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Abstract

For years, performance improvements at the computer I/O subsystem and at other
subsystems have advanced at their own pace, being less the improvements at the I/O
subsystem, and making the overall system speed dependant of the I/O subsystem speed.

One of the main factors for this imbalance is the inherent nature of disk drives, which
has allowed big advances in disk densities, but not so many in disk performance. Thus, to
improve I/O subsystem performance, disk drives have become a goal of study for many
researchers, having to use, in some cases, different kind of models. Other research studies
aim to improve I/O subsystem performance by tuning more abstract I/O levels. Since disk
drives lay behind those levels, real disk drives or just models need to be used.

One of the most common techniques to evaluate the performance of a computer I/O
subsystem is found on detailed simulation models including specific features of storage
devices like disk geometry, zone splitting, caching, read-ahead buffers and request reorder-
ing. However, as soon as a new technological innovation is added, those models need to
be reworked to include new characteristics, making difficult to have general models up to
date.

Our alternative is modeling a storage device as a black-box probabilistic model, where
the storage device itself, its interface and the interconnection mechanisms are modeled as a
single stochastic process, defining the service time as a random variable with an unknown
distribution. This approach allows generating disk service times needing less computational
power by means of a variate generator included in a simulator. This approach allows to reach
a greater scalability in I/O subsystems performance evaluations by means of simulation.

Lately, energy saving for computing systems has become an important need. In mobile
computers, the battery life is limited to a certain amount of time, and not wasting energy
at certain parts would extend the usage of the computer. Here, again the computer I/O
subsystem has pointed out as field of study, because disk drives, which are a main part of
it, are one of the most power consuming elements due to their mechanical nature. In server
or enterprise computers, where the number of disks increase considerably, power saving
may reduce cooling requirements for heat dissipation and thus, great monetary costs.

This dissertation also considers the question of saving energy in the disk drive, by
making advantage of diverse devices in hybrid storage systems, composed of Solid State
Disks (SSDs) and Disk drives. SSDs and Disk drives offer different power characteristics,
being SSDs much less power consuming than disk drives. In this thesis, several techniques
that use SSDs as supporting devices for Disk drives, are proposed. Various options for
managing SSDs and Disk devices in such hybrid systems are examinated, and it is shown
that the proposed methods save energy and monetary costs in diverse scenarios. A simulator
composed of Disks and SSD devices was implemented. This thesis studies the design and
evaluation of the proposed approaches with the help of realistic workloads.





Resumen

Durante años, las mejoras de rendimiento en el subsystema de E/S del ordenador
y en otros subsistemas han avanzado a su propio ritmo, siendo menores las mejoras en
el subsistema de E/S, y provocando que la velocidad global del sistema dependa de la
velocidad del subsistema de E/S.

Uno de los factores principales de este desequilibrio es la naturaleza inherente de las
unidades de disco, la cual que ha permitido grandes avances en las densidades de disco, pero
no aśı en su rendimiento. Por lo tanto, para mejorar el rendimiento del subsistema de E/S,
las unidades de disco se han convertido en objetivo de estudio para muchos investigadores,
que se ven obligados a utilizar, en algunos casos, diferentes tipos de modelos o simuladores.
Otros estudios de investigación tienen como objetivo mejorar el rendimiento del subsistema
de E/S, estudiando otros niveles más abstractos. Como los dispositivos de disco siguen
estando detrás de esos niveles, tanto discos reales como modelos pueden usarse para esos
estudios.

Una de las técnicas más comunes para evaluar el rendimiento del subsistema de E/S de
un ordenador se ha encontrado en los modelos de simulación detallada, los cuales modelan
caracteŕısticas espećıficas de los dispositivos de almacenamiento como la geometŕıa del
disco, la división en zonas, el almacenamiento en caché, el comportamiento de los buffers
de lectura anticipada y la reordenación de solicitudes. Sin embargo, cuando se agregan
innovaciones tecnológicas, los modelos tienen que ser revisados a fin de incluir nuevas
caracteŕısticas que incorporen dichas innovaciones, y ésto hace dif́ıcil el tener modelos
generales actualizados.

Nuestra alternativa es el modelado de un dispositivo de almacenamiento como un
modelo probabiĺıstico de caja negra, donde el dispositivo de almacenamiento en śı, su in-
terfaz y sus mecanismos de interconexión se tratan como un proceso estocástico, definiendo
el tiempo de servicio como una variable aleatoria con una distribución desconocida. Este
enfoque permite la generación de los tiempos de servicio del disco, de forma que se necesite
menos potencia de cálculo a través del uso de un generador de variable aleatoria incluido en
un simulador. De este modo, se permite alcanzar una mayor escalabilidad en la evaluación
del rendimiento del subsistema de E/S a través de la simulación.

En los últimos años, el ahorro de enerǵıa en los sistemas de computación se ha con-
vertido en una necesidad importante. En ordenadores portátiles, la duración de la bateŕıa
se limita a una cierta cantidad de tiempo, y no desperdiciar enerǵıa en ciertas partes haŕıa
mas largo el uso del ordenador. Aqúı, de nuevo el subsistema de E/S se señala como campo
de estudio, ya que las unidades de disco, que son una parte principal del mismo, son uno de
los elementos de más consumo de enerǵıa debido a su naturaleza mecánica. En los equipos
de servidor o de empresa, donde el número de discos aumenta considerablemente, el ahorro
de enerǵıa puede reducir las necesidades de refrigeración para la disipación de calor y por
lo tanto, grandes costes monetarios.

Esta tesis también considera la cuestión del ahorro energético en la unidad de disco,
haciendo uso de diversos dispositivos en sistemas de almacenamiento h́ıbridos, que em-
plean discos de estado sólido (SSD) y unidades de disco. Las SSD y unidades de disco
ofrecen diferentes caracteŕısticas de potencia, consumiendo las SSDs menos enerǵıa que las
unidades de disco. En esta tesis se proponen varias técnicas que utilizan los SSD como
apoyo a los dispositivos de disco. Se examinan las diversas opciones para la gestión de las
SSD y los dispositivos de disco en tales sistemas h́ıbridos, y se muestra que los métodos
propuestos ahorran enerǵıa y costes monetarios en diversos escenarios. Se ha implemen-
tado un simulador compuesto por discos y dispositivos SSD. Esta tesis estudia el diseño y
evaluación de los enfoques propuestos con la ayuda de las cargas de trabajo reales.
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Chapter 1

Introduction

In many computer systems, the global performance is highly influenced by the I/O sub-
system, where the storage devices take an important role. This fact has made that many
researchers pay attention to the I/O subsystem as a target of study, and want to improve
it. To this end, the usage of real storage devices is demanded, or if it is not possible, storage
device models instead.

The energy crisis of the last years and even increasing conscience about the negative
effects of energy waste on the climate change, has brought the sustainability both into
public attention, industry and scientific scrutiny. Energy demand has been increasing in
many computer systems, specially in datacenters and supercomputers, being the I/O sub-
system one of the most important parts to take into consideration. This is mainly due to
the mechanical nature of disk drives, the most used devices in those centers.

1.1 Motivation

Traditionally, disks have been modeled by means of detailed analytic models based on
devices geometry [RW94] or zone splitting [TCG02, dis08], reaching at the emulation level
in many cases.

Nevertheless, most of these models are based on out-of-date disks with low storage
capacities related to current available disks. If scalable storage systems are being evalu-
ated, needed computing power increases with the number of disks that are included in
the simulated system. In that case, using detailed models may impact negatively in the
execution time needed to run long simulations. Using such a detailed model is justified
only if a simpler model is not able to offer a similar precision.

An alternate approach is to model the behavior of the disk service time, as a stochastic
process. The disk, along with its interface and its interconnection mechanisms, may be con-
sidered as a phenomenon which has details that are not known. That is a black-box model.

1
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The simplest black-box models are table-based models [JA01], although more elaborate
models exist [WAA+04, MWS+07].

Energy saving for computing systems has recently become an important and wor-
rying need. Energy has been increasing in many systems, especially in data centers and
supercomputers. As stated by the Green500 [gre11] list, which provides a ranking of the
most energy-efficient supercomputers in the world, energy is as significant as performance.
Consequently, the performance-per-watt has been established as a new metric to evaluate
supercomputers.

In current computer systems, disk drives are one of the most power consuming ele-
ments, as they consume about 86% of the total energy consumption in some computing
systems [Sym99]. To reduce disk energy consumption, numerous disks provide energy effi-
cient transition modes [DKB95, HLS96]. However, disk idle periods have to be large enough
to ensure better power consumption, due to the spinning up/down disk scheme. The de-
sirable goal is to increase disk inter-access times by means of gathering disk accesses with
long idle times in the middle.

Solid-state drives (SSDs) provide durable storage through a standard block I/O in-
terface such as SCSI or SATA. SSDs show contrasting features with conventional disk
drives. First, they have no mechanical moving parts and hence no positioning delays.
Random-access writes in SSD devices can take longer than magnetic disk drives, while
reads perform faster [WR10]. Finally, SSDs have lower power consumption ratios. This
characteristic makes them optimal to behave as magnetic disk caches thereby reducing
disk power consumption.

Applications request previously accessed data when a loop or a function with loops
issues I/O requests [BCS+08]. When I/O accessed data are repetitive, write-buffering and
prefetching techniques can help to avoid data requests to disk drives [BIC+09].

The work proposed in this thesis starts from the following premises:

• Using detailed storage models may impact negatively in the execution time needed
to run long simulations. Black-box approaches need less computational power, and
are a good alternative for such cases.

• As soon as a new technological innovation is added, analytical and detailed storage
models need to be reworked to include new devices, making difficult to have general
models up to date. In black-box approaches, reworking new devices requires the same
effort as the required effort by already modeled devices.

• In current computer systems, disk drives are one of the most power consuming ele-
ments. This offers a rich set of opportunities for optimization in order to save power
in the I/O subsystem.

• SSDs have no mechanical moving parts and lower power consumption ratios. For a
power saving goal, they can assist and provide new techniques, helping the disk to
stay in lower power states for longer.

• When I/O access patterns are repetitive, write-buffering and prefetching can mask
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disk drive accesses, avoiding future accesses to disk drives, and again letting them to
stay at lower power states for longer.

1.2 Objectives

The major goal of this thesis is to propose novel power saving solutions based on SSD
devices. Our solutions include two power saving mechanisms, write-buffering and prefetch-
ing. The proposed SSD-based power saving-aware architectures can be used for clusters
and supercomputers.

In order to evaluate the proposed power saving solutions, a new black box model for
disk drives is also proposed. It consists of random variate generators that generate random
values, fitting a disk service time distribution.

Additionally, the thesis targets the following objectives:

• Scalability. The proposed black-box model targets to use random variate generators
that aim to reduce needed computing power by detailed models, when the number
of included disks in the simulated system increase.

• Accuracy. Our black-box model must offer, if not less, a similar precision as detailed
models.

• Saving power in hybrid storage systems. The proposed power saving solutions
target to use hybrid storage systems. Many existing approaches target only one sort
of disk architecture to save energy. This dissertation proposes power saving solutions
based on disks and supporting SSD devices.

• Disk Reliability. The proposed power saving solutions must be reliable. As to get
important energy savings some disks need to be spun down, it is important to take
into account the number of times the disks can be switched off and switched on before
failures increase.

• Flash Reliability. As the proposed power saving architectures use SSD devices, it
is important to take into account that their memory internals have a limited number
of erase cycles they can cope with, before they become useless.

• High-Performance. Although some tradeoffs in performance exist by using power
saving techniques, the proposed solutions must offer I/O performances similar to the
original (without energy savings) solutions.

• Economic-Feasibility. The proposed power saving techniques must reflect, not only
reductions in energy consumption, but also in subsequent monetary wastings.

1.3 Structure and Contents

The remainder of this document is structured in the following way.
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• Chapter 2 State of the art contains the state of the art, and an extensive bibliographic
review on the topics related with the thesis.

• Chapter 3 Black box modeling outlines a black box model to simulate storage devices
service times.

• Chapter 4 Energy-aware Architectures presents the design and implementation of a
power-saving solution based on SSD devices. Additionally, this chapter is dedicated
to present two power saving mechanisms, write-buffering and prefetching.

• Chapter 5 Evaluation reports results for both Black Box modeling and Energy-aware
approaches.

• Chapter 6 Final Remarks and Conclusions contains a summary of this thesis, publi-
cations and future plans.



Chapter 2

State of the art

This chapter presents the state of the art related to this dissertation and the background
concepts necessary for the understanding of the solution. The material is organized in four
subsections:

• Hard disk and Solid state disk basics

• Storage modeling

• Power saving solutions

• Prefetching and caching algorithms

2.1 Hard disk and Solid state disk basics

For years, I/O subsystem has been identified as a bottleneck because its performance
improvement has not been occurring at the same speed as in other architecture components.
Also, in the last few years, I/O subsystem components have been pointed out as one of the
most power consuming parts of the whole system. In both cases, hard disk drives nature,
which lays behind the I/O subsystem, is the main thing to blame. Our goal is to provide
both a new simulation approach that allows to study performance improvement and also
several approaches for power saving in disk drives. For power saving, we use solid sate
disks. First of all, it is important to know how both devices work.

2.1.1 Hard Disk basics

Hard disks (HDs) has been for years the most usual devices for secondary storage of data
in general computers. Nowadays, they still are due to their high capacities, low prices and
improvement in average access times.

5
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Figure 2.1: Parts of a common Hard Disk

Usual disk drives have a spindle that holds the platters, which are circular disks where
data are stored. The read-and-write heads read/write the data from/to the platters. An
arm moves the heads letting them to access the entire platter.

Usually, a platter has two surfaces on which data can be stored, and hence, two heads
per platter. Each surface is organized in concentric strips (called tracks) that have sectors.
A sector is the smallest addressable unit by a hard drive. Its size is commonly 512 bytes.

The set of the parallel tracks on each platter surface is called cylinder. A typical disk
will have as many cylinders as tracks per platter surface. Figure 2.1 gives an overview of a
disk drive most important parts.

The disk access time is related to its mechanical nature. It can be divided into 3 parts:
Seek time, rotational latency and data transfer time. Seek time is how much it takes to
the read/write head to reach the track that contains the data to be accessed. Once the
desired track is reached, rotational latency is the delay that takes to the head being under
the required sector. The data transfer time is how much it takes to the head to read the
requested data. The more data to read, the longer it takes.

An access to the platters usually takes several milliseconds. To alliviate this effect, disk
drives have internal caches which service requests much faster than servicing them directly
from the platters. When a read request comes to the disk drive, the disk cache is asked
first to see if it has the requested data. If the requested data are in the disk cache, they are
serviced from it, and an access to the platters is avoided. On the contrary, if the requested
data are not in the disk cache, the requested data are serviced from the disk platters, and
then, saved into the cache. One of the uses of the disk drive read cache is prefetching. When
it is activated, the cache loads data that have not been accessed yet, but they are likely to
be accessed. When a write request comes to the disk drive, and the caching is enabled, the
written data are directly recorded in the disk buffer, thus, improving performance. Those
data are usually later written to the platters.

Disk drives can be accessed over several types of interfaces like IDE, SATA, SCSI,
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Interface

Controller

Cache flash-based memory

Flash packages

Figure 2.2: Parts of a common Solid State Disk.

SAS, and Fibre Channel. Another interfaces like IEEE 1394 and USB use bridge circuitry
to communicate with the disk drive.

With an aim toward saving power, current disks have several power states: active, idle
and standby. A disk is in active state when it is reading or writing data. When a disk is not
doing anything, but is still spinning, its state is idle. When a disk is not doing anything and
its platters do not spin either, its state is standby. The highest power consumption occurs
at the active state. Idle state consumes less power than the active state, and standby state
consumes much less power than the previous two states. The disk spins down to the standby
state when the disk has been in the idle state for a certain period and it is predicted that
the state change is worth it. When a I/O request need to be serviced by a disk that is in
the standby state, it has to spin up to the active state, and then service the I/O request.
Spinning up a disk drive takes several seconds and energy costs.

Every time a disk spins down and spins up, the heads and the spindle motor wear.
That is why, manufacturers specify a maximum number of start/stop cycles that a disk
drive can stand without producing errors. For desktop drives, start/stop cycles are around
50,000 and for laptop drives, around 300,000.

The cost of a 350 GB SATA disk drive is around (US)$50, which is around (US)$0.14
per GB [SPBW10].

2.1.2 Solid State Disk basics

Solid-state disks (SSDs) are devices that use flash-based memory for secondary storage of
data in general computers. They are light, shock-resistant, silent, and consume less power,
because they have no mechanical parts.

The main parts of a SSD are the interface, the flash-based memory, the controller, and
the cache. Figure 2.2 gives an overview of a solid state disk most important parts.

The interface allows the SSD to connect with a host to behave in a similar way a hard
disk drive would do. They can be: SATA, SAS, PCI Express, Fibre Channel, USB, IDE,
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and SCSI.

The flash-based memory is usually NAND type because of its low cost. It is composed
of several flash packages. Each package has one or more memory chips. Each chip is com-
posed from multiple blocks and each block contains several pages. Usually, a block size is
16−256KB and a page size is 0.5−4KB. Data are read/written from/to in page units. It
takes about 20−25µsec to read a page and 200−300µsec to write a page [Sam03, Sam05].
Before a page can be reused it must be erased first. Erasing is at block granularity, that is
why it takes more time, around 1.5−2msec.

The controller has the needed circuitry to connect the flash-based memory with the
host computer. Among other things, it incorporates a complex module called Flash Trans-
lation Layer (FTL) [Int98, M-S98]. One of its important roles is to maximize the parallelism
that the multiple flash chips can provide. Multiple chips can be accessed in a interleaved
fashion, improving performance of SSDs as RAID would do with disk drives. Other im-
portant role of the FTL is to map sectors to the flash-based memory. Several approaches
exist, like page mapping and block mapping. In Nand flash, the usual approach is the block
mapping. Hybrid approaches also exit [LPC+07, YNS+08].

SSDs have also several chips of cache, that are similar to the cache in disk drives. They
help to achieve better performance.

As SSDs do not present mechanical parts, they just have two states of power: active
and idle. A SSD is in active state when it is reading or writing data. When the SSD is not
doing anything, its state is idle.

SSDs can be written a limited number of times. As to rewrite a specific block, it must
be erased first, what is really limited is the number of times that a block can be erased.
When the number of maximum erasures is reached, the SSD’s blocks become unerasable
but are still readable. There are two kind of NAND flash SSDs: SLC (single level cell) and
MLC (multi-level cell). SLC provide only one bit per cell, while MLC provide several bits
per cell, increasing the likelihood for errors. This increased likelihood for error also limits
the number of times that a specific block can be written, which is around 10,000 times in
MLC flash and 100,000 in SLC flash.

The cost of a 128 GB SLC based SSD is around (US)$1,200, which is around (US)$9.2
per GB [SPBW10].

2.2 Storage modeling

A traditional approach for storage devices simulation has been found on analytical models.
They use mathematical equations to describe the disk behavior. Many of those ideas were
incorporated into simulators, which also simulated in a very detailed way many of the char-
acteristics of the drives, reaching the emulation level in many cases. So, both approaches
require a vast knowledge of the device internals to be constructed. An alternate approach
is to model the behavior of the disk as it was a black box. The disk, along with its interface
and its interconnection mechanisms may be considered as a phenomenon which has details
that are not known.
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2.2.1 Analytical Models

Analytical models use mathematical equations to describe storage characteristics. Unlike
simulators, those descriptions are a sort of summaries of the way some storage parts work.
For this reason, they are very fast. However, for some parts of storage devices, it is not
easy to reach an equation that describes them.

Disk scheduling algorithms were proposed to reduce disk arms movements, specially
during bursty arrival times, treating the disk requests in an order that they have to wait the
minimum time as possible. The classic most common scheduling algorithms are: First Come
First Served (FCFS), Sortest Seek Time First (SSTF), and SCAN. In [JW92, WGP94] new
scheduling algorithms, which improved the previous ones, were proposed and studied to be
incorporated into other analytical/detailed models or real devices.

The authors of the work [SMW98] described a model composed of several independent
models. Each model contains formulas for an specific part of the disk drive, like queueing,
caching and disk drive mechanisms. The input to the global model is a workload which
is transformed through all the modules until getting a service time. The authors also
developed as a side-effect, a read-ahead a data reordering prediction method which takes
into account the performance effects of sequential disk acceses.

In [TCG02] an analytical model which analyzes several disk technologies is proposed.
Formulas for modeling optical disks with concentric tracks are provided. For magnetic
disks, formulas for seek and rotational delays are derived, taking into account both variable
and constant rotation speeds. Modeling the new introduced zoned disks was the main
contribution of the work.

A description of an analytical throughput model for disk arrays is provided in [UAM01].
As in [SMW98], it is very modular, and can be decomposed to describe the different parts
of disk arrays. Among them, modules for disks, buses, and controllers are incorporated. The
whole model is compared and validated with measurements taken on real disk arrays. It
also incorporates several modern optimizations, which are common in current disk arrays.
Its modular design makes the inclusion of new modules easier.

An analytical model for the service time in disk arrays is proposed in [KT91]. When a
single request accesses to an array of disks, it can be split into several requests, being the
service time, the maximum of the sub-requests’ service times. The model provides simple
expressions for this.

The work proposed in [YM95] describes a new stripping strategy for disk arrays, and
a new disk queuing policy. An analytical model is derived from this, by treating individual
disks as independent, and using each one, the M/G/1 queuing model.

Another analytical model for disk arrays is proposed in [VMQ03]. It gives an idea of
the performance in disk arrays under synchronous I/O workloads. The model is validated
against a real disk array. The model also incorporates many of the typical characteristics
included in modern disk arrays, such as, read-ahead and write-back caching, disk schedul-
ing, request coalescing, and redundancy in the array. Also, effects of sequentiality and
concurrency are modeled. One drawback of the model is that it has been validated only
for workloads containing just reads, or just writes.
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As was previously said, memory cells in SSDs can be written a limited number of times.
So, an smart management of the internal cells of these devices can extend considerably their
life. A mathematical model for flash memory management problems is defined in [BAT06].
Also, several wear-leveling algorithms are analyzed and compared.

An analytical model for the contribution of garbage collection to write amplification
in SSDs is proposed in [HEH+09]. Write amplification includes the the more internal writes
that have to be done in SSDs, every time they are written. Seeing the results from simu-
lations, it can be concluded that wear leveling is an important key to extend SSDs’ life.

The authors of the work [ABJ+09] proposed two analytical models, describing char-
acteristics of SSDs. The first one, is a general flash model, while the other, a unit-flash
model. Both models capture different characteristics from flash drives and are useful for
designing new models.

The work proposed in [BD11] describes another analytical model to evaluate the per-
formance of two different types of FTLs, in SSDs. Unlike other similar previous proposed
models, it uses real workloads. The model was an extension of the model proposed in
[HEH+09].

2.2.2 Simulators

Simulators model devices in a very detailed way, in a way that developers of simulators need
to understand well the device internals. Simulators can reach in some cases, the emulation
level. This characteristic makes them very accurate, but if scalable storage systems need to
be evaluated, computation power increases with the number of devices that are included
in the simulated system. In that case, using detailed simulators may impact negatively in
the execution time when running long simulations.

DiskSim [dis08] is a storage subsystem simulator that includes modules to simulate
caches, buses, controllers, device drivers and disk drives. The disk drive, which is very
detailed in this simulator, has been validated against a number of disks and even improve
other previous simulators [RW94]. The rest of the components (buses, adapters, controllers,
and drivers) have not been validated [VMQ03]. DiskSim uses many parameters which are
extracted from disks using semi-automated algorithms [WGPW95], or by means of the
DIXtrac disk characterization tool [SG00, SGLG02, BS02]. To give an idea of the com-
plexity of the simulator, it is enough to note that DIXtract extracts over 100 performance
critical parameters. However, DIXtract can only extract parameters from SCSI disks.

Pantheon [Wil95] is another I/O subsystem simulator that initially was used for simu-
lating parallel disk arrays. It simulates components like disks, tapes and array controllers.
Here, again, only disk modules have been properly validated [VMQ03]. It was extended to
simulate both uniprocesors and parallel systems.

RAIDFrame [IGHZ96] was also constructed to evaluate arrays of disks architectures.
It is a software RAID controller which can also be used as a stand-alone discrete-event
simulator for disk arrays [VMQ03].

FlashSim [KTGU09] aims to evaluate storage systems that employ SSDs. It can be
used with different FTL schemes and it can be integrated easily with DiskSim. Another
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simulator from Microsoft [APW+08] also simulates SSDs and it is very integrated with
Disksim. It implements interleaving methods available in common SSD devices but it only
lets using one FTL scheme. In [LBP+09] another SSD simulator was developed but it does
not allow to test different FTL schemes and cannot be integrated with Disksim.

2.2.3 Black-box models

Black box models assume that almost no knowledge of the storage device is included.
Devices and all their characteristics are considered as black-boxes where the internal details
are not known. Among other advantages, we can say that they are usually fast, because
they are not very detailed. They are easy to construct and to update, as it is not needed
to know the internals of the devices and new technologies; and they can be accurate.

The simplest black-box models are table-based models [JA01]. They just relate, in
memory tables, information of input data from workloads to output data from real service
times. Input data from workloads can be request sizes or request types. Output data are the
resulting service times from replaying traces on the real devices. The bigger the tables, the
more accurate the models. Missing data in the tables are just interpolated from the most
similar characteristics on the tables. Accuracy can be improved by adding new information
to the tables. However, this solution is not scalable, because, the more information is added
to the tables, the slower the searching in tables, and the slower the prediction of service
times.

