a much lower probability

on θ = H in the CP model than in the CB model. But this in turn is exactly the

reason that Strategy-Equivalence fails, since this probability affects R’s expectation of

the distribution of the signal. Conditional on m = H, in the CB model R infers that

the probability of θ = H is twice as high as the probability of θ = L and therefore he

chooses y = H. In the CP model this ratio is 2/5 and therefore he chooses y = L.

Although R would take the same action conditional on x in the two models, in the CP

model he always wants to take the low action regardless of what message S sends him,

which implies that the equilibrium is uninformative and Strategy-Equivalence does not

obtain.

3.3 A Discrete World

In this section we discretize the action and state spaces to derive some illustrative results.

In the most general version we can describe the state space by Θ = {θ1, ..., θT} and the

action space by Y = {y1, ..., yK}. We retain the continuous signal space, and to fix

ideas suppose S = R although this is not important. Priors are denoted by pt ≡ p(θt)

and posteriors by pt(x) ≡ p(θt|x) for t = 1, ..., T . Utilities are similarly uk,t ≡ u(yk, θt)

for t = 1, ..., T and k = 1, ..., K. As before, probabilities and utilities are denoted by a

superscript i = R, S when they are non-common. We denote the dgp by λt(x) ≡ λ(x|θt).
Expected utilities in the CB model are

U i
k(x) ≡ U i(yk, x) =

T∑
t=1

pt(x)uik,t,

and in the CP model

U
i

k(x) ≡ U
i
(yk, x) =

T∑
t=1

pit(x)uk,t.

One important restriction in this section is that we focus on cases where the most

informative equilibrium exists, i.e. the equilibrium where all actions are take with

positive probability.
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3.3.1 The Simplest Case

We start by considering the simplest possible case with two actions and two states of the

world, i.e. Y = {yL, yH} and Θ = {θL, θH}. Then pL ≡ p(θL) and pH ≡ 1−pL denote the

priors and pL(x) ≡ p(θL|x) = pLλL(x)/(pLλL(x)+(1−pL)λH(x)) and pH(x) = 1−pL(x)

the posterior probabilities conditional on x. It turns out that in this case, for any CB

model we can find an equivalent CP model.

Proposition 7. Suppose Y = {yL, yH}, Θ = {θL, θH} and S = R. Any CB model

always has an equivalent CP model.

Proof. For the proof we assume that the inequality of the increasing likelihood ratio

property (ILR) of the dgp is strict for all x and θ. The proof is similar in the case

where we allow for equality. First we define the “arbitrage functions” for the CB model

V i(x) ≡ U i
L(x)− U i

H(x)) and for the CP model V
i
(x) ≡ U

i

L(x)− U i

H(x)). By ILR and

the sorting condition, the optimal action is increasing in x and for each model there will

be a unique cutoff point, ci and ci, defined by V i(ci) = 0 and V
i
(ci) = 0, such that the

players are indifferent between the two actions. Players will prefer the low action when

x is below the cutoff point and the high action when x is above.

We start by showing that for any CB model we can always find a Choice-Equivalent

CP model characterized by a utility function uk,t and the prior probabilities piL. The

sufficient and necessary condition for the CB and the CP models to be Choice-Equivalent

is ci = ci, i.e. that V
i
(ci) = 0. Let uk,k > uk,t for k, t = L,H and k 6= t and write out

the arbitrage function in the CP case.

V
i
(x) = piL(x)(uL,L − uH,L) + (1− piL(x))(uL,H − uH,H).

Observe that V
i
(·) = uL,H − uH,H < 0 for piL = 0 and V

i
(·) = uL,L − uH,L > 0 for

piL = 1. Since V
i
(·) is strictly decreasing in piL(·) and piL(·) is strictly increasing in piL

then for any c there exists a unique piL such that V
i
(c) = 0. This assures us that for

any CB model there exists a Choice-Equivalent CP model.

We then prove Strategy-Equivalence. Since we have assumed that we are in the most

informative equilibrium, both actions must be taken. The only credible strategy for S
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is to reveal his preferred action. If he did not do so, there would exist x for which he

could profitably deviate. S’s equilibrium message strategy in the CB model is hence

m(x) =

{
yL if x ≤ cS

yH if x > cS.
(3.1)

Similarly, let the message strategy in the CP model be denoted by m(x). Clearly, if

ci = ci then m(x) = m(x) and hence Choice-Equivalence implies Strategy-Equivalence

for S. Furthermore, let y(m) and y(m) be R’s equilibrium action strategies in the

CB and the CP models, respectively. Since the CB equilibrium is informative then

y(m) = m. This implies that∫ cS

−∞
UR
L (x)lR(x) dx ≥

∫ cS

−∞
UR
H(x)lR(x) dx, and∫ ∞

cS
UR
H(x)lR(x) dx ≥

∫ ∞
cS

UR
L (x)lR(x) dx.

(3.2)

Strategy-equivalence for R obtains if y(m) = m, which implies∫ cS

−∞
U
R

L(x)lR(x) dx ≥
∫ cS

−∞
U
R

H(x)lR(x) dx, and∫ ∞
cS

U
R

H(x)lR(x) dx ≥
∫ ∞
cS

U
R

L(x)lR(x) dx.

