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DRIVEN PROCESSES

Author: Peter Diko

Thesis supervisor: Miguel Usábel
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Resumen

Esta tesis contiene tres art́ıculos de investigación con aportes originales. El primer

art́ıculo, que coincide con el Caṕıtulo 2, ha sido publicado (Diko and Usábel (17)) en

Insurance: Mathematics and Economics, una revista de reconocimiento internacional

inclúıda en JCR. En el citado caṕıtulo se propone un método numérico que permite

evaluar la función de utilidad en un marco de proceso de Poisson compuesto con cambio

de régimen. Esto supone que los parámetros del modelo de Poisson compuesto pueden

variar en el tiempo, gobernados por un proceso de Markov subyacente. Este modelo

es una generalización de los procesos que se analizan en la literatura relevante hasta

el momento, por tanto el aporte de este caṕıtulo consiste tanto en el desarrollo de un

modelo nuevo, capaz de reflejar un entorno económico variable, como en el método

de cálculo de cuant́ıas de interés relacionadas con éste. Éstas incluyen entre otras la

probabilidad de la ruina, supervivencia o el déficit medio al producirse la ruina.

El Caṕıtulo 3 expone el tratamiento genérico de un problema de control estocástico

en el marco de procesos generales de difusión de Lévy. Este tipo de problemas es cono-

cido por su dificultad a la hora de obtener soluciones concretas, ya que las equaciones

diferenciales o integro-diferenciales que caracterizan la solución no admiten tratamiento

anaĺıtico exacto. Habitualmente se aplican métodos numéricos de discretización de

tiempo. En esta tesis, se desarrolla un método de solución alternativo que consiste en

Erlangizar (dividir en intervalos aleatorios exponenciales) el horizonte temporal estable-

cido con lo que se consigue simplificar la complejidad de las equaciones diferenciales

involucradas. Esta transformación lleva a una metodoloǵıa de aproximación iterativa

aplicable a un gran abanico de problemas del área de finanzas y seguros. Los resultados
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de este caṕıtulo están en el proceso de revisión en Mathematical Finance, una de las

revistas de finanzas estocásticas más importantes en el mundo.

Por último, el Caṕıtulo 4 ofrece una aplicación de la metodoloǵıa presentada an-

teriormente en el marco de solvencia de una compañ́ıa de seguros. En este contexto

se plantea un problema de decisión sobre la composición de la cartera de inversión

óptima con el fin de maximizar la utilidad esperada de una cartera sometida a un pro-

ceso de riesgo. Aplicando el algoritmo iterativo del Caṕıtulo 3 se calculan las cuant́ıas

de interés y se demuestra la rápida convergencia y buenas propiedades del método

propuesto. El contenido de este caṕıtulo también representa un aporte original y está

actualmente bajo revisión en la revista ASTIN Bulletin, referente principal en el campo

de investigación actuarial.

En conlusión, los tres aportes de investigación original presentados en esta tesis

permiten una aplicación de métodos numéricos para obtener resultados concretos en

situaciones que hasta ahora no han sido tratadas en la literatura.
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1

Introduction

An approximate answer to the right problem

is worth a good deal more

than an exact answer to an approximate problem.

– John Tukey –

This thesis contains three original research articles related to the area of risk the-

ory and stochastic control. The exposition of the work begins with the introductory

chapter that contains basic notions about Lévy processes, stochastic control and risk

theory as developed in standard textbooks on the topics and are necessary to present

the original contributions of the subsequent chapters. In Chapter 2 we present our

original article (Diko and Usábel (17)) that has been published in Insurance: Math-

ematics and Economics, an international peer reviewed journal. In this article we

developed a numerical method that allows to evaluate a general penalty-reward func-
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1. INTRODUCTION

tion for Markov-modulated compound Poisson processes. First, the function of interest

is characterised as a solution of an integro-differential system of equations and then its

solution is approximated by Chebyshev polynomial expansion. Chapter 3 presents our

original contribution that treats the problem of optimal control of general Lévy diffu-

sion processes including Markov-modulation of the parameters. Through Erlangisation

approach, the value function is characterised as a solution to fairly simple integro-

differential equation. This gives rise to an iterative scheme that yields the solution of a

wide class of stochastic control problems. The general nature of the results of this work

permits its application to variety of problems from finance and insurance related areas.

The work developed in this chapter is currently submitted and in a review process of

a top peer reviewed stochastic finance journal. Finally, Chapter 4 contains an appli-

cation of the results from the previous chapters to the environment of risk control of

an insurance company with respect to the optimal portfolio selection. It illustrates the

modelisation possibilities of the framework presented in Chapter 3 and the relevance

of the results by obtaining numerical solutions for a problem that has not been previ-

ously solved in the literature. The results of this chapter are submitted for the revision

process to ASTIN Bulletin, a leading international peer-reviewed journal in actuarial

science.

1.1 Description of the context

Risk is inherent to the insurance business and so is the necessity to quantify it. Insur-

ance companies operating in a branch of insurance business need to cover the claims

resulting from a portfolio of the contracts. Since the amounts and the timing of these

claims is unknown in advance, the company needs to determine some regular patterns

2



1.1 Description of the context

in the uncertain quantities to accrue appropriate funds to cover its liabilities. The

decision on the volume of these funds, often called reserves, is a trade-off between the

solvency and the efficiency of the capital management. Insufficient reserves will lead

a company to bankruptcy, while excessive reserves mean a waste of capital resources

and loss of competitiveness in the market. The problem of solvency is not only impor-

tant for the insurance companies themselves but also for the regulator of the insurance

market. The requirement of a minimum obligatory reserves that have to be withhold

in a company operating in the insurance industry is indeed one of the three pillars

sustaining the new set of the regulatory requirements being prepared for the European

Union insurance market: Solvency II. The reliable quantitative tools to assess the ad-

equacy of the monetary requirements are not only interesting on their own sake as a

theoretical challenge but are also essential for practical purposes, especially in view of

recent international financial crisis that, far from being exclusive to banking sector,

may affect the insurance industry as well.

The sources of funds necessary to cover the liabilities from a portfolio of contracts in

an insurance company is composed of accrued premiums, share capital, retained earn-

ings and actuarial reserves assigned to this portfolio. These funds are also known by

the general term reserves. At the beginning of the insurance activity, the reserves are

formed exclusively by the share capital, called the initial reserves. Subsequently, the re-

serves increase by the premiums collected from the insured and the capital gains earned

and decreases by the claim amounts when claims occur. The critical event, referred

to as ruin, is when reserves are insufficient to cover the claims: the company becomes

insolvent. This happens when the successive claims reduce the available financial re-

sources of a company so much that, at some moment, it is impossible to face the claims.

3



1. INTRODUCTION

Ruin theory, a field of applied probability, studies the evolution of the financial reserves

in these settings. The risk associated with a particular portfolio is quantified using

several criteria. The most common one, is the probability that ruin happens within

a given horizon. Though being the principal quantity of interest, other important as-

pects related to the reserve process have drawn continuous attention, most notably the

deficit at ruin and recovery time. One can argue that the bankruptcy does not really

occur until the deficit is important enough so that the company cannot recover through

a short term loan. The deficit at ruin is the amount of money the company lacks to

cover the claims when ruin occurs. It indicates the severity of the financial insufficiency.

Closely related to this is the concept of recovery time that represents how long it takes

until the company recovers to positive reserves, or even to required minimum reserves

levels. Other quantities that appear in ruin theory literature is the distribution of the

surplus just before the ruin, the deficit just after the ruin and the time at which the

ruin occurred. The joint distribution of these three events gives detailed insight into

how dangerous is a particular financial situation at a given moment.

A general framework to analyse these indicators have been developed in a series of

papers by Gerber and Shiu (Gerber and Shiu (24, 25, 26)). A general utility function

dependent on time and severity of ruin or remaining surplus in case of the survival of

a given horizon is introduced and denoted as the penalty-reward function. Its expected

discounted present value is studied and the above mentioned quantities (ruin and sur-

vival probabilities, time of ruin, etc.) are shown to be special cases. In this work we will

focus our attention on characterisation and calculation of the expected penalty-reward

function in various scenarios.

The model that will be used in this work do describe the evolution of the reserves

4



1.2 Process definition: Lévy diffusion

in time is a Lévy diffusion process. It is general enough to accommodate the realistic

behaviour of the underlying phenomenon, as was argued by Morales (38) yet tractable,

at least numerically, to obtain results relevant to possible practical application.

Based on the model and the criteria indicators mentioned above, the insurance

company or the regulator body can adjust the controllable variables such as initial

reserves, premiums collected, and the investment decisions on the funds kept as reserves,

to assure sufficient financial resources to cover the liabilities corresponding to a portfolio

of its business. This dissertation sets up a theoretical framework to analyse this decision

process and provides quantitative tools to evaluate the impact of possible decisions.

1.2 Process definition: Lévy diffusion

In this chapter we present the theoretical framework around which this work is de-

veloped. Its principal pieces are: the model describing the evolution of the reserves

in time, the objective that is pursued by the modelisation process, and the analytic

vehicle that is used to obtain the conclusions.

The cornerstone of the modelisation effort is the process describing the evolution

of the reserves in time. Traditionally, in risk theory literature the compound Poisson

process was used for this purpose (Asmussen (3)). However, the limitations of this

model led quickly to its generalisations (Dufresne and Gerber (18), Li and Garrido

(35), Sarkar and Sen (47) and Morales (38)) even at cost of tractability – the more

complex the model gets the more difficult its analysis and the derivation of conclusions

becomes. A considerably general family of stochastic processes encompassing most

of the models analysed in recent research work on the subject are the Lévy diffusion

processes. This is the family that will be studied in this work and in order to introduce
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1. INTRODUCTION

it properly we will spend some space with expositions of basic notions to keep this work

self-contained. The definitions and theorems exposed in this chapter are standard and

can be found in principal textbook references on the field such as Kushner and Dupuis

(32), Bertoin (11) and Øksendal and Sulem (40).

Throughout this thesis we will assume that the random variables involved are all

defined on a common probability space (Ω,F,P) even if is not mentioned explicitly.

A stochastic process X on (Ω,F,P) is a collection of Rd-valued random variables

{Xt : t ∈ [0;∞)}. For any ω ∈ Ω fixed, Xt(ω) as a function of t is called a trajectory

of the process.

Let F = {Ft : t ∈ [0;∞)} be a filtration of σ-algebras on Ω (that is, for each s ≤ t

also Fs ⊆ Ft ⊆ F) then process Xt is said to be adapted to filtration F if for every

t ∈ [0;∞), Xt is Ft measurable.

Definition 1.1 (Lévy process). A Rd-valued stochastic process {Xt : t ∈ [0;∞)} is

called a Lévy process if it satisfies the following properties:

start at zero

X0 = 0 a.s.

independent increments

for any 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn, random variables Xt0 , Xt1 −Xt0 , Xt2 −Xt1 , . . . ,

Xtn −Xtn−1 are independent

stationary increments

for any t ≥ 0 the distribution of Xt+s −Xt does not depend on s

continuous in probability

for every t ≥ 0 and ε > 0, lim
s→t

P [|Xs −Xt| > ε] = 0

6



1.2 Process definition: Lévy diffusion

cádlág

almost all trajectories of the process are right-continuous and have left limits

The definition of the Lévy process may look abstract at the first sight. For better

understanding of the behaviour of these processes we cite the decomposition theorem

which unveils that every Lévy process is an addition of a Wiener process with a drift

and the collection of jumps ∆Xt = Xt −Xt− .

Let us denote for all t ∈ R+ and Borel sets U ⊂ R the number of jumps of size

∆Xt ∈ U as N(t, U). N(t, U) is called the Poisson random measure of {Xt} and

the set function ν(U) = E [N(1, U)] the Lévy measure of Xt.

Theorem 1.1 (Lévy decomposition). Let {Xt} be a Lévy process, then for some con-

stants α, β ∈ R it holds that

Xt = αt+ βWt +

∫
R

zN(t, dz),

with Wt being a Wiener process and

N(dt,dz) =


N(dt,dz)− ν(dz)dt if|z| < 1

N(dt,dz) if|z| ≥ 1

the compensated Poisson measure of {Xt}

Proof. See e.g. (31)

From the theorem above one can see that Wiener process, which is often used as

limiting process describing the evolution of reserves (Asmussen (3)), is a also of Lévy

process. Also the compound Poisson process mentioned earlier, an important special

case treated in insurance context belongs to the class of Lévy processes (Sato (48)).

7



1. INTRODUCTION

1.2.1 Lévy driven stochastic differential equations

The class of stochastic processes that are studied in this thesis are Lévy diffusions.

They are the solutions of the stochastic differential equations driven by Lévy processes.