In [WAA+04] an enhancement of the work in [JA01] is proposed. The authors do not
use tables, but applicate CART (Classification And Regression Tree) [BFOS84] model-
ing to storage devices. In CART models goal/output data are organized in trees whose
leaves are accessed by using information from input, like request sizes or request types,
or other characteristics from workloads. They propose two approaches: One that predicts
per-request response times, and another that predicts aggregated response times. The per-
request approach predicts response times just taking into account the characteristics of that
request. The aggregated approach predicts by taking into account characteristics from the
whole workload. The per-request predictor is also more computationally demanding than
the aggregated predictor. On the other hand, the per-request predictor can achieve better
accuracy. Evaluations of the model do not use real disks. Instead, instances of the vali-
dated DiskSim simulator are used. Unlike this, the solution proposed in this thesis use real
disks for validation, and also provides comparisons with instances of DiskSim, in terms of
accuracy and performance.

The authors of the work [YUK06] evaluate the accuracy of a black box model, for hard
disk drives, based on regression trees. They use an open source algorithm called GUIDE
[Loh02]. This algorithm employs Chi-Square analysis of residuals, and eliminates the bias
in variable selection. Evaluations include two kind of environments: single workload envi-
ronment, and multiple workloads environment. The single workload environment simulates
a single workload stream, while the multiple workloads environment simulates an scenario
with multiple streams. Authors conclude that the multiple workloads scenario is more
difficult to predict.

In [MWS+07] the performance of a storage device is modeled by tunning the perfor-
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mance, resource utilization and workload characteristics of other device, in which the first
device is based. Similar or not similar devices may be related in some ways: They may
have similar hardware characteristics or not, they behave similar or not under the same
workloads, etc. The main goal of the proposed method is to know the relationship between
the performance’s devices, in order to construct a derived model from an already modeled
device. The method begins with an absolute black box model that is constructed by ap-
plying CART [BFOS84] modeling. One drawback from this model is the fact that, if the
absolute model is not accurate, errors can be transmitted to the derived model, making it
less accurate.

The authors of the work [LH10, HLST11] use regression trees, as in [YUK06], for
black-box modeling of SSD devices. They proposed two approaches: A basic model and a
extended model. Both models take as input workload characteristics and obtain predictions
of performance. In the basic model, the workload is characterized by the percentage of
writes/reads, requests sizes, number of pending previous requests, and the percentage of
random requests. In the extended model, workload characteristics are the same but are
split by taking into account if they are read or writes, due to the asymmetric performance
of SSDs. Also, two other different patterns from random are studied, like sequential and
strided. However, evaluations do not use real traces. They just use synthetic traces with
the previously mentioned, predefined patterns.

In [LZY+11] a black box energy consumption model for disk arrays is proposed. Here,
a disk array, altogether with a controller and several disks, is considered as a black box,
whose energy consumption can be measured.

The solution proposed in Chapter 3 is a new method to construct black box models
for disk drives. As in DiskSim [dis08], it provides a tool to extract disk characteristics.
Unlike DIXtrac [SG00, SGLG02, BS02], which only characterizes SCSI disk drives, the
proposed tool can be applied to any disk, with any kind of interface. The black box model
proposed on this thesis is based on probabilistic distributions. This fact makes it very fast
at predicting stage. In order to demonstrate this, it is compared with DiskSim in terms
of performance. It is also evaluated using real traces, and synthetic traces from a widely
known benchmark, SPC-1[Cou06]. The proposed model is validated against a real disk. It
is also compared with DiskSim in terms of accuracy. Results from evaluations show that
the proposed method can be as accurate as DiskSim.

2.3 Power saving solutions

Power saving solutions described in this section aim to save power in computer systems.
Hard disk drives are identified as one of the most power consuming elements of the computer
system, and especially, of the I/O subsystem context. Traditional power saving studies have
proposed techniques for saving power in laptop/desktop disk drives. Recently, power saving
in enterprise storage systems has also generated a lot of research.
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2.3.1 Laptop/Desktop oriented power management

Portable computers can only work for several hours, in an autonomous way, before finishing
off a single battery charge. Several components are identified as participants of this energy
wasting. Screen has been identified as the most power consuming element, followed by the
hard disk drive [LKHA94]. Most techniques take advantage of some inactivity periods to
stop the components and save energy, when they are not used. This technique is the most
applied in the hard disk drive context. So the goal here is mainly to save battery energy
by stopping the hard disk drive, and thus, enlarging the amount of time the computer can
operate.

2.3.1.1 Spin Down Policies

As previously said, disk drives can save power by being stopped. Stopping a disk means
putting it in a lower power-mode. Disk drives can be in three power modes: active (the
platters are spinning and the heads are servicing requests), idle (the platters are spinning
but the heads not servicing requests) and standby (the platters are not spinning and the
heads are parked, saving energy). When a disk has been in the idle mode for a specific
period of time, it spins down to the standby mode. Once a request comes to the disk, it
spins up to the active mode to service the request. As spinning down and spinning up
processes consume time and energy, the disk should stay in the standby state for at least
a minimum period of time, for that changes to be worth it and for the disk to save energy.
Spin down policies determine when to spin down a disk to save energy.

The authors of the work [LKHA94] provide an analysis of the tradeoffs and benefits of
spinning down a disk drive as a power reduction technique. First of all, the most suitable
spin down delay (the length of time the disk waits for further activity before going to the
standby state) is found out. It is demonstrated that a spindown delay of 2 seconds results in
the most energy savings. Second, the tradeoff between energy consumption and user delay is
analyzed for the previous 2 second spin down delay. The results show that the user will have
to wait for 15-30 seconds per hour, which are 2 second disk spinups in around 8-15 times
per hour. Next, the use of a disk cache is analyzed for energy savings. It is demonstrated
that using a one megabyte cache is sufficient to achieve most of the energy benefits of disk
caching, and a bigger size cache will not yield any additional savings. Moreover, delaying 30
seconds in writing dirty blocks from cache to disk will provide additional energy savings,
and more than that value will not provide more savings. Another analyzed question is
the fact that this technique provides increased disk spinups and makes bigger the wear
on the disk-head interface. This problem is solved with the next generation of disk drives
which lets a longer continuous use. Finally, as names and attributes in the file system are
frequently accessed, also the use of a name and attribute cache is proposed. More energy
savings are obtained with the use of it.

In [DKB95] some adaptive spin-down policies are proposed. The user has to define
a level of acceptability which is a metric that shows the number of undesirable spin-ups
are accepted by him/her. If the user defines a high level of acceptability, a lot of spin-ups
will take place by trading-off performance and decreasing energy. On the contrary, if the
user defines a low level of acceptability, less undesirable spin-ups will take place, energy
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savings will be decreased and the performance will be better. Threshold adjustment takes
place during an adaptive policy, either when an unacceptable spin-up occurs or when other
information suggests the need to change the threshold. Adaptive spin-down is compared
with fixed threshold policies. The results show that:

• sometimes adaptive spin-down policies eliminate a big part of all undesirable spin-ups
with small increases in energy consumption,

• other times the undesirable spin-ups are the same obtained by varying fixed threshold
policies, and

• sometimes the results are worse than using a fixed threshold policy.

It is important to note that in some cases the effectiveness of the adaptive spin-down
policies depends on the trace and disk used.

In [HLS96] the problem of when to spin down the disk in mobile computers is treated
by using a machine learning algorithm, The share algorithm. It receives as input a set of
experts which make predictions. The algorithm combines the predictions of the experts and
assigns one weight per expert. That weight represents the quality of each expert predictions.
The weights of the experts are continuously being updated. Results show that The share
algorithm is better than other practical algorithms, usually implemented, such as:

• the fixed spin-down delay algorithm, which picks one fixed spindown delay as value
and spins down after the disk has remained idle for that period,

• the fixed spin-down delay equal to the spin down cost of the disk algorithm, or

• randomized algorithms, which select spin-downs delay values from some distributions.

The implementation of the algorithm is quite efficient, and could be implemented on a disk
controller.

2.3.1.2 Energy-aware Prefeching and caching techniques

Choosing well when to spin down a disk helps to save energy. When a disk has been in
the idle state for a certain period of time (set by the spin-down policy), it goes to the
standby state. Once a request comes to the disk, it has to spin up to service it, regardless
of the spindown policy. Prefetching and caching techniques, which reduce the number of
disk accesses, become a very useful support for the spin-down policies to save even more
energy. When a request comes to the disk, and it is in the standby state, if the request
is in the cache, an spin-up can be avoided, and disk idle times can be longer, thus saving
more energy. The main goal of these approaches is to maximize the disk idle times by using
caching techniques so as to keep the disk in the standby power mode as long as possible.

Prefetching caches are usually used to hide disk latencies, but it does not usually
reduce the power consumption of the disks. However, the authors of the work [PS04]
proposed an epoch-based prefetching algorithm into the memory management mechanisms
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of the operating system, for power saving goals. Each epoch consists on two phases: idle
phase and active phase. During the idle phase the disk is in a lower-power mode until
a new prefetching cycle has to be initiated, a miss takes place or the system is low on
memory resources. In that idle phase acceses to each active file are monitorized by the
operating system by using daemons that try to predict the next miss rate for each file.
During the active phase the prefetching is carried out using the information monitorized
by the daemons and the length of the upcoming idle phase is predicted. Moreover, accesses
of concurrently running applications are coordinated for them to arrive the disk roughly
at the same time. The main goal of using this prefecthing algorithm is to maximize the
disk idle time by increasing the burstiness of I/O patterns. Experimental results show that
the bigger is the size of the memory used by the system, the better are the energy savings.
The energy savings are up to 60-80%.

In [CZ08] two caching policies are described in order to save energy. Both policies try
to maximize the disk idle time by reshaping the disk access pattern to a clustered one. The
first one, HC-Burst, is a replacement policy that chooses more clustered accessed blocks and
more unlikely to be accessed blocks for replacement by identifying burstiness in previous
periods of time. Clustered accessed blocks do not break idle intervals, because all the blocks
are accessed in short intervals of time. The second one, PC-Burst, is a replacement policy
that tries to predict disk accesses in the future. By using this information some disk accesses
can be evicted in order not to break long idle times. The energy savings are up to 35%
using a real implementation and the performance loss is minimal.

Laptop Mode[San04] is a setting that comes with the Linux Kernel and lets changing
the way one wants to distribute disk I/O requests over time. Usually, Linux distribute disk
I/O in a smoothly manner, not letting the disk to spin down for long periods of time. In
a laptop, in order to extend its battery life, it would be beneficial to concentrate requests
into shorts periods of time, with long intervals of inactivity between them. So, whenever
Laptop mode is activated it is possible to extend periods of inactivity up to ten minutes.
During the activity periods read-ahead can be performed up to 4MB, and this evicts some
spinups. Moreover, writes can remain in memory until the inactivity periods are over or
the memory is out.

In [TLY06] an energy efficient virtual memory system with flash memory as the sec-
ondary storage is used. Two different techniques are proposed: subpaging and storage
cache management. The subpaging technique consists on partitioning a virtual memory
page in several flash pages, and only dirty subpages are written to flash memory whenever
a page faults. In the storage cache management, only writes are cached in SRAM and
two approaches are showed: the first one keeps in cache the most frequently and the most
recently used pages (TF policy). The second one takes into account the garbage collection
overhead problem, trying to allocate data accessed close in time to the same flash block so a
victim block with a small amount of live pages could be found whenever garbage collection
is triggered (TF-Locality). The subpaging technique energy savings for a flash memory are
up to 20% on the average, and up to 24% on multiprogramming workloads. The TF policy
energy savings are up to 19.5%. The two techniques together get energy savings of up to
35.6% on average for a flash memory.
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2.3.1.3 External Caching

External caching differentiates from in-memory caching in the fact that in external caching
a non-volatile storage device is used [UGB+08]. Therefore, caching or prefeching policies
are applied to it to save energy in the disk drive. Using non-volatile storage devices like
NAND flash devices as caches for disk drives, has several advantages over buffer memories.
First, they have high densities and thus can store lots of data. Second, they are non-volatile,
which means that when a power cut occurs, data do not have to be lost. Third, they have
low power characteristics. However, NAND flash devices are not still as fast as in-memory
caches.

EXCES [UGB+08] is a dynamically loadable Linux Kernel module that operates be-
tween the filesystem and I/O scheduler layers in the storage stack. It is composed of five
components: page access tracker, indirector, reconfiguration trigger, reconfiguration plan-
ner and reconfigurator. The module tries to redirect as many requests as possible to a
flash-based storage device and to keep the disk sleeping as long as possible. So the flash
based storage device acts like a sort for cache for the disk. The page access tracker catches
every request and maintains information about the popularity of the requested pages. The
most popular pages are the most recently and the most frequently accessed. The indirector
component redirects the request either to the flash-based storage device or to the disk. The
request is redirected to the disk whenever there is no space in the flash-based storage device
and the requested page is not in the flash-based storage device, if it is a write. If it is a read
and the requested page is not in the flash-based storage device it is directly redirected to
the disk. Then, the reconfiguration trigger is invoked and it decides if a reconfiguration op-
eration is needed. If so, the reconfiguration planner uses the popularity pages information
to create a reconfiguration plan to move some pages from the flash-based storage device
and vice versa. Then, the reconfiguration is invoked to carry out the plan created by the
reconfiguration planner. Energy savings with this approach are found in the range 2-14%
and important reductions in performance are noted more in write-intensive workloads due
to random writes to the flash-based storage device that are the least efficient, both in
performance an power consumption [BITW07].

In [KRM08] a Flash based disk cache is proposed. With this approach, Flash is used as
a way to address the latency gap between the hard disk drive and DRAM while saving power
in the server domain environment. The Flash based disk cache is split into two regions, one
for reading and the other for writing. Moreover, a programmable Flash memory controller
is proposed in order to improve Flash cell reliability and extend memory lifetime. Four
tables are hosted in the primary disk cache (DRAM) to carry out all the block and page
management (Flash Cache hash table, Flash page status table, Flash block status table, Flash
global status table). They split the Flash based disk cache into a read and write cache in
order that less blocks are candidates for garbage collection. This reduces Flash reads, writes
and erases compared to a unified Flash based disk cache. When a read is performed, the
DRAM is searched first. If there is a hit, the content is accessed. On the other hand, if a
miss occurs, the Flash based disk cache is searched. If the requested content is found, it
is accessed, if not, the disk is accessed and the content is copied to the DRAM and the
read cache in Flash. When a write is performed, the DRAM is accessed and then the page
accessed in DRAM is written to Flash. If the page is in the write cache, it is updated, and



2.3. Power saving solutions 17

if it is in read cache, it is invalidated and copied to the write cache. In order to improve
Flash cell reliability and extend memory lifetime, either ECC strength can be increased
for a block or that block can be switched from MLC to SCL mode.

Both in [BBL06], and in [CCJZ06], a unique flash drive in considered as a cache for a
single disk drive, in the laptop/desktop environment. In [BBL06], a very simple sequential
prefetching algorithm is proposed. In [CCJZ06], a more complex prefetching algorithm is
proposed, which uses information from the kernel. Here, the kernel provides hints of file
access patterns. Also, in both cases, caching techniques are applied.

2.3.1.4 Hybrid disks

Hybrid disks locate some flash memory next to conventional disks. Usually, the disk part
stays at the standby mode. Writes are written to the flash part. Reads are read from the
flash part when they can be served by it. When not, more data apart from the needed are
read from the hard disk to the flash part, aiming to serve future requests. When the flash
part is almost full, hard disk part spins up to move the written data to it from the flash
part. Also, when read data cannot be served by the flash part, hard disk part spins up to
serve them.

An operating system can take advantage of the flash part to achieve random acceses
at more speed and also boot times, because flash memory presents constant access times
for reads.

Hybrid disks are more expensive than the conventional hard disk drives. Also, they
provide less performance when data has to be read from the hard disk part and it is in
the standby mode. This is because spinning up the hard disk part takes time, and in some
cases, several seconds. Hybrid disks presents also lower performance for write requests, as
a consequence of the flash memory nature.

Life time of hybrid disks is more limited than in the conventional hard disk drives.
That is because both the hard disk drive part and the flash part have reduced life times.
Hard disk drive parts have a limited number of spin down/up cicles. Flash parts have also
a limited number of erasure cycles per block.

Hybrid disk are noisier than conventional disk drives. This is because spinning up/down
processes are noisy.

In [BBL07] a hybrid disk is used to save power in desktop/laptop computers by using
several techniques:

• Artificial Idle Periods: It is an improvement in a spin-down algorithm which considers
I/O type when the disk idle time is computed. Idle times are recorded by taking into
account the time since the last read request, and not only since the last request. Most
of write request can be served by the flash part, avoiding spinning up the hard disk
part. By doing this, idle periods are increased, and also, energy savings.

• Read-Miss Cache: It is used to host potential read-misses altogether with the sub-
sequent sequential reads, in the flash part. Its goal is to reduce spin-ups caused by
future read operations.
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• Anticipatory Spin-up: It aims to reduce the time it takes for the disk part to spin-up.
It wakes the disk up in advance of the fact that a request that cannot be serviced by
the flash part, arrives.

• Write Throttling: Controls the amount of data written to the flash part while the
disk is not being used, so that it can last for certain time.

2.3.2 Enterprise Storage Systems oriented power management

Saving energy in enterprise storage systems has become an urgent need, because it is usual
to have a great number of disk drives, working at the same time. This fact increases power
use, and also greater cooling requirements for heat dissipation, reduced computational
density, and higher monetary and operating costs. For a usual data center, storage accounts
for 27% of energy consumption [WOQ+07].

2.3.2.1 Multi-speed drives

Some approaches use multi-speed disks, which are be able to change their speed while
spinning. Slower rotation speeds waste less energy than higher rotation speeds. According
to the incoming workload, multi-speed disks change their rotation speed, to save energy.
The lighter the load, the slower the rotation speed, and vice-versa. Slow rotation speeds
can still service requests by providing lower energy consumptions. However, such disks are
still inaccessible in the market.

In [CPB03] four approaches are proposed to save energy in the network servers context.
The first one consists in powering disks down during periods of idleness. This technique is
not very appropiate for network servers due to the lack of idleness in the disk subsystem.
The second one consists in replacing a high performance disk with several lower power
disks. It is demonstrated that the replacement works well for storage, performance and
reliability requirements, but not for energy. The third approach consists in using one high-
performance disk and a lower-power disk. Both disks should have the same data. During
times of high load the high performance disk is used, and during periods of lower load the
lower-power disk is used. Sometimes it is necessary to update blocks of data from one disk
to the other one. This technique is only appropiate for not realistic disk demands that the
lower-power disk is able to cope with. The last approach, multi-speed disks, uses several-
speed disks. The higher the load, the higher the disk speed. When the disk load becomes
lighter than 80% of the disk throughput of a low speed, the disk spins down to the low
speed mode; if the load is heavier than the same threshold, the disk spins up to the high
speed. This technique works well in performance and obtains energy savings between 22%
and 15%.

DRPM [GSKF03] is a mechanism to dynamically modulate the disk RPM speed. To
see the potential of the strategy either the RPM transition costs and power characteris-
tics are modeled. A detailed study with different workloads and each one with different
characteristics and level of burstiness demonstrates that DRPM outperforms traditional
power management techniques [LKHA94, DKB95] in intermediate cases when the inter-
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arrival times are not either too small or too large. The reason is the fact that DRPM finds
more opportunities to transition to lower power modes, which may not be long enough for
traditional power management schemes. Moreover, DRPM provides an heuristic for a disk
controller array to decide at the end of each n-requests window whether to command the
disks to go to full speed when the average response time is larger than an upper tolerance
level, to go to a lower speed when the average response time is lower than a lower tolerance
level, and to keep their speeds when the response time is within both tolerance levels.
It is important to indicate the size of the window (in number or requests) and the both
tolerance levels, always taking into account the power-performance tradeoffs.

Hibernator [ZCT+05] is an approach to save energy, getting at the same time good
performance goals. A disk array is used having each disk several speeds. A coarse grained
algorithm to decide at which speed will work each disk, in each epoch is proposed, always
taking into account either the average response time, and the energy consumption for
each disk in the previous epoch. Moreover, some layouts and ways to migrate data to the
appropiate disks are proposed. Among them, the most appropiate is randomized shuffling
which lets add disks to tiers (groups of disks which spin at the same speed) and remove
disks from tiers as necessary. The energy savings are up to 65%.

SBPM [SGS08] is a mechanism that dynamically modulates several knobs in the
storage system, such us the disk RPM and the VCM speed to adapt the storage system to
workload conditions and save energy. It is demonstrated that this technique outperforms
DRPM in all kind of characteristics. For example, DRPM consumes more energy and its
performance is worse than SBPM, since the assumptions about the time taken to transition
between RPMs in DRPM is in the millisecond range while in SBPM is in the second range
as happens in real multi-RPM drives. Moreover, the DRPM policy introduces more RPM
oscillations than SBPM, which is able to better balance the system by using both the SPM
and VCM knobs.

2.3.2.2 Energy-efficient RAIDs

Redundant Arrays of Independent Disks (RAID) provide reliability and high performance
by putting several disks altogether and treating them like an unique device. Saving energy
is exploited at RAID level as well.

PARAID [WOQ+07] is a new layer that can be integrated in a RAID 5 configura-
tion. It can vary the number of power-on disks depending on the incoming load. Data
are distributed among more disks for high workloads. When workloads are lower, data are
concentrated in few active disks. It can reduce power consumption by up to 34% and can
keep a reasonable level of performance and reliability.

MAID [CG02] moves infrequently used data to unused disks and take a role similar
to tapes because in this environment, a great deal of data are written and never accessed
again. This configuration achieves energy savings of 85%.

RIMAC [WYZ08] is a redundancy based I/O cache architecture to reduce energy
consumption and improve performance. The main contribution of RIMAC is that it solves
the passive spin-up problem. In this problem, if a disk has been spun down for a not-big-
enough period, the wasting in performance and power can be more than the one from
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keeping the disk in the active state. In RIMAC a large storage cache to store data stripe
units is used, while a smaller RAID controller cache is used to save parity units. In this
approach, only one disk can be spun down. The authors of RIMAC develop two read request
transformation schemes (TRC and TRD) and a power-aware write request transformation
policy for parity updates. Both policies let reads to the non-active disk, to be serviced by
the storage cache, or by calculating an on-the-fly XOR block with data and parity from the
active disks, if those data are not hits on the storage and controllers caches. The authors
also developed a second-chance parity cache replacement algorithm to improve the success
rate of power-aware request transformation policies such as TRC and TRD. Results show
that RIMAC saves energy up to 18% and reduces response times up to 34%.

EERAID [LW04] use non-volatile caches to host parity or data blocks. When a request
to a block needs to be service and that block can be calculated both from the blocks in the
active disks and from the blocks in the cache, there is no need to wake up a power off disk.

2.3.2.3 Data migration across drives

Some techniques create enough inactivity in a number of disks by migrating their data to
another disks.

Write-off Loading [NDR08] is a new technique that allows write requests on spun-
down disks to be temporarily redirected to persistent storage elsewhere in the data center.
This increases energy savings to 45%-60%. The used hardware to host off-loaded blocks
is the end of each existing volume. Each volume has its own manager who decides when
to spin disks up or down and where to off-load writes. The places where the blocks are
off-loaded in other machines are called loggers. The block-level traces from an enterprise
data center were analyzed and an important conclusion of that was the fact that there is
enough idle time for some volumes to spin down without removing the writes from the
traces. So the both cases show there is idle time for the volumes to spin down and save
energy.

In [NTD+09] an analysis of tradeoffs and benefits to know if replacing disks by SSDs
is worth it, in the enterprise environment, is presented. Several possibilities are considered:
keeping the current configuration based only in disk drives, combining SSDs with disk
drives, and replacing totally disk drives by SSDs. Analyzed figures, in terms of prices and
performance, show that the high prices of SSDs do not make them adequate to replace
hard disks yet. As a conclusion, at SSDs current prices, combining SSDs with hard disks
could be seen as a adequate transition solution.

MAID (Massive arrays of idle disks) [CG02] are large storage arrays designed to
reduce the energy costs while maintaining performance in supercomputer archival storage
environments. In this kind of environments a great deal of data are written and never
accessed again, so they have little need of the high performance or increased reliability of
conventional RAID systems. The authors provide accurate models for both performance
and power. The system is composed of several cache drives that remain spinning and several
data drives which can spin-down following some periods of inactivity. Several configurations
for the previous system are analyzed and the results show that the same performance is
maintained while achieving energy savings of 85%.
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The proposed approach in Chapter 4 redirects data from disks to SSDs, in the scope
of large parallel computing environments such as clusters or supercomputers. When doing
that redirection, life span of SSDs, and disks are also taken into account. An economic
based evaluation of such redirection is described in Chapter 5.

2.3.2.4 Power-aware cache management

PB-LRU [ZSZ04] is a power-aware algorithm which divides the storage cache into separate
regions, one for each disk. There is correlation between a disk’s energy consumption and its
corresponding storage cache partition size. That means that the size assigned to inactive
disks will be bigger than the size assigned to active disks, and thus the energy consumed
by inactive disks will be less than by active disks.

As this solution uses volatile memory as cache, reliability problems can appear, bring-
ing on data losses.

2.3.2.5 Power-aware File Systems

Saving power is exploited at file system level.

BlueFS [NF04] is a file system that checks the energy features of each device to deter-
mine when to access data. This configuration achieves energy savings of 55%.

Conquest-2 file system [RAG+03] stores small files from disks in non-volatile RAM to
save energy.