(3.3)

The procedure is then the following. We start with a CB model which is characterized by

cR and cS and which is by assumption informative such that m(x) is given by (3.1) and

y(m) = m. Assume cS = cS such that the CB and CP models are Choice- and Strategy-

Equivalent for S. Then notice that we can always choose uk,t = uRk,t and pRL = pL which

implies that cR = cR and hence the CB and CP models are Choice-Equivalent for R.

Furthermore, (3.2) and (3.3) are the same and therefore the models are also Strategy-

Equivalent for R. Finally, we just need to remark that, by the arguments above, for any

cS and uk,t, we can find pSL to ensure V
S
(cS) = 0 such that cS = cS. In conclusion, for

any CB model we can find a CP model which is Choice- and Strategy-Equivalent. This

yields the proposition.

However, this result not generally true and we need look no further than to models

with three discrete actions to find a counterexample as the next section shows.

92



3.3.2 The Size of the State Space Matters

In this section we look at two examples with a size-3 action space. Our strategy is the

same as in the proof of the previous section. The sorting condition and ILR property

of the dgp assure us the existence of a set of cutoff points, {cik}K−1
k=1 , defined by the CB

model and {cik}K−1
k=1 defined by the CP model, such that the optimal message strategy

for S in the CB model is m(x) = yk for x ∈ (cik−1, c
i
k] and in the CP model m(x) = yk

for x ∈ (cik−1, c
i
k]. As before define the functions V i

k (x) ≡ U i
k(x)− U i

k+1(x) and V
i

k(x) ≡
U
i

k(x)− U i

k+1(x) for k = 1, ..., K − 1.

First, we will show a counter-example to Proposition 7 where Choice-Equivalence

fails in all but a small number of cases. Let K = 3 and T = 2 and recall that we have

supposed that the equilibrium is fully informative, i.e., all three actions are taken with

positive probability. This requires that u1,1 > uk,1 for k = 2, 3, u3,2 > uk,2 for k = 1, 2

and u2,s > uk,s for some s and k ∈ {1, 3}. Otherwise at least one action would never be

strictly preferred. Given {cik}K−1
k=1 defined by the CB model, the requirement for Choice-

Equivalence is to find beliefs and a common utility function that make V
i

k(c
i
k) = 0 for

k = 1, ..., K − 1 and i = R, S. Write out the values of the arbitrage function V
i

k(·).

V
i

1(x) = pi1(x)u1,1 + (1− pi1(x))u1,2 − [pi1(x)u2,1 + (1− pi1(x))u2,2], and

V
i

2(x) = pi1(x)u2,1 + (1− pi1(x))u2,2 − [pi1(x)u3,1 + (1− pi1(x))u3,2].

The conditions V
i

k(c
i
k) = 0 can then be written as

u2,1 = u1,1 +
1− pi1(ci1)

pi1(ci1)
(u1,2 − u2,2), and (3.4)

u3,1 = u2,1 +
1− pi1(ci2)

pi1(ci2)
(u2,2 − u3,2). (3.5)

Since the equilibrium is informative by assumption we must have pi1 ∈ (0, 1). Otherwise,

some action is never taken. For the two conditions to hold for both R and S simulta-

neously we must have pR1 (cR1 ) = pS1 (cS1 ) and pR1 (cR2 ) = pS1 (cS2 ). First consider the case

where cR1 > cS1 . Then we must require pR1 > pS1 to solve (3.4). If furthermore cR2 < cS2
then we must have pR1 < pS1 to satisfy (3.5). This is obviously a contradiction and hence

Choice-Equivalence is not always possible. Let λit,k ≡ λt(c
i
k). We can then rewrite the

two conditions to arrive at the following proposition.
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Proposition 8. Suppose T = 2 and K = 3. A CB model has a Choice-Equivalent CP

model if an only if
λR1,1λ

R
2,2

λR1,2λ
R
2,1

=
λS1,1λ

S
2,2

λS1,2λ
S
2,1

.

A particular case where this fails is whenever the preferences exhibit “crossover” (i.e.,

cR1 − cS1 and cR2 − cS2 have opposite signs).

Proof. See Appendix.

Proposition 8 shows that the set of Choice-Equivalent models is very small in this

particular case. Choice-Equivalence requires us to solve four equations and although in

principle we have many choice parameters we are restricted by the fact that the utilities

are pairwise the same in the equations. Therefore a solution exists only if the posterior

state probabilities at the cutoff points are equal and this leads to the condition of the

proposition.

Since the prior is defined over the states, the size of the state space determines

the flexibility we have in specifying the CP model. So we would expect the existence

of equivalent models to depend to some extent on T . The next result confirms this.

Suppose T = K = 3. Our approach is the same as before. It is assumed that all actions

are taken in equilibrium and therefore uk,k > uk,t for k = 1, 3 and k 6= t. Let pit,k ≡ pit(c
i
k)

and p̂it,k ≡ pitλ
i
t,k. Manipulating the conditions V

i

k(c
i
k) = 0 for k = 1, 2 we obtain

p̂i1,1(u1,1 − u2,1) + p̂i2,1(u1,2 − u2,2) + p̂i3,1(u1,3 − u2,3) = 0 (3.6)

p̂i1,2(u2,1 − u3,1) + p̂i2,2(u2,2 − u3,2) + p̂i3,2(u2,3 − u3,3) = 0. (3.7)

Cancel out u2,3 and write out p̂it,k ≡ pitλ
i
t,k to get

pi1
λi1,1
λi3,1

(u1,1 − u2,1) + pi2
λi2,1
λi3,1

(u1,2 − u2,2) + pi1
λi1,2
λi3,2

(u2,1 − u3,1)

+pi2
λi2,2
λi3,2

(u2,2 − u3,2) + (1− pi1 − pi2)(u1,3 − u3,3) = 0.