Let us consider functions α : [0, T ] × Rn → Rn, σ : [0, T ] × Rn → Rn×m and γ :

[0, T ] × Rn × Rn → Rn×l, n–dimensional Wiener process Wt then the solution to the

stochastic differential equation (SDE)

(1.1) Xt = α(t,Xt)dt+ σ(t,Xt)dWt +

∫
Rn

γ(t,Xt− , z)N(dt,dz)

with the initial condition X0 = x0 ∈ Rn or its equivalent integral form

(1.2) Xt = X0 +

t∫
0

α(s,Xs)ds+

t∫
0

σ(s,Xs)dWs +

t∫
0

∫
Rn

γ(s,Xs− , z)N(ds, dz).

is called a Lévy diffusion.

The next theorem gives sufficient conditions for the existence of a unique solution.

Theorem 1.2. Consider the stochastic differential equation (1.1). If the functions α,

σ and γ satisfy the following conditions:

at most linear growth

There exists a constant C1 <∞ such that

‖σ(t, x)‖2 + |α(t, x)|2 +

∫
R

l∑
k=1

|γk(t, x, z)|2νk(dzk) ≤ C1(1 + |x|2)

for all x ∈ Rn.

Lipschitz continuity

8



1.2 Process definition: Lévy diffusion

There exists a constant C2 <∞ such that

‖σ(t, x)− σ(t, y)‖2 + |α(t, x)− α(t, y)|2+

+

∫
R

l∑
k=1

|γk(t, x, z)− γk(t, y, z)|2νk(dzk) ≤ C2|x− y|2

for all x, y ∈ Rn

The Lévy diffusions that are time-homogeneous (that is, functions α, σ and γ do

not depend on t) are called jump diffusions. Jump diffusions are strong Markov

processes, therefore we can define their infinitesimal generator as follows

Definition 1.2 (Infinitesimal Generator). Let {Xt} be a Rn valued jump diffusion.

Then its infinitesimal generator A is defined on functions f : Rn → R as

(1.3) Af(x) = lim
t→0+

1

t
{E [f(Xt)]− f(x)}

where X0 = x.

In the case of jump diffusion processes the infinitesimal generator of a twice contin-

uously differentiable functions can be expressed in terms of functions α, σ and γ.

Theorem 1.3. If f ∈ C2
0 (Rn) then Af(x) exists and is given by

(1.4) Af(x) =

n∑
i=1

αi(x)
∂f

∂xi
(x) +

1

2

n∑
i,j=1

(σσT )ij(x)
∂2f

∂xi∂xj
(x)+

+

∫
R

l∑
k=1

{f(x+ γk(x, z))− f(x)−∇f(x) · γk(x, z)} νk(dzk).

The infinitesimal generator collects the relevant information about the process in

9



1. INTRODUCTION

question. In subsequent sections we will present the characteristics related to the

process we want to study and we show how they can be identified using the infinitesimal

generator of the underlying process.

1.3 Penalty-reward function: a unifying approach

The ultimate goal of all model development is to answer questions about certain prob-

lems. In the context of risk theory the questions are related to downward barrier-

crossing. Gerber and Shiu in a series of papers: Gerber and Shiu (24), Gerber and Shiu

(25), Gerber and Shiu (26), introduced a general framework comprising the most rele-

vant quantities of interest studied in risk theory literature. In the context of financial

applications a penalty-reward function has been used by Avram et al. (6) to obtain the

valuation formula for an American put option. The so-called penalty-reward function

(1.5) φt(x) = E[L (Xτ ) I (τ ≤ t) + P (Xt) I (τ > t) | X0 = x]

is studied in various contexts. Quantity τ is the first downcrossing of the process

Xt below level 0, that is τ = inf
s>0
{Xs < 0} and is commonly referred to as ruin. The

function L represents the loss realised upon downcrossing of the level 0 and the function

P the reward upon arrival to moment tand P . Both are assumed to be continuous.

Similar scenarios occur in the context of financial investment optimisation where usually

only the reward function is considered. It typically represents the utility function of an

investment realised upon reaching certain horizon.

Example 1.1 (Ruin probability). Let P ≡ 0 and L ≡ 1 then φt(x) is called the ruin

probability of the process Xt in finite horizon t. If we let t→∞ then lim
t→∞

φt(x) ≡ φ(x)

10



1.3 Penalty-reward function: a unifying approach

is called the ultimate ruin probability of the process Xt.

Example 1.2 (Expected shortfall). Let P ≡ 0 and L(y) ≡ y then φt(x) is the expected

shortfall of the process Xt at the ruin.

Example 1.3 (Expected utility). Let P (y) ≡ U(y) and L ≡ 0 where U(y) is an

arbitrary utility function then φt(x) is the expected utility of the risky investment subject

to bankruptcy (τ).

The penalty-reward function will be the main focus of attention in this work. It

comprises all the sensible answers we pretend to unveil concerning the problems that

will be studied.

1.3.1 Feynman-Kac formula

The direct calculation of the penalty-reward function φt(x) presented in the previous

section is unfeasible in all but few special cases. The analytical approach yields results

for very specific distributions involved in the underlying process Xt or requires addi-

tional simplifying assumptions. Most explicit results are related to compound Poisson

models with exponential or phase-type claim size distributions and unrealistic assump-

tions about the economic environment.

If one is to move the frontier of available results to practical dimensions one powerful

tool to analyse the desired quantities is the Feynman-Kac formula (see e.g. Pham

(44)). If φt(x) is as defined by (1.5) and the underlying process is a jump-diffusion

with infinitesimal generator Af(x) then the penalty-reward function is the solution of

(1.6) Aφt(x)− ∂φt(x)

∂t
= 0

11



1. INTRODUCTION

with its corresponding boundary conditions. Since we are dealing with a partial differ-

ential equation, the boundary conditions are essential to identify the solution uniquely.

Here we state the characterisation in a general way, below we will identify the bound-

ary conditions for particular cases. Often this is the most difficult part of finding the

solution to a particular problem.

12



2

Chebyshev approximation in risk

processes

2.1 Introduction

In this chapter we present our original work (Diko and Usábel (17)) published in In-

surance: Mathematics and Economics journal. The classical compound Poisson risk

process perturbed by a diffusion is enriched by introducing the Markov-modulation of

the drift term. This results in an increased modelisation versatility that allows, for

example, the incorporation of variable interest rate in the model. The approximation

method proposed, based on the Chebyshev polynomials, provides the numerical eval-

uation of the penalty-reward function in this context. This results move forward the

frontier of the available models applicable to practical situations.

The risk process presented by Gerber (22) extends the classical model of risk theory

introducing a Brownian diffusion. The total claims follow a compound Poisson process

{Xt, t ≥ 0} with Lévy measure λf (x) dx, λ being the intensity of arrivals and f the

13



2. CHEBYSHEV APPROXIMATION IN RISK PROCESSES

density of jumps. The collection of premiums is driven by a Wiener process W c
t inde-

pendent of Xt with drift c and volatility σ, thus the perturbed risk process with initial

surplus u is given by

(2.1) dRt = cdt+ σdW c
t − dXt, R0 = u.

This process has been considered by Dufresne and Gerber (18) where a defective re-

newal equation was derived for the probability of ruin ψ (u) = Pr (τ <∞) where

τ = inf {t ≥ 0 : Rt < 0}. A review of the research on this type of processes can be

found in Asmussen and Albrecher (4), Chapter 11. Generalisation of the model are

treated in Li and Garrido (35), Sarkar and Sen (47), and Morales (38), whereas Ren

(45) gives explicit formulae to calculate the ruin probability and related quantities for

phase-type distributed claims.

Let us now allow the insurer to invest the reserves Ut into an asset with time-

dependent Markov modulated return rate (drift) ∆t and volatility κ (Ut), that possibly

depends on the amount invested Ut, driven by a Wiener process W I
t independent of

the risk process Rt

(2.2) dUt =
(
∆tdt+ κ (Ut) dW I

t

)
Ut + dRt, U0 = R0 = u

The drift parameter ∆t is governed by a finite state homogeneous Markov process with

state space {δ1, . . . , δn}, intensity matrix Q = (qij)n×n and initial state δi. For example,

∆t can be used to model the risk free rate announced by a central bank that evolves

according to the Markov process by, for instance, 25 basis points jumps. The state

14



2.1 Introduction

space would be in this case e.g.,

1.00%, 1.25%, 1.50%, 1.75%, 2.00%, . . . , 9.00%.

This environment offers considerable versatility in capturing the evolution of interest

rates since any diffusion model to forecast the yield curve can be approximated arbi-

trarily well by continuous time Markov chains, see Kushner and Dupuis (33). Variation

of the volatility according to the size of the funds invested is justified, for example, by

Berk and Green (10) as an implication of their study of the performance of mutual

funds and resulting rational capital flows. A particular shape of κ suggested in the

cited paper, κ (u) =
σr√
u

, yields a surplus process in the form of an affine diffusion that

was studied by Avram and Usábel (7) in this context. Many practical ideas support a

fund-dependent volatility, for instance the possibility to obtain more efficient portfolios,

due to transaction costs, when more money is available. Model (2.2) is a generalisation

of the process considered most frequently in the literature where the return rate and

the volatility are constant in time, ∆t = δ, κ(·) = σr, like in Paulsen (42), Paulsen and

Gjessing (43), Wang (51), Ma and Sun (37), Gaier and Grandits (21), Grandits (27),

Cai and Yang (13), Wang and Wu (52).

The stochastic differential equation (2.2) can be arranged into

(2.3) dUt = (c+ ∆tUt) dt+
√
σ2 + κ2 (Ut)U2

t dWt − dXt

with initial condition (U0,∆0) = (u, δi). The expected penalty-reward function, see

15



2. CHEBYSHEV APPROXIMATION IN RISK PROCESSES

Gerber and Landry (23), is introduced

(2.4) φit (u) = E [π (Uτ ) I (τ ≤ t) + P (Ut) I (τ > t) | U0 = u,∆0 = δi]

where τ = inf {s ≥ 0 : Us < 0}. If ruin occurs before the time horizon t, the penalty

π (Uτ ) applies to the overshoot Uτ at the ruin. Otherwise, the reward function P (Ut)

applies to the reserves at time t. The concept of the expected penalty-reward func-

tion presented in Gerber and Shiu (24) and Gerber and Shiu (25) is a quite general

framework comprising several quantities of interest as a special case, such as the time

to ruin, the amount at and immediately prior to ruin or survival probabilities.

For further analysis the smoothed version of the function φit(u) will be considered,

namely its Laplace-Carson transform in time defined as

Υi
α (u) =

∞∫
0

αe−αtφit (u) dt.

Further, letting Hα be an exponentially distributed random variable with parameter α,

the former expression may be viewed as a penalty-reward function with an exponentially

killed time horizon, see expression (6) in Avram and Usábel (7),

Υi
α (u) =

∞∫
0

αe−αtφit (u) dt = E
(
φiHα (u)

)
(2.5)

= E (π (Uτ ) I (τ ≤ Hα) + P (UHα) I (τ > Hα) | U0 = u,∆0 = δi)

where the last equality comes from substituting the definition of φit (u), in (2.4).

The function Υi
α (u) is analytically more tractable than the original function while,
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2.2 Integro-differential System

at the same time, retains a probabilistic interpretation as a penalty-reward function

considering an exponential random time horizon Hα.

The results in this chapter are organised as follows: in Section (2.2) an integro-

differential system that characterises the function of interest Υi
α (u) is derived and the

existence of the solution discussed. In Section (2.3) a numerical method to approximate

the solution of the system via Chebyshev polynomials is considered and Section (2.4)

offers some numerical illustrations.

2.2 Integro-differential System

This section presents further treatment of the transformed expected penalty-reward

function defined by (2.5). The function Υi
α (u) is dependent on the initial reserves U0 =

u and the starting return rate ∆0 = δi. Since the process driving the return rate ∆t has

a finite state space, the number of initial conditions is also finite. Therefore, one can

consider the set of functions Υα (u) =
(
Υ1
α (u) ,Υ2

α (u) , . . .Υn
α (u)

)
, each corresponding

to different starting return rate from the state space {δ1, . . . , δn}. Below, a Volterra

integro-differential system of equations for the functions Υ1
α (u) ,Υ2

α (u) , . . .Υn
α (u) is

derived and, applying the result of Le and Pascali (34), sufficient conditions for the

existence of the solution are established.