GreenFS [JS08] is a FileSystem that lets many of the disk drives from an enterprise
to be kept in the standby state for enough time to save energy. In GreenFS the local hard
disks are just backups of the data stored remotely in a GreenFS server. Local hard disks are
used when the local network does not work well. In GreenFS a client has also a local flash
memory which serves as a buffer that hosts data updates when the remote server is not
available. Thus, flash memory can make bigger the local memory cache size and improve
performance on the client. GreenFS increases enterprise data reliability, minimizes disk
power consumption, noise and its design requires relatively minimal hardware and software
modifications in existing infrastructures.

FS2 [HHS05] is a file system based on the Ext2 file system. It contains a runtime
component responsible for dynamically reorganizing disk layout. FS2 replicates disk blocks
to improve disk I/O performance and energy savings. By preserving replicas adyacency
on disk according to the other in which their originals were accessed at runtime, future
accesses to blocks will be made significantly faster.

In this thesis, a generic block level solution is proposed, which is transparent to the
file system, and other higher levels in the operating system.

2.3.2.6 Power-aware server clusters

In [PBCH01] energy conservation for clusters of PCs is treated. The technique switch cluster
nodes on in order to manage high loads efficiently, and off, to conserve energy under more
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moderate loads. The main part of this system is an algorithm that carries out decisions by
considering both the load on the cluster and the energy and performance involvements of
turning nodes off. The algorithm is tested in two different ways: at an application degree,
and at an operating system degree. The results are encouraging, demonstrating that the
method saves energy in relation to other conventional systems.

The solution proposed on this thesis is just focused on the I/O subsystem, where
switching on/off times are less than switching whole I/O nodes.

2.4 Prefetching and Caching algorithms

Prefetching and Caching algorithms are a common practice in storage systems. They mainly
have been used to improve performance by avoiding as many I/O requests as possible, to
increase throughput and decrease latency. Moreover, in one way or other, they could be
used to create bursty access patterns for disk drives, increasing the average length of idle
intervals and maximizing utilization when the disk drive is active.

2.4.1 Prefetching algorithms

Prefetching algorithms move data, ahead of time, from the I/O subsystem to the cache.
Those moved data are supposedly going to be accessed soon. If some of the moved data
happen to be in the cache when accessed, some high service demands that come from
extreme head displacements at disk drives, can be avoided. Moreover, when the goal is to
save energy, having future accessed data in the cache may prolong idle times sizes, letting
disk drives save energy. As was previously said, traditional prefetching algorithms have as
an aim to increase throughput and decrease latency. The next paragraphs describe some
of them.

The C-Miner algorithm [LCZ05] tries to discover block correlations in storage systems
by employing a data mining technique called frequent sequence mining. In this technique,
frequent sequences of accessed blocks are evidences of blocks correlations in storage systems.
Knowing which blocks are going to be accessed after accessing a group of previous blocks,
the future accessed blocks can be prefetched in the cache. The algorithm has been frequently
used for reducing the average I/O response time in storage systems, but no for power saving
goals. The algorithm does not really work with sequential workloads because they do not
usually happen often enough in the access flow to be caught by C-Miner, and it needs
some level of repetition for the block accesses. C-Miner algorithm works assuming that
block correlations are stable, and running it only once, the correlations will remain stable
for a long time. So, although the algorithm takes about an hour to run for requests from
the previous days, it is not necessary to run it constantly in the background, just only once
to update block correlations every week.

The Adaptive Prefetching algorithm in disk controllers [ZGQ08] uses an adaptive
prefetching scheme to optimize the system performance in disk controllers for traces with
different data localities. The algorithm has not been used for power saving goals. The al-
gorithm uses on-line measurements of disk transfer times and of inter-page fault rates to
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adjust the level of prefetching dynamically, and its performance is evaluated through trace
driven simulations using real workloads. The results confirm the effectiveness and efficiency
of the adaptive prefetching algorithm.

The algorithm presented in [GAN93] uses past disk accesses to predict future ac-
cesses. It presents an adaptive method. The adaptive method consists of an adaptive table
which hosts information about past disk accesses. That information is used to predict next
probable disk accesses. The information is also continually updated to the next probable
disk accesses. The algorithm also adapts and works in multitasking environments, where
multiple streams of disk requests are mixed. Several variations of the same algorithm are
tested.

In [GM05] sequential prefetching is considered very integrated with cache replacement
policies. Also, the caching space is divided to host sequential and random streams and avoid
read disk accesses. The authors design a sequential prefetching algorithm, called SARC. It is
capable to combine synchronous and asynchronous prefetching. In synchronous prefetching
a sequential stream of blocks is brought to the cache when a miss occurs. In asynchronous
prefetching, a miss does not have to happen to bring subsequent blocks in advance. It also
uses in an adaptive way that separation of sequential and random streams to minimizing
the hit ratio and maximizing the average response time. The algorithm is tested in a Shark
storage controller.

In [GB07] a distinction of four sequential prefetching algorithms is defined taking into
account if they are synchronous or asynchronous. The authors designed a novel algorithm,
AMP which applies the theoretical analysis previously done in for the sequential prefetching
algorithms.

With an aim to save power, several prefetching algorithms have been previously men-
tioned, and described in [PS04], [CZ08], [San04], [CCJZ06], and [BBL06].

In this thesis, four prefetching algorithms, with an aim to save power, are proposed.
The first three are dynamic, and suitable for sequential-oriented workloads. The other, as C-
Miner is offline, and tries to extend disk idle times, mainly by prefetching data determined
by previous experiments.

2.4.2 Caching algorithms

Caching algorithms decide which data will be replaced whenever a cache is full. As was
previously said, traditional caching algorithms have as an aim to increase throughput and
decrease latency. The next paragraphs describe some of them.

Belady’s algorithm [Bel66] replaces, specifically, data that are not going to be accessed
in the longest time. This is an ideal algorithm, and there are no implementations of it. That
is because, it is not always possible to know in advance, which data are going to be accessed
in the future. It is specially useful to see the effectiveness of other caching algorithms.

The Least Recently Used (LRU) algorithm [CD73, Den68] replaces the data in the
cache that have not been manipulated for the longest period of time. It is based on the
experience that data which have been used in the recent past will probably be used again
in the proximate future.
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The Least Frequently Used (LFU) algorithm replaces the data that are least frequently
manipulated. The motivation for this algorithm is that some data are accessed more fre-
quently than others, so reference counts can be used as an estimate of the probability of
data being referenced.

The Random Replacement (RR) algorithm randomly selects data to replace. It is very
fast, and no information about the cache needs to be kept.

The Multi-Queue (MQ) [ZPL01] algorithm uses multiple LRU queues. This algorithm
demotes data from higher to lower level queues in order to eventually evict data that have
been accessed frequently in the past, but have not been accessed for a long time. This
algorithm evicts double caching effects that come with using other caching algorithm in
the operating system buffer caches.

In [KLW94] the Segmented LRU (SLRU) is described. It divides the cache into two seg-
ments, making a combination between LRU and MRU. The Adaptive Replacement Cache
(ARC) [MM03] improves the SLRU algorithm by combining LRU and LFU, and dynami-
cally adjusting the size of the two segments.

With an aim to save power, several caching algorithms have been previously mentioned,
and described in [PS04], [CZ08], [CCJZ06], [BBL06], and [UGB+08].

In this thesis, as will be described in Chapter 4, the LRU algorithm was used.

2.5 Summary

This chapter have presented a few preliminaries to understand the two problems presented
on this thesis, and a complete compendium of solutions for the two analyzed problems.

A preliminary description has detailed the main characteristics of hard disks and Solid
State Disks.

For the disk modeling problem, solutions for analytical, detailed, and black box models
are presented. Also, the solution proposed on this thesis has been placed among the black
box model solutions.

Regarding the power saving problem, solutions both for laptop/desktop and enterprise
environments are described. Moreover, the solution proposed on this thesis has been placed
among the enterprise environments solutions, in the data migration branch. Also, as it uses
prefetching and caching policies, a collection of them is detailed.
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Black box modeling

3.1 Introduction

Simulation is a common technique in performance evaluation of many applications. To
obtain realistic results, data access to either a file system or database management system
cannot be ignored. However, in any case a key element in the data access is the storage
device simulation model.

In general, a storage device model accepts as input the parameters of an application
workload (as a flow of device requests) and outputs a prediction of a performance metric.
The output performance measurement may be a general performance metric as the average
bandwidth, throughput or latency. Such metrics give an idea of the global performance of
the device. However, if the device simulation model is to be integrated into a larger model
which includes a file system or a database manager a detailed metric as the response time
for each device request is needed.

Traditionally, storage devices have been modeled by means of detailed analytic models
based on devices geometry [RW94], zone splitting [TCG02, dis08] or the use of of read-
ahead caches and request reordering [SMW98], reaching the emulation level in many cases.
One drawback of analytic models is that, as soon as new technological innovation is added,
the model needs to be reworked to include new devices making difficult to have a general
model up to date.

Many of theses characteristics have been incorporated in simulation tools. One widely
simulation tool, where many of these ideas have been integrated is DiskSim [dis08]. The
simulator uses many parameters which are extracted from disks using semi-automated
algorithms [WGPW95], or by means of the DIXtrac disk characterization tool [SG00,
SGLG02, BS02]. To give an idea of the complexity of the model, it is enough to note
that DIXtract extracts over 100 performance critical parameters.

There are system wide simulations where scalability is an important issue. This is the
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case in large clusters design [NFG+09], evaluation of peer to peer or volunteer computing
models, Grid storage infrastructure or content delivery networks [CG09]. In all those cases a
realistic simulation need to be run for a long simulated time. For the simulation approach
to be affordable a storage device model is needed with a balance between accuracy an
performance.

An alternate approach are given by black-box models where no knowledge of the
storage device is included. The simplest black-box models are table-based models [And01],
although more elaborate models exist [MWS+07, WAA+04].

Using a black-box approach, the behavior of the storage device can be modeled using a
sequence of random variables Ti, which models the time required to service the i-th request.
That sequence of random variables is a stochastic process. The goal of a simulation model
is then to generate values fitting that stochastic process. To obtain such a simulation model
experimental data must be obtained and analyzed to find the distribution behind.

However, the real reason for finding the distribution behind experimental data is the
ability to generate random values accordingly with that distribution. A second approach
is the generation of such values either from a experimental data histogram representation
or from a experimental data cumulative distribution function representation.

3.2 Method

The approach proposed on this thesis starts with a sequence of disk requests (from a
synthetic workload or real traces repositories) and ends up with a variate generator capable
of producing several instances of simulated service time traces. The method has several
steps as it is shown in Figure 3.1:

1.- Obtaining sequences of I/O requests

2.- Measuring service time

3.- Building the variate generator

4.- Producing simulation results

The next paragraphs explain every step in detail.

The first data set (step 1) is a sequence of I/O requests used to measure service time
of a disk. That workload may come from two different sources:

• Real I/O traces from a specific system. This approach has the advantage of being
very realistic. However, from a stochastic simulation point of view, they do not allow
running different realizations of a experiment with different input.

• Synthetic workloads modeling a set of I/O traces realizations. This approach may be
seen as not so realistic, but it will easily allow running different realizations of an
experiment with different input.
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Figure 3.1: Steps in black box modeling of storage devices.

The selection of the source for the I/O requests depends on the purpose of the simulator
to be produced. Our method allows to work with real I/O traces as well as with synthetic
workloads as soon as a common representation is used. It is important to remark that
the simulation module produced with our method is dependent on the I/O requests data
sets. If we use I/O requests data sets coming from a Web server, the generated simulation
module will be accurate to simulate disk service time under those load conditions and not
under the load given by a database server.

Next step (step 2) is obtaining sets of experimental traces with measurements of
disk service time. We perform different realizations of the measurement procedure. In each
realization we send requests to the disk and we measure the service time for each individual
requests, recording all the information in an experimental traces repository. Section 3.4
describes the details of this procedure.

After experimental measurement, obtained data must be analyzed to build a variate
generator (step 3). Two approaches may be used here: building an analytical or an ex-
perimental variate generator. The analytical approach tries to find the distribution behind
datasets. The experimental approach builds a variate generator from the histogram or
the cumulative distribution function representations and can be easily automated. In this
chapter we have selected the analytical approach.

Finally, the variate generator is included in a simulation module (step 4) to produce
simulation results. After several realizations of the simulation are run with the initial work-
load used in step 2, simulation results are compared with experimental data to determine
accuracy. Chapter 5 describes this step in detail.
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3.3 Obtaining sequences of I/O requests

As we have already mentioned, we took the approach of using both synthetic and exper-
imental traces. When using synthetic traces, we chose the SPC-1 benchmark [Cou06] to
generate traces that are a common representation of other traces, and try to provide a wide
range of characteristics from them. By using synthetic traces, we construct more general
models, and although less accurate, usable by more kind of traces. On the other hand,
when using real traces, we construct more specific models, mostly usable by traces that
also have specific characteristics, detectable by those specific models. Moreover, specific
models are usually more accurate.

3.3.1 Synthetic Workloads

To generate synthetic traces, we built a synthetic workload generator. Among different
available options we chose the SPC Benchmark v1.10.1 [Cou06] workload defined by the
Storage Performance Council [spc11].

The SPC-1 benchmark defines three Application Storage Units (ASU) each one repre-
senting a logical interface between a data repository and the host based programs. Among
the different ASU to logical volume mappings defined by SPC-1 we have selected N-1 map-
ping in which the three ASUs are mapped to a single logical volume as our goal is to
provide a model for a single disk.

The combination of the three ASUs defined in the specification (data store, user store
and log) represent a typical usage of a storage system. Each ASU is composed of several
I/O streams (4 streams for ASU1, 3 streams for ASU2 and 1 stream for ASU3) whose
parameters are presented in Tables 3.1, 3.2 and 3.3.

Stream
Parameter 1 2 3 4

Intensity multiplier 0.035 0.281 0.070 0.210
Read fraction 0.5 0.5 1.0 0.5
Address Uniform RWalk Inc RWalk
size 8 8 Mixed 8

Table 3.1: ASU1 main parameters

Stream
Parameter 5 6 7

Intensity multiplier 0.018 0.070 0.035
Read fraction 0.3 0.3 1.0
Address Uniform RWalk Inc
size 8 8 Mixed

Table 3.2: ASU2 main parameters
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Stream
Parameter 8

Intensity multiplier 0.281
Read fraction 0.0
Address Inc
size Mixed

Table 3.3: ASU3 main parameters

For each I/O stream, the SPC-1 defines several parameters. The main parameters are
an intensity multiplier specifying the contribution of that stream to the whole workload,
a read fraction specifying the amount of read operations (rest are write operations), the
start address of each operation and the size of that request. Addresses are aligned to a
limit of 8 blocks with a block size of 512 bytes. Sizes of blocks are expressed in number of
512-bytes blocks.

As previously mentioned, the access pattern of each stream is highly dependent on
the address and the transfer size. The address may be given by an uniform distribution
(Uniform), a hierarchical reuse random walk [McN00, DF05] (RWalk), or an incremental
access pattern (Inc). The size of the request is the amount of 512-bytes blocks to be read
or written. Usually this parameter is fixed to 8 blocks. However, streams 2, 7 and 8 use a
mixed model where request sizes vary from 8 blocks to 128 blocks.

The SPC-1 benchmark also defines Business Scaling Units (BSUs) which represent
users accessing to the three ASUs. Each BSU is composed of the 8 streams previously
described, and altogether provide a load of 50 operations per second. So the number of BSUs
is directly proportional to the load of the disk, being 50 the coefficient of proportionality.

We have implemented a workload generator for the The SPC-1 benchmark. The goal
of the workload generator is to get measurements for a high number of requests so that we
are able to build a random variate generator for the disk. To achieve this goal the length of
the experiments must be enough so that accurate estimations may be obtained. The usage
of such lengthy experiments imposes an additional requirement on the underlying random
number generator used, if correlation and autocorrelation are to be avoided. To guarantee
that different random sources are based on non-overlapping random number generators we
use the Mersenne-Twister [MN98] random number generator, which has a period equal to
219937 − 1.

In order to validate our implementation of the SPC-1 benchmark, we picked among 8
streams, just the first three, because their start addresses follow, respectively, the Uniform,
RWalk and Inc distributions. The rest of the streams in the same and in other ASUs
implement one of the three distributions, but with different parameters. We validated
the chosen streams against the ones from an open-source implementation of the SPC-1
workload [DF05].

For stream 3, we also compared our Mixed size distribution implementation with the
Mixed distribution from the open-source implementation.

As the random number generators for ours and the open-source implementation are
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Figure 3.2: CDF results of running ours (V-spc1) and the open-source (SD-spc1) imple-
mentation of the SPC-1 benchmark for the Mixed size distribution

not the same, just using an equal seed may not cover the same addresable areas for both
implementations. So we decided to force them to use equal inital addresses. From that
moment on, we let both implementations take their own course.

Figure 3.2 shows the CDF (Cummulative Distribution Function) results of running
ours (V-spc1) and the open-source (SD-spc1) implementation of the SPC-1 benchmark for
the Mixed size distribution. The sample was of 100,000 requests. Note that they match
quite well.

Figure 3.3 shows the CDF results of both implementations of the spc-1 benchmark for
the Uniform (ASU1-1), RWalk (ASU1-2), and Inc (ASU1-3) distribution. Their samples
were of 10 million requests for the Uniform and RWalk distributions, and of 100,000 requests
for the Inc distribution. As we wanted, the initial addresses were equal. That made that
also the covered area was the same and the CDFs overlapped. As a consecuence of that,
the figure shows quite well the good fit of the distributions.

3.3.2 Real traces

In order to construct our more specific models, we use several different block-level repre-
sentative traces, common in data-intensive I/O systems. Financial [uma11] is the I/O core
of an OLTP application gathered at a huge financial organization. It performs about 5
million requests over 24 disks. Cello99 [Cel11] is a shared compute/mail server from HP
Labs. It performs about 6 million requests over 25 disks.

Researchers have investigated several I/O intensive parallel scientific applications, such
as MadBench2, S3D, and BTIO, to mention a few.

MadBench2 is a benchmark derived from a cosmology application that analyzes Cos-
mic Microwave Background data sets. MadBench2 spends approximately 81% of its total
run time within MPI-IO read or write calls. Its most unusual characteristic is that it spends
a significant portion of its time overwriting data. The out-of-core algorithm for MadBench2
resulted in each process alternating between read and write several times within the same
file (7 per process). MadBench2 offers little opportunities for MPI-IO optimization or tun-
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Figure 3.3: CDF results of both implementations of the spc-1 benchmark for the Uniform
(ASU1-1), RWalk (ASU1-2), and Inc (ASU1-3) start address distribution

ing, since all data is accessed contiguously by using named datatypes and independent
access [BIC10].

S3D is a parallel turbulent combustion application using a direct numerical simulation
solver developed at Sandia National Laboratories. A checkpoint is performed at regular
intervals, and its data consists primarily of the solved variables in 8-byte three-dimensional
arrays, corresponding to the values at the three-dimensional Cartesian mesh points. S3D
uses the pnetCDF collective interface, but through the use of MPI-IO hints we were able
to evaluate both collective and independent I/O. Application performs one million 8-byte
writes using independent I/O mode. On Blue Gene, this workload is a recipe for disaster
due to I/O forwarding latency and the lack of write caching at compute nodes [BIC10].

NASA’s BTIO benchmark solves the Block-Tridiagonal (BT) problem, which employs
a complex domain decomposition across a square number of compute nodes. Each compute
node is responsible for multiple Cartesian subsets of the entire data set. The execution
alternates computation and I/O phases. Initially, all compute nodes collectively open a file
and declare views on the relevant file regions. After each five computing steps the compute
nodes write the solution to a file through a collective operation. At the end, the resulting
file is collectively read and the solution verified for correctness [BIC10].

We have also evaluated our method, using real traces of the previous cited high perfor-
mance applications. In case of S3D, we count with traces obtained from Red Storm [s3d11].
This system is a Cray XT3+ class machine, which uses Lustre as file system. The block
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size used was 1MB and the storage system counted with 320 magnetic disks, in which file
blocks are mapped round-robin over all disk. In case of BTIO and MadBecnh, the traces
were obtained on a cluster with 4 I/O nodes, which uses PVFS as parallel file system. The
storage system counted with 4 magnetic disks, in which file blocks are mapped round-robin
over all disks.

3.4 Measuring Service Time

Once a workload is available, the next step is to measure the response time for each request.
It is noticeable to remark that the goal here is not to get an overall metric (such as mean
response time), but to get a measurement for every request as a prior task to build a
simulation model. A workload is a file which has as many lines as I/O requests. Each
line contains information about a single request such as the address of the disk at which is
targeted, its size, the type of operation and the timestamp when the request should launch.
So, a performance evaluator takes as input a previously obtained workload. An output file
with the response times is generated.

To the best of our knowledge, there is a program which might achieve quite well
this objetive. It is called dxreplay and belongs to a package of programs that comes from
the tool DIXtrac [SG00, SGLG02, BS02]. Having a certain workload, dxreplay performs
response time measurements on SCSI disks to compare them with the measurements taken
from Disksim. It is for validating the correct extraction of the parameters that conform the
detailed model of the real disk in DiskSim. It is composed of a main stream, which creates
three instances of three threads: lbnreader, issuer, and collector. lbnreader reads requests
from an workload input file, issuer launches the previously read requests to the disk at its
specific time stamp, and collector waits for the launched requests to be finished. The three
threads execute by turns and synchronize by using mutexes. However, dxreplay only works
with SCSI disks. Therefore, we implemented play, our performance evaluator program that
performs response time measurements on any kind of disk, and hence models any kind of
disk, with any kind of interface.

Unlike dxreplay, play gets measurements by using standard POSIX calls and not SCSI
commands. It is composed of a main stream which reads every request from the workload
and launches it at the specified timestamp (see Algorithm 1). It also contains a signal
handler which turns on when a specific request has finished and its response time can
be reported directly to the output file, when making debugging tasks, or recorded on an
in-memory data structure (see Algorithm 2).

Servicing multiple outstanding requests is a common functionality in nowadays disks.
That is the reason behind our evaluator implementation uses asynchronous I/O. Every
operation from the workload is issued at the specified start time and to roughly measure
the response time. When a request is finished the service time is recorded on an in-memory
data structure which is dumped on program termination. Both play and dxreplay generate
output files containing response times, which can be represented by their CDFs as shown
in Figure 3.4

To perform measurements on a given storage device to obtain the service time, we
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Algorithm 1 play

1: activate(signal handler, wake up when a request finishes)
2: loadRequestsInMemoryFromWorkloadF ile()
3: for i ⇐ 1 to maxNumberOfRequests do
4: recordStartT imeOfRequest(i)
5: lauchRequestToDiskAtItsT imeStamp(i)
6: waitForNextRequest(i)
7: end for
8: writeResponseT imesToOutputF ile()

Algorithm 2 signal handler

1: recordEndT imeOfRequest(finished request)
2: calculateResponseT ime(finished request)
3: reportResponseT imeOnDataStructure(finished request)

mounted the disk as an additional disk in a system having a primary disk, used for allocating
the operating system, the evaluation tools and related files with the evaluation traces.

To avoid any impact in the evaluation procedure from the file system layer and the
device driver and to ensure that every I/O request in the workload in physically sent to
the evaluated disk, we use the GNU/LINUX Operating System and we define the disk as a
raw character device by defining a character device (with mknod) and linking it to the disk
that is going to be evaluate (with raw). In that way, the device can be accessed directly
by using the read and write POSIX calls. Moreover, all the I/O operations are run over
the address space of the evaluated process by means of DMA, making the addresses both
in disk and memory be aligned to a 512 bytes boundary.

Possible noise generated by other running processes is taken to minimum, by running
the evaluation tool with a minimum number of active processes (by using init 1 mode).

As we will show in our evaluation, our performance evaluator program is validated
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Figure 3.4: CDFs of response times from a Seagate Cheetah 10K.7 disk and two synthetic
traces. Response times were generated by running both play and dxreplay.
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Figure 3.5: Steps in the process of Building the Variate Generator.

against dxreplay.

3.5 Building the Variate Generator

We now describe how to fit the previously obtained response times into one or several
known distributions, to build a variate generator for such distributions. When building a
variate generator, we start with a sample of response times and we end up with a variate
generator capable of producing simulated response times. Our method has several steps as
it is shown in Figure 3.5:

1.- Obtaining response times

2.- Detecting statistic distributions

3.- Fitting to statistic distributions

4.- Constructing the model

The next paragraphs explain every step in detail.

Our first data set (step 1) is a sample of response times obtained from replaying a
trace on a real disk. That sample comes from running play, our response time measurement
program for a specific workload. As previously said, the workload can be real or synthetic.

Next step (step 2) is detecting statistic distributions from the previously obtained
sample of response times. The sample may present several different distributions that
cover different ranges of the response time domain. Each distribution can be as a result of
different causes that generate response times from one distribution or the others. As causes
we can say that a specific request may be serviced from the platters of the disk or from its
buffers, may have to wait for the previous requests to be serviced, etc.
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After detecting possible distributions, the identified distributions must be fitted to
some known distributions (step 3). Each individual distribution may be a single distribution
or a mixture. Either single or mixture of distributions, we use the R statistical analysis
environment [r-c11] to fit the samples to theoretical distributions. When fitting single
distributions, we apply a method, and when fitting mixtures, we apply another method.

Finally, the fitted distributions are used to construct the model (step 4). Here, we
propose two different approaches: One based on real traces and another based on synthetic
traces. The one based on real traces consists on constructing individual models for several
real traces. When response times are predicted from a specific trace, one of the previously
modeled traces is chosen, and response times are generated from it. On the other hand, the
one based on synthetic traces consists on constructing just one model based on a common
synthetic trace. When response times are predicted from a specific trace, the model is able
to partially adapt to the trace to predict.