(3.8)

First let pi1, p
i
2 → 0. Then the left-hand side goes to (u1,3−u3,3) < 0. Second let pi1 → 1

and pi2 → 0. Then the left-hand side goes to (u1,1− u2,1) > 0. Hence, there exist pi1 and
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pi2 such that (3.8) is true. Thus, for any CB model we can find a Choice-Equivalent CP

model. Since the exact values of the utilities do not matter for the existence result, we

can use the same argument as in the proof of the case with two actions and two states.

Hence, we choose uk,t = uRk,t and pRt = pt for k, t = 1, 2, 3 to make the CP model Choice-

and Strategy-Equivalent for R and then use the above argument to find pSt such that

cSk = cSk . This yields the following proposition which we state without further proof.

Proposition 9. Suppose T = K = 3. Any CB model always has an equivalent CP

model.

This proposition confirms the previous intuition: with a larger state space we can

achieve equivalence. The explanation is simple. To achieve Choice-Equivalence we need

to match two cutoff points for each player and for that purpose we need, in general,

two free variables that differ between the players. With three states we can decide two

of the state probabilities freely and by choosing the utilities appropriately we can also

make the problem Strategy-Equivalent, which gives us the result.

3.3.3 A Sufficiency Result for Equivalence

In the previous section we found that with 3 actions and 2 states Choice-Equivalence

could only be obtained in a small set of cases whereas with 3 states both kinds of

equivalence is always attainable. The next step is to use the intuition from these two

examples to establish a sufficiency condition for equivalence.

Assume that the model is as before, except that T and K may take any value. We

then want to establish a sufficiency condition on T and K such that we can assure

the existence of equivalent models. Our approach is to formulate the entire equivalence

problem as a system of equations which is linear in ut,k. As these are utilities and can be

both negative and positive we know that a solution exists conditional on certain proper-

ties of the augmented matrix of the problem. We start by “stacking” all the utilities into

a KT -dimensional column vector u = (u1, ..., uK)′ where uk = (u1,k, ..., uT,k)
′. Using the

notation from above, pit,k is the probability that i assigns to state t when x = cSk . We

write the vector of such probabilities for each state as P i
k = (pi1,k, ..., p

i
T,k).
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We then want the solution to satisfy two sets of conditions. First, the arbitrage

conditions which for i correspond to
∑

t p
i
t,k(ut,k−ut,k+1) = 0 for k = 1, ..., K−1. These

conditions yield Choice-Equivalence for i and we can write them as Ciu = 0 where 0

denotes a K − 1 dimensional column vector of zeros and Ci is a (K − 1)×KT matrix

given by

Ci =


P i

1 −P i
1 0 0 · · · 0 0

0 P i
2 −P i

2 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · P i
K−1 −P i

K−1

 .

Second, to assure Strategy-Equivalence for R we want to fix the expected utility in each

partition of the message space. Let

pRt,k ≡

∫ cSk+1

cSk
pRt (x)lR(x) dx∑

t

∫ cSk+1

cSk
pRt (x)lR(x) dx

,

be the conditional probability of state t in partition k. Construct the vector P
R

t as

above. We want to find ut,l such that
∑

t p
R
t,kut,l = vk,l for k, l = 1, ..., K, where vk,l is

chosen to assure Strategy-Equivalence. Let v = (v1, ..., vK)′ and vk = (v1,k, ..., vK,k)
′. It

is enough for Strategy-Equivalence that SRu = v, where SR = [SR1 , ..., S
R
K ]′ is a K2×KT

matrix with the elements SRk = diag{PR

k } being K × KT block-diagonal matrices. A

sufficient condition for equivalence is that there exists a vector u that solvesCS

CR

SR

u =

0

0

v

 .

Let E = (CS CR SR)′ and e = (0 0 v)′. The Rouché-Capelli Theorem assures the

existence of a solution if the rank of the matrix E is equal to the rank of the augmented

matrix (E
... e). In the proof of the following result we show that this problem boils

down to the rank of the matrices Rk = (−P S
k−1, P

S
k ,−PR

k−1, P
R
k , P

R

2 , ..., P
R

K)′ for k =

1, ..., K − 1 and RK = (−P S
K−1,−PR

K−1, P
R

2 , ..., P
R

K)′. These must have rank at least

K + 1. Notice that these matrices depend on the function λ(·), which is given, and
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the prior probabilities pit about which we have made no assumptions so far. To apply

the theorem we make the following assumption which for clarity of exposition we make

slightly more restrictive (assuming full rank) than necessary.

Assumption 2. There exist prior probabilities {pRt } and {pSt } such that the matrices

Rk, k = 1, ..., K, have full rank.

Since the elements of the matrices Rk depend non-linearly on the prior probabilities,

we expect in general to be able to find a vector of probabilities such that the rank

condition is satisfied. This leads us to the following result.