Theorem 2.1. For all α ≥ 0, functions Υi
α : [0,∞) → R defined in (2.5) satisfy the

17



2. CHEBYSHEV APPROXIMATION IN RISK PROCESSES

following system of integro-differential equations

For i = 1, . . . , n

1

2

(
σ2 + u2κ2 (u)

) d2

du2
Υi
α (u) + (c+ δiu)

d

du
Υi
α (u) +

+

n∑
j=1

qijΥ
j
α (u)− (α+ λ) Υi

α (u) + λ

u∫
0

Υi
α (u− x) f(x) dx+

+αP (u) + λ

∞∫
u

π (u− x) f(x) dx = 0.(2.6)

Given that lim
u→∞

P (u) exists, σ > 0 and assuming positive security loading for the

reserve process (2.2), the boundary conditions of the system are

Υi
α (0) = π (0−)(2.7)

lim
u→∞

Υi
α (u) = lim

u→∞
P (u) ≡ P (∞)

Moreover, if f ∈ C2 [0,∞), P (u) and κ (u) are continuous for u ≥ 0 and π (u) inte-

grable, then the system of equations (2.6) has a solution Υi
α ∈ C2 [0,∞), i = 1, . . . , n.

Proof. First, a straightforward application of Ito’s lemma yields the infinitesimal gen-

erator of the process Ut, which applied to the functions φit (u), i = 1, ..., n defined by

(2.4), yields

Aφit (u) =
1

2

(
σ2 + u2κ2 (u)

) d2

du2
φit (u) + (c+ δiu)

d

du
φit (u) +

n∑
j=1

qijφ
j
t (u) +

+λ

∞∫
0

(
φit (u− x) − φit (u)

)
f(x) dx.
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2.2 Integro-differential System

Functions φit (u) satisfy the Fokker-Planck equation, see e.g. Risken (46),

(2.8) Aφit (u)− ∂φit (u)

∂t
= 0

with boundary conditions

φi0 (u) = P (u) u > 0(2.9a)

φit (u) = π (u) u < 0 and t ≥ 0(2.9b)

for each i = 1, 2 . . . , n. Using (2.9b) the following holds

(2.10)

∞∫
0

φit (u− x) f(x) dx =

u∫
0

φit (u− x) f(x) dx+

∞∫
u

π (u− x) f(x) dx.

Substituting the infinitesimal generator and (2.10) into the Fokker-Planck equation

yields

1

2

(
σ2 + u2κ2 (u)

) d2

du2
φit (u) + (c+ δiu)

d

du
φit (u) +

n∑
j=1

qijφ
j
t (u)− λφit (u) +

+λ

u∫
0

φit (u− x) f(x) dx+ λ

∞∫
u

π (u− x) f(x) dx− ∂φit (u)

∂t
= 0.

The system (2.6) is obtained taking the Laplace-Carson transform with respect to t on

both sides and expanding the last term integrating by parts

∞∫
0

αe−αt
∂φit (u)

∂t
dt = −αP (u) + α

∞∫
0

αe−αtφit (u) dt = −αP (u) + αΥi
α (u)

where the first boundary condition (2.9a) of the Fokker-Planck equation was used.
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2. CHEBYSHEV APPROXIMATION IN RISK PROCESSES

Concerning the boundary conditions of the integro-differential system, when the

initial reserves are 0 and σ > 0, the presence of the Wiener fluctuation in premiums

causes immediate crossing of 0 level – see for example the proof of Theorem 2.1 in

Paulsen and Gjessing (43). The second condition is the asymptotic case u→∞ when

under the assumption of positive security loading lim
u→∞

Υi
α (u) = lim

u→∞
P (u) <∞.

To prove the existence of the solution, an equivalent system will be considered. A

change of variable is now introduced in the System (2.6), h (v) = u, where h : [0, 1]→

[0,∞) is an arbitrary strictly monotone, twice continuously differentiable function. The

system can now be written in terms of the functions Γiα (v) = Υi
α (h (v)).

For i = 1, . . . , n

A (v)
d2

dv2
Γiα (v) +Bi (v)

d

dv
Γiα (v) +

n∑
j=1

qijΓ
j
α (v)−

− (α+ λ) Γiα (v) + λ

v∫
0

Γiα (y) f (h (v)− h (y))h′ (y) dy +

+λS (v) + αP (h (v)) = 0(2.11)

where

A (v) =
σ2 + h2 (v)κ2 (h (v))

2 [h′ (v)]2

Bi (v) =
c+ δih (v)

h′ (v)
−
[
σ2 + h2 (v)κ2 (h (v))

]
h′′ (v)

2 [h′ (v)]3

S (v) =

1∫
v

π (h (v)− h (y)) f (h (y))h′ (y) dy
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2.3 Numerical Solution

with boundary conditions

Γiα (0) = π (0−)(2.12)

Γiα (1) = lim
u→∞

P (u) .

Here h′ and h′′ denote the first and the second derivative of function h. Finally, by

integration

Γiα (s) = Γiα (0) +

s∫
0

h′ (v)

Bi (v)

H (v)− λ
v∫

0

f (h (v)− h (y))
h′ (y)

h′ (v)
Γiα (y) dy

dv

H (v) =
−1

h′ (v)
[A (v)

d2

dv2
Γiα (v) +

n∑
j=1

qijΓ
i
α (v)−

− (α+ λ) Γiα (v) + αP (h (v)) + λS (v)].

The existence of the solution Γiα ∈ C2 [0, 1] is guaranteed by Theorem 2 in Le and

Pascali (34), as H(v) is a continuous function and f (h (v)− h (y)) h
′(y)
h′(v) is integrable.

The integrability is immediate as f is a density function and h′(y)
h′(v) is a bounded function

of y on [0, v] for all v. This implies that Υi
α (u) = Γiα

(
h−1 (u)

)
, a solution to (2.6),

exists and Υi
α ∈ C2 [0,∞).

2.3 Numerical Solution

The second order system of integro-differential equations (2.6) that characterises the

Laplace-Carson transform of the expected penalty-reward function (2.5) does not have

an explicit solution. In Akyuz-Dascioglu and Sezer (2) and Akyuz-Dascioglu (1) a

numerical method was proposed for fairly general families of Fredholm-Volterra integro-

differential systems of higher order which include the system treated in this chapter as a
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2. CHEBYSHEV APPROXIMATION IN RISK PROCESSES

special case. The authors approximate the solution to the system by shifted Chebyshev

polynomials on the interval [0, 1]. A collocation method is used to fit the Chebyshev

expansion of the solution. In order to adapt the procedure to system (2.6), we need

to transform the domain of the unknown functions Υi
α, as was done in the proof of

Theorem 2.1, from the interval [0,∞) to [0, 1]. First, the solution Γiα of the transformed

system is found and then, applying the inverse transform, the functions of interest Υi
α

are recovered. The convergence of the method is treated in the original article along

with the illustrative examples that compare the approximation and the exact solutions

showing outstanding performance. The following section describes the method adapted

to the setting of this chapter to keep it self-contained. The presentation follows the

development in Akyuz-Dascioglu and Sezer (2).

2.3.1 Approximation by Chebyshev Polynomials

In matrix notation the transformed system is given by

P2 (v)
d2

dv2
Γα (v) +P1 (v)

d

dv
Γα (v) + P0 (v) Γα (v) =

= g (v) +

v∫
0

K (v, y) Γα (y) dy(2.13)
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2.3 Numerical Solution

where Γα (v) is the column vector of unknown functions

Γα (v) =
(
Γ1
α (v) ,Γ2

α (v) , . . . ,Γnα (v)
)>

. Coefficient matrices are as follows

P2 (v) =
A (v)

h′ (v)
· In

P1 (v) = h′ (v)−1 diag (Bi (v))

P0 (v) = h′ (v)−1 [Q− (α+ λ) · In]

K (v, y) = −λf (h (v)− h (y))
h′ (y)

h′ (v)
· In

g (v) = −h′ (v)−1 [αP (h (v)) + λS (v)] · 1n

S (v) =

1∫
v

π (h (v)− h (y)) f (h (y))h′ (y) dy,

where In is the identity matrix of order n × n and 1n is the column vector of ones of

order n × 1. The transform is performed with an arbitrary strictly monotone, twice

continuously differentiable function h : [0, 1]→ [0,∞).

The aim of the method is to approximate the solution by a truncated Chebyshev

expansion

Γiα (v) =
N∑
r=0

a∗irT
∗
r (v) i = 1, . . . , n

on the interval [0, 1], where T ∗r (v) are shifted Chebyshev polynomials of the first kind

(see, for example, Boyd (12)) and a∗ir are the unknown coefficients to be determined.

In matrix notation

Γiα (v) = T ∗ (v)A∗i ,

where T ∗ (v) = (T ∗0 (v) , T ∗1 (v) , . . . , T ∗N (v)) is a row vector of shifted Chebyshev poly-

nomials up to degree N and A∗i = (a∗i0, a
∗
i1, . . . a

∗
iN )> is a column vector of the corre-

sponding coefficients. Similarly, the n − th derivative of Γiα (v) can be expanded into
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2. CHEBYSHEV APPROXIMATION IN RISK PROCESSES

(2.14)
dn

dvn
Γiα (v) = T ∗ (v)A

∗(n)
i .

The link between coefficients A
∗(n)
i and A∗i from Sezer and Kaynak (49) is

(2.15) A
∗(n)
i = 4nMnA∗i ,

where

M =



0 1
2 0 3

2 0 5
2 · · · N

2

0 0 2 0 4 0 · · · 0

0 0 0 3 0 5 · · · N

...
...

...
...

...
...

...

0 0 0 0 0 0 · · · N

0 0 0 0 0 0 · · · 0


(N+1)×(N+1)

for odd N

M =



0 1
2 0 3

2 0 5
2 · · · 0

0 0 2 0 4 0 · · · N

0 0 0 3 0 5 · · · 0

...
...

...
...

...
...

...

0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 · · · N


(N+1)×(N+1)

for even N

yields the expansion of the n−th derivative dn

dvnΓiα (v) in terms of Chebyshev coefficients

A∗i .

On the other hand, functions Kij (v, y) can be expanded in variable y into a Cheby-
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shev series

Kij (v, y) =
N∑
r=0

k∗ijr (v)T ∗r (y)

where the Chebyshev coefficients k∗ijr are functions of v. Using matrix notation for

convenience

(2.16) Kij (v, y) = k∗ij (v)T ∗ (y)> ,

where k∗ij is the row vector of coefficients determined by Clenshaw-Curtis quadrature,

see Clenshaw and Curtis (16).

Substituting (2.14), (2.15) and (2.16), the i − th equation (i = 1, . . . , n) of the

system (2.13) is finally obtained:

h′ (v)−1A (v) 16M2T ∗ (v)A∗i + h′ (v)−1Bi (v) 4MT ∗ (v)A∗i +

+h′ (v)−1

 n∑
j=1

qij − (α+ λ)

T ∗ (v)A∗i = gi (v)−
v∫

0

k∗ij (v)T ∗ (y)> T ∗ (y)A∗i dy.

The matrix of the inner product of Chebyshev polynomials

Z∗ (v) =
(
z∗ij (v)

)
≡

v∫
0

T ∗ (y)> T ∗ (y) dy =

=
1

2

2v−1∫
−1

T (x)> T (x) dx =
1

2
(zij (2v − 1)) =

1

2
Z (2v − 1)
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can be computed as shown in Akyuz-Dascioglu (1), where

zij (v) =
1

4



2v2 − 2 for i+ j = 1

Ti+j+1(v)
i+j+1 − Ti+j−1(v)

i+j−1 − 1
i+j+1 + 1

i+j−1 + v2 − 1 for |i− j| = 1

Ti+j+1(v)
i+j+1 +

T1−i−j(v)
1−i−j +

T1+i−j(v)
1+i−j +

T1−i+j(v)
1−i+j + 2

(
1

1−(i+j)2
+ 1

1−(i−j)2

)
for even i+ j

Ti+j+1(v)
i+j+1 +

T1−i−j(v)
1−i−j +

T1+i−j(v)
1+i−j +

T1−i+j(v)
1−i+j − 2

(
1

1−(i+j)2
+ 1

1−(i−j)2

)
for odd i+ j

,

which yields the system

h ′ (v)−1A (v) 8M2T ∗ (v)A∗i + h′ (v)−1Bi (v) 4MT ∗ (v)A∗i +(2.17)

+h′ (v)−1

 n∑
j=1

qij − (α+ λ)

T ∗ (v)A∗i = gi (v)− k∗ij (v)Z∗ (v)A∗i ,

for all i = 1, . . . , n. The only unknown values are Chebyshev expansion coefficients

A∗i . The collocation method proposed by the authors fits the solution through the

collocation points

xs =
1

2

(
1 + cos

( s
N
π
))

, s = 1, 2, . . . , (N − 1).

Each of the N − 1 collocation points xs is substituted into the system (2.17) and yields

n linear equations of unknown variable A∗i , whence n(N − 1) equations are obtained.