3.5.1 Detecting statistic distributions

In our method, detecting statistic distributions has several steps:

1.- Representing the sample of response times by an histogram

2.- Detecting possible distributions

3.- Splitting the sample of response times in the detected distributions

4.- Fitting the detected distributions to theoretical distributions. If distributions cannot
be fitted, go again to step 1.

When detecting statistic distributions, first step is representing the previously obtained
data by an histogram. The histogram gives an image of the distributions that conform the
previously obtained data. Each specific distribution represents one or several behaviours
of the disk, under certain characteristics. For example, one of the distributions may rep-
resent response times generated by data hosted in disk caches. Another distributions may
represent response times from data not hosted in disk caches. Other distributions may
illustrate response times from workloads where the disk is idle for some specific periods.
Some distributions may represent response times from very bursty workloads.

When detecting distributions, sometimes two different distributions are quite sepa-
rated in the range of their domains, and it is easy to split them. Other times, they may
be very close, and it is not so easy to know where to split. In those cases, what we do is
splitting by where we consider, the value of joint. Then, we go to the next step, that is
fitting the detected individual samples to theoretical distributions. If they can be easily
fitted and the goodness-of-fit is good, we consider that the sample components are iden-
tified. Otherwise, we represent again the initial distributions by an histogram and try to
detect the sample components and the value of joint.

Figure 3.6 represents the histogram’s shape of a Seagate Cheetah 10K.7 disk under
a Financial trace [uma11]. For simplicity, the cache was deactivated. Two distributions
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Figure 3.6: Distribution parts that represent service times from a Seagate Cheetah 10K.7
disk, under a Financial trace. Clearly, two distribution parts are identified.

are identified in the histogram: Distribution 1, which represents response times generated
by the normal activity of the disk, and Distribution 2, which represents response times
generated when the disk was previously idle, for some specific period of time. In this case,
sample components were not close, and the value of joint was easily identified. As a value
of joint we chose 30 ms. After fitting the sample components, and their goodness-of-fit, we
considered we made a good choice, and the algorithm for detection was not repeated.

Once the distribution parts have been identified, next step is fitting them to some
known distributions.

3.5.2 Fitting to statistic distributions

In our method, fitting to statistic distributions has several steps:

1.- Representing the sample component by an histogram.

2.- Determining if the sample component is a mixture of distributions.

3.- If the sample component is not a mixture, fitting it to a single theoretical distribution

4.- If the sample component is a mixture, fitting it to a theoretical mixture of distribu-
tions.
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In order to fit a set of data to an unknown distribution, first step is inspecting its spe-
cific histogram, to determine if the experimental data presents a mixture of distributions.
If a mixture is not identified, the fitdistr function from the R statistical analysis envi-
ronment [r-c11] is executed. The arguments for this function are the experimental data,
and the distribution to fit to. fitdistr is executed once per possible distribution (normal,
lognormal, weibull, gamma, exponential), and returns the parameter estimates for such
distribution. With the parameter estimates, the λ2 discrepancy statistic [PJ90] quantifies
the goodness-of-fit to all possible distributions and the distribution with the best fit is
chosen.

If a mixture of distributions is recognized, the mixdistr package from the R statis-
tical analysis environment [r-c11] is used. To fit a mixture, the first step is grouping the
experimental data. For this, the mixgroup function is executed. The function groups the
experimental data in the form of numbers of observations over sucesive intervals. The ar-
guments are the experimental data and the number of intervals. In our case, we find the
number of intervals by executing the function binning which automatically computes them.
Next step is providing additional information about the shape and parameters of the ex-
perimental data. We do this by inspecting the histogram of the experimental data. We
determine the starting values for the means and sigmas and make the proportions equal.
Then, we estimate the parameters of the mixture, by executing the mix function. The ar-
guments for this function, are the previously grouped data, the estimated parameters, the
components of the mixtures (normal, log-normal, exponential, gamma, weibull, binomial,
negative binomial, and poisson), the constraints, and the method/algorithms to employ.
We usually consider a constant coefficent of variation as a starting constraint and use the
combination of the EM algorithm [Man92] and Newton-type method. When using the EM
procedure, the number of steps needs to be provided. For us, 3 were more than adequate.

In the example of Seagate Cheetah 10K.7 disk, under the Financial trace [uma11], both
partial detected distributions are mixtures. Specifically, both distributions are mixtures of
two normal distributions which parameters are presented in Table 3.4. Their shapes are
also shown in Figure 3.7.

type π µ σ

Distribution 1
Normal 0.89 3.73 1.96
Normal 0.11 10.82 5.71

Distribution 2
Normal 0.92 47.04 6.38
Normal 0.08 29.42 3.99

Table 3.4: Parameters of the probabilistic distributions that model the service times ob-
tained from a Seagate Cheetah 10K.7 disk, under a Financial trace.

After fitting the distributions to the experimental data, we see how well we have cho-
sen the parameters by plotting the histogram for the experimental data with the estimated
distributions. Figure 3.7 gives an example of such visualization. We also employ another
visual techniques to judge the goodness-of-fit of a particular distribution to our experi-
mental data, like the Q-Q Plot (Figure 3.8 - left). In the Q-Q plot, the more the blue line
approximates to the diagonal, the best the goodness-of-fit because the best the fit between
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Figure 3.7: Comparison between two histograms, from experimetal data, and the proba-
bilistic distributions they are fitted to.
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Figure 3.8: Two visual techniques to see how well simulated distributions fit real distribu-
tions. Q-Q plot compares quantiles of both distributions (left). CDFs’ superimposion let
visualize how well distributions fit (right).

the quantiles is. Among different numeric measurements, the one we used, for comparison
reasons, was the demerit [RW94]. It is defined as the root mean square of the horizontal
distances between the predicted and real response time cumulative distribution functions.
We also represented the predicted and real CDFs to see how well they superimpose (Figure
3.8 - right).
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Next step is building a simulation module by using the simulation environment OM-
NET++ [omn12]. The module simply hosts one or more random variate generators that
generate simulated response times from previously fitted probability density functions.

To guarantee that different random sources are based on non-overlapping random
number generators we use the Mersenne-Twister [MN98] random number generator, which
has a period equal to 219937 − 1.

3.5.3 Constructing the model

In our method, constructing models has several steps:

1.- Choosing the type of traces in which the model is based.

2.- If traces are real, constructing a model for each of the identified and fitted distribu-
tions of those real traces

3.- If the trace is synthetic, constructing a model for the synthetic trace without taking
into account the enqueing times

On the other hand, predicting response times from the previously constructed models
has several steps:

1.- Choosing the type of traces in which the model is based.

2.- If traces are real, predicting from one of the modeled real traces, by identifying the
one which has the most similar characteristics as the trace to predict.

3.- If the trace is synthetic, predicting from the synthetic modeled trace, and calculating
the enqueuing times on the fly.

The next paragraphs explain every step in detail.

As we previously said, in our method we proposed two kinds of approaches, in order to
construct simulation models for disk drives. The first one is based on several real traces with
similar characteristics as the workloads to predict. The other one is based on a synthetic
workload, which is supposed to cover a wide range of characteristics and simulate any kind
of trace. So first step is choosing the approach which may be better adapted to the needs
of the system to simulate or predict.

Next step is constructing the models, which depends on the previously chosen ap-
proach. If the chosen approach is based on several real traces, we have to construct a
model for each of the real traces, on which the model is based. When constructing a model
for a specific trace, we identify reasons to choose one or another identified and fitted dis-
tributions. In the next section, we will explain this in more detail. On the other hand, if
the chosen approach is based on a synthetic trace, we have to construct only a model for
that specific trace. When constructing the model, we do not take into account enqueuing
times, which are one the most influential factors in the response times, for the models to
be more versatile and general.
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After constructing the models, we can use them to predict response times from them.
As previously said, depending on the needs of the system to simulate or predict, we choose
the first or the second approach. When choosing the first approach, one of the real traces
in which it is based, has to be chosen. Once it is chosen, response times are simulated from
it. In the course of the simulation, the characteristics of the input workload may change,
and a new real trace may also have to be chosen. On the other hand, when choosing the
second approach, response times are directly simulated from the synthetic trace. As we
said, when modeling a synthetic trace, we do not include queuing times in the model, and
leave it until simulation, making the model more versatile.

In this section, we propose two approaches to construct simulation models by using
probabilistic distributions. The first approach is based on one or several real traces. The
second approach, is based on a common synthetic trace, which represents a wide range of
workload characteristics. Although the proposed approaches are different, when construct-
ing the models, both have several steps in common. Those steps are described in the next
section.

3.5.3.1 Constructing models

When constructing models, what we actually do, is figuring out the reasons for the pre-
viously detected, and fitted-to-theoretical-distributions samples. For reasons, we mean the
workload characteristics that produce response times from a certain distribution and not
from the others. Among several reasons we can find:

• Long inactivity periods. When the disk has been idle for a certain amount of time,
the next request to be serviced may last longer than as usual.

• Queuing times. When a request to be serviced arrives when one or several previous
requests have not finished yet, it must wait until the end of the previous ones, making
its response time bigger.

• Sequentiality. When several requests are sequential, the difference in LBNs between
them is little. On the contrary, when the difference in LBNs is not little, sequentiality
may not be identified and response times are bigger.

• Caching effects. Disk drives have internal buffers. When their usage is activated,
servicing requests from the disk drive buffers is faster than servicing requests directly
from the platters.

So, once we have identified the reasons for generating response times from each specific
fitted distribution, we construct a model in which, depending on the input data, we choose
one theoretical distribution or other, to generate response times.

In the example of Seagate Cheetah 10K.7 disk, under the Financial trace [uma11], we
identified two distributions and three causes for them. As we previously said, Distribution
1 is a mixture of two Normal distributions (see Table 3.4). Response times from part 1 of
Distribution 1 are generated when requests must be serviced from the platters. Response
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times from part 2 of Distribution 1 are generated when inactivity periods are longer than
1 second and when requests serviced from the platters, must wait until the end of the
previous ones. Finally, response times from Distribution 2 are generated when inactivity
periods are around half a second. So, for this specific model, we constructed an algorithm
as shown in Algorithm 3:

Algorithm 3 Model for a Seagate Cheetah 10K.7 disk, under the Financial trace

1: if ((simTime()-ini disk[actReq − 1]) > 520)&((simTime()-ini disk[actReq − 1]) <
700) then

2: choose ⇐ bernoulli(0.92208)
3: if choose = 1 then
4: response time ⇐ normal(47.04, 6.385)
5: else
6: response time ⇐ normal(29.42, 3.993)
7: end if
8: else
9: if ((simTime()-ini disk[actReq− 1]) > 1000)‖(simTime() < end disk[actReq− 1])

then
10: response time ⇐ normal(10.819, 5.706)
11: else
12: response time ⇐ normal(3.727, 1.965)
13: end if
14: end if

The generation of response times from Distribution 2 is described in lines 1 - 8. Every
time the disk has been idle for more than 520 ms and less than 700 ms, the actual request,
actReq, generates its response time from one of the parts of Distribution 2. We deter-
mine that idleness by doing a substraction between the time stamp, when actReq arrives
(simTime()), and the time stamp when the previous request arrives (ini disk[actReq−1]).
Probability of choosing part 1 of Distribution 2 is higher (0.92208) than choosing part 2.
We determine which part to use by using a bernoulli distribution (line 2).

The generation of response times from Distribution 1 is described in lines 9 - 14. Every
time the disk has been idle for more than 1000 ms, the actual request, actReq, generates its
response time from part 2 of Distribution 1 (line 10). Also, if actReq arrives (simTime()),
and the previous request actReq−1 has not been serviced yet, response times are generated
from part 2 of Distribution 1 (line 10). Thus, we simulate that actReq has been enqueued.
In any other case, response times are generated from part 1 of Distribution 1 (line 12).

As we will show in our evaluation, activating the use of the internal buffers will generate
response times from another distribution, whenever requests must be serviced from the
drive buffers.

3.5.3.2 Constructing models based on real traces

When constructing models based on real traces, we take, for each real trace, the same
steps described in the previous section. So, for each real trace we distinguish among several
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reasons to generate response times from one fitted distribution or from the others, if there
exist more than one distribution. If there exist only one distribution, all response times are
generated from it.

Finally, what we actually have is a pool of models from several real traces of different
characteristics. Predicting from this model involves choosing one of the several previously
modeled traces. The criteria to select a trace are based on the mean request size and the
mean queuing time of the trace to model. Sequentiality is also taken into account. On the
basis of the mentioned criteria, a previously modeled trace is selected and used to predict
response times from an input workload. Every now and then, the criteria are checked again,
and if they have changed, another most similar previously modeled trace is chosen. For this
approach to be accurate, there must be at least one previously modeled trace with similar
characteristics as the trace to be predicted. Algorithm 4 shows how the prediction in this
model works:

Algorithm 4 Model based on several real traces for a Seagate Cheetah 10K.7 disk

1: if (contLastReqs < lastReqs) then
2: if (distr = 0) then
3: response time ⇐ generate S3D()
4: end if
5: if (distr = 1) then
6: response time ⇐ generate BTIO()
7: end if
8: if (distr = 2) then
9: response time ⇐ generate MadBench()

10: end if
11: if (distr = 3) then
12: response time ⇐ generate F inancial()
13: end if
14: if (distr = 4) then
15: response time ⇐ generate Cello99()
16: end if
17: contLastReqs + +
18: addReqSizeToStatistics()
19: addQueuingT imeToStatistics()
20: addSequentialityToStatistics()
21: else
22: calculateDistr()
23: contLastReqs ⇐ 0
24: end if

Before the first request arrives, contLastReqs is initialized to 0. lastReqs is a con-
stant which determines the maximum number of arrived requests, before checking if an-
other distribution has to be selected. When a distribution has to be selected, the method
calculateDistr() is executed (line 22). This method determines, on the basis of some cri-
teria, which distribution is the most appropiate for the input trace to predict. According
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to the selected distribution, which value is in variable distr, response times are gener-
ated from it (lines 2-16). Every time a response time must be generated for a specific
request, the statistics for the input workload must be also updated. Those statistics in-
clude the mean request size (addReqSizeToStatistics(), line 18) , the mean queuing time
(addQueuingT imeToStatistics(), line 19), and sequentiality
(addSequentialityToStatistics(), line 20).

3.5.3.3 Constructing models based on synthetic traces

When constructing models based on a synthetic trace, we also take, for the synthetic trace
to be modeled, the same steps described in Section 3.5.3.1. For this construction, we also
distinguish among several reasons to choose among one fitted distribution or the others, in
case there exist more than one.

Probably the big difference with regard to constructing models based on real traces is
that, besides it uses only one trace, queing times are not modeled in the extracted response
times. We can do that by using a characteristic of play, our response time measurement
program. As previously said, it lets the user extract response times by avoiding queuing
times. It can be done by restricting the maximum number of pending I/O requests that can
be enqueued to the disk to 1. Thus, queuing times are modeled online in the predictions.
As queuing times are one of the most significant and distinguishing effects in the response
times, if every input trace predicts them on its own, models can be more versatile and
general. The purpose of this is finally to have a more versatile model by simulating the
queuing times on the fly. In Algorithm 5 we show, for the previously constructed model
of the Seagate Cheetah 10K.7 disk, under the Financial trace [uma11], how to calculate
queuing times on the fly. Although the chosen trace is not synthetic, our goal here is to show
the difference between generating queuing times from a previously modeled distribution
and when generating them on the fly.

As previously said, the generation of response times from Distribution 2 is described
in lines 1 - 8. Every time the disk has been idle for more than 520 ms and less than
700 ms, the actual request, actReq, generates its response time from one of the parts of
Distribution 2. We determine that idleness by doing a substraction between the time stamp,
when actReq arrives (simTime()), and the time stamp when the previous request arrives
(ini disk[actReq − 1]). Probability of choosing part 1 of Distribution 2 is higher (0.92208)
than choosing part 2. We determine which part to use by using a bernoulli distribution
(line 2).

The generation of response times from Distribution 1 is described in lines 9 - 14. Every
time the disk has been idle for more than 1000 ms, the actual request, actReq, generates
its response time from part 2 of Distribution 1 (line 10). In any other case, response times
are generated from part 1 of Distribution 1 (line 12). If actReq arrives (simTime()), and
the previous request actReq−1 has not been serviced yet, actReq is enqueued. To simulate
that it has been enqueued, we calculate its response time, by adding the time that it stays
in the queue (end disk[actReq − 1] − simTime() - line 16) up to its previously calculated
service time (response time) .



44 Chapter 3. Black box modeling

Algorithm 5 Model for a Seagate Cheetah 10K.7 disk, under the Financial trace. Queuing
times are calculated on the fly

1: if ((simTime()-ini disk[actReq − 1]) > 0.52)&((simTime()-ini disk[actReq − 1]) <
0.70) then

2: choose ⇐ bernoulli(0.92208)
3: if choose = 1 then
4: response time ⇐ normal(47.04, 6.385)
5: else
6: response time ⇐ normal(29.42, 3.993)
7: end if
8: else
9: if ((simTime()-ini disk[actReq − 1]) > 1) then

10: response time ⇐ normal(10.819, 5.706)
11: else
12: response time ⇐ normal(3.727, 1.965)
13: end if
14: end if
15: if (simTime() < end disk[actReq − 1]) then
16: response time ⇐ response time + (end disk[actReq − 1] − simTime())
17: end if

3.6 Summary

In this chapter, a method to construct a black box model for hard disk drives has been
described. It is based on probability distributions and can be used both for synthetic and
real traces. The method includes a measuring service time implementation which can be
used in every disk, with any kind of interface.

Two approaches have been proposed for the construction of the models. The first
approach, is based on multiple real traces. It may be accurate when the traces to predict
have similar characteristics as one of the traces, for which the model has been constructed.
The second approach is based on a single synthetic trace. This trace is supposed to cover a
wide range of characteristics from other traces. This approach calculates queing times on
the fly, on the prediction stage, which makes it more versatile.

As will be shown in the evaluation (Chapter 5), the method described on this thesis
provides an accurate, and more general, alternative approach, to model service times from
any device, with any kind of interface. This is because, unlike other approaches [DIX12], its
measuring service time implementation uses standard POSIX calls. Also, as it constructs
a black box model, many of the device characteristics do not have to be known, making
it simpler, less detailed, and hence, ligther. In the evaluation will also be shown that the
proposed method may be as accurate as another detailed models [dis08], and also provides
a better performance, making it affordable in system wide simulations.

Unlike other black box models [And01, WAA+04, MWS+07, LH10], in which predic-
tions are made by searching information of input data from workload, in big tables and
regression trees, the proposed approach, predicts service times by choosing, at most, among
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five different probability distributions, which makes it faster when predicting.

The proposed method and its experimental results have been published in:

• A Black Box Model for Storage Devices based on Probability Distributions. Laura
Prada, Alejandro Calderón, Javier Garćıa, J. Daniel Garcia, Jesus Carretero. 10th
IEEE International Symposium on Parallel and Distributed Processing with Appli-
cations. July, 2012.

• Using black-box modeling techniques for modern disk drives service time simulation.
Jose Daniel Garcia, Laura Prada, Javier Fernandez, Jesus Carretero, Alberto Nunez.
The 41th Annual Simulation Symposium (ANSS’08). April, 2008.

• Modelado estocastico de las operaciones de entrada/salida sobre un disco. Laura
Prada, J. Daniel Garcia, Alberto Nuñez, Javier Fernandez, Jesus Carretero, Ra-
mon J. Flores. II Congreso Español de Informática (CEDI 2007). XVIII Jornadas
de Paralelismo. Zaragoza, España. September, 2007.





Chapter 4

Energy-aware Architectures

4.1 Introduction

In a computer system, disk drives are one of the most power consuming elements. This is
mainly due to their mechanical nature. Disk drives usually have several platters in which
data are stored. To access those data, several heads, moved by an arm, are used.

Energy consumed by disk drives affects both laptop/desktop environments, and data
center or server environments. In the case of laptop/desktop environments, energy con-
sumed by disk drives reduces the amount of power available in batteries or power supplies.
In the case of data centers or server environments, energy consumption of disk drives
increases, mostly, expenses in electricity bills, and also CO2 dissipation. That is mainly be-
cause in data centers and server environments, a lot of disk drives are used in order to im-
prove performance, by servicing I/O requests in a parallel fashion. Both in laptop/desktop
environments and data center or server environments, the techniques to save power are usu-
ally the same two: The ones that apply power saving techniques to current disk drives, and
the ones that apply power saving techniques to disks of several speeds [CPB03, GSKF03].

With an aim toward saving power, current disk drives have several states of energy:
active, idle and standby. A disk is in active state when it is reading or writing data. When
a disk is not doing anything, but is still spinning, its state is idle. When a disk is not
doing anything and its platters do not spin either, its state is standby. The highest power
consumption occurs at the active state. Idle state consumes less power than the active
state, and standby state consumes much less power than the previous two states. The disk
spins down to the standby state when the disk has been in the idle state for a certain
period and it is predicted that the state change is worth it. When an I/O request needs to
be serviced by a disk that is in the standby state, it has to spin up before anything, and
then service the I/O request. Spinning up a disk drive takes several seconds and energy
costs.

47
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On the other hand, disk drives with several speeds, although not available in the market
yet, are able to modelate their speed according to the load. The higher the load, the higher
the disk speed. When the disk load becomes lighter than a certain disk throughput, the
disk spins down to a lower speed mode; if the load is heavier than a certain threshold, the
disk spins up to a higher speed. The main advantage of these disks is the fact that, as they
move gradually from one speed to another, it does not take so much time and energy as it
takes in traditional disks.

In this thesis, we focus on traditional disks. As previously said, in traditional disks,
it takes some time and energy, to move between energy states. So, when moving from the
idle state to the standby state, the disk should stay in the standby state enough time for
the subsequent (when spinning the disk up) waste of time and energy to be worth it. In
order to optimize the amount of energy saved, when the disk has remained in the standby
state, several spin-down algorithms have been proposed [LKHA94, DKB95, HLS96]. Those
algorithms aim to decide when is the right moment to move from the idle state to the
standby state, for the disk to stay in the standby state as long as possible, and to save
energy. They learn from previous decisions taken, and how those decisions have worked.
Spin down periods or idle times are broken when I/O requests, either reads or writes,
come to the disk drive. When spin-down algorithms do things properly, they can predict
when I/O requests come to the disk drive, and they act accordingly. However, spin-down
algorithms cannot spin disks down frequently when idle times are not big enough, as it
happens in HPC applications.

In order to prolong standby times in HPC applications, we propose to use supporting
SSDs for the disk drives. That way, I/O requests can be redirected to the SSDs, thus
achieving long standby times. Also, they can help to save power when idle times are not
big enough. SSDs are light, silent, and consume less power than disk drives, because they
have no mechanical parts. They have just two states of power: active and idle. A SSD is
in active state when it is reading or writing data. When the SSD is not doing anything its
state is idle. So, when redirecting I/O requests to supporting SSDs, disk drives may stay
in the standby state for longer, thus, saving energy.

Saving energy by spinning disks down entails a trade-off. Every time a disk spins down
and spins up, the heads and the spindle motor wear. That is why, manufacturers specify
a maximum number of start/stop cycles that a disk drive can stand without producing
errors, and having to be replaced. For desktop drives, start/stop cycles are around 50,000
and for laptop drives, around 300,000.

Also, redirecting most of the I/O requests to supporting SSDs means writing them
with a lot of data, and also means a trade-off. SSDs can be written a limited number of
times. As to rewrite a specific block, it must be erased first, what is really limited is the
number of times that a block can be erased. When the number of maximum erasures is
reached, the SSD’s blocks become unerasable. There are two kind of NAND flash SSDs: SLC
(single level cell) and MLC (multi-level cell). SLC provide only one bit per cell, while MLC
provide several bits per cell, increasing the likelihood for errors. This increased likelihood
for error also limites the number of times that a specific block can be written, which is
around 10,000 times in MLC flash and 100,000 in SLC flash.

So, in order to save energy by spinning disks down, and using supporting SSDs, it is
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important to take into account the limited number of start/stop cycles in disk drives, and
also, the limited number of times that SSDs can be written.

4.2 Proposed Solution

Our work addresses the problem of finding a power saving-aware architecture for large
parallel computing environments such as clusters or supercomputers. Our main goal is to
provide a SSD-based power saving-aware architecture that can extend idle times in HPC
applications. Figure 4.1 describes a common I/O architecture for parallel environments. A
first approximation is to put compute nodes close to a local storage system. Current trend
targets to eliminate local disks in order to reduce space, and to save energy. In this disk-
less solutions, compute nodes forward file access requests to I/O nodes, which aggregate
and forward data to the permanent storage subsystem [BIC10]. Storage nodes can take
advantage of SSD devices in the following way: independent disks can have an associated
SSD device (as shown in Figure 4.1.a), or an array of independent disks (as shown in
Figure 4.1.b). In both cases, a set of HDD and SSD creates a Storage Element (SE). SEs
are accessed as a single physical disk by the applications. The Figure shows how hardware
components map in the actual I/O subsystems. Compute nodes are connected through
a fast-interconnect network to the I/O nodes. I/O nodes access to the storage system
on behalf the compute nodes. Current trend targets to eliminate local storage to reduce
compute nodes energy consumption. Storage nodes provide two approaches: Independent
disks-based storage architectures (a), where each HDD device has a corresponding SSD
device and RAID-based storage architectures (b), where a single SSD deals with an array
of independent disks. In this thesis, we describe specific solutions for Independent disks-
based storage architectures (a).