Proposition 10. Suppose Assumption 2. For any CB model, a sufficient condition for

the existence of an equivalent CP model is T ≥ K + 1.

Proof. See Appendix.

One immediate corollary to this result is that a CB model with a discrete action

space and a continuous state space will always have a Choice- and Strategy-Equivalent

CP model, since we can always specify a prior that is degenerate in a finite number of

points.

3.4 Equivalence for Continuous Models

When we allow for a continuous actions space, the action taken will depend directly on

R’s beliefs and therefore we require even stronger conditions for equivalence. To explore

this we assume (denoting partial derivatives in the usual manner) that for each x then

U i
22(·) < 0 for all y and yR∗ (·) − yS∗ (·) is either strictly positive or strictly negative for

all x. These are the assumptions made by Crawford and Sobel [13] and their results

show that the (essentially) only equilibrium is a finite partition of the message space

such that m(x) = mn whenever xn−1 < x ≤ xn, for n = 1, ..., N . The maximum N for

which an equilibrium exists depends on the alignment of the players’ preferences. Let

y(a, b) ≡ arg maxy
∫ b
a
UR(y, x)lR(x) dx and yn = y(xn−1, xn). The cutoff points {xn}Nn=0

must satisfy the condition US(yn, xn) = US(yn, xn−1).

Two models A and B that satisfy the above derivative assumptions are Strategy-

Equivalent if and only if the following two conditions are satisfied.

97



(SE1) Fixing {yn}Nn=1, S’s optimal cutoff points {xn}Nn=0 are the same in A and B.

(SE2) Fixing {xn}Nn=0, R’s optimal actions {yn}Nn=1 are the same in A and B.

First, we say that two models are EU-Equivalent if they produce the same expected

utilities conditional on x. We can quickly derive the following lemma.

Lemma 7. A sufficient condition for (SE1) is that models A and B are Choice-Equivalent

for S. Furthermore, it is sufficient for (SE2) that A and B are EU-Equivalent for R

and that for some kn > 0

lRA(x) = knl
R
B(x) for all x ∈ (xn−1, xn). (3.9)

Proof. See Appendix.

The condition for (SE2) says that the conditional distribution of x in the interval

(xn−1, xn) remains unchanged. In effect, R can only change his expectation of the

probability of the intervals in the partition but not of the relative likelihood of two

signals within a given partition. Hence, for a given λ(·) we are very restricted in our

choice of pi(·) if we want to achieve Strategy-Equivalence between two models. We start

out by digressing a bit further on EU-Equivalence, showing that it may be impossible

to obtain for some λ(·). EU-Equivalence for a given ui(·), λ(·) and p(·) requires us to

find u(·) and pi(·) such that for any x and y∫
Θ

ui(y, t)p(t|x) dt =

∫
Θ

u(y, t)pi(t|x) dt. (3.10)

Without requiring λ(·) to be common between players and models it is easy to obtain

EU-Equivalence. Suppose that the function u(y, θ) is continuous in both its arguments

and that for i = R, S then minθ u(y, θ) ≤ infx U
i(y, x) and maxθ u(y, θ) ≥ supx U

i(y, x)

for all y. Hence, for all (y′, x′) there exists θ′i ∈ Θ such that U i(y′, x′) = u(y′, θ′i). Then

we can choose λ(·) such that pi(θ′i|x′) = 1 and pi(θ|x′) = 0 for θ 6= θ′i, and thus (3.10)

is true. Supposing that λ(·) is fixed the matter is more complicated. The following two

examples illustrate the difficulties involved.
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Example 4. Suppose Θ = S = [0, 1] and λ(x|θ) = 1 for all x and θ. I.e., conditional

on θ the signal x is uniformly distributed on the unit interval. Then pi(θ|x) = pi(θ) and∫
Θ

ui(y, t)p(t|x) dt =

∫
Θ

u(y, t)pi(t) dt = C(y).

Expected utility is constant for all x and hence if U i(y, x) 6= U i(y, x′) for some triple

(y, x, x′) EU-Equivalence fails.

In this example the dgp is too vague. No information is revealed by the signal and

hence expected utility depends only on prior beliefs over the state. The next example

shows the contrarian case.

Example 5. Suppose Θ = S = [0, 1] with λ(θ|θ) = 1 and λ(x|θ) = 0 for x 6= θ. Then

expected utility conditional on x is u(y, x) and hence if UR(y, x) 6= US(y, x) for some

pair (y, x) EU-Equivalence fails.

Now the signal is too informative and completely removes the prior beliefs from the

expected utility, thereby taking away any flexibility we have for specifying individual

behavior in the CP model. These two extreme examples illustrate the problems when

the dgp is too peaked or too flat. Assuming that λ(·) has been given together with p(·)
and ui(·), we want to investigate which u(·) are admissible to assure (SE2), which will

subsequently identify a class of CB models which have equivalent CP models. First,

we notice that this class includes any CB model in which uS(·) satisfies the following

condition for some p̂(·).∫
Θ

uR(y, t)p̂(t|x) dt =

∫
Θ

uS(y, t)p(t|x) dt.