The boundary conditions (2.12) for i = 1, . . . , n,

T ∗ (0)A∗i = π (0−)

T ∗ (1)A∗i = P (∞) ,

yield another 2n equations. A linear system of n (N + 1) equations is constructed and
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solved for the Chebyshev coefficients A∗i . Once the approximation Γ̃iα (v) =
N∑
r=0

a∗irT
∗
r (v)

is obtained, the relationship between the solution of the transformed and the original

system from the Theorem 2.1 yields the approximation of the expected penalty-reward

function Υ̃i
α (u) = Γ̃iα

(
h−1 (u)

)
.

2.4 Numerical Examples

As mentioned before, Υi
t (u) is the Laplace-Carson transform in time of the expected

penalty-reward function in a jump-diffusion process. This function has a probabilistic

interpretation as the penalty-reward function in an exponentially killed time horizon

Hα. The ultimate case is also unveiled by a straightforward application of the Tauberian

theorem

lim
α→0

Υi
α = lim

α→0

∞∫
0

αe−αtφit (u) dt = −φi0 (u) + lim
α→0

∞∫
0

e−αt
d

dt
φit (u) dt(2.18)

= −φi0 (u) +

∞∫
0

d

dt
φit (u) dt = φi∞ (u) .

For the more challenging finite time horizon penalty-reward, a numerical inversion

of the Laplace transform recovers the original function φiα (u), see Usábel (50). The

relationship C (s) = sL (s) between the Laplace transform L (s) and the Laplace-Carson

transform C (s) applies.
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2.4.1 Ultimate Survival Probability

The survival probability is a special case of the function Υi
α (u). For π (x) ≡ 0 and

P (x) ≡ 1

φi∞ (u) = E [I (τ =∞) | U0 = u,∆0 = δi] .

The premium collection rate is c = 11, the volatility of premium accruals σ2 =

0.04, the intensity of claim arrivals λ = 4, and claims follow a Gamma distribution

Gamma (5; 2). The interest rate is assumed to be fixed at 3% with no volatility (σ2
r = 0).

The ultimate survival probability φi∞ (u) is considered in this context and thus α = 0

as motivated by (2.18). For the change of variables, the function h (v) = − ln (1− v)

was used. The following table shows the approximations for various starting reserves

and precision levels (order of Chebyshev polynomials).

N − precision level

u

200 250 300 350 400 450

1 0.318081594 0.318079845 0.318079373 0.318079219 0.318079161 0.318079137

2 0.435631392 0.43562899 0.435628343 0.435628132 0.435628053 0.43562802

5 0.753759689 0.753755453 0.753754322 0.753753953 0.753753813 0.753753756

10 0.987580029 0.987573342 0.987571486 0.98757086 0.987570616 0.987570511

15 0.999982762 0.999973643 0.99997087 0.999969864 0.999969447 0.999969256

2.4.2 Markov-modulated Interest Rate Structure

The second example presents an interest rate structure driven by a Markov process

and a reserve dependent volatility. Let us assume two regimes (high interest rate

and low interest rate) comprising several interest rate levels. The intensity matrix Q,
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characterising the Markov process, governs the evolution of the interest rate:

Q =

δi 1% 2% 7% 8% 9%

1%

2%

7%

8%

9%



−2 2 0 0 0

1.9 −2 0.1 0 0

0 0.1 −3 2.9 0

0 0 1 −3 2

0 0 0 3 −3



.

The low interest rate regime embeds two levels 1% and 2% while the high interest rate

regime considers three levels 7%, 8%, and 9%. Let the premium collection rate be

1 with the volatility of premium accruals 0.25, the intensity of claims arrival 1
3 (one

claim every three time periods on average), the distribution of claim size lognormal

lnN (0.5; 1). The volatility of the return on investment, dependent on the reserves level,

is κ2(u) = σ2
r
u , as motivated in the introduction, with σ2

r = 0.81. The probability of

survival of a random horizon of 20 years on average is approximated (α = 0.05, π (x) ≡ 0

and P (x) ≡ 1). Regarding the change of variables, the function h (v) = − ln (1− v)

was used again. In the following table the survival probabilities conditional on various

initial interest rates and starting reserve levels are presented.
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N− number of polynomials used for the approximation

u δi 250 300 350 400 450

1

1%

2%

7%

8%

9%

0.144815222

0.146306443

0.188906830

0.190954404

0.191794388

0.144815829

0.146307016

0.188906028

0.190953560

0.191793534

0.144815469

0.146306644

0.188905174

0.190952690

0.191792659

0.144814893

0.146306063

0.188904470

0.190951981

0.191791949

0.144814330

0.146305499

0.188903928

0.190951439

0.191791406

10

1%

2%

7%

8%

9%

0.676382452

0.689328522

0.855051985

0.865060563

0.870653629

0.676390197

0.689335954

0.855051380

0.865059778

0.870652847

0.676389970

0.689335662

0.855048719

0.865057124

0.870650244

0.676387433

0.689333147

0.855045981

0.865054446

0.870647620

0.676384493

0.689330254

0.855043652

0.865052186

0.870645408

15

1%

2%

7%

8%

9%

0.845057051

0.864897819

0.977203365

0.981995614

0.984633935

0.845074744

0.864914116

0.977208141

0.981999965

0.984638092

0.845078953

0.864918001

0.977208683

0.982000462

0.984638607

0.845078338
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2.5 Conclusions

Figure 2.1: Survival probability curves as a function of initial reserves. Each curve represents
different initial interest level, the lowest curve corresponding to 1%, the uppermost to 9%.

Figure 2.1 unveils the impact of the initial conditions on the survival probability.

Each curve represents different initial interest rate, the lowest curve corresponds to

∆0 = 1% and the uppermost to ∆0 = 9%. The horizontal axis shows the initial

reserves level U0, the vertical axis the survival probability Υi
α (u).

2.5 Conclusions

A general model for the risk process of an insurance company was presented in this

chapter allowing arbitrary distributions of the claim sizes, a Wiener fluctuation in pre-

mium collection and investment in a, possibly, risky asset. The evolution of the return

rate is modulated by Markov process implementing a non-constant interest rates in a

risk process. In particular, we suggest the possibility of interpretation as interest rates

announced by a central bank that in practice move by a quarter percentile jumps. A

method is developed to calculate the Gerber-Shiu expected penalty-reward function in
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2. CHEBYSHEV APPROXIMATION IN RISK PROCESSES

this framework that comprises several interesting particular cases such as the calcula-

tion of ruin probabilities or moments of the deficit at ruin. The method is based on

Chebyshev polynomials approximations and shows an outstanding convergence rate.
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3

Optimal control of Lévy

diffusions

3.1 Introduction

In this chapter we present a theoretical framework for simplifying the characterisation of

the value function of the stochastic control problems. The Erlangisation approach turns

an analytically unsolvable problem into a series of simple differential equations. Since

the setting considered is very general it admits applications to wide range of problems.

In the next chapter an application to risk theory is presented. The original results

presented here were submitted to a Mathematical Finance journal and are currently

under revision process.

Stochastic control problems have been studied in several applied contexts ranging

from engineering, physics, biology to finance and actuarial science. A thorough treat-

ment of the general theory can be found in (20). The most recurring tool to solve this

type of problems is the dynamic programming approach originated by (9) that focuses
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3. OPTIMAL CONTROL OF LÉVY DIFFUSIONS

on the value function of the optimisation problem. The value function is character-

ized as a solution of the Hamilton-Jacobi-Bellman (HJB) equation. The success of this

approach depends heavily on the availability of methods to solve the corresponding

HJB equation. Explicit solutions are seldom available, most real problems need nu-

merical treatment. The basis of existent numerical methods is the discretisation of the

continuous-time process. As the process treated by these methods is typically Marko-

vian, the approximating process is a Markov chain and the problem is usually solved in

discrete time and state space. An overview of numerical methods is presented in (32).

In this chapter an alternative approach that provides a semi-analytic treatment

is presented. First, the stochastic control problem in finite horizon is treated by ap-

proximating the horizon by a partition composed of exponential horizons. Exponential

horizon, viewed as an integral transform of the fix horizon problem, eliminates the

dependence of the control on time. Second, the optimal control is approximated by

a piecewise constant control with respect to this partition. The assumption of con-

stant control with respect to the level of the controlled process reduces the problem of

dynamic programming to a series of regular optimisation problems. These two steps

result in a considerable simplification of the corresponding HJB equation and open a

way to obtain solutions through standard procedures, numerical or analytical where

available, for differential equations.

Section 3.2 presents the class of processes that will be treated and the optimisation

framework. Consequently, in Section 3.3, the randomisation of the horizon is explained

and further development is motivated. Principal results of the chapter are collected in

Section 3.4 with implications to practical application of the method. Finally, in Section

3.5 an example of the application of the method is shown; Section 3.6 concludes.
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3.2 Problem Formulation

The class of stochastic processes considered in this chapter are Lévy diffusions, a sub-

class of semi-martingale family. Let Ut, t ≥ 0 be a real-valued stochastic process that

satisfies the stochastic differential equation

dUt = a(Ut, Yt, σt)dt+ b(Ut, Yt, σt)dWt+(3.1)

+

∫
Rk

γ(Ut− , Yt− , σt− , z)N(dt,dz)

U0 = u

where a, b and γ are known real valued functions, Wt is a standard Wiener process and

N(dt,dz) is a compensated Poisson random measure. See (11) for more details on Lévy

processes. The process σt is the control process assumed to be adapted and cádlág.

Process Yt is a Markov process with finite state space {δ1, . . . , δm} and intensity matrix

Q = {qij} that modulates the coefficients of (3.1). Markov-modulated models are

widely used to model phenomena where abrupt changes in otherwise stable behaviour

of the system occur. Markov modulation provides a set of model parameters for each

behaviour state and governs the switching between them. For example in finance, see

e.g. (19), Markov modulating is shown to perform better in explaining the behaviour

of financial assets than usual Gaussian models.

The stochastic control is considered in a fixed horizon T or until the process Ut
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3. OPTIMAL CONTROL OF LÉVY DIFFUSIONS

exits a region S ⊆ R. The performance criterion v to be maximised is

vσ(T, u, δi) = E
[
P (UT , YT ) · I{τ≥T}+(3.2)

+ L(Uτ , Yτ ) · I{τ<T}|U0 = u, Y0 = δi
]

where τ = inf {t : Ut /∈ S} is the exit time of the process Ut from the region S. Functions

P and L are arbitrary but continuous and represent the utility realised upon termination

of the horizon and upon exit of the controlled process from the region S. Let us denote

J(T, u, δi) the optimal value of the maximisation problem

(3.3) J(T, u, δi) ≡ max
σ∈Π

vσ(T, u, δi).

The set Π contains all the admissible controls, that is such σt for which a strong solution

to the equation (3.1) exists and is unique. Moreover, the attention will be restricted

to controls of the form σt = σ(Ut− , Yt−) also called Markov controls. Øksendal (39,

Th. 11.2.3.) gives fairly week sufficient conditions under which the optimal value of the

problem restricted to Markov controls equals the optimal value of the problem with

arbitrary adapted control. Therefore narrowing the control space Π to Markov controls

is not too restrictive.

Solving the Problem (3.3) directly is not feasible since an explicit expression for

vσ(T, u, δi) is not available in most general case. However, following the dynamic pro-

gramming approach, one can write the Hamilton-Jacobi-Bellman equation that char-

acterises the value function J(t, u, δi)

(3.4) sup
σ∈Π

{
AσJ(t, u, δi)−

∂J(t, u, δi)

∂t

}
= 0
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3.2 Problem Formulation

where Aσ is the infinitesimal generator of the controlled process Ut. Aσ can be ex-

pressed, see Øksendal and Sulem (40, pg. 40), for each i = 1, . . . ,m as

(3.5) AσJ(t, u, δi) =
1

2
b(u, δi, σ(u, δi))

∂2

∂u2
J(t, u, δi)+

+ a(u, δi, σ(u, δi))
∂

∂u
J(t, u, δi) +

m∑
j=1

qijJu(t, u, δj)+

+

∫
R

{
J(t, u+ γ(u, δi, σ(u, δi), z), δi)

− J(t, u, δi)− γ(u, δi, σ(u, δi), z)
∂

∂u
J(t, u, δi)

}
ν(dz)

where ν(dz) = E [N(1,dz)] is the Lévy measure of the process Ut. Moreover, if σ∗ is

such that

(3.6) Aσ∗J(t, u, δi)−
∂J(t, u, δi)

∂t
= 0

then σ∗ is the optimal control for the Problem (3.3) and J(T, u, δi) = vσ
∗
(T, u, δi). In

this case, the optimal control can be found as the maximiser of the expression under

the supremum in (3.4) whence the following must hold

(3.7)
∂

∂σ
Aσ∗J(t, u, δi) = 0.