4.2.1 Overview

A parallel I/O subsystem based on multiple I/O nodes allows data transfer in parallel
between compute nodes and I/O nodes. This architecture presents the following advantages:
first, it can efficiently handle the small, fragmented requests produced by parallel programs.
Second, by adding I/O nodes or disks, it can scale in bandwidth and capacity to keep up
with increases in the number and speed of compute nodes. Finally, the parallel subsystem
provides load distribution by scattering I/O operations across multiple nodes. It also can
provide reliability when a system element is down or being replaced [BIC10].

In this thesis, we propose the SSD-based Power-aware Storage System (SSD-PASS)
architecture, shown in Figure 4.2. It has three layers: compute, I/O, and storage nodes.
Compute nodes execute parallel applications. Applications access I/O through libraries
which invoke virtual file system interfaces, and they in turn invoke parallel file system
interfaces to access I/O nodes through interconnection networks. SSD-PASS is deployed
on storage nodes, where data are finally stored in magnetic disks. SSD-PASS has three
main modules: Write-buffering, Prefetching, and Indirection map modules.

SSD-PASS lies on a hybrid architecture, in which each I/O node consists of a SSD
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Figure 4.1: Typical supercomputer I/O architecture.

and a conventional magnetic disk device, as shown in Figure 4.2. Our general procedure
aims to use the SSD device as a block cache for a specific file system on I/O nodes. I/O
operations are transparent for both SSD devices and the parallel file system.
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Figure 4.2: SSD-PASS architecture multi-level stack. The figure depicts the software archi-
tecture of all storage nodes.

4.2.2 Data accesses

Our solution takes advantage of an indirection map, which permits blocks to be allocated
in different devices, mapping SSD and disk logical block addresses (LBAs). Every read
and write request is sent to the corresponding device after mapping the indirection map,
by using the actual physical location. Data consistency is enforced in the system by not
allowing more than one copy of a file block at the SSD device. Our approach is based on a
one copy consistency model. Either if the data is in one device or in both, there is a need
to have the most accurate information in the remapping of the block addresses.

Applications access the SSD-based architecture through the POSIX [hs95] interface,
common in HPC applications [GSKF03] and parallel libraries such as MPI [Mes95]. Ad-
ditionally, our storage system takes advantage of the Virtual File System (as shown in
Figure 4.2), which virtualizes file I/O operations. Subsequently, in order to use our archi-
tecture, both application and file systems do not need to be modified.

4.3 Power saving-aware write-buffering policy

In this section, the policies included in the previously mentioned write-buffering module,
from the SSD-PASS architecture, are described.

The objective of a conventional write-buffering technique is to improve file access
performance by saving file data requests in the memory buffer. Servicing requests from
the memory buffer is faster than servicing them directly from disk drives. However, in this
work we propose a power-saving aware write-buffering technique, which focuses on keeping
the unwritten blocks in the SSD devices for as long as they have space enough. This way,
periods when disk drives can stay in the standby mode, are dependant on SSDs sizes. The
bigger the SSDs sizes, the longer the idle periods.
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Memory buffers have two main problems when they are used for power aware goals.
First, they are volatile, which means that when a power cut takes place, cached data are
lost. Second, in many operating systems there are daemons which make sure that cached
disk data are written to disk every now and then. This prompts the fact that long-idle
intervals may be broken into not sufficiently long periods to spin the disks down, and save
energy. Also, their sizes are not usually more than several GigaBytes. SSDs devices are
non-volatile and their sizes range from 2 GB to 2 TB. Second, they can take advantage
of shorter service demands that come from the not extreme head displacements at disk
devices. As was previously said, SSDs do not have mechanical parts, and neither, head
displacements.

The write buffering policy is enforced at the SSD and consist of (as shown in Figure
4.3):

1.- Redirecting writes to the SSDs as long as they have enough space,

2.- Spinning the disks up, and

3.- Flushing the SSDs contents back to disks when the SSDs are full.

Figure 4.3: Steps in the write buffering policy.

When redirecting writes to the SSDs, we do it in a log-fashion manner. We locate
the current request’s contents after the previous ones. Thus, we take advantage of the
sequential write performance of SSDs. Also, if the requests are sequential to some degree,
when flushing the SSDs contents, reordering those contents becomes easier.

After being in the standby state for a while, disk drives must spin up to be ready to
receive the written data from SSDs. As was previously said, spinning disk drives up takes
time (in the order of several seconds), and consumes some energy. To avoid applications
execution to waste time in spinning disks up, disks can be spinned up in advance. When
doing that, disk drives should be spinned up, before SSDs are filled, the same number of
seconds that takes for the disks to spin up. Thus, when SSDs are filled, disk drives will be
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ready to receive the SSDs written contents. Spinning disks up in advance may consume
more energy, but it makes applications take less time to finish.

Flushing the SSDs contents back to disks when SSDs are full takes some time and
waste of energy to consider. First step is reading the written contents from SSDs. Next,
data are reordered in order to take less time, to write the contents back to the disks. After
data are reordered, contents are written back to disks. The time for flushing, will mainly
depend on the SSDs size. The bigger the SSDs, the more time the flushing will take.
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Figure 4.4: HPC access pattens. The graphs represent two common access patterns which
are typical in HPC applications.

Some applications exhibit repetitive behaviour. When I/O access patterns are repet-
itive, caching can avoid some data accesses to disks [BIC+09]. Those data can also stay
for some time in the SSD devices for future reads. Thus, future disk accesses do not have
to break idle periods, making them bigger. We write data in a log-structured SSD cache.
This solution allows to take advantage of sequential write performance of SSDs. Moreover,
after flushing SSDs contents, applications will start to overwrite old data. If they need to
read previously cached data, as SSD sizes are big enough, applications will have enough
time to read the data before overwriting them.

For example, as it is shown in Figure 4.4, two I/O intensive parallel scientific applica-
tions, such as BTIO [bti11] and MADBench2 [mad11], clearly exhibit repetitive behaviours.
In the BTIO case, data are written until the first half part of the trace duration (0.4 hours).
After that, the same written data blocks are read (see Figure 4.4(a)). So, in this specific
case, when about 1.58 GB of data are written, and then read again, the usage of SSDs of
at least 2 GB of size becomes adequate. This is because the application have space enough
to write data, and then read them, before start overwriting them. Prolonging the duration
of the application involves repeating the same patterns several times. When applications
are writing data in SSDs, and they get filled, after moving the written contents from SSDs
to disks, applications keep writing data by overwriting the first blocks of the SSDs, thus,
overwriting already read data. Thus, whenever recently written data are read, all of them
can be accessed from SSDs, without having to wake disks up. This way, disk drives are
only waken up when SSDs are filled, and hence, contents need to be moved to disks. Figure
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Figure 4.5: Ups (active state - 1) and downs (standby state - 0.5) in the course of time, of
a single disk drive, when the write buffering policy is applied. SSDs are 2 GB sized.

4.5(a) shows a time line of the effects in disk drives of the BTIO application. The figure
shows the ups (active state - 1) and downs (standby state - 0.5) in the course of time, of a
single disk drive, when the proposed write buffering policy is applied. In this case, the size
of SSDs is 2 GB. All the shown ups are due to the fact that SSDs get filled, and contents
must be written to disks. Figure 4.6(a) shows the ups and downs in a time line when SSDs
are 4 GB sized. As can be seen, ups are less frequent, as a result of the bigger SSDs’ sizes.
Having bigger SSDs’ sizes, it takes longer to fill them.
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Figure 4.6: Ups (active state - 1) and downs (standby state - 0.5) in the course of time, of
a single disk drive, when the write buffering policy is applied. SSDs are 4 GB sized.

The Madbench case (Figure 4.4(b)) is slightly different. Reads and writes are inter-
leaved, but also, after writing some data, the same previously written data are again read.
In this specific case, around 300 MB of data are written, and that is the minimum size
of a cache for this application, to start overwriting data without causing read misses. So,
here, again, the usage of SSDs of at least 2GB becomes more than adequate. Figure 4.5(b)
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shows a time line of the effects in disk drives, for the MadBench application. The figure
shows the ups (active state - 1) and downs (standby state - 0.5) in the course of time, of
a single disk drive, when the proposed write buffering policy is applied. In this case, SSDs
are 2 GB sized. All the showed ups are due to the fact that SSDs get filled, and contents
must be written to disks. As the written blocks are less than in the BTIO application, ups
are also less. Figure 4.6(b) shows the ups and downs in a time line when SSDs are 4 GB
sized. As can be seen, ups are more less frequent, as a result of the bigger SSDs’ sizes.

4.3.1 SSD partitioning

Some modern supercomputers such as Blue Gene and Cray, let applications execute on
storage subsystems in a dedicated way. Unfortunately, that is not possible in other su-
percomputers where applications run on a concurrent fashion. In order to ensure that our
power-saving aware write-buffering techniques are also satisfied in concurrent environments,
we propose SSD partitioning, where for every SSD device, each application corresponds to
a dedicated partition. So, like in the previous section, each application applies the write
buffering policy to its own partition. When for any of the applications, the partition is
filled, the disk is spinned up, and the contents, from that specific partition, written back
to the disk. When doing this, it may happen that for one or several applications, their cor-
responding partitions are not filled. That is due to the fact that applications have different
speeds when redirecting requests to SSDs, and the ones which write more data in less time
usually fill their partitions. Figure 4.7(a) shows the ups (active state - 1/2) and downs
(standby state - 0.5/1.5) in the course of time, of a single disk drive, when the proposed
SSD partitioning policy is applied. The two previously described applications (BTIO and
Madbench) are executed concurrently using a 4 GB sized SSD. Each application redirects
its data to an equally 2 GB sized part. As the amount of written data are not the same in
both applications, frequency of spin ups are not either the same. Thus, Madbench causes
less ups than BTIO. The total amount of ups in the disk is the addition of ups from both
applications.

Figure 4.7(b) shows the ups (active state - 1/2) and downs (standby state - 0.5/1.5)
in the course of time, of a single disk drive, when the proposed SSD partitioning policy is
applied. In this case, each application does not redirect its data to an equally sized part.
BTIO redirects its data to a 3 GB sized part, while Madbench redirects its data to a 1 GB
part. Here, the addition of the total amount of ups turns out to be less than in the equally
sized configuration.

As we will show in our evaluation, setting up equal partition sizes still results in
monetary costs improvements. As was previously said, while executing concurrently, for
each spin-down period not always the same applications cause their partition capacity
fills. As a result, we think that a dynamic partitioning policy, on execution time, can
be established and may mean more monetary cost improvements. That dynamic policy
specially would be easy to apply when applications just write data, and those data do not
have to be read again. That is because, when moving partition boundaries, future read data
in a certain partition, may be overwritten by new data corresponding to a new partition,
causing disk spin ups for read requests of previously overwritten data.
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Figure 4.7: Ups (active state - 1/2) and downs (standby state - 0.5/1.5) in the course of
time, of a single disk drive, when the SSD partitioning policy is applied. SSDs are 4 GB
sized.

4.4 Power saving-aware prefetching policies

In this section, we describe several approaches included in the Prefetching module from
the SSD-PASS architecture.

As was said in the previous section, some HPC applications exhibit repetitive be-
haviours, in which previously written data are read again. This characteristic makes op-
timal the previously described write buffering policy, because disk drives are only spun
up when SSDs are filled, and not because some read data cannot be found on the SSDs.
However, other applications present read accesses to data that cannot be found on the
SSDs. That is because, those data have not been previously written, or they have been
overwritten by another data. With the purpose of avoiding this situation, a specific area
can be reserved in the SSDs, with an aim to host data that are supposed to be accessed in
the future. This helps to remove unnecessary spins-ups. In order to make the most of that
area, for power saving purposes, several prefetching policies are proposed on this thesis.

The objective of a conventional prefetching technique is to improve file access per-
formance by issuing file data requests in advance. However, in this thesis we propose a
power-saving aware prefetching which focuses on reading in advance, enough blocks in or-
der to avoid break long-idle intervals. If a workload is sequential enough, reading successive
blocks into the SSD device using a single I/O operation, can considerably satisfy almost
all of read requests during a long idle period of time. Moreover, it can take advantage of
shorter service demands that come from the not extreme head displacements at disk drives.

The prefetching policy is enforced at the SSD and consists of: deciding which blocks to
prefetch (prediction), monitoring the block prefetching, and moving the prefetched blocks
from the SSD-based cache to applications. In this thesis, we propose several adaptive
prefetching policies as energy-efficient strategies, which are integrated in the SSD-based
hybrid architecture presented in Section 4.2. For some policies, The prefetching module
adjusts parameters in real-time such as window sizes, in order to obtain the best perfor-
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mance for data-intensive applications.

4.4.1 Sequential read-ahead policy

This mechanism involves reading in advance, consecutive data blocks when a read miss oc-
curs. We employ this approach by using adaptive window sizes. Depending on the workload
access pattern, the policy chooses an appropiate window size to get the highest possible
hit ratio. The prefetching policy dynamically calculates the maximum sequential data flow
with the arrived requests, and uses it as the window size. We constantly derive spatially
adjacent requests from the data flow, targeting each disk. Multiple simultaneous data flows
or strided data flows make the derivation and modeling of sequentiality difficult. Merged
strided data flows are identified by comparing each request block, not only against the
nearly previous request block and length, but also to the n previous requests. We intro-
duce a history-based log of the last n I/O accesses. This can be considered as augmenting
the read-ahead window for this calculation from 1 to n. For every I/O access, if necessary,
we linearly look through this record and find out if we have a higher sequentiality.

Algorithm 6 Calculation of the degree of sequential read-ahead

Block reqBlock is requested:

1: size ⇐ reqBlock - prevBlock
2: currBlock ⇐ reqBlock + (rwSize)/blockSize − 1
3: if size 6= 1 then
4: for i ⇐ separation.begin() to separation.end() do
5: if reqBlock - i = 1 then
6: prevBlock ⇐ i
7: size ⇐ 1
8: end if
9: end for

10: end if
11: if size = 1 then
12: separation.add(currBlock)
13: if separation.size() > windowSize then
14: separation.remove(min(separation))
15: end if
16: dataflows[currBlock] ⇐ dataflows[prevBlock]
17: dataflows.erase(prevBlock)
18: separ ⇐ currBlock - dataflows[currBlock]
19: if maxSeq < separ then
20: maxSeq ⇐ separ
21: end if
22: end if
23: prevBlock ⇐ currBlock

The calculation of the degree of sequential read-ahead is described in Algorithm 6.
Every time a reqBlock is requested, the distance (size) with respect to the previous block
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Algorithm 7 Algorithm for sequential prefetching - Sequential read-ahead

Block reqBlock is requested:

1: miss ⇐ 0
2: for i ⇐ reqBlock to (reqBlock + rwSize/blockSize − 1) do

3: if i /∈ CACHE then

4: miss ⇐ 1
5: end if

6: end for

7: if miss = 1 AND size = 1 then

8: for i ⇐ reqBlock to (reqBlock + rwSize/blockSize − 1 + maxSeq) do

9: putInCache(i)
10: end for

11: else

12: for i ⇐ reqBlock to (reqBlock + rwSize/blockSize − 1) do

13: putInCache(i)
14: end for

15: end if

accessed (prevBlock) is determined (line 1). If blocks are not sequential, the system pro-
vides a second chance to find sequentiality. Lines 3-10 deal with the case of comparing
reqBlock with the previous windowSize requests hosted in the separation history list. If
size results 1 in this case, last accessed block in the current request (currBlock) is saved
into the separation history list, and the least recently added block is removed, if the list
is full (lines 11-15). Lines 16-22 record currBlock as the last block accessed in its data
flow and the length of the data flow is compared with the length of the longest data flow
(maxSeq) and updated if applicable. Line 23 records the last accessed block in the current
request (currBlock) as the previous accessed block (prevBlock) for the next request.

Only when a read miss occurs and the distance with respect to the previous accessed
request (size) turns out to be 1, the system prefetches a total of seqMax blocks (shown in
Algorithm 7).

The effectiveness of this approach can be seen in Figure 4.8. It shows the distribution
of accessed disk requests in the course of two applications executions. The left part of the
figure shows disk accesses without applying any prefetching policy. The right part of the
figure shows disk accesses, by applying the previously described prefetching policy.

The policy is evaluated only for read accesses, and, in the specific case of the figures,
it is not combined with the previously described write buffering policy. That means that
read requests cannot be serviced by the writing policy parts of SSDs. By doing this, the
real effect of the prefetching policy becomes more visible. The two applications present a
high degree of sequentiality, so disk accesses are reduced.

As can be seen, the usage of the prefetching policy avoids disk accesses. However, the
number of avoided disk requests are not so many, for the resulting idle times to be big
enough. Also, the avoided disk requests are not concentrated enough in time to make idle
times bigger. Instead, they are spread in the course of the applications execution. In spite
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Figure 4.8: Distribution of accessed disk requests in the course of two applications execu-
tions. Sequential read-ahead policy has been applied (right).

of that, this approach has several advantages:

• Not all the misses cause data prefetching. Data are prefetched only when a miss
happens because the current prefetched flow is not big enough, and must be extended.
This avoids that subsequent requests wait very often for the prefetching stage to
finish.

• The current flow can be extended as far as its size plus the maximum sequential flow
size. If an application is very sequential, many read misses can be avoided, making
idle times longer.

This approach has also several drawbacks:

• When the maximum sequential flow size is very big, subsequent requests must wait
until the current prefetching stage to finish reading from disk.

• It does not avoid disk accesses in non-sequential applications.
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4.4.2 Block sieving read-ahead policy

This approach is an enhancement of the algorithm presented in Section 4.4.1. In the previ-
ous approach, only when a read miss occurs and the distance with respect to the previous
accessed request (size) is 1, the system prefetches a total of seqMax blocks, which is the
size of the maximum accessed sequential flow. However, when a read miss occurs, and the
distance with respect to the previous accessed request is not 1, the system does not apply
prefetching.

Here, when a miss occurs, and the distance with respect to the previous accessed
request is not 1, not just the requested blocks are put into the cache. Also, blocks that
are between the requested blocks and the closest flow stored in cache are prefetched, thus,
extending the closest flow stored in cache. This makes that not only strictly sequential
accesses cause prefetching. However, not all the closest flows to the current request can
be extended. If the distance from the current request to the closest flow is bigger than a
certain value, the flow better not be extended, because the blocks to prefetch are too many,
and the subsequent requests could wait for too long.

Algorithm 8 Calculation of extension to the closest flow

Block reqBlock is requested:

1: min ⇐ MAXINT
2: minAbs ⇐ MAXINT
3: for i ⇐ flows.begin() to flows.end() do
4: if reqBlock - i < min then
5: min ⇐ reqBlock - i
6: if min < 0 then
7: minAbs ⇐ (reqBlock - i) ∗ (-1)
8: else
9: minAbs ⇐ reqBlock - i

10: end if
11: if minAbs < 400 then
12: if min > 0 then
13: flows[reqBlock + rwSize/blockSize − 1] ⇐ i
14: flows.erase(i)
15: begin ⇐ reqBlock + rwSize/blockSize − 1
16: else
17: flows[i] ⇐ reqBlock
18: begin ⇐ i
19: end if
20: end if
21: end if
22: end for

The calculation of the extension of the closest flow is described in Algorithm 8. Every
time that a list of blcoks (reqBlock) is requested, the distance (minAbs) to all the stored
flows is determined (lines 1-10). If that distance (minAbs) is less than a certain value (line



4.4. Power saving-aware prefetching policies 61

11), the flow is extended, on the right (lines 12-15), when the current request is closer to
the end of the flow (i), or on the left (lines 16-19), when the current request is closer to
the beginning of the flow (flow[i]).

Only when a read miss occurs and the distance with respect to the previous accessed
request (size) is not 1, the system prefetches the total number of missing blocks in the
previously extended flow (shown in Algorithm 9; lines 12 - 14).

The effectiveness of this approach can be seen in Figure 4.9. It shows the distribution
of accessed disk requests in the course of the executions of two applications. The two
applications present a high degree of sequentiality, so disk accesses are reduced. The left
part of the pictures shows disk accesses without applying any prefetching policy. The right
part shows disk accesses, when the described prefetching policy is applied.
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Figure 4.9: Distribution of accessed disk requests in the course of two applications execu-
tions. Block Sieving read-ahead policy has been applied (right).

As can be seen, the application of this policy does not improve in a high degree the
previous policy. It just avoids some more request accesses to the disk drive, but it does not
make much bigger idle times.
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Algorithm 9 Algorithm for sequential prefetching - Block Sieving read-ahead

Block reqBlock is requested:

1: miss ⇐ 0
2: for i ⇐ reqBlock to (reqBlock + rwSize/blockSize − 1) do

3: if i /∈ CACHE then

4: miss ⇐ 1
5: end if

6: end for

7: if miss = 1 AND size = 1 then

8: for i ⇐ reqBlock to (reqBlock + rwSize/blockSize − 1 + maxSeq) do

9: putInCache(i)
10: end for

11: else

12: for i ⇐ flows[begin] to (begin) do

13: putInCache(i)
14: end for

15: end if

4.4.3 Extended Window read-ahead policy

This approach is an extension of the previous algorithm. Here, a lot more data blocks are
prefetched. As can be seen in Algorithm 10, every time a reqBlock is requested, the size of
the flow in cache it belongs to is calculated. This parameter is the next number of blocks
to prefetch (see Algorithm 11).

Algorithm 10 Calculation of distance to the next flow

Block reqBlock is requested:

1: for i ⇐ flows.begin() to flows.end() do
2: if prevBlock <= i AND prevBlock >= flows[i] then
3: sepa ⇐ i − flows[i] + (rwSize)/blockSize
4: end if
5: end for

The effectiveness of this approach can be seen in Figure 4.10. It shows the distribution
of accessed disk requests in the course of the executions of two applications. The two
applications present a high degree of sequentiality, so disk accesses are reduced. The left
part of the pictures shows the disk accesses without applying any prefetching policy. The
right part shows disk accesses, by applying the described prefetching policy.

The application of this policy improves in a high degree the previous policy. The
drawback of this approach is that a lot of blocks are prefetched, reducing the performance
of the two applications. Also, a lot of space is wasted as a result of the great number of
blocks that are prefetched.
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Algorithm 11 Algorithm for sequential prefetching - Extended Window read-ahead

Block reqBlock is requested:

1: miss ⇐ 0
2: for i ⇐ reqBlock to (reqBlock + rwSize/blockSize − 1) do

3: if i /∈ CACHE then

4: miss ⇐ 1
5: end if

6: end for

7: if miss = 1 AND size = 1 then

8: for i ⇐ reqBlock to (reqBlock + rwSize/blockSize − 1 + sepa) do

9: putInCache(i)
10: end for

11: else

12: for i ⇐ flows[begin] to (begin) do

13: putInCache(i)
14: end for

15: end if

4.4.4 Offline read-ahead policy

All the previous approaches did not get the most of the write buffering policies. In this
approach an offline algorithm is proposed. This approach gets the most of it, and also, by
taking into account the size of the cache, it adds and removes blocks from it, in order to
provide the largest idle times.

The offline algorithm consists of: Reserving a part in the SSDs to host data blocks
that are going to be read. The rest of the space is reserved for blocks that will be redirected
to SSD as a result of the write buffering policy.

When a data block must be written, it goes to the write buffering part and keeps
placed on it. Whenever a data block must be read, it checks the write part first, to see if
the block has been written there, and if so, the block is read from there. If that block is
considered to be accessed later, it is copied to the read part, for future accesses, as shown
in Algorithm 12.

Algorithm 12

Block reqBlock is requested:

1: for i ⇐ reqBlock to (reqBlock + rwSize/blockSize − 1) do

2: if i ∈ CACHEw AND willBeAccessed(i) then

3: putInCacher(i)
4: end if

5: end for

This algorithm is useful both for sequential and not sequential workloads. Some ap-
plications does not present a clear sequentiality, so it becomes difficult to predict future
read accesses, by learning dynamically, from previous sequential patterns.
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Figure 4.10: Distribution of accessed disk requests in the course of two applications exe-
cutions. Extended Window read-ahead policy has been applied (right).

The algorithm learns, from previous executions, which blocks to prefetch on the SSDs.
In the learning executions, blocks are read from the write buffering part as much as possible.
After the learning phase, missing blocks are analyzed, in order to know which blocks should
be prefetched before the application starts.

In order to detect block areas that has been accessed in the course of the applications
executions, a new algorithm is proposed (see Algorithm 13). This algorithm helps to decide
which areas from disk drives should be prefetched before application execution, in order to
provide the biggest idle times.

This algorithm only detects bands when the read accesses are spread in the course
of the application execution and all of them are concentrated in specific areas of the disk
drive.

As can be seen, every read block that has been missed from cache is checked to see if
it belongs to any band of the disk (line 3). If the difference with respect to the minimum
block of the band (min) is bigger than the bandSize, or there exists a gap between the
actual checked block (i) and the previous one (prevLBA), a new band is selected, when the
number of LBAs in that band is higher than a certain threshold, LBAsThreshold (lines 4
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Algorithm 13 Band detection method

bandDetection()

1: min ⇐ CACHE.begin() , max ⇐ CACHE.end()
2: prevLBA ⇐ min
3: for i ⇐ CACHE.begin() to CACHE.end() do
4: difference ⇐ i − min
5: if (difference < bandSize)&(i − prevLBA < maxGap) then
6: max ⇐ i , LBAs + +
7: else
8: if LBAs ≥ LBAsThreshold then
9: band[j].min ⇐ min, band[j].max ⇐ max

10: j + +
11: end if
12: min ⇐ i , max ⇐ i
13: LBAs ⇐ 0
14: end if
15: prevLBA ⇐ i
16: end for

- 13).