In this case, we can set u(·) = uR(·) and pR(·) = p(·) to assure Choice- and Strategy-

Equivalence for R and pS(·) = p̂(·) to assure the same for S. In fact, condition (3.9)

restricts our choice of pR(·) such that in general the only solution will be to set pR(·) =

p(·), leaving as free variables only u(·) and pS(·). Suppose u(y, θ) 6= uR(y, θ) for some y

and θ. Then we can define a(y, θ) ≡ u(y, θ)− uR(y, θ). The expected utility in the CP

model is thus ∫
Θ

[uR(y, t) + a(y, t)]
pR(t)λ(x|t)∫

Θ
pR(t′)λ(x|t′) dt′

dt.
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Clearly, this is equal to UR(·) only if for all y and x∫
Θ

a(y, t)
pR(t)λ(x|t)∫

Θ
pR(t′)λ(x|t′) dt′

dt = 0.

In general this condition will be hard to satisfy unless we impose some more structure

on the distributions. We say that λ(·) satisfies the Partial Constant Likelihood Property

in an interval T if for all pairs (x, x′) and θ, θ′ ∈ T we have

λ(x|θ′)
λ(x|θ)

=
λ(x′|θ′)
λ(x′|θ)

. (PCLR)

The property says that the signal is uninformative about the relative likelihood of states

in T . Examples of distributions that satisfy (PCLR) in some interval is (i) any distribu-

tion for which λ(x|θ) is equal to a constant times e−(θ−x) for θ ∈ T or (ii) a distribution

with three states {A,B,C} and x ∈ [0, 1] where λ(x|A) = x and λ(x|B) = λ(x|C) = 1−x
2

.

In the last example, for any x then λ(x|B)/λ(x|C) = 1 such that T = {B,C}. We use

this property to state the following proposition which we prove in the appendix.

Proposition 11. For some T define a(y, θ) with a(y, θ) = 0 for θ /∈ T and∫
T

a(y, t)
p(t)λ(x|t)∫

Θ
p(t′)λ(x|t′) dt′

dt = 0 for some x.

Suppose that in a CB model λ(·) satisfies (PCLR) for T and there exists pS(·) such that

US(y, x) =

∫
Θ

[uR(y, t) + a(y, t)]
pS(t)λ(x|t)∫

Θ
pS(t′)λ(x|t′) dt′

dt. (3.11)

Then there exists an equivalent CP model.

Proof. See Appendix.

Lemma 7 identifies a very strict set of sufficiency conditions for equivalence, which the

above Proposition relaxes somehow, although we can only apply it to very particular dgp.

The difficulty of finding equivalent models in continuous space underpins is important -

it appears that often an equivalent model will not exist. The culprit is R’s expectation of

the dgp, which is formed using his prior. Since any heterogeneity in individual behavior

must be modeled by priors and priors affect strategic behavior as well, it seems intuitive

that often it will be impossible to model a particular individual and strategic behavior

simultaneously.
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3.5 Preferences Over Information: An Example

In this section we show an example which demonstrates that even when a CB model

has an equivalent CP model, this CP model may be different in other respects. In

particular, we will investigate a model where S is characterized by how precise a signal

he observes. Following Kawamura [29] we call this his “competence”. We show that even

when a CB and CP model satisfy Choice- and Strategy-Equivalence R has a stronger

preference for competence in the CP model than in the CB model. We can relate this to

Che and Kartik [11] who analyze an information transmission model with information

acquisition in which players are heterogenous either in preferences or beliefs. They show

that, due to the information acquisition motive, a change in beliefs is different to a

change in preferences, since a change in preferences affects only the preferred action

whereas a change in beliefs affects the preferred action as well as the expectation of the

information that will be acquired. Our focus here is different. Information acquisition is

exogenous and the reason why R has a greater preference for S being more competent

in the CP model is that the players’ ex post preferences converge as S becomes more

competent and it turns out that they converge more in the CP model than in the CB

model. Thus, although our result at first seems reminiscent of Che and Kartik, both

the implications and the cause of the result are quite different.

As our example we take a simple situation with two actions and where players’

utilities depend linearly on the distance between the action y, the state θ and a bias

parameter b. The state belongs to the unit interval and S receives a signal x which is

completely informative with probability π and pure noise with probability 1−π (thus π

parametrizes S’s competence). Since payoffs are linear we can characterize payoffs and

strategies entirely in terms of the prior expectation of the state, m. I.e. the shape of the

prior distribution does not matter. As in previous sections the players’ choice functions

have a cutoff point such that they prefer the high action above and the low action below,

and this cutoff point depends only on b, m and π. The equilibrium strategy of S will

be to reveal his preferred action but not the exact value of x. Our approach will be to

derive CP and CB models that are Choice- and Strategy-Equivalent and show that R

has a larger utility gain from increasing π in the CP model.

We start out by describing the model in more detail. Initially we denote all variables
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by a superscript and then move on to specify the CB and CP models below. The action

space is given by Y = {0, 1} whereas the state and signal spaces are the unit interval,

Θ = S = [0, 1]. For i = R, S, utility is given by ui(0, θ) = bi − θ and ui(1, θ) = θ − bi.
The prior over the state space is pi(θ) with mean mi. S receives a signal x that is equal

to θ with probability π and otherwise distributed uniformly on [0, 1], i.e. not informative

about the state. Expected utility is thus

U i(y, x) = πui(y, x) + (1− π)

∫ 1

0

ui(y, t)pi(t) dt.