The HJB equation (3.4) together with optimality condition (3.7), in the view of (3.5),

form a system of non-linear second order partial integro-differential equations. The

solution of such system is usually a very difficult task even using numerical procedures.

Analytic solutions are available only in very few particular cases. For example (8) solve

this problem in cases when no jumps are present and the dependence of the coefficients
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3. OPTIMAL CONTROL OF LÉVY DIFFUSIONS

on the control is linear. On the other hand, (41) study this type of models in a pricing

problem scenario but no explicit solutions are available due to complexity of the setting.

3.3 Randomised horizon

A method based on approximation of the fixed horizon by a random horizon with

Erlang distribution was presented by (14) in an article on the optimal execution of a

put option time. Similar principle has later been used to find explicit expressions for

the default risk problem with underlying fluid flow process by (5). This approach is

often called randomisation of the horizon.

The Erlang distribution Er (α, k) is equivalent to the distribution of a sum of k in-

dependent variables with identical exponential distribution of parameter α. Its density

function is given by

p (x) =
αk

(k − 1)!
xk−1e−αx.

Its mean is
k

α
and variance

k

α2
.

Let Hn
α be a random variable with distribution Er(α, n). Let us consider a series of

random variables

(3.8) Hn
n
T
∼ Er(

n

T
, n).

One can observe that E(Hn
n
T

) = T and

E(Hn
n
T
− T )2 =

T 2

n
→ 0 as n→∞

that is Hn
n
T

indeed converges to T in L2 and therefore in probability.
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3.3 Randomised horizon

The complication of treating a series of convergent random horizons is compensated

by the advantage of the memoryless property of the individual exponential horizons.

This simplifies the dynamic programming problem since the dependence on time within

each horizon is eliminated. If the problem can be treated in exponential horizon, ap-

pending such horizons the Erlangian horizon is reproduced and the convergence argu-

ment applied to approximate the solution of a fixed horizon problem. Here this idea is

exploited further not only to convergence of the horizon but also to the convergence of

optimal control.

3.3.1 Exponential horizon

As a first step, the maximisation problem (3.3) will be considered in a hypothetical

exponential random horizon Hα instead of the fixed horizon T . Let Hα be an ex-

ponentially distributed random variable with parameter α. If one lets α =
1

T
then

E (Hα) = T , that is, in expected terms, the random horizon Hα and the fixed horizon

T coincide.

Let us denote Υ the performance criterion to be maximised in a random horizon

Hα, that is

Υσ(α, u, δi) ≡ E [vσ(Hα, u, δi)] = E
[
P (UHα , YHα) · I{τ≥Hα}+

+ L(Uτ , Yτ ) · I{τ<Hα}|U0 = u, Y0 = δi
]
.

Notice that the second expectation is taken with respect to the random horizon Hα

and the stochastic process (Ut, Yt). The optimisation problem is similar to (3.3), J1
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3. OPTIMAL CONTROL OF LÉVY DIFFUSIONS

will represent the optimal value,

(3.9) J1(α, u, δi) ≡ max
σ∈Π

Υσ (α, u, δi) .

The HJB equation in this case simplifies to

(3.10) sup
σ∈Π
{AσJ1(α, u, δi)} = 0

where, compared to the fixed horizon equation (3.4), partial derivative with respect

to time vanishes due to memoryless property of the exponential distribution. This

guarantees the independence of the optimal control of the time horizon. Similarly to

(3.6), if σ∗1 is such that

(3.11) Aσ∗1J1(α, u, δi) = 0,

then σ∗1 is the optimal control for Problem (3.9) and J1(α, u, δi) = Υσ∗1 (α, u, δi). The

optimal control σ∗1 must satisfy, in line with (3.7), the following equation

(3.12)
∂

∂σ
Aσ∗1J(α, u, δi) = 0.

Altogether, equations (3.11) and (3.12) form a more tractable system of equations than

(3.6) and (3.7) of the original problem. Since partial derivative with respect to time

vanishes the problem turns from partial to ordinary system of differential equations.

One can verify, see e.g. (7), that the exponential horizon has a mathematical repre-

sentation as a Laplace-Carson transform in time of the objective function v defined in

40



3.3 Randomised horizon

(3.2), indeed

(3.13) Υσ (α, u, δi) = E [vσ (Hα, u, δi)] =

∞∫
0

vσ (t, u, δi)αe−αtdt.

Laplace-Carson transform C (s) of an integrable function is closely related to its Laplace

transform L(s) through the relationship C(s) = sL(s). This fact can be exploited to

obtain the solution of the problem (3.9) since the Laplace transform of the function v

is more easily obtained than its original form in certain scenarios, see for example (6).

3.3.2 Erlangian horizon

As was shown above, introducing the exponential horizon the analytical treatment

of the problem is simplified. The solution of the fixed horizon problem (3.3) can be

recovered concatenating exponential horizons into Erlangian horizon. To formalise this

step let us state the optimisation problem in a horizon that has Erlang distribution

Hn
α . The performance criterion to be maximised in the horizon Hn

α is

Υσ
n(α, u, δi) ≡ E [vσ (Hn

α , u, δi)] = E
[
P (UHn

α
, YHn

α
) · I{τ ≥ Hn

α}+

+ L(Uτ , Yτ ) · I{τ<Hn
α}|U0 = u, Y0 = δi

]
.

The optimisation problem is

(3.14) Jn(α, u, δi) ≡ max
σ∈Π

Υσ
n(α, u, δi)

where Jn represents the value function. The next theorem shows the convergence of

the value function of the Erlangian horizon problem to the value function of the fixed
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3. OPTIMAL CONTROL OF LÉVY DIFFUSIONS

horizon problem.

Theorem 3.1. Let J (T, u, y) be the value function of the Problem (3.3) and Jn (α, u, y)

be the value function of the Problem (3.14) then

lim
n→∞

Jn

(n
T
, u, y

)
= J (T, u, y) .

Proof. (Following the proof of Theorem 2 in (36).) Let σ be any feasible control in Π

such that vσ (t, u, y) is continuous in t on [0,∞). Then

E [vσ (Hn
α , u, y)] = Υσ

n (α, u, y) ≤ Jn (α, u, y) ,

in particular for α = n
T , taking limit n→∞

(3.15) vσ (T, u, y) = lim
n→∞

E
[
vσ
(
Hn

n
T
, u, y

)]
≤ lim

n→∞
Jn

(n
T
, u, y

)

where the first equality comes from a variant of Helly-Bray Theorem (see Chow and

Teicher (15, corollary 8.1.6)). Taking maximum over all admissible controls on the left

side of (3.15) yields

(3.16) J (T, u, y) ≤ lim
n→∞

Jn

(n
T
, u, y

)
.

42



3.3 Randomised horizon

On the other hand, notice that

Jn (α, u, y) ≡ max
σ∈Π

Υσ
n (α, u, y) = max

σ∈Π

∞∫
0

vσ (t, u, y)
αn

(n− 1)!
tn−1e−αtdt

≤
∞∫

0

max
σ∈Π

vσ (t, u, y)
αn

(n− 1)!
tn−1e−αtdt

=

∞∫
0

J (t, u, y)
αn

(n− 1)!
tn−1e−αtdt.

The inequality comes from the fact that the optimal control σ∗ that maximises the whole

integral in the first line is feasible in the maximisation problem under the integral in the

second line for each t. Letting α = n
T , taking the limit on both sides of the inequality

and applying the Helly-Bray Theorem again the complementary inequality to (3.16)

follows

lim
n→∞

Jn

(n
T
, u, y

)
≤ J (T, u, y)

thus completing the proof.

Once the convergence of the value function is guaranteed, the next theorem presents

the basis of the iterative procedure to actually evaluate the value function in the Er-

langian horizon. In order to state the argument formally we need to introduce the

following notation

Jn(α, u, δi, P ) ≡ Jn(α, u, δi)

Υσ
n(α, u, δi, P ) ≡ Υσ

n(α, u, δi)

whenever the utility function P needs to be specified explicitly.
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Theorem 3.2. Let P be a utility function, u the initial condition, α > 0 a real param-

eter. For every natural k ≥ 2 we have

Jk(α, u, δi, P ) = J1(α, u, δi, Pk−1)

where Pk−1(w, y) ≡ Jk−1(α,w, y, P ).

Proof. It is assumed that the termination of the exponential horizons composing Hn
α

is observable. For that purpose let us introduce a Poisson process V α
t , independent

of (Ut, Yt), with jump intensity α. Let σ∗t be the optimal control for Jk(α, u, δi, P ).

Conditioning vσ(Hn
α , u, δi) on the instant of the first jump of the process V α

t , denoted

T1, the value of (Ut, Yt) at T1 and occurrence of the ruin one can write

Jk(α, u, δi, P ) = Υσ∗
n (α, u, δi, P ) = E

[
vσ
∗
(Hn

α , u, δi, P )
]

= E
[
E
[
vσ
∗
(Hn

α , u, δi) | T1, UT1 , YT1 , τ
]]

= E
[
E
[
vσ
∗
(Hn−1

α , UT1 , YT1)
]
I{τ≥T1}

]
+ E

[
L(Uτ , Yτ )I{τ<T1} | U0 = u, Y0 = δi

]
(3.17)

where the first term of (3.17) comes from the Markovian nature of the process Ut.

Given that the ruin did not occur before T1 the future of the process is independent of

the past conditional on the current state UT1 . Moreover, the horizon Hn
α ∼ Er(α, n) is

reduced by T1 ∼ Exp(α) what yields a new horizon Hn−1
α ∼ Er(α, n−1). In the second

term, given that the ruin occurred before T1, the expected utility L(Uτ , Yτ ) is incurred
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given the initial state of the process. Developing the first term yields

E
[
vσ
∗
(Hn−1

α , UT1 , YT1)
]

= Υσ∗
n−1(α,UT1 , YT1) = Jk−1(α,UT1 , YT1 , P )(3.18)

where for the last equality remember that the optimisation is made on Markov controls,

that is σ∗. As a conclusion σ∗ is the optimal control for Υσ
n−1. Substituting (3.18) into

(3.17) one gets

Jk(α, u, δi, P ) = E
[
Jk−1(α,UT1 , YT1 , P )I{τ≥T1}

+ L(Uτ , Tτ )I{τ<T1} | U0 = u, Y0 = δi
]

= Υσ∗
1 (α, u, δi, Pk−1) ≤ J1(α, u, δi, Pk−1).(3.19)

Notice that in the first line term Jk−1(α,UT1 , YT1 , P ) can be included in the conditioning

since it is independent of U0.

For the inverse inequality assume that σ1 is the optimal control for J1. Let us

consider a control

σ∗1 =


σ1 if V α

t = 0

σ∗ if V α
t > 0

.

Since σ∗1 is admissible for Υn, applying (3.19) one can write

J1(α, u, δi, Pk−1) = Υ
σ∗1
1 (α, u, δi, Pk−1)

= Υ
σ∗1
n (α, u, δi, P ) ≤ Jk(α, u, δi, P )

what completes the proof.

45



3. OPTIMAL CONTROL OF LÉVY DIFFUSIONS

Theorem 3.2 shows that once the stochastic control problem can be treated in ex-

ponential horizon, the Erlangian horizon (as an approximation to the fixed horizon)

can be recovered by iteratively updating the utility function Pk involved in the per-

formance criterion. This procedure offers an alternative approach to direct numerical

approximation of the initial problem and, at the same time, avoids the mathematical

complexity of the analytical approach.

Although the approximation procedure is centred on the value function J , the

optimal control σ∗ is of the same interest. Let us denote σ∗n the optimal control that

yields the approximated value function Jn. The next proposition treats the convergence

and calculation of σ∗n.

Proposition 3.1. Let J be the value function of the Problem (3.3) with σ∗ the corre-

sponding optimal control. Let Jn be the approximation of J as shown in Theorem 3.2

and let σ∗n be the solution to

∂

∂σ
AσJn(α, u, δi) = 0.

then

σ∗n → σ∗ for n→∞

Proof. From (3.7) one have that σ∗ is the solution to

d

dσ
AσJ(t, u, δi) = 0.

Realising that
d

dσ
Aσ is a continuous operator, the convergence of Jn to J guarantees

the convergence of optimal controls.
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3.4 Erlangian approximation

The Laplace-Carson transform of the horizon introduced in previous section simplified

the equations that characterise the value function and the optimal control to a system of

integro-differential equations (3.11), (3.12). Usually, the optimal control σ1 is obtained

as the solution to (3.12) expressed as a function of unknown J1 and then substituted

to (3.11) in order to solve for the value function. This second equation is typically

non-linear and poses important obstacles to analytical treatment.