Once specific areas have been detected, before subsequent executions, data in bands
are moved to the read part of SSDs (Algorithm 14).

Algorithm 14

1: for i ⇐ 0 to (band.size() − 1) do

2: for j ⇐ band[i].min to (band[i].max) do

3: putInCacher(j)
4: end for

5: end for

The usage of this algorithm has several advantages with respect to previously described
ones:

• It can be used both for sequential or not sequential applications.

• As the prefetched blocks are moved from disk to SSDs before starting the execution of
the applications, currently served requests do not have to wait for previous requests
to be served.

• As read misses are known before the execution of the applications start, disk drives
do not have to spend time in being waken up, and then, the missed requests do not
have to wait for being serviced.

• As we will show in our evaluation, space in SSDs is not wasted, because just the
needed blocks are moved from disk to SSDs. Blocks that are not going to be used are
not moved.
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(c) BTIO - Baseline

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0.4  0.45  0.5  0.55  0.6  0.65  0.7  0.75  0.8

A
cc

es
se

d 
bl

oc
k 

in
de

x
 (

th
ou

sa
nd

s 
of

 b
lo

ck
s)

Time (hours)

(d) BTIO - Offline read-ahead

Figure 4.11: Distribution of accessed disk requests in the course of two applications exe-
cutions. Offline read-ahead policy has been applied (right).

The effectiveness of this approach can be seen in Figure 4.11.

4.5 Economic model

In this section, we describe an economic model in order to evaluate if our proposed storage
power saving-aware approaches are justifiable and feasible. The model compares an archi-
tecture deployed with magnetic disks, to our hybrid storage architecture consisted of disks
and SSDs devices. Initially, costs of acquisition of the first architecture may be higher than
costs of acquisition of the second one. As time goes on, the investment in our power-saving
architecture may be returned because cost of power in the disk subsystem is a significant
element to consider. In order to show how this investment is returned, we turn both the
cost of acquisition and the power into monetary terms. Both disk and SSD devices have a
limited life-span. The model also takes into account device replacements costs as a conse-
quence of their use. We identify two principal SSD solutions, MLC and SLC. In this thesis
we present results for SLC-based SSD due to this model present better benefits than MLC
in terms of performance and durability.
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The acquisition cost of a SATA HDD per GB is around 0.14 USD, while the cost for
a SLC-based SSD per GB is around 9.2 USD [SPBW10]. Electricity prices vary all over
the world. An average of electricity tariffs of industrialised countries of Europe and USA
is 12 US cents/kWh[ele11a, ele11b], although some factors are causing electricity prices
increases [BCFP+06] in many countries.

Disk devices specifications provide two important metrics about their durability: mean
time to failures (MTTF) and constant start stop cycles (CSS). MTTF estimates the number
of hours that a disk will last until the next failure. This metric is based on the assumption
that disks are powered on 100% of the time. Moreover, several studies show that there is
a correlation between MTTF and some parameters generally believed to impact durabil-
ity/reliability [Sik07, PWB07, GPW10], what make it diffuse to use as a disk durability
metric. CSS are the maximum number of start/stop cycles that disk devices are designed
to handle during their service life. The life of disk devices is usually designed for about
30,000 - 50,000 cycles. If this value is reached for a disk device, it means that a lot of wear
has occurred to the head and also to other components such us the spindle motor, making
it unusable.

Every time magnetic disk or SSD devices need to be replaced because they have
exceeded their durability metrics, new acquisition costs are added to the total monetary
costs. It is important to note that in SSD devices, blocks are erased before re-writing them
again, and the maximum number of erasures before devices become unusable is limited.
MLC provides higher densities per cell and the memory cells have to be re-written in
larger chunks. SLC provides lower densities and last longer. In MLC devices the durability
is limited to 10,000 erasures per block while in SLC devices durability is limited to 100,000
erasures per block [SPBW10].

In order to provide an estimation for the energy costs of the proposed approaches, the
energy consumption of both disk and SSD devices has been modeled. The power model for
the disk devices employs an extension of the 2-Parameter Model described in [ZSG+03].
This model applies the following formula to calculate the energy consumption estimation
of each disk:

Edisk = EactiveDisk + EidleDisk + EstandbyDisk (4.1)

Where EactiveDisk is calculated as PactiveDiskxTactiveDisk, PactiveDisk is the power con-
sumption when the disk is active, and TactiveDisk is the time spent by the disk while satis-
fying disk requests. EidleDisk is calculated as PidleDiskxTidleDisk, PidleDisk is the power con-
sumption in the idle mode, and TidleDisk is the length of the idle period. EstandbyDisk is
calculated as PstandbyDiskxTstandbyDisk, PstandbyDisk is the power consumption in the standby
mode and TstandbyDisk is the length of the standby period.

As SSDs have different energy consumption ratios, we provide a specific SSD power
model, in which consumption estimation is given in the following formula:

ESSD = EactiveSSD + EidleSDD (4.2)

Where Eactive is calculated as PactiveSSDxTactoveSSD, PactiveSSD is the power consump-
tion when the SSD is active, and TactiveSSD is the time spent by the SSD while satisfying
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SSD requests. EidleSSD is calculated as PidleSDDxTidleSSD, PidleSSD is the power consumption
in the idle mode, and TidleSDD is the sum of the idle periods.

In each evaluation, the model obtains energy consumptions for periods of 24 hours.
An estimation of the monetary costs for those consumptions, in the i− th storage element,
is given by the following formula:

Costs1Day i = (Edisk i + ESSD i) ∗ 3.33x10−8 (4.3)

Where 3.33x10−8 is the price in $/Ws. Units of energy are given in Ws. An estimation
of the monetary costs for periods of 1 month is given by the formula:

Costs1Month i = Costs1Day i ∗ 30 (4.4)

The model analyzes the cost and the amortization in a seven year period. We chose
that frame of time, considering that, typically, wear in disk drives is high after years 5-7
of operation under normal conditions [Sik07]. The formula for that calculation:

Costs7Y ear i = Costs1Month i ∗ 84 (4.5)

In order to know the months that a single disk can last, before being replaced, the
number of start/stop cycles in a period of 24 hours must be known. Thus, the calculation
of the duration of a single disk drive is given by the following formula:

Durationdisk i = (CSS/startStop i)/30 (4.6)

Where startStop i is the number of start/stop cycles in a period of 24 hours, and CSS
is the maximum number of start/stop cycles that the disk can handle during its service
life.

In order to know the months that a single SSD can last, before being replaced, the
maximum number of written GB per day must be known. The calculation of the duration
of a single SSD is given by the following formula:

DurationSSD i = (100, 000/(GBperDay i/GBperSSD))/30 (4.7)

Where GBperDay i are the written GB in a day, and GBperSSD is the size in GB of the
SSD under review. 100,000 is the maximum number of erasures per block in the SSD.

The price per disk, for a disk of a certain size, is given by the formula:

Pricedisk = GBperDisk ∗ 0.14 (4.8)

The price per SSD, for a disk of a certain size, is given by the formula:

PriceSSD = GBperSSD ∗ 9.2 (4.9)

Finally, total monetary costs for our storage power aware approach are represented by
the formulas:
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CostsRepl i = Pricedisk∗(1+84/Durationdisk i)+PriceSSD∗(1+84/DurationSSD i) (4.10)

CostsSSD PASS =
NSE∑

i=1

(CostsRepl i + Costs7Y ear i) (4.11)

Where CostsRepl i represents acquisition and replacement costs in a seven year period,
for the i− th storage element. NSE is the total number of storage elements that our power
aware architecture has.

Total monetary costs for a baseline architecture, deployed with magnetic disks, are
given by the formula:

CostsBaseline =
NSE∑

i=1

(Pricedisk + Edisk Baseline i ∗ 3.33x10−8 ∗ 30 ∗ 84) (4.12)

Where Edisk Baseline i is the energy consumption of the i− th magnetic disk in a 1 day
period.

Finally, monetary costs savings are given by the formula:

CostsSavings = CostsBaseline − CostsSSD PASS (4.13)

4.6 Summary

In this chapter, two new techniques have been proposed in order to save power in HPC
applications. On the one hand, we have proposed a new write buffering policy, which gets
the most of SSD drives. It also gets the most of repetitive patterns in HPC applications,
in order to avoid unnecessary spin-ups. On this same context, an SSD-patitioning policy is
proposed. It gets the most of several concurrent applications in order to avoid disk spin-ups,
and save power.

On the other hand, as not every HPC application present repetitive patterns, not all
the read requests can be found in SSDs, causing disk spin-ups. Four prefetching algorithms
are proposed in order to solve that problem.

Finally, an economic model was proposed, in order to evaluate the previously men-
tioned approaches, in the long term.

The proposed approaches and their experimental results have been published in:

• Power Saving aware prefetching for SSD-based systems. Laura Prada, Javier Garcia,
J. Daniel Garcia, Jesus Carretero. The Journal of Supercomputing. Springer. March,
2011. Impact Factor: 0.687.
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• A Power-aware Based Storage Architecture for High Performance Computing. Laura
Prada, Javier Garcia, J. Daniel Garcia, Jesus Carretero, Alberto Nuñez. 13th IEEE
International Conference on High Performance Computing and Communications (HPCC-
2011). September, 2011.

• Using Write Buffering and Read Prefetching Between Flash and Disk Drives to Save
Energy in an Hybrid System. Laura Prada, J. Daniel Garcia, Jesus Carretero. 16th
International Conference on Parallel and Distributed Processing Techniques and Ap-
plications (PDPTA 2010). July, 2010.

• Power Saving-aware Solution for SSD-based Systems. Laura Prada, J. Daniel Gar-
cia, Jesus Carretero, Javier Garcia Blas. International Conference on Mathematical
Methods in Science and Engineering (CMMSE 2010). Almeria, Spain. June, 2010.

• Saving power in flash and disk hybrid storage system. Laura Prada, Jose Daniel Gar-
cia, Jesus Carretero, and Felix Garcia. 17th Annual Meeting of the IEEE/ACM In-
ternational Symposium on Modelling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS’09). London, England. September, 2009.

• Ahorro energetico en un sistema de almacenamiento hibrido compuesto por un disco
duro y varias memorias flash. Laura Prada, J. Daniel Garcia, Jesus Carretero, and
Felix Garcia. Actas de las XX Jornadas de Paralelismo. La Coruña, Spain. September,
2009.



Chapter 5

Evaluation

The previous chapters proposed a method to construct black box models, for disks drives,
based on probabilistic distributions. Also, a generic power aware I/O architecture and
techniques to save power are proposed. This chapter focuses on the evaluation of the
proposed methods and approaches.

The chapter is organized in three sections. First, in Section 5.1 we evaluate several
characteristics for the construction of black box models, presented in Chapter 3. Second,
evaluation of the different policies presented in Chapter 4 are described in Section 5.2.
Third, in Section 5.3 the black box model approaches are analyzed for their application on
the modeling of power aware I/O architectures.

5.1 Black box modeling Evaluation

In this section, we evaluate the proposed method in Chapter 3. The section is organized
in four subsections. In Subsection 5.1.1 we show validation results of our service time
measurement tool, play. For its validation, we have used two synthetic traces. Evaluation
of models construction, as well as comparisons with DiskSim, in terms of accuracy and
performance, is described is Subsection 5.1.2. Evaluation of already constructed models,
by using non-trained traces, is presented in Subsection 5.1.3. The already constructed
models are based on several real traces. Subsection 5.1.4 shows results for construction of
models based on synthetic traces. We evaluate those based-on-synthetic-traces models by
using real traces.

We have tested our method using a SCSI disk as beta test. The disk is a Seagate
Cheetah 10K.7. Its main features are shown in table 5.1. We have constructed several
black box models for the disk and validated the models using several scenarios, as shown
in the previously cited subsections.

71
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Specification Value

Heads 2
Discs 1
Bytes per sector 512
Bytes per track 556 Kbytes
Default read/write heads 2
Spindle speed 10000 rpm
I/O data transfer rate 320 Mbytes/sec
Formatted capacity 73.4 Gbytes
Guaranteed sectors 143,374,744
Cache buffer 8 Mbytes
Average latency 3 msec

Table 5.1: Manufacturer specifications for disk ST373207LC

5.1.1 Measuring Service time

In this section we validate our service time measurement implementation, play, against
dxreplay, a measurement service time tool, included in DIXtrac [SG00, SGLG02, BS02].
We compare both programs by feeding them with two synthetic traces, under different
configurations.

Figure 5.1 shows the CDF (Cummulative Distribution Function) results of running the
two synthetic traces on the Seagate Cheetah 10K.7 disk by using dxreplay, from DIXtrac,
compared to runs on the same disk by using play, our service time measurement program.
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Figure 5.1: CDF’s for response times from a Seagate Cheetah 10K.7 disk and two synthetic
traces.

The trace, Random, has 10,000 requests, of which 2

3
are reads and 1

3
are writes. The

LBNs are random and are distributed across the entire disk. The request size ranges from
1 KB to 8 KB. The other trace, Mixed, has 5,000 requests. 2

3
of the total requests are

reads and the rest are writes. 20% of the requests are sequential and 30% are local. The
remaining 50% have random LBNs. The request sizes range between 1 KB and 8 KB.

We used the demerit [RW94] error as our metric to validate our service time mea-
surement program, play. It is defined as the root mean square of the horizontal distances
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between the distribution that comes from dxreplay and the distribution from our service
time measurement program, play. We present it in absolute terms (as a difference in mil-
liseconds), to compare it with other DIXtrac models [DIX12].

Random was run after deactivating the buffer cache to the disk drive. Mixed was
executed after enabling again the cache, and hence, the read-ahead and immediate write
reporting.

The demerit figures obtained for the Random and Mixed traces are, respectively, 0.59
ms and 0.47 ms. This is a quite good match, so this lead us to consider that play is validated
and we use it in the rest of the evaluations of the chapter.

dxreplay incorporates a mechanism to restrict the maximum number of pending I/O
requests that can be enqueued in the disk drive, due to the effect of bursty workloads. We
also incorporated such a mechanism in our service time measurement program, play, by
using mutexes. We compared again both measurement tools by executing the previously
described synthetic traces, but making them more bursty. To notice the effect of the queuing
limiting mechanism, we executed both traces by letting 1, 2, and 3 maximum enqueued
requests.

Figure 5.2 shows the CDF results of running the new bursty Mixed trace on the
Seagate Cheetah 10K.7 disk by using dxreplay, compared to the runs on the same disk by
using play. The cache of the disk drive was activated. The demerit figures obtained for 1,
2, and 3 maximum enqueued requests are 1.3 ms, 3.1 ms, and 1.4 ms, respectively.
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Figure 5.2: CDF’s for response times from a Seagate Cheetah 10K.7 disk and a bursty
Mixed trace. The maximum number of pending I/O requests that can be enqueued in the
disk drive are limited to 1 (Q-1), 2 (Q-2), and 3 (Q-3)
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Figure 5.3 shows the CDF results of running the new bursty Random trace on the
Seagate Cheetah 10K.7 disk by using dxreplay, compared to the runs on the same disk by
using play. The cache was deactivated in the disk drive.
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Figure 5.3: CDF’s for response times from a Seagate Cheetah 10K.7 disk and a bursty
Random trace. The maximum number of pending I/O requests that can be enqueued in
the disk drive are limited to 1 (Q-1), 2 (Q-2), and 3 (Q-3)

The demerit figures obtained for 1, 2, and 3 maximum enqueued requests are 0.53 ms,
8.57 ms, and 12.29 ms, respectively. Note that with 2 and 3 maximum enqueued requests
demerits increase significantly. That happens because in play, for our Seagate Cheetah
10K.7 disk, some specific LBNs or offsets from the Random trace are invalid in certain
moments. By invalid, we mean that for our specific disk, the aggressive head movements
or seekings, from some specific LBNs to anthers, produce errors. This fact has collateral
effects: As some requests are not correctly measured, the subsequent requests may stay in
the queue for longer, when the incorrectly measured requests last longer than they should.
In the tests, for the Random trace, this brings on a shift on the right at play CDFs for the
2 and 3 maximum enqueued requests approaches.

As we can see, for the Mixed trace, the difference between the results obtained by using
play and dxreplay, is not so noticeable. That is due to two main reasons: As the read-ahead
and immediate write reporting were activated, some of the requests were serviced directly
from the cache, avoiding being serviced from the platters, and hence, the head movements
or seeks. Also, the Mixed trace is not as random as the Random trace, and some of the
aggressive head movements or seekings are avoided.

However, for both traces, the obtained demerits are pretty good when the maximum
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number of enqueued requests is 1. In both cases, when some requests are not correctly
measured, the subsequent requests are not affected, because they start once the previous
requests have finished. In the view of the obtained results, when the maximum number of
enqueued requests is 1, we can say that the incorrectly measured requests are not many.

5.1.2 Constructing models

In this section we show the results obtained by applying our method, for predicting already
trained traces. We first construct models by using some traces, and then, we predict re-
sponse times from that models, by using the same traces we used to construct the models.
So, for each of the 5 previously described workloads, we identify the obtained distributions,
fit them to some known distributions, and figure the causes out for them. To see the effect
of the disk buffers in the predictions, for each workload, we deactivated and activated the
disk cache again. We analyzed each of the previously described traces to show the variety
of behaviours a specific disk presents in the view of different traces.

In each test, we plot the histogram for the data obtained by using play (our service
time measurement program). By representing the histogram, we identified the possible
distributions to fit to. After that, we fit the previously identified distributions to theoretical
distributions, and show them in tables. Then, we find the causes for them, and on the
basis of those causes, we construct the models. We replay the traces again on the recently
constructed models and show the Q-Q plots to judge the goodness-of-fit of the models to
the experimental data, and their CDFs to see how well they superimpose. The reason we
analyze in such a detail every trace is to show the wide range of characteristics each specific
trace presents on a specific disk.

After analyzing each specific workload and its implications with and without the usage
of the disk buffers, we compare our models against the DiskSim simulator [GWW+99].
We obtained the DiskSim model parameters for the real disk by running DIXtrac [SG00,
SGLG02, BS02] on the Seagate Cheetah 10K.7 disk. As previously said, DIXtrac is a
characterization tool for SCSI disk drives. It obtains more than 100 parameters to get a
very detailed model of the disk, an those parameters are used by DiskSim.

We replay each of the 5 previously described workloads on DiskSim, and show their
CDFs altogether with our models’ and the real disk’s. We also compare the demerit figures
for each trace and both models, against the real disk. As in the previous specific analysis,
we made the comparisons by deactivating first the disk buffers and then by activating them
again.

We also make a comparison of the time it takes for both models to execute. We
deactivate all the I/O and statistic processes in both simulators, and execute for each of
the previously described traces. We also make a comparison in terms of speedup, to see
how much faster than DiskSim our model is. Here, again, for each trace we make two
comparisons: By deactivating the disk buffers, and by activating it again.
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S3D − No Cache − Histogram

response time (ms)

F
re

qu
en

cy

0 50 100 150 200

0
40

0
80

0
12

00

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  50  100  150  200  250  300

C
D

F

response time (ms)

S3D - No Cache - CDF

real
simulated

type µ σ
Distribution 1 Normal 90.44 13.41

Figure 5.4: Histogram, Q-Q and CDF’s plots for response times from a Seagate Cheetah
10K.7 disk and a S3D workload. The table shows the parameters of the modeled distribu-
tion. Caching is not activated the disk drive

Figure 5.4 shows the histogram, Q-Q and CDF’s plots, for the S3D workload. The usage
of the disk cache was deactivated. We identified only one distribution, which parameters
are shown in the figure. In this workload, although accesses are sequential, the size for each
request is 2048 blocks. This makes response times are long. Also, as accesses are bursty,
and most of the requests are enqueued, response times are even longer. So in this trace
response times are dominated by enqueuing times, and their values are centered at the
mean of the modeled distribution.

The trace also presents few short response times, as a result of the few idle periods of
the trace. Idle periods avoid bursty accesses, in which most of the time a request must wait
to be serviced until the end of the previous ones. Another reason for the short and also
longest response times is the effect of the scheduling algorithm of the disk, which reorder
the requests and the ones which came later (shortest) may be serviced before than the ones
which came before (longest). In this trace, as we identified only one distribution we did
not have to distinguish among several distributions and therefore, neither the reasons for
them. All the response times will be generated from the same distribution. Both the Q-Q
and CDF’s plots show the goodness-of-fit of the model, and the relative mean error is 8%.
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Figure 5.5: Histogram, Q-Q and CDF’s plots for response times from a Seagate Chee-
tah 10K.7 disk and a BTIO workload. The table shows the parameters of the modeled
distribution. Caching is not activated in the disk drive

Figure 5.5 shows the histogram, Q-Q and CDF’s plots, for the BTIO workload. The
disk cache was deactivated. In this trace, we also identified one distribution, whose pa-
rameters are shown in the enclosed table. As a result of this, we did not either have to
distinguish among different distributions and neither finding their reasons out. As in the
previous trace, all the response times are generated from the same distribution.

The mean size of the request is 128 blocks and the accesses are also very sequential.
However, the trace is not very bursty, making response times just dependant on the request
size. Longer response times are due to the few bursty requests of the trace or the requests
coming after some periods of idleness. As previously said, when a trace is very bursty,
some requests must wait until the end of the previous ones, making their response times
longer. For some specific disks, after a period of idleness the next request to be serviced
takes longer than as usual. Both the Q-Q and CDF’s plots show the goodness-of-fit of the
model, and the relative mean error is 8.3%. Here, the disparity in the CDFs is due to the
error when fitting the distribution.
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MadBench − No Cache − Histogram
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Figure 5.6: Histogram, Q-Q and CDF’s plots for response times from a Seagate Cheetah
10K.7 disk and a MadBench workload. The table shows the parameters of the modeled
distribution. Caching is not activated in the disk drive

Figure 5.6 shows the histogram, Q-Q and CDF’s plots, for the MadBench workload.
We identified one distribution for this trace. As a result of this, we did not either have to
distinguish among different distributions and neither finding their reasons out. As in the
previous trace, all the response times are generated from the same distribution. Since it
is extremely bursty, response times are dominated by enqueuing times. Also, requests are
not very sequential, making longer response times.

The mean size of requests is 256 blocks. The scheduling algorithm produces response
times shorter than the mean of the distribution, and also do the few periods of inactivity. In
a bursty workload, the scheduling algorithm reorders the requests and the ones which came
later (shortest) may be serviced before than the ones which came before (longest). Also,
in a bursty workload, the periods of inactivity let some requests to be serviced without
having to wait for the previous ones. The cache was deactivated. In the shown Q-Q and
CDF’s plots can be seen the goodness-of-fit of the model. The relative mean error is 8.4%.
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Figure 5.7: Histogram, Q-Q and CDF’s plots for response times from a Seagate Cheetah
10K.7 disk and a Financial workload. The table shows the parameters of the modeled
distributions. Caching is removed from the disk drive

Figure 5.7 shows the histogram, Q-Q and CDF’s plots, for the Financial workload.
In this trace, we identified two distributions, and both are mixtures. Their parameters are
shown in the enclosed table. The mean size of the request is around 7 blocks. The trace is
not bursty, and the enqueing time almost does not have influence in the response times.
Also, the trace is very sequential.

We identified three reasons for the two discovered distributions. When requests are
sequential and there are no previous requests waiting to be serviced, response times are
generated from part 1 of Distribution 1. When there are previous requests waiting to be
serviced, response times are generated from part 2 of Distribution 1. Also, when a request
arrives after a period of idleness, depending on the length of the period, response times may
be generated from Distribution 2 or from part 2 of the Distribution 1. Response times from
part 2 of Distribution 1 are generated when inactivity periods are longer than 1 second.
Response times from Distribution 2 are generated when inactivity periods are around half
a second. The goodness-of-fit of the model, for a relative mean error of 7.4%, can be seen
in the shown Q-Q and CDF’s plots.
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Figure 5.8: Histogram, Q-Q and CDF’s plots for response times from a Seagate Chee-
tah 10K.7 disk and a cello99 workload. The table shows the parameters of the modeled
distributions. Caching is not activated in the disk drive

Figure 5.8 shows the histogram, Q-Q and CDF’s plots, for the cello99 workload. In this
trace, the mean request size is around 16 blocks. We identified two distributions, of which
one them is a mixture, but not the other. Their parameters are shown in the enclosed table.
Periods of burstiness alternate with periods of idleness. Periods of idleness are not very long,
so they do not make longer response times, they just not produce longer response times as
a result of enqueuing times. We identified two reasons for the two discovered distributions.
When a request arrives after a period of idleness, and it is considered as sequential, its
response time is generated from Distribution 1. On the other hand, the response time is
generated from Distribution 2. The cache was deactivated. The model presents a relative
mean error of 9%. Its goodness-of-fit can be visually appreciated in the Q-Q and CDF’s
plots.
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Figure 5.9: Histogram, Q-Q and CDF’s plots for response times from a Seagate Cheetah
10K.7 disk and a S3D workload. The table shows the parameters of the modeled distribu-
tions. Caching is active in the disk drive

Figure 5.9 shows the histogram, Q-Q and CDF’s plots, for the S3D workload. In
this case, the disk cache was activated. As when the cache was deactivated, we identified
only one distribution. The size of each request is the same (2048 blocks), and here, the
enqueuing times keep dominating the response times. Just the usage of the write caching
makes response times a little shorter, but enqueuing times are still the dominant factor.
That is because of the burstiness of the trace, which cannot be completely avoided, despite
of the usage of the write buffers. In this trace, as we identified only one distribution we
did not have to distinguish among several distributions and therefore, neither the reasons
for them. All the response times will be generated from the same distribution. Both the
Q-Q and CDF’s plots show the goodness-of-fit of the model, and the relative mean error
is 20%. Here, the disparity in the CDFs is due to the error when fitting the distribution.
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Figure 5.10: Histogram, Q-Q and CDF’s plots for response times from a Seagate Chee-
tah 10K.7 disk and a BTIO workload. The table shows the parameters of the modeled
distributions. Caching is active in the disk drive

Figure 5.10 shows the histogram, Q-Q and CDF’s plots, for the BTIO workload. Here,
the disk platters are working altogether with a disk cache. We identified three distributions,
whose parameters are shown in the enclosed table. Part 1 of Distribution 1 generates
response times when writes are recorded in the cache, and the requested reads have been
previously anticipated. As can be seen in the histogram, there is a very high probability
that this happens. That is because the trace is very sequential and also not very bursty.
Sequentiality benefits the fact that some data that will be requested soon, and have not
been requested yet, can be anticipated. When a trace is not bursty, enqueuing times do
not affect either subsequent response times.