Let the arbitrage function be defined as in Section 3.3.1, which implies

V i(x) = u(0, x)− u(1, x) + (1− π)

∫ 1

0

(ui(0, t)− ui(1, t))pi(t) dt

= 2π(mi − x) + 2(bi −mi).

The cutoff point is identified by V i(ci) = 0 and hence in this case it will only depend

on mi, bi and π.

ci =
bi −mi

π
+mi.

A CB model in this context is defined by mR = mS = m and a CP model by bR = bS = b.

If the players have common preferences prior (CP) then π = 1 implies cR − cS = 0

whereas if the preferences are non-common (CB) it implies cR−cS = bR−bS. This gives

us a hint as to the comparative statics: when preferences are common the ex post bias

disappears as S’s competence grows whereas when preferences are non-common there

will always be ex post bias, regardless of S’s competence.

Choice- And Strategy-Equivalence. The condition for Choice-Equivalence in

this setup is that the CB and CP models have the same cutoff point, ci, which gives us

the following.
bi −m
π

+m =
b−mi

π
+mi.

We always start with a CB model and an information structure, which in this case is

given by m, bi and π. The free parameters we have in the CP model are b and mi. For
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each b we can solve the previous condition for mi to yield

mi
∗(b) =

(b− bi)
1− π

+m.

This is the values of mi given b that assure Choice-Equivalence. Thus, for the CB model

given by m, bi and π we can identify a Choice-Equivalent CP model if there exists some

b such that mR
∗ (b),mS

∗ (b) ∈ [0, 1]. Furthermore, this will be Strategy-Equivalent for S

since his strategy is defined uniquely by cS. To check that the models are Strategy-

Equivalent for R we first remark that if mS
∗ (b

R) ∈ [0, 1] we can set b = bR and the

models will be exactly the same for R and therefore also Strategy-Equivalent. More

generally, we need to calculate R’s expected utility from receiving the signals 0 and 1

when S’s cutoff point is c.

U
R

0 (y) ≡
∫ c

0

[
πuR(y, t) + (1− π)

∫ 1

0

uR(y, s)pR(s) ds

]
pR(t) dt and

U
R

1 (y) ≡
∫ 1

c

[
πuR(y, t) + (1− π)

∫ 1

0

uR(y, s)pR(s) ds

]
pR(t) dt.

Strategy-Equivalence for R boils down to whether or not the equilibrium is informative,

such that y(m) = m, or not. In the first case, we must have U
R

0 (0) ≥ U
R

0 (1) and

U
R

1 (1) ≥ U
R

1 (0). In the second case, one of the inequalities fail. In a CB model we can

rewrite the first inequality as

bR ≥ πt0 + (1− π)m, (3.12)

and in a CP model

b ≥ πtR0 + (1− π)mR, (3.13)

where ti0 ≡ Epi [θ|θ ≤ c]. Substituting mR
∗ for mR we can see that (3.12) and (3.13) are

the same if tR0 = t0. Similarly, the inequality U
R

1 (1) ≥ U
R

1 (0) reduces, in a CB model,

to bR ≥ πt1 + (1 − π)m, and in a CP model to b ≥ πtR1 + (1 − π)mR. Hence, the two

are equivalent if tR1 = t1. We can always choose pi(·) to assure tR0 = t0 and tR1 = t1. Let

P i(c) ≡
∫ c

0
pi(t) dt. Since mR = P i(c)t0 + (1 − P i(c))t1 and we can choose P i(c) to be

any value in the unit interval then we can achieve Strategy-Equivalence for R as long

as there exists b such that mS
∗ (b) ∈ [0, 1] and mR

∗ (b) ∈ [t0, t1]. The earlier observation

tells us that this condition is also sufficient for Choice-Equivalence.
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Preferences Over Informativeness. In this section we use the class of equivalent

models identified in the previous section. Suppose a CB model with an informative size-

2 equilibrium and that an equivalent CP model exists. R’s ex-ante expected utility

conditional on S having cutoff point c and signal precision π is

EUR(c, π) ≡ U
R

0 (0) + U
R

1 (1).

We are interested in how expected utility changes when we increase π and compare

the changes between CB and CP models. Since in equilibrium c depends on π we first

calculate the partial derivatives of the expected utility and then the total derivative with

respect to π. The partial derivative of EUR(·) with respect to π and holding c fixed is

PR(c)(mR − ti0) + (1− PR(c))(ti1 −mR).

After some rewriting the partial derivative of EUR(·) with respect to c reduces to

2pR(c)[π(mR − c) + bR −mR].

Lastly, the derivative of cS with respect to π is −(bS−mS)/π2. Putting all this together,

we have

dEUR(cS, π)

dπ
=PR(cS)(mR − tR0 ) + (1− PR(cS))(tR1 −mR)

− 2pR(c)[π(mR − c) + bR −mR]
(bS −mS)

π2
.

Let us consider the case where mS
∗ (b

R) ∈ [0, 1] such that we can set b = bR, mR = m

and pR(·) = p(·). In this case, only the last term of the above derivative is different

in a CB and a CP model. The difference between dEUR(cS, π)/dπ of a CB model and

dEUR(cS, π)/dπ of its equivalent CP model is then 2p(cS) times

[
π(mR − cS) + b−mR

] b−mS

π2
−
[
π(m− cS) + bR −m

] bS −m
π2

. (3.14)

Substituting mR = m, mS = mS
∗ (b), c

S = (bS −m)/π +m and b = bR in (3.14) we get

−(bS − bR)2

π(1− π)
< 0. (3.15)
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It follows that for a given CB model and its equivalent CP model, R has a stronger

preference for a more precise signal in the CP model. We summarize this in the following

proposition.