In this section the approximation of the value function will be taken further with the

objective to reduce the complexity of the differential equations involved. As before, the

fixed horizon T is substituted by a random horizon Hn
n
T

with distribution Er(
n

T
, n) that

converges to T with increasing n. This results in elimination of the partial derivative

with respect to time from the HJB equation. Additionally, the control that in principle

is an adapted process evolving in time, will be restricted to piecewise constant process

(constant on each exponential horizon composing Hn
n
T

). By intuition, since the length

of each exponential interval is infinitesimal with probability 1 as n increases, the op-

timisation on restricted set of controls will converge to the unrestricted one, therefore

the convergence of the procedure outlined earlier is not compromised. Theorem 3.3 in

this section proves this idea formally.

We will introduce some necessary notation. Let J1 be the value function of the

problem in exponential horizon restricted to piecewise constant control. Since on a

particular exponential horizon the control is constant, the space of admissible controls

is R, hence

(3.20) J1(α, u, δi) ≡ max
σ∈R

Υσ (α, u, δi) ,
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Notice that the optimal (constant) control will still depend on the values UT1 , YT1 at

the beginning of the exponential horizon and on the intensity α. In a strict sense one

should write σα,UT1 ,YT1 , however, we will omit the subscripts in favour of the simplicity

of the notation.

Assuming that controls are restricted to be constant on each exponential interval

composing the Erlangian horizon Hn
α , the value function of the restricted problem is

denoted Jn. The set of all piecewise constant controls is denoted Π therefore

(3.21) Jn(α, u, δi) ≡ max
σ∈Π

Υσ
n(α, u, δi).

Theorem 3.3. Let J(T, u, y) be the value function of the Problem (3.2) and Jn(
n

T
, u, δi)

the value function of the Problem (3.21) then

lim
n→∞

Jn(
n

T
, u, δi) = J(T, u, δi)

Proof. Let V
n
T
t be a Poisson process, independent of (Ut, Yt) with intensity

n

T
, let

Tn1 , . . . , T
n
n be the first n jump times of V

n
T
t and define process (U

n
t , Y

n
t ) = (UTnk , YT

n
k

)

where k = max{i : Tni < t}. That is (U
n
t , Y

n
t ) is a process that remains constant on

exponential horizon intervals
[
Tni , T

n
i−1

)
and equal to the value of the process (Ut, Yt)

at the beginning of each interval. Let us consider the stochastic differential equation

dUnt = a(Unt , Yt, σt(U
n
t , Y

n
t ))dt+ b(Unt , Yt, σt(U

n
t , Y

n
t ))dWt(3.22)

+

∫
Rk

γ(Unt− , Yt− , σt−(U
n
t , Y

n
t ), z)N(dt,dz)

Un0 = u.
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Applying the Theorem 6.9 from Jacod and Shiryaev (31, pg. 578) yields Unt → Ut

in law. To verify the assumptions of the theorem one needs to check that U
n
t → Ut

and Y
n
t → Yt in law. For that purpose notice that the process U

n
t can be written as

U
n
t = U0 + (Unt− − U

n
t−) · V n

t . Since
V n
t

n
converges in law to

t

T
and the equation

U
n
t = U0 +

n

T

∫ t

0
(Unt− − U

n
t−)dt

has the solution

U
n
t = e

nt
T Unt − e−

nt
T

∫ t

0
e
nt
T Unt dt→ Unt as n→∞.

To complete the proof, observe that Jn and J are continuous functionals of Unt and Ut

respectively, what yields the convergence (see i.e. Proposition 3.8 Jacod and Shiryaev

(31, pg.348)). The same reasoning yields the convergence of Y
n
t .

The next corollary to Theorem 3.2 provides an iterative scheme to actually evaluate

the value function Jn based on J1.

Corollary 3.1. Let P be a reward function, u the initial condition, α > 0 a real

parameter. For every natural k ≥ 2 we have

Jk(α, u, δi, P ) = J1(α, u, δi, Pk−1)

where Pk−1(w, y) ≡ Jk−1(α,w, y, P ).

Proof. Notice that the optimisation problem for Jk is the same as for Jk only with

respect to different set of admissible controls. Since the set of controls is not relevant

in the proof of Theorem 3.2 the result follows.
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3. OPTIMAL CONTROL OF LÉVY DIFFUSIONS

Corollary 3.1, indicates that in order to evaluate the value function Jn of the opti-

mization problem in Erlangian horizon it is sufficient to be able to evaluate the value

function of the problem in exponential horizon J1 restricted to constant control. This

calculation is iterated n times while in each step the value function of the previous step

becomes the reward function of the next step.

The value function J1 is the basic building block of the method. Since in each expo-

nential horizon the control is constant it can be treated as a parameter and Υσ (α, u, δi)

can be obtained from the Laplace-Carson transform of the usual Fokker-Planck equa-

tion (see i.e. (46))

(3.23) AσΥσ (α, u, δi)− αΥσ(α, u, δi) + αP (u) = 0.

Posterior maximisation with respect to σ yields J1. Notice that the maximisation is a

standard optimisation problem on real numbers.

The simplicity of the equation (3.23) to be solved, compared to system (3.6), (3.7),

is the main advantage of the method that together with Corollary 3.1 provides a semi-

analytic treatment of the stochastic control problem presented.

The optimal control can be recovered in a similar way as above. Let us denote σ∗n the

optimal control that yields the approximated value function Jn. The next proposition

treats the convergence and calculation of σ∗n.

Proposition 3.2. Let J be the value function of the Problem (3.3) with σ∗ the corre-

sponding optimal control. Let Jn be the approximation of J as shown in Corollary 3.1

and let σ∗n be the solution to

∂

∂σ
AσJn(α, u, δi) = 0.
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3.5 Example

then

σ∗n → σ∗ for n→∞

Proof. The proof is equivalent to the proof of the Proposition 3.1.

3.5 Example

Theorems 3.3 and 3.2 provide a framework to approximate the solution of the dynamic

programming problems in the form (3.3) by partition of the time in a series of exponen-

tial intervals with discretised control. In this section an application of the Erlangian

approximation presented above is revisited in context of the classical Merton portfolio

problem with one risky and one riskless asset.

3.5.1 Portfolio selection problem

Consider a market composed of two assets, a risk-free bond with constant yield r that

follows dBt = rBtdt and a stock with mean return µ and volatility ρ that follows

a geometric Brownian motion dSt = µStdt + ρStdWt. An agent invests at time t a

proportion σt into the stock and a proportion 1 − σt into the bond. The evolution of

the total wealth then follows

dUt = (r + σt(µ− r))Utdt+ σtρUtdWt, U0 = u

where u is the initial wealth. The objective is to determine the optimal control σt such

that a utility function P is maximised at fixed horizon T , that is

J(T, u) = max
σt∈Π

E[UT ]
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3. OPTIMAL CONTROL OF LÉVY DIFFUSIONS

where J(T, u) is the value function of the optimisation problem and Π the set of all

admissible controls.

It was shown in (8) that for the utility function P (u) = log(u) the optimal control

σt =
µ− r
ρ2

is constant in time and the value function is

J(T, u) = log(u) + T

[
r +

1

2

(
µ− r
ρ

)2
]
.

The solution to this problem for arbitrary utility function is, however, not available.

Here, the approximation procedure presented in this chapter will be used to obtain the

value function and the optimal control for an arbitrary continuous utility function.

Let P be a continuous utility function, the infinitesimal generator of the process, in

view of (3.5), is

AσJ(T, u) =
1

2
u2σ2

t ρ
2 ∂

2

∂u2
J(T, u) + u(r + σt(µ− r))

∂

∂u
J(T, u).

From (3.7) the optimal control has to satisfy

σ∗ = −µ− r
ρ

∂
∂uJ(T, u)

u ∂2

∂u2
J(T, u)

.

Substituting the optimal control into (3.6) the value function J(T, u) is characterised

as the solution to

(
µ− r
ρ

)2(1

2
− ρu

) ∂
∂u

2
J(T, u)

u ∂2

∂u2
J(T, u)

+ ur
∂

∂u
J(T, u)− ∂

∂T
J(T, u) = 0,

what is a non-linear partial differential equation characterising the value function

J(T, u).
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In an exponential time, as developed in Section 3.3 the optimal control, as a solution

to (3.12), is

σ∗1 = −µ− r
ρ

∂
∂uJ(α, u)

u ∂2

∂u2
J(α, u)

with corresponding HJB equation characterising the value function J(α, u)

(
µ− r
ρ

)2(1

2
− ρu

) ∂
∂u

2
J(α, u)

u ∂2

∂u2
J(α, u)

+ ur
∂

∂u
J(α, u) = 0.

The differential equation obtained is still non-linear but the partial derivative with

respect to time vanished.

If one further assumes piecewise constant control, then over an exponential horizon

the performance criterion Υσ(α, u) satisfies, following (3.23),

1

2
u2σ2ρ2 ∂

2

∂u2
Υσ(α, u) + u(r + σ(µ− r)) ∂

∂u
Υσ(α, u)+

+ αΥσ(α, u)− αP (u) = 0.

This is a second order linear ordinary differential equation of Euler-Cauchy type that

can be treated analytically using the substitution u = ew. The solution represents

the performance criterion Υσ(α, u) as a function of constant control σ. Consequent

maximisation yields

J1(α, u, P ) = max
σ∈R

Υσ(α, u, P )

in line with notation introduced in Theorem 3.2. The approximation of the value

function Jn is obtained iterating the value function as explained in Corollary 3.1

Jk(α, u, P ) = J1(α, u, Pk−1)
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3. OPTIMAL CONTROL OF LÉVY DIFFUSIONS

and

Pk−1(u) = Jk−1(α, u, P ).

Moreover, the approximation of the optimal control is recovered as

σ∗n = −µ− r
ρ

∂
∂uJn(α, u)

u ∂2

∂u2
Jn(α, u)

.

3.6 Conclusions

The stochastic control problem in finite horizon with terminal and exit utility function

has been treated in a context of Markov-modulated Lévy diffusion processes. An al-

ternative numerical procedure to usual discretisation approach was presented in this

chapter. Approximating the fixed horizon by a sequence of exponential horizons with

piecewise constant control the stochastic programming problem has been transformed

to a sequence of standard optimization problems. Moreover, the complexity of the

Hamilton-Jacobi-Bellman equations involved has been reduced opening ways for ana-

lytic treatment. The convergence of both, the value function and the optimal control

is guaranteed.
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4

Risk theory and optimal

investment

4.1 Introduction

In this chapter, a general risk process with investment into a portfolio of risky assets is

analysed. The previous chapter introduced a theoretical framework for dealing with this

type of problems, here we present a non-trivial application into a Markov-modulated

environment with compound Poisson reserve process. The contents of this chapter

forms an original research article that has been submitted to ASTIN Bulletin, the

journal of International Actuarial Association.

The principal goal is to determine optimal investment strategies for an insurance

company in order to maximise an objective penalty-reward function. The method-

ology presented in previous chapters will be adapted an applied to obtain numerical

procedures that will be illustrated by particular examples.
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4. RISK THEORY AND OPTIMAL INVESTMENT

4.1.1 The Model

The risk process driving the reserves of an insurance company is assumed to evolve

according to the following stochastic differential equation

dRt = cdt+ ρdW
(1)
t −Xt, R0 = u.

This represents premiums collected at constant rate c perturbed by a diffusion with

volatility ρ and claims payment that follows a compound Poisson Xt process with

intensity λ and jump density function f . W
(1)
t is a standard Wiener process independent

of Xt.

It is assumed that reserves are invested into a portfolio of assets with expected

return µ and volatility σ. The insurance company selects a combination of return

and volatility amongst its investment possibilities. In this chapter, the investment

possibilities for an insurer are modelled subject to two factors: the general state of

economic environment, and the level of funds available for investment. The economic

environment is represented by a homogeneous Markov process Yt with finite state space

{δ1, . . . , δn} and intensity matrixQ = {qij} and summarises macroeconomic factors that

determine investment options such as risk-free rate, inflation rate or economic cycle.

The level of funds available for investment Ut conditions the investment options due to

transaction costs, divisibility constraints or as a consequence of rational behaviour of

market agents as argued by Berk and Green (10).