Response times from Part 2 of Distribution 1 are generated when a request arrives,
and the previous request has not been serviced yet. Response times from Distribution 2
are generated when the current request is serviced by the platters and not by the disk
cache. The trace presents some periods of idleness, and when a requests arrives after them,
response times are generated from Distribution 2. The goodness-of-fit of the model is visible
in Q-Q and CDF’s plots. The relative mean error is 4.9%.
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Figure 5.11: Histogram, Q-Q and CDF’s plots for response times from a Seagate Cheetah
10K.7 disk and a MadBench workload. The table shows the parameters of the modeled
distributions. Caching is active in the disk drive

Figure 5.11 shows the histogram, Q-Q and CDF’s plots, for the MadBench workload.
The usage of the disk cache was activated. We identified one distribution for this trace.
As a result of this, we did not either have to distinguish among different distributions
and neither finding their reasons out. Here, all the response times are generated from the
same distribution. Due to the high burtiness of the trace, and despite of the use of the
cache, here again the dominant factor in the response time, is the enqueuing time. As
was previously said, the trace is not very sequential, making useless the read-ahead effect
during the read periods. The distribution is slightly different from the previously modeled
distribution, when the cache was deactivated, because of the immediate reporting during
the write periods. Both the Q-Q and CDF’s plots show the goodness-of-fit of the model,
and the relative mean error is 14.3%. Here, the disparity in the CDFs is due to the error
when fitting the distribution.
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Figure 5.12: Histogram, Q-Q and CDF’s plots for response times from a Seagate Cheetah
10K.7 disk and a Financial workload. The table shows the parameters of the modeled
distributions. Caching is active in the disk drive

Figure 5.12 shows the histogram, Q-Q and CDF’s plots, for the Financial workload. In
this case, the usage of the disk cache was activated. As in the case without the cache, we
identified two mixtures, which represent sequential accesses to the disk platters (part 1 of
Distribution 2), influence of queuing times (part 2 of Distribution 2), and different lengths
of idle periods (part 2 of Distribution 2 and Distribution 3). When the disk has been idle
for more than 520 ms and less than 700 ms, response times are generated from Distribution
3. When the disk has been idle for more than 1000 ms, response times are generated from
part 2 of Distribution 2. Also, we identified another distribution (Distribution 1) which
generate response times from hits in the disk cache.

As we previously said, the trace is very sequential and has a big percentage of write
requests, which makes it optimal for its usage with a cache. That is why, in the histogram,
a great percentage of response times come from Distribution 1. The goodness-of-fit of the
model is shown in Q-Q and CDF’s plots. Relative mean error is 10.20%.
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Figure 5.13: Histogram, Q-Q and CDF’s plots for response times from a Seagate Chee-
tah 10K.7 disk and a cello99 workload. The table shows the parameters of the modeled
distributions. Caching is active in the disk drive

Figure 5.13 shows the histogram, Q-Q and CDF’s plots, for the cello99 workload.
In this test, the disk cache was activated. We identified three distributions, and two of
them were mixtures. Response times from Distribution 1 model the immediate reporting
from write accesses to the write cache. They also model the read hits on the read cache,
which have been previously anticipated. The other two distributions model accesses to the
platters, which cannot be serviced by the disk buffer. Distribution 3 models response times
that result from sequential accesses, while distribution 2 models response times that come
from non sequential accesses. Distribution 2 also models response times from requests that
have to wait until the previous ones have finished. Both the Q-Q and CDF’s plots show
the goodness-of-fit of the model, and the relative mean error is 12%.
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Figures 5.14 and 5.15 show the CDF results of executing the five previously mentioned
traces on our analytical variate generator (bbm), DiskSim, and the Seagate Cheetah 10K.7
disk.

We got the DiskSim model parameters by running DIXtrac [SG00, SGLG02, BS02]
on the Seagate Cheetah 10K.7 disk. We both plotted the CDF curves for the real disk
and models outputs, and used the the demerit [RW94] error as our metric to validate
both models against the real disk. We presented the demerit figures in relative terms, as a
percentage of the mean response time.
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Figure 5.14: CDF’s for response times from a Seagate Cheetah 10K.7 disk and several block
traces. Caching is removed from the disk drive

Figure 5.14 shows the visual CDFs comparison of the five traces runs, on a disk with
no buffer cache. Demerits of those distributions are shown in Table 5.2. Note that for some
traces demerit figures are better in our approach than in DiskSim, and vice versa. In any
case, most of them, keep roughly in the same range. The highest demerits turn out to be in
the DiskSim case, for Financial (54%) and Cello99 (45%). In both cases, DiskSim did not
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take into account effects on response times, when idle periods are around half a second.
Other traces, like S3D and MadBench produced higher demerits in bbm (8% and 8.40%,
respectively) than in DiskSim (5.6% and 6.70%, respectively), due to errors when fitting
the distributions.
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Figure 5.15: CDF’s for response times from a Seagate Cheetah 10K.7 disk and several block
traces. Caching is added to the disk drive.

Figure 5.15 shows the CDFs comparison of the five traces executions, on a disk that
uses read-ahead an immediate reporting. Demerits of those distributions are shown in Ta-
ble 5.2. Like in the non-cache approach, demerits are better for some traces in the bbm
approach than in DiskSim, and vice versa. However, in the DiskSim approach demerits are
out of range for some traces (BTIO, Financial, and Cello99). We think this is because DIX-
trac did not perfectly identified the caching parameters or policies, for the Seagate Cheetah
10K.7 disk. However, other traces, like S3D and MadBench produced higher demerits in
bbm (20% and 14.30%, respectively) than in DiskSim (4.70% and 8.70%, respectively).
That is because of errors produced when fitting distributions. In the DiskSim cases, caching
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did not affect response times for S3D and MadBench because both of them are very bursty
and also their requests sizes are big. This makes enqueuing times to outshine possible hits
on disk cache, and also demerits to be lower.

Cache No Cache
Disksim bbm Disksim bbm

S3D 4.7% 20% 5.6% 8.0%
BTIO 94% 4.9% 13% 8.3%

MadBench 8.70% 14.30% 6.70% 8.40%
Financial 286% 10.20% 54% 7.40%
Cello99 51% 12% 45% 9%

Table 5.2: Demerits in relative terms for our black box model approach (bbm) and DiskSim

Figure 5.16 shows a summary of the demerit figures for our black box model approach
(bbm), the one on the left, and for DiskSim on the right. Both graphs compare demerits
when the disk uses the buffer cache and when does not. In both approaches most of the
traces present demerits lower than 20%. In the DiskSim approach (right), the three peaks
previously commented from BTIO (94%), Financial (286%), and Cello99 (51%) appear
for the cache approaches. Also, two peaks for Financial (54%) and Cello99 (45%), appear
for the non-cache approaches, because in DiskSim, long idle times do not have effects in
subsequent response times.
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Figure 5.16: Demerits in relative terms for the black box model approach (left) and DiskSim
(right)

Figure 5.17 shows how much our black box model approach is faster than DiskSim,
in terms of speedup. Speedups are compared when the disk buffer cache is activated and
when it is not. The execution times for the S3D trace are almost 600 times faster than for
DiskSim. This is primarily due to the number of blocks that are demanded in the same
request, which are higher than in any other trace. The other traces are still faster in the
black box model executions, which translates into the fact that our black box model is
highly efficient.
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Figure 5.17: Speedups figures. They represent how much the black box model approach is
faster than DiskSim.

5.1.3 Testing models based on several real traces

To demonstrate the feasibility of the model, in this section we test several non-trained
traces, by using the previously constructed black box model. For non-trained traces we
mean traces that have not been previously used, in the construction of the models. We
picked several block I/O traces from the SNIA IOTTA repository [sni11]:

• WebResearch represents a web-based management of several projects, using the
Apache web server [apa11].

• Online represents a course management system of a department, using Moodle [moo11].

• WebUsers represents a web server hosting faculty, staff and graduate students web
sites.

• WebMail represents the web interface to the department web server.

Figures 5.18, 5.19, 5.20, and 5.21 show the Q-Q and CDF results of executing the four
previously described traces on our variate generator (bbm) and the Seagate Cheetah 10K.7
disk.

We both plotted the Q-Q and CDF curves for the real disk and for the model, and
used the demerit [RW94] error as our metric to validate our model, against the real disk.
We presented the demerit figures in relative terms (as a percentage of the mean response
time).

In this case, our black box model (bbm) is based on the five real traces described in
the previous section. As was previously said, to predict response times by using our black
box model (bbm), one of the modeled traces is chosen. Our model chooses the one which
has similar characteristics of size, queuing times and sequentiality. For all the four traces,
that trace is Financial. That is because, in all of them, request sizes are mostly 8 blocks,
accessed LBNs are very sequential, and the traces are not very bursty. As a result of this
last characteristic, queuing times almost do not exist.
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Figures 5.18 and 5.19 depict the visual Q-Q and CDF comparisons of the four traces
runs, by deactivating the buffer cache on the disk. Demerits of those distributions are
shown in table 5.3. For the four traces, predictions are made from the model constructed
in figure 5.7, which is the constructed one for the Financial trace. So, for the four traces,
response times are generated from the distributions shown in the enclosed table.
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Figure 5.18: CDFs and QQ plots for response times from our black box model (bbm) approach.
Non trained traces are executed. Caching is not activated in the disk drive.

Both WebResearch and Online (figure 5.18) present the worst results of the four traces.
The errors are due to a main cause: Queuing times. For the Financial trace, there are almost
not queuing times, and when they appear, they can be simulated by generating response
times from part 2 of Distribution 1.

Both for WebResearch and Online, queuing times are more common than in Financial,
and real response times turn out to be longer than the ones generated from part 2 of
Distribution 1. That happens because if the current request has been long, its length
does not affect the subsequent requests. That is because generation of response times are
independent, and if the current response time was long, the subsequent request does not
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have to be also long. In the specific case of the Online trace, many of the queuing effects
produce response times that should be shorter than the values generated by part 2 of
Distribution 1.

Also, both for WebResearch and Online, response times in the range that belongs to
part 1 of Distribution 1 are shorter than real response times, for the same range. This is
because, when a current request is enqueued, and it must wait for less than 4 seconds, its
response time is generated from part 1 of Distribution 1, being, again independent of the
previous requests. This means that the current response time could be shorter than the
real enqueing time, as it happens.
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Figure 5.19: CDFs and QQ plots for response times from our black box model (bbm) approach.
Non trained traces are executed. Caching is not activated in the disk drive.

That difference between the real and simulated distributions is not so noticeable in
WebUsers and WebMail cases (figure 5.19), where queuing times are not so common, but
are still common, specially after servicing a request, when the disk has been idle for more
than a second.
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Figures 5.20 and 5.21 depict the visual Q-Q and CDF comparisons of the four traces
runs on a disk with buffer cache. Demerits of those distributions are also shown in table
5.3. For the four traces, predictions are made from the model constructed in figure 5.12.
Here, demerits are a little higher. That is because of the use of the cache, which produces
shorter response times, and the mean is also shorter. Calculating the relative error involves
dividing by that mean, and no matter how short the differences between the CDFs are,
when a different is too long that affects the relative error. Here, also the errors are due
to the same cause: Queuing times. The effect of them is more noticeable after servicing a
request, when the disk has been idle for more than a second.
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Figure 5.20: CDFs and QQ plots for response times from our black box model (bbm) approach.
Non trained traces are executed. Caching is active in the disk drive.

As shown in table 5.3, the lowest demerit, when caching is active, is obtained for
Webmail (25%). That is because response times range covers higher values, and also big
differences between real and simulated values are not very often. Next demerit is obtained
for WebResearch and Online (31%). In WebResearch, response times range covers the
highest values, making differences between real and simulated response times not to have
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Figure 5.21: CDFs and QQ plots for response times from our black box model (bbm) approach.
Non trained traces are executed. Caching is active in the disk drive.

too much effect on the demerit calculation. In Online and WebUsers, response times range
does not cover high values, but the few differences between real and simulated response
times have effect on de demerit calculation, specially for WebUsers (39%).

Cache No Cache
WebResearch 31% 24%

Online 31% 25%
WebUsers 39% 21%
Webmail 25% 21%

Table 5.3: Demerits in relative terms for our black box model approach (bbm). Non trained
traces are executed.

As a future work, we plan on learning from tested new traces, in order to consider new
characteristics that have not been covered by the previously trained traces.



94 Chapter 5. Evaluation

5.1.4 Testing models based on a synthetic trace

In this section, we construct, and test, a model based on a synthetic trace. As was previously
said, to construct a model based on a synthetic trace, we first obtain the experimental data
from our real disk. When constructing the model, we do not take into account queuing
times. So, when obtaining the experimental data, we restrict the maximum number of
pending I/O requests, that can be enqueued in the disk to 1. We do not take into account
queuing times, when constructing our model, because in our model, queuing times are
modeled on the fly, making it more general and versatile.

For the synthetic trace, among different available options, we chose the SPC Bench-
mark v1.10.1 [Cou06] workload defined by the Storage Performance Council [spc11]. As it
is said in [GM05], the traces generated by the benchmark simulate real world environments,
that are typical for business typical applications like OLTP systems, database systems and
mail server applications.

When constructing the model, we plot the histogram for the data obtained by using
play (our service time measurement program). By representing the histogram, we identified
the possible distributions to fit to. After that, we fit the previously identified distributions
to theoretical distributions, and show them in a table. Then, we find the causes for them,
and on the basis of those causes, we construct the model. We replay the synthetic trace
again on the recently constructed model and show the Q-Q plot to judge the goodness-of-fit
of the model to the experimental data, and the CDF to see how well they superimpose.

When testing the model, we replay several real traces also on the recently constructed
model and show the Q-Q plots and CDFs.

For the real traces, we chose two of the bunch of previously described traces. We
selected the ones that were more similar in characteristics to the SPC-1 workloads. Specifi-
cally, we selected the ones that were more similar in the range of request sizes to the SPC-1
workloads. Those selected traces were Financial [uma11], and Cello99 [Cel11]. As previ-
ously said, Financial is the I/O core of an OLTP application gathered at a huge financial
organization. On the other hand, Cello99 is a shared compute/mail server from HP Labs.
To see the effect of the online calculation of enqueuing times, we also used another trace,
WebSearch [uma11]. It is a famous search engine server, which executes about 4 million
read requests over 6 disks, only during 4 hours.

For simplicity, we did not deactivated the disk buffers. We just both construct the
model and predict from it, by using the read-ahead and immediate reporting by default.

Figure 5.22 shows the histogram, Q-Q and CDF’s plots, for the SPC-1 workload, and
the Seagate Cheetah 10K.7 disk. As we previously said, the usage of the disk cache was
activated. We identified three distributions, whose parameters are shown in the enclosed
table. Response times from Distribution 1 - part 1, model the immediate reporting from
write accesses to the write cache. They also model read hits on the read cache, which have
been previously anticipated. The other two distributions model accesses to the platters,
which cannot be serviced by the disk cache. Distribution 2 models response times that
result from sequential accesses, while Distribution 3 models response times that come from
non sequential accesses. Distribution 2 also models response times that result from write
requests with sizes bigger than 64 blocks. As we previously said, enqueuing times are not
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type π µ σ

Distribution 1
Normal 0.91 0.45 0.20
Normal 0.09 1.89 0.84

Distribution 2 Normal - 6.42 1.79
Distribution 3 LogNormal - 3.11 0.60

Figure 5.22: Histogram, Q-Q and CDF’s plots for response times from a Seagate Cheetah
10K.7 disk and a SPC-1 workload. The table shows the parameters of the modeled dis-
tributions. Caching is active in the disk drive. Queuing times are not considered in the
model.

included in the identified distributions. Both the Q-Q and CDF’s plots show the goodness-
of-fit of the model, and the relative mean error is 25.5%.

Figure 5.23 depicts the visual Q-Q and CDF comparisons of the four traces runs, by
using the model constructed with the synthetic trace. Demerits of those distributions are
shown in table 5.4.

For the four traces, predictions are made from the model constructed in figure 5.22.
When predicting, the four traces calculate queuing times on the fly, by checking if the
previous requests have finished or not.

The SPC1 trace is the same trace as SPC1 1Q. The difference between them is that,
when measuring service times, in SPC1 1Q the maximum number of enqueued requests is
limited to 1, and that does not happen with SPC1.

For all the traces, both the modeled and real distributions follow the same trend,
although the made mistakes, when predicting, may mean shorter queuing times, as in
SPC1 trace, or bigger queuing times, as in WebSearch, Financial, and Cello99 traces.
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Figure 5.23: CDFs and QQ plots for response times from our black box model (bbm) approach.
Non trained traces are executed. Caching is active in the disk drive.
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In the specific case of Financial, although queuing times are not very common, response
times from the model keep being bigger than from the real trace. That is because, in
Financial, mean request sizes are smaller than in SPC1, which covers a wide range of sizes,
generally bigger than in Financial.

Note that in Cello99, SPC1, and SPC1 1Q, response times fit worse when response
times are bigger than 10 ms. Note also that the response times range of Distribution 3
starts from 10 ms. We think that is because Distribution 3 covers a wide range of response
times, and in some cases it generates response times much bigger than it should, bringing
on the mistakes in the predictions. We think that could be solved by splitting Distribution
3 on several distributions, but the tricky thing is identifying the causes for them.

Workload Demerit
SPC1 1Q 25.5%

SPC1 59.6%
WebSearch 28.9%
Financial 48.3%
Cello99 87%

Table 5.4: Demerits in relative terms for our black box model approach (bbm). Non trained
traces are executed.

5.1.5 Goodness-of-fit for individual response times

In order to show how simulated response times fit real response times for each individual
request, we plotted two little samples in the course of two applications executions.

The first application is WebUsers, and it was executed on the disk described in Table
5.1, by activating its write-buffering and read-ahead mechanisms. WebUsers was also ex-
ecuted on DiskSim and on a black box model based on several real traces. In the specific
case of WebUsers, the model chosen was the constructed one for the Financial trace.

The other application is Financial. It was also executed on the real disk, by activating
its caching mechanisms. It was also executed on DiskSim and on a black box model based
on a synthetic trace, SPC-1.

In order to calculate the goodness-of-fit for each individual request, a subtraction was
done between the real response time and the simulated one. For less outcome, better the
fit. Figures 5.25 and 5.24 show errors obtained for each individual request, in the course of
the two application executions. Errors are shown for the black box models and for Disksim.

As can be seen, most simulated requests by using DiskSim obtain better fits than the
ones obtained by the black box models. That is because DiskSim is very detailed and that
makes it more accurate than black box models. Also, in black box models, when generating
response times from a certain range, the values obtained are random, resulting different in
some cases from the real ones.

However, for some requests in both applications, errors are higher by using DiskSim,
than by using black box models, which is reflected on the CDF’s superimposition plots.
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Figure 5.24: Goodness-of-fit for individual response times. Response times for a WebUsers trace
are obtained by using a black box model and DiskSim. Caching is active in the disk drive.

That is because DiskSim does not consider effects from long inactivity periods, when sim-
ulating response times.
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Figure 5.25: Goodness-of-fit for individual response times. Response times for a Financial trace
are obtained by using a black box model and DiskSim. Caching is active in the disk drive.

5.2 Evaluation of Energy-aware Architectures

In this section, we evaluate the proposed approaches in Chapter 4. The section is organized
in two subsections. First, in Subsection 5.2.1, we prove the feasibility of our write-buffering
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policies in the SSD-based storage system. An analysis of monetary costs and improvements
is provided. Also, performance evaluations are shown. Second, evaluation of several of the
prefetching policies, is presented in Subsection 5.2.2. Analysis for both synthetic and real
traces are presented. Both subsections apply the economic model described in Section 4.5

Table 5.5: Simulated disk and SSD specifications. The minus character means that speci-
fication is not applicable.

Specification Value

Model Seagate Cheetah 15K.50 Samsung K9XXG08UXM
Type Magnetic disk SSD
Power consumption (idle) 12 W 0.5 W
Power consumption (active) 17 W 1 W
Power consumption (standby) 2.6 W -
Duty Cycles 50,000 -
Erase Operations - 100,000
Price per GB 0.14 $ 9.2 $
Capacity 146 GB 2 GB - 16 GB

In order to evaluate our solution we have implemented a hybrid SSD-based architecture
simulator in the widely used general purpose simulation framework OMNeT++ [omn12].
The simulator includes disk instances of one of the most representative disk simulators,
namely DiskSim 4.0 [GWW+99]. SSD devices are simulated by instances of the SSD exten-
sion module inside DiskSim platform. As described in [APW+08] the model counts with
several realistic SSDs device configurations. Hardware specifications used in this thesis for
both magnetic and SSD devices are summarized in Table 5.5.

5.2.1 Write-buffering evaluation

As commented in Section 3.3.2, researchers have investigated several I/O intensive parallel
scientific applications, such as MADBench2 [mad11], S3D [s3d11], and BTIO [bti11], to
mention a few.

We have evaluated our architecture in terms of energy consumption and I/O per-
formance, using real traces of the previous cited high performance applications. Traces
configuration is summarized in Table 5.6. In case of S3D, we count with traces obtained
from Red Storm [s3d11]. This system is a Cray XT3+ class machine, which uses Lustre
[lus11] as file system. The block size used was 1MB and the storage system counted with
320 magnetic disks, in which file blocks are mapped round-robin over all disks. In case of
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Table 5.6: Traces and systems configuration.

Specification Trace

Application S3D BTIO MadBench
Compute nodes 6400 64 64
I/O nodes 320 4 4
Storage nodes 320 4 4
File system Lustre PVFS2 PVFS2
Block size 1024KB 64KB 64KB
File size 450GB 6.4GB 9.3GB
Architecture Cray XT3+ Beowulf cluster Beowulf cluster

BTIO and MadBench, the traces were obtained on a cluster with 4 I/O nodes, which uses
PVFS [CCL+02] as parallel file system. The block size was set to 64 KB and the storage
system counted with 4 magnetic disks, in which file blocks are mapped round-robin over
all disks.

In order to prove the feasibility of our write-buffering policies in the SSD-based storage
system, we have designed three different scenarios: isolate, working day, and concurrent
workloads. In each case, we analyze the cost and the amortization in a seven year period,
by using the economic model describe in Section 4.5. As was previously said, we chose
that frame of time, considering that, typically, wear in disk drives is high after years 5-7
of operation under normal conditions [Sik07].

5.2.1.1 Isolated Workloads

In this first scenario, we execute each workload independently, in other words, every ap-
plication uses the storage system in a dedicated way. This scenario is similar to modern
supercomputers such as Blue Gene and Cray, in which applications run in a isolated par-
tition (namely pset in case of Blue Gene supercomputers).

Figures 5.26, 5.27, and 5.28 show the total monetary cost in the course of a seven
year period, when our power aware storage subsystem (SSD-PASS) is used and when it
is not (Baseline). Figures represent monetary cost improvements, for traces S3D, BTIO,
and MadBench, respectively. For every month, the cost of the energy consumed is reflected
altogether with the cost of replacing devices with new ones. We consider that a replacement
is demanded when the maximum number of erase operations per block is reached in a SSD,
or when the number of duty cycles in a disk device is up to its maximum. The initial budget
in our power aware approach goes over the initial budget in the Baseline approach. This
is because in the Baseline approach the cost of acquisition comes from purchasing disks,
what in the power aware one comes from buying both disks and SSDs. In the long run,
that initial budget is paid for itself.

All the figures show amortization costs for 2 - 16 GB sized SSDs. As we will show, SSDs’
sizes have a very important effect in the amortization results. Contrary to expectations,
bigger sizes not always involve bigger monetary cost improvements. Having bigger SSDs’
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sizes avoids disk spin-ups, and hence, disk replacements. However, as the price per Giga
is still very high in SSDs, when SSDs’ sizes are very big, it is not easy to amortize initial
budgets, and getting monetary costs improvements.
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Figure 5.26: Monetary costs in Isolated Workloads and S3D.

Amortization costs for S3D are shown in Figure 5.26. Improvements are shown for
SSDs sizes from 2 to 16 GB. Using SSDs of size 2 GB, amortization is never reached.
That is because, every 20 months new disks are purchased, exceeding the budget of the
baseline approach. That happens due to the small size of SSDs, which are filled more
frequently, and also make disk drives start/stop more frequently. Using 4 GB sized SSDs,
amortization is reached at almost half of the execution of the application, but the purchase
of new disks at month 42 exceeds the budget of the baseline approach until month 71.
Starting from that point, monetary costs in our power aware approach are smaller than
in the baseline approach. Using 8 and 16 GB sized SSDs, amortization is never reached.
That is because prices per Giga in SSDs are still very high, and the bigger the sizes, the
higher the prices, and the more difficult to amortize. Using a SSD of size 4GB we obtain
an energy consumption improvement of 9.36%.