Proposition 12. Suppose mS
∗ (b

R) ∈ [0, 1] and let b = bR, mR = m and pR(·) = p(·)
such that the CB and CP models are equivalent. Then R has a greater utility gain from

increasing π in the CP model than in the CB model.

This proposition demonstrates the point made in the introduction of this section.

Although we can, in many situations, write CB and CP models that are both Choice-

and Strategy-Equivalent this does not imply that other properties are the same. Suppose

that we were to introduce a first stage of the model where R can choose to pay to increase

the competence of the Sender (we can think of this as a principal-agent situation where

the principal pays to educate the agent). Then, even if we write a CB and a CP model to

be exactly identical in the second stage, R’s first stage problem will be different in that

he will be more inclined to pay to increase S’s competence in the CP model. Notice that

this is different to the result of Che and Kartik [11] who notice that non-common priors

and non-common preferences do not affect the Sender’s incentive to acquire information

in the same way. In our model the Sender’s competence is exogenously fixed and we

analyze the Receiver’s gain from an increase in competence.

3.6 Conclusion

Non-common preferences and non-common priors represent two different ways of model-

ing player heterogeneity. This paper has analyzed conditions under which a model with

common priors and non-common preferences has an equivalent model with non-common

priors and common preferences. Our two measures of equivalence have been chosen to il-

lustrate that equivalence at the individual level (Choice-Equivalence) is neither necessary

nor sufficient for equivalence in the strategic game between the two players (Strategy-

Equivalence). This implies that a CP and a CB model in which players act exactly

the same individually may not have the players do so once they engage in information

transmission. Whereas this may occur even if both models are CP or CB the reason
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why Strategy-Equivalence fails when the models are of different types is particular to

the nature of CP models: the players’ priors affect not only their own preferred actions

conditional on the signal but also their expectation of what the other player has seen.

Therefore they may act the same individually but not together.

Often one of the two approaches is chosen over the other for the sake of convenience

or because it fits well with a particular application of the model. But it is important

to understand the consequences of this choice and we see this paper as a step in that

direction. In particular, whenever the nature of a problem does not favor one of the two

approaches over the other it might be an interesting exercise to construct two models

that are Choice-Equivalent and see if they are also Strategy-Equivalent. As our results

show, it is possible that such equivalent models are not available and in this case the

choice of approach conditions the possible set of outcomes. And if equivalent models

do exist, will they they also be equivalent if other elements are added to the game?

Performing such a check will give an idea about to which extent results depend on the

framework.
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3.7 Proofs

Proof of Proposition 8. Define Qi
t(p

i
1) = λi1,t/(p

i
1λ

i
1,t+(1−pi1)λi2,t). Hence, we can rewrite

the two conditions as pR1 Q
R
1 (pR1 ) = pS1Q

S
1 (pS1 ) and pR1 Q

R
2 (pR1 ) = pS1Q

S
2 (pS1 ). We can use

the first condition to derive equilibrium pR1 as a function of pS1 .

pR1 (pS1 ) =
λR2,1p

S
1Q

S
1 (pS1 )

λR1,1(1− pS1QS
1 (pS1 )) + λR2,1p

S
1Q

S
1 (pS1 )

.

Substitute this into the second condition and cancel out the denominator of pR1 (pS1 ) to

get
λR1,1λ

R
2,1p

S
1Q

S
1 (pS1 )

λR1,1λ
R
2,1p

S
1Q

S
1 (pS1 ) + λR2,2λ

R
1,1(1− pS1QS

1 (pS1 ))
= pS1Q

S
2 (pS1 ).

Writing out the right-hand side and simplifying this we obtain

λR1,2λ
R
2,1λ

S
1,1p

S
1

λR1,2λ
R
2,1λ

S
1,1p

S
1 + λR1,1λ

R
2,2λ

S
2,1(1− pS1 )

=
λS1,2p

S
1

λS1,2p
S
1 + λS2,2(1− pS1 )

Rearranging we get the condition of the proposition. The second part is proven in the

text.

Proof of Proposition 10. A sufficient condition for the result is that the rank of the

matrix E equals the row dimension. E has dimension (2(K−1) +K2)×KT , and hence

we require T ≥ K + 2. However, we can reduce the problem by setting ut,1 = 0 for

all t = 1, .., T . This implies that R always has expected utility 0 from choosing action

1, and we can choose the v vector such that if R chooses action k in partition l in the

original problem, then vk,l > 0 and otherwise vk,l < 0. In this case we can delete the

first T columns and the K rows corresponding to the conditions for v1,l. Therefore, we

reduce E to a matrix Ê of size (2(K − 1) + (K − 1)2)× (K − 1)T and the requirement

becomes T ≥ K + 1.