Assuming rational behaviour of the investor only Pareto optimal pairs of (µ, σ) will

be considered. That is, for a given level of expected return the company would choose

the smallest possible level of volatility and, similarly, for a given value of volatility the
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4.1 Introduction

highest possible level of expected return. Therefore, we can assume the existence of a

function reflecting the efficient frontier of the investment possibilities that relates the

parameters µ and σ on one-to-one basis. The natural point of view of an insurer is

to control the level of risk. For that reason, the volatility is assumed to be chosen

based on the parameters of the model and the economic environment Yt. The value

of the corresponding expected return µ is a function of the chosen volatility and the

investment opportunities of the insurer (Yt, Ut).

The stochastic differential equation representing the total reserves process Ut in-

cluding investment is expressed as

(4.1) dUt = [c+ µt(σt, Yt, Ut)Ut] dt+
√
ρ2 + U2

t σ
2
t (Yt)dWt − dXt, U0 = u.

In this work it is assumed that µt is a continuous function of time.

4.1.2 Stochastic Control

Once the insurer selects the desired level of volatility σt(Yt) the corresponding expected

return µt(σt, Yt, Ut) is implied. This way the control variable of the optimisation prob-

lem has been reduced to selection of σt. The objective function v to be maximised is

expressed as an expected penalty-reward function

(4.2) vσ (T, u, δi) = E
[
P (UT , YT ) · I{τ≥T} + L(Uτ , Yτ ) · I{τ<T}|U0 = u, Y0 = δi

]

where τ = inf {t : Ut /∈ S} is the exit time of the process Ut form the solvency region

S (typically S = [0,∞))
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4. RISK THEORY AND OPTIMAL INVESTMENT

Let us denote J(T, u, y) the optimal value of the maximisation problem

(4.3) J(T, u, y) ≡ max
σ∈Π

vσ(T, u, y).

The set Π contains all admissible strategies σt, that is the strategies for which a

solution of (4.1) exists. We will focus only on Markov strategies, that is, σt depends

on the process {Us}0≤s≤∞ only through Ut. Suppose that σ∗ is the maximising value

for vσ(T, u, y) then J(T, u, y) = vσ
∗
(T, u, y).

Solving the problem (4.3) directly is not feasible since an explicit expression for

vσ(T, u, y) is not available in most general case. However, following the dynamic pro-

gramming approach, one can write the Hamilton-Jacobi-Bellman equation that the

value function J(t, u, y) satisfies under some regularity conditions, similar to the Fokker-

Planck equation

(4.4) sup
σ∈Π

−∂J∂t +
1

2
(ρ2 + σ2(δi)u

2)
∂2

∂u2
J + (c+ µ(σ(δi), δi, u)u)

∂

∂u
J

+

n∑
j=1

qijJ (t, u, δi) + λ

∞∫
0

(J (t, u− x, δi)− J (t, u, δi)) f (x) dx

 = 0.

In this chapter we present a numerical method to approximate the value function

J(T, x, y). The idea of Carr (1998) to approximate a fixed horizon T by a series of

consecutive exponential intervals (random horizon with Erlang-n distribution) will be

applied assuming that the strategy σ∗n is constant on each interval. It will be shown that

this solution converges to the optimal solution as the number of intervals n approaches

infinity.
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4.2 Randomised horizon

4.2 Randomised horizon

4.2.1 Exponential horizon

As a first step, the maximisation problem (4.3) will be considered in a hypothetical ex-

ponential random horizon Hα instead of a fixed horizon T . Let Hα be an exponentially

distributed random variable with parameter α. If one lets α = 1
T then E (Hα) = T ,

that is, in expected terms, the random horizon Hα and the fixed horizon T coincide.

Let us denote Υ the objective expected penalty-reward function that is to be max-

imised in a random horizon Hα, that is

Υσ (α, u, y) ≡ E [vσ (Hα, u, y)] =

= E
[
P (UHα , YHα) · I{τ≥Hα} + L(Uτ , Yτ ) · I{τ<Hα}|U0 = u, Y0 = y

]
.

Notice that the second expectation is taken with respect to random horizon Hα and the

stochastic process Ut. The optimisation problem is similar to (4.3), J1 will represent

the optimal value

(4.5) J1 (α, u, y) ≡ max
σ∈Π

Υσ (α, u, y) .

The objective function Υ can be seen as a Laplace-Carson transform in time of v defined

in (4.2), indeed

(4.6) Υσ (α, u, y) = E [vσ (Hα, u, y)] =

∞∫
0

vσ (t, u, y)αe−αtdt.
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4. RISK THEORY AND OPTIMAL INVESTMENT

Laplace-Carson transform C (s) of an integrable function is closely related to its Laplace

transform L (s) by the relationship C (s) = sL (s). This fact can be exploited to obtain

the solution of the problem (4.5) since the Laplace transform of the function v is more

easily obtained in many scenarios. In an analogous way to (4.4) one can obtain the

Hamilton-Jacobi-Bellman Equation for J1(α, u, y) as developed in Diko and Usábel

(17).

(4.7) sup
σ∈Π

1

2
(ρ2 + σ2(δi)u

2)
∂2

∂u2
J1 + (c+ µ(σ(δi), δi, u)u)

∂

∂u
J1

+
n∑
j=1

qijJ1 − (λ+ α)J1 + λ

u∫
0

J(α, u− x, δi)f(x)dx+

+ αP (u, δi) + λ

∞∫
u

L(u− x, δi)f(x)dx

 = 0.

Since the time dependence is eliminated, the optimal strategy σ∗(δi) is found for each

δi differentiating (4.7) with respect to σ(δi) as a solution to

σ(δi)u
2J

(uu)
1 +

d

dσ
µ (σ, δi, u)uJ

(u)
1 = 0,

where J
(u)
1 and J

(uu)
1 is the first and the second derivative with respect to u. In case of

a linear relationship between volatility σ and expected return µ this reduces to

(4.8) σ(δi)u
2J

(uu)
1 + µ (δi, u)uJ

(u)
1 = 0

whence

σ∗(δi) = −µ (δi, u)
J

(u)
1

uJ
(uu)
1

.
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In particular, assuming that the investment possibilities do not depend on available

capital one gets

σ∗(δi) = −µ (δi)
J

(u)
1

uJ
(uu)
1

a solution found in Hipp and Plum (28) and Bauerle and Rieder (8). The latter authors

realise that the optimal strategy is constant for CRRA utility functions and linear

specification of underlying risk process. In general, however, the solution is hard to find.

Irgens and Paulsen (30) study the optimal investment (and other solvency variables)

under exponential utility, Yang and Zhang (53) give an explicit solution for exponential

utility under simplified market model.

4.2.2 Erlangian horizon

The next step is to approximate the fixed horizon T in the problem (4.3) by a series of

consecutive exponential horizons. The distribution of a sum of k independent variables

with identical exponential distribution of parameter α is the Erlang (α, k) distribution.

Its density function is given by

p (x) =
αk

(k − 1)!
xk−1e−αx.

Its mean is k
λ and variance k

λ2
.

Let Hn
α be a random variable with Erlang(α, n) distribution. Let us consider a

series of random variables

(4.9) Hn
n
T
∼ Er(

n

T
, n).
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One can observe that E(Hn
n
T

) = T and

E(Hn
n
T
− T )2 =

T 2

n
→ 0 as n→∞

that is Hn
n
T

indeed converges to T in L2 and therefore in probability.

Let us state the optimisation problem similar to (4.5) with a horizon that has

Erlang distribution Hn
α . It is assumed that the termination of the exponential horizons

composing Hn
α is observable. For that purpose a Poisson process Ht, independent of

(Ut, Yt), with jump intensity α is introduced. Then Hn
α = inf{t : Ht ≥ n} is a stopping

time. The expected penalty-reward function to be maximised in the horizon Hn
α is

Υσ
n (α, u, y) ≡ E [vσ (Hn

α , u, y)] =

= E
[
P (UHn

α
, YHn

α
) · I{τ≥Hn

α} + L(Uτ , Yτ ) · I{τ<Hn
α}|U0 = u, Y0 = y

]
.

Taking into account the density function of Erlang distribution, one can write

Υσ
n (α, u, y) = E [vσ (Hn

α , u, y)] =

=

∞∫
0

vσ (t, u, y)
αn

(n− 1)!
tn−1e−αtdt

The optimisation problem is

(4.10) Jn (α, u, y) ≡ max
σ∈Π

Υσ
n (α, u, y)

where Jn represents the optimal value. Only markovian strategies with respect to
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(Ut, Yt, Ht) are considered. The next theorem establishes the relationship between the

value function Jn (α, u, y) and the value function J (T, u, y) defined by (4.3).

Theorem 4.1. Let J (T, u, y) be the value function of the problem (4.3) and Jn (α, u, y)

the value function of the problem (4.10) then

lim
n→∞

Jn

(n
T
, u, y

)
= J (T, u, y) .

Proof. (Following the proof of Theorem 2 in (36).) Let σ be any feasible strategy in Π

such that vσ (t, u, y) is continuous in t on [0,∞). Then

E [vσ (Hn
α , u, y)] = Υσ

n (α, u, y) ≤ Jn (α, u, y) ,

in particular for α = n
T , taking limit n→∞

(4.11) vσ (T, u, y) = lim
n→∞

E
[
vσ
(
Hn

n
T
, u, y

)]
≤ lim

n→∞
Jn

(n
T
, u, y

)

where the first equality comes from a variant of Helly-Bray Theorem (see Chow and

Teicher (15, Corolary 8.1.6)). Taking maximum over all admissible strategies on the

left side of (4.11) yields

(4.12) J (T, u, y) ≤ lim
n→∞

Jn

(n
T
, u, y

)
.
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On the other hand, notice that

Jn (α, u, y) ≡ max
σ∈Π

Υσ
n (α, u, y) = max

σ∈Π

∞∫
0

vσ (t, u, y)
αn

(n− 1)!
tn−1e−αtdt

≤
∞∫

0

max
σ∈Π

vσ (t, u, y)
αn

(n− 1)!
tn−1e−αtdt

=

∞∫
0

J (t, u, y)
αn

(n− 1)!
tn−1e−αtdt.

The inequality comes from the fact that the optimal σ∗ that maximises the whole

integral in the first line is a feasible strategy in the maximisation problem under the

integral in the second line for each t. Letting α = n
T , taking the limit on both sides of the

inequality, and applying the Helly-Bray Theorem again the complementary inequality

to (4.12) follows

lim
n→∞

Jn

(n
T
, u, y

)
≤ J (T, u, y)

thus completing the proof.

Theorem 4.1 provides a tool to approximate the fixed horizon by a series of con-

secutive exponential horizons. As will be shown in the next Theorem, this translates

the original problem of maximisation in a fixed horizon T into a series of optimisation

problems in exponential horizon. If Hn
n
T

is an Erlangian random horizon as defined in

(4.9) it can be expressed as

(4.13) Hn
n
T

=

n∑
i=1

Tni

where Tn1 , T
n
2 , . . . , T

n
n are independent random variables with common exponential dis-

tribution with parameter n
T . Variables Tni can be interpreted as consecutive random

64



4.2 Randomised horizon

exponential horizons that compose the Erlangian horizon Hn
n
T

. This in limit converges

to the fixed horizon T . In order to state the next theorem formally we need to introduce

the following notation

Jn(α, u, y, P ) ≡ Jn(α, u, y)

Υσ
n(α, u, y, P ) ≡ Υσ

n(α, u, y)

when the reward function P needs to be specified explicitly.

Theorem 4.2. Let P be a reward function, u and y the initial conditions, α > 0 a real

parameter. For every natural k ≥ 2 we have

(4.14) Jk(α, u, y, P ) = J1(α, u, y, Pk−1)

where Pk−1(w, z) ≡ Jk−1(α,w, z, P ).

Proof. Let σ∗t be the optimal strategy for Jk(α, u, y, P ). Conditioning vσ(Hn
α , u, y) on

the instant of the first jump of the process Ht, which will be denoted T1, the value of

(Ut, Yt) at T1 and occurrence of the ruin one can write

Jk(α, u, y, P ) = Υσ∗
n (α, u, y) = E

[
vσ
∗
(Hn

α , u, y, P )
]

=(4.15)

= E
[
E
[
vσ
∗
(Hn

α , u, y) | T1, (UT1 , YT1), τ
]]

(4.16)

= E
[
E
[
vσ
∗
(Hn−1

α , UT1 , YT1)
]
I{τ≥T1}

]
+ E

[
L(Uτ , Yτ )I{τ<T1} | U0 = u, Y0 = y

]
(4.17)
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4. RISK THEORY AND OPTIMAL INVESTMENT

where the first term of (4.17) comes from the Markovian nature of the process

(Ut, Yt). Given that the ruin did not occur before T1 the future is independent of the past

of the process conditional on the current state UT1 , YT1 . Moreover, the horizon Hn
α ∼

Er(α, n) is reduced by T1 ∼ Exp(α) what yields a new horizon Hn−1
α ∼ Er(α, n − 1).