We can split the matrix Ê into K blocks such that Ê = (Ê1, ..., ÊK), i.e. each block

constitutes T columns of Ê. For instance,

Ê1 = (−P S
2 , P

S
2 , 0, ..., 0,−PR

1 , P
R
2 , 0, ..., 0, P

R

2 , 0, ..., 0, P
R

3 , ...)
′ and

Ê2 = (0,−P S
2 , P

S
3 , 0, ..., 0,−PR

2 , P
R
3 , 0, ..., 0, P

R

2 , 0, ..., 0, P
R

3 , ...)
′.
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Any vector in a block k is clearly independent of any combination of vectors that belong

to other blocks, since some rows only have strictly positive entries in vectors in block

k. Block K − 1 will only have non-zero entries in 2 + K − 1 = K + 1 rows whereas all

other blocks have non-zero entries in 4 +K − 1 = K + 3 rows. What we need to check

is that each block has rank at least K + 1. This would imply that E has rank at least

K(K+1), which is sufficient for the result. We can reduce this to the condition that the

matrices Rk defined in the main text have rank at least K + 1. Assumption 2 assures

this.

Proof of Lemma 7. If the two models are Choice-Equivalent, then obviously for fixed

{yn}Nn=1, the conditions US(yn, xn) = US(yn, xn−1) remain unchanged. Similarly, fixing

{xn}Nn=0 we have

yBn = arg max
y

∫ xn

xn−1

UR(y, x)lRB(x)dx

= arg max
y

∫ xn

xn−1

UR(y, x)knl
R
B(x)dx

= arg max
y

∫ xn

xn−1

UR(y, x)lRA(x)dx

= yAn .

This gives the second part of the lemma.

Proof of Proposition 11. Given the assumptions, then for all x∫
Θ

a(y, t)
p(t)λ(t|x)∫

Θ
p(t′)λ(t′|x) dt′

dt =

∫
T

a(y, t)
p(t)λ(t|x)∫

Θ
p(t′)λ(t′|x) dt′

dt = 0.

The first equality holds since a(y, θ) = 0 for any θ /∈ T . The last equality holds because

of (PCLR), which implies that if the integral is zero for some x it is zero for all x. Hence,

if we set pR(·) = p(·) then (SE2) is satisfied. Then by Lemma 7, equation (3.11) defines

a set of US(·) for which we can construct a Strategy-Equivalent CP model.
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[7] B. Çelen, S. Kariv, and A. Schotter. Words Speak Louder than Actions and Im-

prove Welfare: An Experimental Test of Advice and Social Learning. Levine’s

Bibliography, 2005.

[8] Pew Research Center. 2006 pew research center for the people & the press news

consumption and believability study.

109



[9] G. Charness, E. Karni, and D. Levin. Individual and group decision making under

risk: An experimental study of Bayesian updating and violations of first-order

stochastic dominance. Journal of Risk and uncertainty, 35(2):129–148, 2007.

[10] G. Charness and D. Levin. When optimal choices feel wrong: A laboratory

study of Bayesian updating, complexity, and affect. American Economic Review,

95(4):1300–1309, 2005.

[11] Y.K. Che and N. Kartik. Opinions as incentives. Journal of Political Economy,

117(5):815–860, 2009.

[12] V. Crawford. A survey of experiments on communication via cheap talk. Journal

of Economic Theory, 78(2):286–298, 1998.

[13] V.P. Crawford and J. Sobel. Strategic information transmission. Econometrica:

Journal of the Econometric Society, 50(6):1431–1451, 1982.

[14] A. Cukierman and M. Tommasi. When does it take a nixon to go to china? Amer-

ican Economic Review, pages 180–197, 1998.

[15] W.F.M. De Bondt et al. Herding in analyst earnings forecasts: evidence from the

united kingdom. European Financial Management, 5(2):143–163, 1999.

[16] S. DellaVigna and E. Kaplan. The fox news effect: Media bias and voting*. The

Quarterly Journal of Economics, 122(3):1187–1234, 2007.

[17] A. Dische. Dispersion in analyst forecasts and the profitability of earnings momen-

tum strategies. European Financial Management, 8(2):211–228, 2002.

[18] M.A. El-Gamal and D.M. Grether. Are People Bayesian? Uncovering Behavioral

Strategies. Journal of the American Statistical Association, 90(432), 1995.

[19] J. Farrell and R. Gibbons. Cheap talk with two audiences. The American Economic

Review, 79(5):1214–1223, 1989.

[20] E. Gal-Or. Information sharing in oligopoly. Econometrica: Journal of the Econo-

metric Society, 53(2):329–343, 1985.

110



[21] E. Gal-Or. Information transmission–Cournot and Bertrand equilibria. The Review

of Economic Studies, 53(1):85–92, 1986.

[22] M. Gentzkow and J.M. Shapiro. Media Bias and Reputation. Journal of Political

Economy, 114(2), 2006.

[23] B. Goldberg. Bias: A CBS Insider Exposes How the Media Distort the News.

Regnery Publishing, 2001.

[24] J.R. Green and N.L. Stokey. A two-person game of information transmission. Jour-

nal of Economic Theory, 135(1):90–104, 2007.

[25] D.M. Grether. Bayes rule as a descriptive model: The representativeness heuristic.

The Quarterly Journal of Economics, 95(3):537–557, 1980.

[26] D. Griffin and A. Tversky. The weighing of evidence and the determinants of

confidence* 1. Cognitive Psychology, 24(3):411–435, 1992.

[27] T. Groseclose and J. Milyo. A measure of media bias*. The Quarterly Journal of

Economics, 120(4):1191–1237, 2005.
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