In the second term, given that the ruin occurred before T1, the expected loss L(Uτ , Yτ )

is incurred given the initial state of the process. Developing the first term yields

E
[
vσ
∗
(Hn−1

α , UT1 , YT1)
]

= Υσ∗
n−1(α,UT1 , YT1) = Jk−1(α,UT1 , YT1 , P )(4.18)

where for the last equality remember that the optimisation is made on Markovian strate-

gies, that is σ∗ depends on process (Us, Ys, Hs) only through (Ut, Yt, Ht). Therefore σ∗

is the optimal the strategy for Υσ
n−1. Substituting into (4.17) one gets

Jk(α, u, y, P ) = E
[
Jk−1(α,UT1 , YT1 , P )I{τ≥T1}

+ L(Uτ , Yτ )I{τ<T1} | U0 = u, Y0 = y
]

= Υσ∗
1 (α, u, y, Pk−1) ≤ J1(α, u, y, Pk−1).(4.19)

Notice that in the first line term Jk−1(α,UT1 , YT1 , P ) can be included in the conditioning

since it is independent of U0, Y0.

On the other hand, assume that σ1 is the optimal strategy for J1. Let us consider

a strategy
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4.3 Value function approximation

σ∗1 =


σ1 if Ht = 0

σ∗ if Ht > 0

.(4.20)

Since σ∗1 is admissible for Υn, applying (4.19) one can write

J1(α, u, y, Pk−1) = Υ
σ∗1
1 (α, u, y, Pk−1)

= Υ
σ∗1
n (α, u, y, P ) ≤ Jk(α, u, y, P )

what completes the proof.

Previous theorems provide an approximation method for cases when the solution to

the stochastic control problem in exponential time is available. Theorem 4.2 presents

a recursive procedure to approximate the value function in Erlangian time by iterating

through n exponential horizons. The value function Jk is updated in each step until

the final Jn is calculated. Theorem 4.1 guarantees the convergence of value function

Jn to its fixed horizon counterpart J as n goes to infinity.

4.3 Value function approximation

Since the exponential horizon can be seen as a Laplace transform of time, as illustrated

by (4.6), the solution of the stochastic control in that case tends to be more tractable,

since the dependence on time is eliminated (Avram et al. (6)). Nevertheless, for complex

models, in particular for the model defined by (4.1) that is treated in this chapter, the
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explicit solution to the stochastic control problem is not available even in exponential

horizon. In the next section we present a tool to treat this cases by approximating

not only the fixed horizon by a convergent series of Erlangian distributions but also

approximating admissible optimal controls σ by a class of controls that are piecewise

constant.

For an Erlangian horizon Hn
α determined as hitting time of {n} by a Poisson process

Ht and a control σ we define piecewise constant control σn that changes only with jumps

of Ht. In theorem 4.3 it will be shown that the value function of the stochastic control

problem in exponential horizon constrained to the class of controls σn converges to the

value function of the unconstrained problem. Let us denote Jn(α, u, y) the solution to

the problem (4.10) constrained to the piecewise constant strategies defined as admissible

strategies in Π that remain constant unless a jump of the process Hn
t occurs.

Theorem 4.3. Let J(T, u, y) be the solution to the problem (4.2) then

lim
n→∞

Jn(α, u, y) = J(T, u, y)(4.21)

Before we prove Theorem 4.3 some notation is introduced. Let us consider the

Erlangian horizon Hn
α as a sum of n independent exponential distributions with pa-

rameter α = n
T . Let V n

t be a Poisson process independent of (Wt, Xt) with intensity

n
T , let Tn1 , . . . , T

n
n be the first n jump times of V n

t and define process Gnt = YTnk where

k = max{i : Tni < t}. That is Gnt is a process that remains constant on exponential

horizon intervals
[
Tni , T

n
i−1

)
. If we consider the stochastic differential equation

(4.22) dUnt = (µtU
n
t + c) dt+

√
(Unt )2σ2

t (G
n
t , Yt) + ρ2dWt − dXt, Un0 = u
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then the optimisation problem (4.3) of the expected penalty reward function (4.2) under

the process Unt in an Erlangian horizon yields the value function limn→∞ Jn(α, u, y).

Let us state the following Lemma

Lemma 4.1. Let Unt be the solution to (4.22) and Ut the solution to (4.1) then Unt

converges in Law to Ut.

Proof of Lemma 4.1. Process Gnt can be written as Gnt = U0 + (Unt−−Gnt−) · V n
t . Since

V nt
n converges in Law to t

T and the equation

(4.23) Gnt = U0 +
n

T

∫ t

0
(Unt− −Gnt−)dt

has the solution

(4.24) Gnt = e
nt
T Unt − e−

nt
T

∫ t

0
e
nt
T Unt dt→ Unt as n→∞

applying the Theorem 6.9 from Jacod and Shiryaev (31, pg. 578) the result follows.

Proof of Theorem 4.3. Since P and L are continuous functions of Unt or Ut, by Propo-

sition 3.8 Jacod and Shiryaev (31, pg. 348) yields the convergence of the expectation

of continuous functionals Jn to J .

4.4 Example

In this section we will illustrate the application of the theorems proved above. The risk

process considered follows

(4.25) dRt = cdt+ ρdWt − dXt, R0 = u
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where Xt is a compound Poisson process with intensity λ = 1
3 and lognormal claim

size distribution LN(1, 2). This process represents claims collected at a constant rate

c = 3 perturbed by a diffusion with volatility ρ2 = 0.25 that can be interpreted as

aggregate small claims and claims collection accruals. The Poisson process then repre-

sents catastrophic claims (with average occurrence once every 3 periods) with lognormal

(heavy-tail) severity distribution. The investment opportunities will be represented by

a riskless asset dS
(1)
t = rdt and a risky asset dS

(2)
t = νdt + ξdWt. The proportion

invested into a risky asset will be denoted as π. No short-selling is allowed, therefore

π ∈ [0, 1]. Altogether, the reserve process, including investment, can be written as

(4.26) dUt = [c+ (r + π(ν − r))Ut] dt+
√
ρ2 + π2ξ2U2

t dWt − dXt U0 = u

In the view of the equation (4.1) this implies the following linear relationship between

the volatility σ = πξ and expected return on investment µσ

(4.27) µ(σ) = r + π(ν − r) = r + σ
ν − r
ξ

.

Notice that no Markov modulation is considered in this example (what is equivalent

to taking Yt = constant) as no further insight would be added besides more complex

notation. The penalty-reward function considered is P (u) = 1, L(u) = 0

(4.28) vσ (T, u) = E
[
I{τ≥T}|U0 = u

]
= P [τ ≥ T |U0 = u] ≡ ϕ(u, T )

what represents the survival probability. The optimization problem (4.3) then turns

to maximisation of survival probability in a fixed horizon T . Similar problems have
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been treated in Hipp and Plum (29) and others but no closed form solution exist.

Following the development presented above, in order to be able to apply the iterative

scheme from Theorem 4.2, the fixed horizon T will be approximated by a series of n

exponential horizons with parameter n
T

(4.29) ϕ∗(u, α) =

∞∫
0

ϕ(u, T )αe−αTdt.

The fixed horizon T will be approximated by a series of n exponential horizons with

parameter n
T , whereas in each of the horizons the problem to be solved is

(4.30) Ji(
n

T
, u) ≡ max

π∈Π
Υσ(α, u, Ji−1).

with J0 = P = 1. As proved in the theorem 4.3, to achieve convergence, it is sufficient

to consider strategies π constant on each exponential interval. The function Υ for a

constant π satisfies satisfies the following integro-differential equation

(4.31)
1

2
(ρ2 + π2ξ2u2)

∂2

∂u2
Υ + (c+ (r + π(ν − r))u)

∂

∂u
Υ

− (λ+ α)Υ + λ

u∫
0

Υ(α, u− x)f(x)dx+ αJi−1(u) = 0.

as derived in Diko and Usábel (17). The cited paper also proposes an approximation

method by chebyshev polynomials to calculate the solution to this problem. Since

feasible strategies are bounded it is possible to evaluate Υ for a grid of possible values

of π ∈ [0, 1] and take the maximum value as an approximation to the solution of (4.30).

In this example we took equidistant grid of granularity 0.1. The table 1 shows the

results of approximated value function J(u, T ) for various values of initial reserves u
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and number of exponential intervals n that approximate the fixed horizon T = 10. The

convergence is achieved to up to 3 decimal places for as few as 100 intervals.

n− number of intervals

u

1 2 5 10 20 50 100

0.1 0.354370 0.306438 0.287529 0.288241 0.291537 0.295415 0.297638

0.5 0.413865 0.361477 0.341409 0.341409 0.346224 0.349630 0.350752

1 0.427487 0.377567 0.359446 0.361308 0.365365 0.369168 0.370406

2 0.456898 0.412100 0.397678 0.400614 0.405446 0.410055 0.411589

5 0.570571 0.542250 0.536840 0.541189 0.547234 0.554050 0.556663

10 0.886121 0.882775 0.883860 0.885951 0.888517 0.891156 0.891655

15 0.999024 0.998997 0.999008 0.999027 0.999049 0.999072 0.999074

Figure 4.1 depicts J(u, T ) (maximal survival probability in horizon T = 10) as a

function of u for n = 1, 2, 5, 10, 20, 50, 100. The optimal strategy that leads to the value

function can be recovered using the relationship between the value function and the

optimal strategy given by (4.8).

4.5 Conclusions

An application of the theoretical framework developed in Chapter 3 has been developed.

The application of Chebyshev polynomials provided a numerical method to obtain

the solution of an optimal investment problem in a Markov-modulated framework for

a compound Poisson process. The results of this type are new in the risk theory

framework.
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Figure 4.1: Convergence of the maximal survival probability in the horizon T = 10 as a function
of the initial reserve.
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5

Conclusions

In this work, we have treated the problems related to risk theory and stochastic control

in the context of Lévy diffusion processes. It was argued that the Lévy diffusions provide

a fairly general framework covering varied modelisation paradigms from finance and

insurance areas. In particular a compound Poisson process with Markov-modulated

parameters has been analysed, nevertheless, general results in Chapter 3 include wider

spectrum of stochastic models.

Altogether, the work included in this dissertation forms three research articles. One

has already been published in an international peer reviewed journal and the other two

are under the revision process.

In Chapter 2 we have presented a new approximation procedure for the calculation

of the penalty-reward function in a risk theory context. The importance of the contri-

bution is underlined by the fact that previously no solution was available in the general

setting that has been proposed in this work.

Chapter 3 is purely theoretical framework for simplifying a generic stochastic control

of a Lévy diffusions into series of treatable standardised problems. The reduction of

75



5. CONCLUSIONS

the complexity, achieved through the Erlangisation of the horizon, comes at a cost of

iterative evaluation of the solution. Nevertheless, as have been shown, for certain cases

the problem simplifies enough so that the analytical procedures can be used to obtain

the solution.

Chapter 4 demonstrates the power of the approaches presented earlier by solving

a stochastic control problem of optimal investment of an insurer facing risk manage-

ment decisions in a context that has not been treated previously. An example shows

how maximum survival probability curve can be obtained for different levels of initial

conditions.

Besides the theoretical interest of the presented results we believe that these could

become relevant analytical tools in practical applications, in both regulatory bodies and

internal control processes within insurance companies. Sensible models that are able

to explain the behaviour and quantify the answers posed about solvency, profitability

or other nature of insurance business are needed in decision making processes.

Possible extensions of the results of this work include generalisation of the penalty-

reward function. In the context presented here the value of utility depends solely

on the value of the process at the moment of ruin or at the end of the established

horizon. However, it is often interesting to include the whole path of the process into the

objective function of the optimisation problem. The application of this generalisation

includes the possibility of discounting the penalty-reward function at a given interest

rate or the valuation of path-dependent financial assets. This extension, however,

presents a non-trivial challenge to the methods proposed.

Additionally, it has to be pointed out that the decisions of the control problems have

to be made taking into account exogenous variables that describe the environment of
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the particular branch of the insurance business. Typically, the exogenous variables

are severity and frequency of claims but can include other quantities such as financial

market evolution (interest rates in particular) or macroeconomic variables (such as

inflation). These quantities are usually out of control of any insurance company or

regulatory body and have to be estimated from the available data, a process that

presents further challenge. These unexplored questions are, however, beyond the scope

of this work.
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[48] Sato, K. (1999). Lévy processes and infinitely divisible distributions. Cambridge

Univ Pr. 7

[49] Sezer, M. and M. Kaynak (1996). Chebyshev polynomial solutions of linear dif-

ferential equations. International Journal of Mathematical Education in Science and

Technology 27 (4), 607–618. 24
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