Amortization costs for BTIO are shown in Figure 5.27. Improvements are shown for
SSDs sizes from 2 to 16 GB. Using SSDs of size 2 GB, amortization is reached at month
27. Purchasing new disks at month 68 does not mean exceeding the budget of the baseline
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Figure 5.27: Monetary costs in Isolated Workloads and BTIO.

approach. From the amortization point, monetary costs in our power aware approach are
smaller than in the baseline approach. Using 4 GB sized SSDs, amortization is reached
at month 48. Starting from that point, monetary costs in our power aware approach are
smaller than in the baseline approach. Using 8 and 16 GB sized SSDs, amortization is
never reached. That is because prices per Giga in SSDs are still very high, and the bigger
the sizes, the higher the prices, and the more difficult to amortize. Using a SSD of size 4
GB we obtain an energy consumption improvement of 25.21%.

Amortization costs for Madbench are shown in Figure 5.28. Improvements are shown
for SSDs sizes from 2 to 16 GB. Using SSDs of size 2 GB, amortization is reached at month
23. Starting from that point, monetary costs in our power aware approach are smaller than
in the baseline approach. Using 4 GB sized SSDs, amortization is reached at month 45.
Starting from that point, monetary costs in our power aware approach are smaller than
in the baseline approach. Using 8 and 16 GB sized SSDs, amortization is never reached.
That is because prices per Giga in SSDs are still very high, and the bigger the sizes, the
higher the prices, and the more difficult to amortize. Using a SSD of size 2 GB we obtain
an energy consumption improvement of 66.504%.

The purchases of new disks for the S3D application are motivated by the number
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Figure 5.28: Monetary costs in Isolated Workloads and MadBench.
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Figure 5.29: Monetary cost improvement in isolated workloads for different SSD devices
sizes.

of start/stop disk cycles reached at those times. As S3D writes about 1.5 GB every 15
minutes, SSDs are filled frequently. This causes that disks also wake up in a frequent
fashion, reaching the maximum number of duty cycles. BTIO and Madbench write about
1.5 GB every 45 and 96 minutes respectively, prompting the fact that SSDs are not filled so
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often, and not reaching the maximum number of duty cycles within the seven year period.
None of the traces reach the maximum number of erase operations in the SSDs, not causing
their replacement.

Figure 5.29 shows the monetary cost improvements for our power aware approach
relative to the baseline approach. Improvements are shown for the three traces and for
SSDs sizes from 2 to 16 GB. As we previously commented, best results are reached with
Madbench, as this application writes the less amount of data in less time. The percentages
in each trace correspond with monetary costs shown in figures 5.26, 5.27, and 5.28.

5.2.1.2 Working Day Workloads

In the second scenario, we execute a mixture of the three traces in the course of one working
journey. In this scenario each application use the storage subsystem in a dedicated way. In
every combination, each application executes for a certain percentage of time. For example,
the S3D 60% - BTIO 20% - Mad 20% combination means that S3D executes 60% of time,
BTIO executes 20%, and MadBench the remaining 20% of the time.
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Figure 5.30: Monetary costs in Working Day Workloads and S3D 60% - BTIO 20% -
MadBench 20%.

Amortization costs for the S3D 60% - BTIO 20% - Mad 20% combination are shown
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in figure 5.30. Improvements are shown for SSDs sizes from 2 to 16 GB. Using 2 GB sized
SSDs, improvements are never reached. That is because, every 27 months new disks are
purchased, exceeding the budget of the baseline approach. That happens due to the small
size of SSDs, which are filled more frequently, and also make disk drives start/stop more
frequently. Using 4 GB sized SSDs, amortization is reached at month 48, but the purchase
of new disks at month 56 exceeds the budget of the baseline approach until month 72.
Starting from that point, monetary costs in our power aware approach are smaller than in
the baseline approach. Using 8 and 16 GB sized SSDs, amortization is never reached. That
is because prices per Giga in SSDs are still very high, and the bigger the sizes, the higher
the prices, and the more difficult to amortize. Using 4GB sized SSDs we obtain an energy
consumption improvement of 9.06%.
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Figure 5.31: Monetary costs in Working Day Workloads and S3D 20% - BTIO 60% -
MadBench 20%.

Amortization costs for S3D 20% - BTIO 60% - Mad 20% are shown in figure 5.31.
Improvements are shown for SSDs sizes from 2 to 16 GB. Using SSDs of size 2 GB, amor-
tization is reached at month 24. Purchasing new disks at month 47 means exceeding the
budget of the baseline approach, until month 49. Starting from that point, monetary costs
in our power aware approach are smaller than in the baseline approach. Using 4 GB sized
SSDs, amortization is reached at month 47. From that moment on, monetary costs in our
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power aware approach are smaller than in the baseline approach. Using 8 and 16 GB sized
SSDs, amortization is never reached. That is because prices per Giga in SSDs are still very
high, and the bigger the sizes, the higher the prices, and the more difficult the purchase of
SSDs to amortize. Using SSDs of size 4 GB we obtain an energy consumption improvement
of 26.91%.
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(c) S3D 20% - BTIO 20% - Mad 60% - 8 GB
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(d) S3D 20% - BTIO 20% - Mad 60% - 16 GB

Figure 5.32: Monetary costs in Working Day Workloads and S3D 20% - BTIO 20% -
MadBench 60%.

Amortization costs for S3D 20% - BTIO 20% - Mad 60% are shown in figure 5.32.
Improvements are shown for SSDs sizes from 2 to 16 GB. Using 2 GB sized SSDs, amor-
tization is reached at month 25, but the purchase of new disks at month 46 exceeds the
budget of the baseline approach until month 50. Starting from that point, monetary costs
in our power aware approach are smaller than in the baseline approach. Using 4 GB sized
SSDs, amortization is reached at month 48. From that moment on, monetary costs in our
power aware approach are smaller than in the baseline approach. Using 8 and 16 GB sized
SSDs, amortization is never reached. That is because prices per Giga in SSDs are still very
high, and the bigger the sizes, the higher the prices, and the more difficult the purchase of
SSDs to amortize. Using 2 GB sized SSDs we obtain an energy consumption improvement
of 24.65%.

Figure 5.33 shows how the different mixtures of the traces affect monetary cost im-
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Figure 5.33: Monetary cost improvement in Working Day Workloads for different SSD
devices sizes.

provements for SSDs sizes from 2 to 16 GB. The key indicates the time percentage that
each trace executes in every combination. Combinations with the highest number of exe-
cutions of Madbench and BTIO significantly outperform the combination with the highest
number of executions of S3D. This is because S3D almost writes the same amount of data
than the other two traces in much less time, which causes more spin ups/downs, and disk
replacements.

5.2.1.3 Concurrent Workloads
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Figure 5.34: Monetary costs in Concurrent Workloads for 4GB sized SSDs.

In the third scenario, we execute BTIO and MadBench concurrently, and the stor-
age system is not accessed in a dedicated way. For every flash device, each application
corresponds to a dedicated partition. We do not consider S3D because when is used in a
dedicated way, it already fills SSDs very often, causing frequent disk replacements. This
suggests that the best option is not putting it altogether with any other applications.

In consideration of the previous results, where 2 and 4 GB sized SSDs performed
better than bigger sizes for individual executions of BTIO and Madbench, we used SSDs
of size 4 GB. We used equal SSD size partitioning. With 4 GB sized SSDs, the actual size
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of the BTIO and Madbench partitions is 2 GB. Individual executions of both traces with
2 GB sized SSDs obtained reasonable monetary cost improvements. This led us to believe
that partitioning equally SSDs size 4 GB would give us some leeway in the monetary cost
improvements.

Using the described configuration, we obtain a monetary cost improvement of 8.501%.
Amortization costs for the described configuration is shown in figure 5.34. Using 4 GB
sized SSDs, amortization is reached at month 24, but the purchase of new disks at month
57 exceeds the budget of the baseline approach until month 74. Starting from that point,
monetary costs in our power aware approach are smaller than in the baseline approach.
During the execution, we tracked the amount of data written to each partition for every
spin-down period. Since not always the same application causes its partition capacity fill
and both applications request data in well predictable patterns, we plan to design a dynamic
partitioning algorithm which makes it possible to set partition sizes up on run-time.
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Figure 5.35: Mean energy consumption for a storage element under different executions of
isolated, working day, and concurrent workloads.
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5.2.1.4 Energy consumed

In order to give an idea of the energy savings obtained when SSD-PASS is applied, Figure
5.35 shows the mean energy consumed by a single storage element, under all the previously
described scenarios. Energy consumptions are shown for a one day period. As can be seen,
for almost all the cases energy consumptions are around 3.5 times lower in SSD-PASS than
in the Baseline approach, where no energy optimizations are applied.

5.2.1.5 Performance Evaluation
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Figure 5.36: Performance evaluation for the worst cases of isolated, working day, and
concurrent workloads.

We use the cumulative distribution functions (CDFs) of response times as the per-
formance metric in our comparison. Figure 5.36 shows how the worst cases in different
scenarios affect SSD-PASS performance. For a certain value of x in every trace, SSD-PASS
presents greater percentages in which response times are lower or equal to x. That is be-
cause of the hits on the SSDs, which provides better performance gains. We chose to show
worst cases to demonstrate that there is little benefit in performance even for those cases.
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For the Isolated workload - S3D scenario and the SSD-PASS approach nearly 90% of
the response times are shorter than 0.079 secs. For the Baseline approach and the same
scenario, approximately 78% of the response times are shorter than 0.079 secs. For the
working day workload shown in Figure 5.36(b) and the SSD-PASS approach, 90% of the
response times are shorter than 0.049 secs. Unlike the SSD-PASS approach, in the Baseline
approach and the same scenario, approximately 86% of the response times are shorter than
0.049 secs. For the concurrent workload scenario, 90% of the response times are shorter
than 0.00455 secs. On the Baseline approach and the same case, 74% of the response times
are lower than 0.00455 secs.

5.2.2 Prefetching evaluation

In the next two Subsections, 5.2.2.1 and 5.2.2.2, the application of the Sequential read-
ahead policy, described in Section 4.4.1, is analyzed. Also, an economic analysis is provided
in Subsection 5.2.2.3 for the Offline read-ahead policy, previously described in Section 4.4.4.

5.2.2.1 Synthetic workloads

We have implemented a synthetic benchmark which simulates the behavior of data-intensive
applications. The benchmark consists of a configurable number of alternating computation
and I/O phases. The compute phases are simulated by idle spinning. In the I/O phase a
process reads non-overlapping records from a file. In this experiment, the block size used
was 256 KBytes and the storage system counted with 10 magnetic disks, in which file blocks
are mapped round-robin over all disks. The benchmark was configured to read a total of
512 MBytes, i.e. in each iteration a process reads a record of 4 MBytes in 128 iterations.
The configurable parameters of this benchmark are the file access interval times and the
stripping factor.
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Figure 5.37: Power-saving improvement
obtained with different data layouts.
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Figure 5.37 compares the benefits of our sequential read-ahead policy with different file
system’s stripping factors. We observe that our solution outperforms the baseline approach
up to inter arrival access times of 300 seconds in case of 1024 KBytes stripping size.
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Additionally, the best results are obtained when the block size is equal to the stripping
size, as all disks are accessed during each read operation. We demonstrate in Figure 5.38
that our prefetching mechanism increases idle periods on disks, avoiding misses as much
as possible. The number of on demand requests decreases due to our prefetching solution
increases windows size in each iteration. Finally we conclude from the evaluation that
SSD-PASS may bring substantial benefits for bursty workloads.

5.2.2.2 Realistic workloads

To evaluate our storage system, we have used two realistic data-intensive I/O workloads.
Financial1 [uma11] is the I/O core of an OLTP application gathered at a huge financial
organization. It performs about 5 million requests over 24 disks. Cello99 [Cel11] is a shared
compute/mail server from HP Labs. It performs about 6 million requests over 25 disks.
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Figure 5.39: Accessed Block index for read operations in Financial1 and Cello99 workloads.
Requests in the same timestamp correspond with bursty files accesses.

Figure 5.39 illustrates the regions accessed in the file for Financial1 and Cello99 at
disk 1. We initially measured the sequentiality ratio as the percentage of read requests that
are sequential in a certain period. The Financial1 presents a sequential ratio of 79% of the
total read requests. For Cello99 sequentiality is reached is about 5%.

Figure 5.40 plots read miss accesses at disk 1 of Financial1 workload using the Sequen-
tial read-ahead policy. We observe that the density of miss accesses decreases, comparing
the accessed block index of Figure 5.39. Financial1 achieves nearly 51% of energy savings
as shown in Figure 5.41. Benefits were obtained because of the highly sequential read ac-
cess patterns at some of the disks and because our prefetching algorithm is able to detect
future requests. However, energy consumption for Cello99 is higher than in the Baseline
approach. This is due to the low level of sequentiality in Cello99.

Figure 5.42 plots the cumulative distribution function curves (CDF) for response times
of both workloads for disk 0. For a certain value of x in every workload, SSD-PASS approach
presents greater percentages in which response times are lower or equal to x. That is because
of read hits on the SSD, which provides better performance gains. For a small fraction of
the requests, we observe that in some cases our solution obtains service times of over 15
seconds. Such requests are the ones which have to wait for a disk to spin-up.
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Figure 5.40: Misses at disk 1 for the ac-
cessed blocks of the Financial1 workload.
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Figure 5.42: CDF curves for response times in Financial1 and Cello99 workloads at disk 0.

5.2.2.3 Economic based Evaluation

As shown in the previous section, the Sequential read-ahead policy works well for most
sequential applications. However, as shown in Section 4.4, even for sequential traces, its
application and its extensions do not guarantee the fact that disks’ spin-ups break long
idle intervals. Taking this into account, monetary costs in the long term may be higher in
the power aware approaches than in the baseline ones due to constant disk replacements,
and the subsequent purchasings of new disks.

The Offline read-ahead policy, whose knowledge is based on previous executions, uses
non-blind prefetching and replacement policies, that let disk drives stay in the standby
state for longer.

Here, we describe an economic based evaluation for the The Offline read-ahead policy.

Amortization costs for Cello99 and Financial are shown in figure 5.43. Using 2 GB
sized SSDs, amortization is reached at month 24. Starting from that point, monetary costs
in our power aware approach is smaller than in the baseline approach. Unlike the previously
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Figure 5.43: Monetary costs in Isolated Workloads and Cello99 (left) and Financial (right).

analyzed traces (S3D, BTIO, and MadBench), Cello99 and Financial do not write so many
data, and spin-ups are not so frequent. This makes that purchasing of new disks do not
happen, and monetary costs are lower.
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Figure 5.44: Monetary cost improvement in Isolated Workloads for 4 GB sized SSDs.

Figure 5.44 shows the monetary cost improvement for our power aware approach
relative to the baseline approach. Improvements are shown for the two traces and for SSD
devices sizes from 2 to 4 GB. Using SSDs of size 2 GB we obtain energy consumption
improvements of 42% and 43% for Financial and Cello99, respectively.

5.3 Using black-box modeling for energy-aware tech-

niques

In this section, the previously proposed black box model approach is used to measure
energy consumption in hard disk drives. Models are constructed for several of the previous
traces, and for the Seagate Cheetah 15K.5 hard disk, which is the one used in the energy
aware evaluations.



5.3. Using black-box modeling for energy-aware techniques 115

type π µ σ
Distribution 1 LogNormal - 1.71 0.39
Distribution 2 Constant - 0.46 -

type π µ σ
Distribution 1 Uniform - 0 150
Distribution 2 Uniform - 150 300

Figure 5.45: Q-Q plots for response times from a Seagate Cheetah 15K.5 disk, and a BTIO
and a MadBench workloads. The tables show the parameters of the modeled distributions.

Figure 5.45 shows Q-Q plots for BTIO and MadBench workloads, and tables contain-
ing parameters of the modeled distributions. For BTIO, two distributions are identified.
Response times from Distribution 1 are generated when writes are not recorded in the disk
cache, and reads are serviced from the disk platters. Response times are generated from
Distribution 2 when the current request is serviced from the disk cache. For MadBench, two
distributions are also identified. Response times from Distribution 1 are generated when
the current request arrives after a period of idleness. Response times are generated from
Distribution 2 when the current request arrives, and one or several previous requests have
not been serviced yet.

Figure 5.46 shows Q-Q plots for S3D and Financial workloads, and tables containing
parameters of the modeled distributions. For S3D, just one distribution is identified, and
all response times are generated from it. For Financial, two distributions are identified.
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type π µ σ
Distribution 1 Exponential - 69.26 -

type π µ σ
Distribution 1 Constant - 0.196 -
Distribution 2 LogNormal - 1.62 0.66

Figure 5.46: Q-Q plots for response times from a Seagate Cheetah 15K.5 disk, and a S3D
and a Financial workloads. The tables show the parameters of the modeled distributions.

Response times are generated from Distribution 1 when the number of blocks requested
in the current request are more than 60, or the current request must wait for previous
requests to be serviced. Response times are generated from Distribution 2, when requests
are serviced from the disk cache.

Demerit Energy DiskSim Energy BBM Energy error
BTIO 7.25% 33290.29 J 33306.20 J 0.04%

MadBench 11.63% 68933.28 J 68958.55 J 0.036%
S3D 7.36% 10629.27 J 10680.77 J 0.48%

Financial 15.58% 522704 J 524189.6 J 0.28%

Table 5.7: Demerits, values of energy, and energy errors, in relative terms, for our black
box model approach (bbm) and DiskSim.

As it is shown in Table 5.7, demerits are not very high, and that is why, values of
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energy are very similar, both in DiskSim and in our black box model (bbm). This lead us
to conclude that our black box model can be used for energy aware issues.

5.4 Summary

This chapter have presented an experimental evaluation, both of the previously described
black box model for the disk drive, and of the proposed energy aware techniques.

For the black box model, our experimental results show that our service time measure-
ment tool, play, is validated in Section 5.1.1. Accuracy in the construction of new models,
for several real workloads, is shown in Section 5.1.2. A comparison between our black box
model and DiskSim, shows that our black box model can be as accurate as detailed models,
and that it brings a substantial performance benefit.

Results for non-trained workloads are shown in Section 5.1.3. The experiments demon-
strate the accuracy of our black box model for workloads with similar characteristics of
size, queuing times, and sequentiality than one of the previously trained traces, used in the
model’s construction.

Results for models based on synthetic traces are shown in Section 5.1.4. The experi-
ments demonstrate that models based on synthetic traces may be less accurate, but also
more general and versatile. Results are shown for workloads with similar characteristics of
size and sequentiality than the trained synthetic trace.

For power aware techniques, our experimental results in Section 5.2.1, show that our
write-buffering policy reduces energy consumption, and that those reductions have effects
into monetary cost reductions. Different sizes for supportive SSDs have been evaluated,
and the experiments demonstrate that architectures that use SSDs bigger than 8 GB do
not even amortize initial budgets. This is due to the still high prices of SSDs.

Results for our power aware prefetching policies are shown in Section 5.2.2. Exper-
iments for synthetic and realistic workloads demonstrate that the Sequential read-ahead
policy works well for sequential applications. An economic based evaluation for the Offline
read-ahead policy shows monetary costs reductions in the long term, even for non-sequential
applications.

Results in Section 5.3 show that black box modeling techniques can be used for accu-
rate energy simulations.





Chapter 6

Final remarks and conclusions

In this thesis we have proposed a black box model for disk drives, based on probability
distributions, and a generic I/O power saving architecture for HPC applications.

The proposed black box model constructs new disk models by using service times
obtained from a real disk. To obtain service times from any kind of disk, we implemented a
new tool that uses standard POSIX calls. The sequence of obtained service times is seen as
a sequence of random variables in a stochastic process, fitting one or several probabilistic
distributions. Thus, the model generates service times, as random values accordingly with
that distributions.

The proposed I/O power saving architecture lies on an hybrid architecture, in which
each I/O node consists of an SSD, and a conventional magnetic disk drive. It aims to use
SSD devices as block caches for the disk drives. It consists of two main modules: Write-
buffering and prefetching modules. New algorithms have been proposed for both modules.

We have shown that black box models for disk drives may be as accurate as detailed
models, and also faster. We have also shown that using SSDs as supportive devices for
disk drives, provides significant energy savings, and that black box models may be used
for accurate energy simulations.

The thesis has properly fulfilled all the primary objectives indicated in Section 1.2.
Our approaches have accomplished the thesis objectives in the following ways:

• Scalability. The proposed black box model is fast in terms of performance. This is
demonstrated in Section 5.1.2, where it is shown that the proposed black box model
can be until 600 times faster than other accurate detailed models.

• Accuracy. The proposed black box model may be as accurate as detailed simulators.
This has also been demonstrated in Section 5.1.2. Our models have been compared
with the reference simulator, DiskSim, and it is shown that accuracy values keep
roughly on the same range. Moreover, we proposed a new service time measurement

119
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tool in Section 3.4, and the results shown in Section 5.1.1, demonstrate that it fits
other previous reference tool.

• Saving power in hybrid storage systems. In Chapter 4, we proposed a generic
I/O architecture that uses SSDs as supportive devices for disk drives. It works at
block level, and aims to use SSDs as caches for disk drives. This configuration is
transparent to the file system, and the layers above.

• Disk Reliability. The proposed power-aware architecture takes into account disk
failures. Analyzed monetary costs include prices of purchasing new disks, as a result
of replacing the ones that have reached their maximum number of star/stop cycles.

• Flash Reliability. The proposed power-aware architecture takes into account SSDs
failures, by mostly using SLC typed SSDs. This reduces the likelihood for errors, and
also their replacements, and subsequent monetary costs.

• High-Performance. Although some tradeoffs exist in power saving solutions, appli-
cations get the most of SSD devices, by requesting data to SSDs, as much as possible.
This has been demonstrated in Sections 5.2.1.5, and 5.2.2.2

• Economic Feasibility. The proposed architectures reflect monetary costs improve-
ments, in different scenarios. This has been shown in Sections 5.2.1, and 5.2.2.3.

6.1 Contributions

This thesis makes the following contributions:

• Service Time Measurement Tool. This thesis presents a new service time mea-
surement tool, in order to get a measurement for every request, as a prior task to
build a simulation model. It gets measurements by using standard POSIX calls and
not SCSI commands. That is why, it performs response time measurements on any
kind of disk, and hence models any disk, with any kind of interface. It is described
in Section 3.4.

• Black box Model for Hard Disk Drives. This thesis presents and evaluates a new
black box model, for hard disk drives. It is based on probabilistic distributions. It has
been demonstrated that it is faster than another referenced detailed models, and also,
can be as accurate as them. Two techniques have been proposed. The first one, based
on realistic workloads, is very accurate for applications with similar characteristics of
size, queuing times and sequentiality, than the trained applications. The second one
is based on synthetic workloads. Queuing times are calculated at simulation stages.
This approach is accurate for applications with similar characteristics of size and
sequentiality that the trained synthetic workload.

• SSD-based Power-aware Storage System architecture. This thesis presents
and evaluates a general power saving-aware architecture for large parallel computing
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environments such as clusters or supercomputers. It lies on an hybrid architecture, in
which each I/O node consists of a SSD and a conventional magnetic disk. Our general
procedure aims to use a SSD as a block cache for a specific disk on I/O nodes. I/O
operations are transparent for both SSD devices, and file systems, and other layers
above.

• Write-buffering policy. This thesis presents and evaluates a new write-buffering
policy, that is integrated in the previously described architecture. It redirects writes
to SSDs, as much as possible, as long as SSDs have enough space. It also gets the
most of the repetitive patterns from HPC applications, by avoiding disk accesses, that
come from read requests that can be serviced from SSDs. An analysis of monetary
costs is provided for this approach in Section 5.2.1.

• Prefetching policies. This thesis presents four new prefetching policies, that can
be integrated in the previously described architecture. The first three approaches are
dynamic, and work specially well for sequential applications. As they are blind, and
do not count on previous information, they make excessive spin-ups and, hence, disk
replacements. As a result of this, a forth prefetching policy was proposed. It is offline,
and counts on information from previous executions. It is based on a band detection
method, to detect specific accessed areas from disk drives, and move them to SSDs.
This last approach works well both for sequential and non sequential applications.
An analysis of monetary cost is also provided for this approach in Section 5.2.2.3.

6.2 Thesis results

The principal contributions of the thesis have been published in diverse papers in interna-
tional conferences and journals. We enumerate the publications classified in three groups:
articles in journals, international and national conferences.

• Journals

– Power Saving aware prefetching for SSD-based systems. Laura Prada, Javier
Garcia, J. Daniel Garcia, Jesus Carretero. The Journal of Supercomputing.
Springer. March, 2011. Impact Factor: 0.687.

• International Conferences

– A Black Box Model for Storage Devices based on Probability Distributions. Laura
Prada, Alejandro Calderón, Javier Garćıa, J. Daniel Garcia, Jesus Carretero.
10th IEEE International Symposium on Parallel and Distributed Processing
with Applications. July, 2012.

– A Power-aware Based Storage Architecture for High Performance Computing.
Laura Prada, Javier Garcia, J. Daniel Garcia, Jesus Carretero, Alberto Nuñez.
13th IEEE International Conference on High Performance Computing and Com-
munications (HPCC-2011). September, 2011.
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– Using Write Buffering and Read Prefetching Between Flash and Disk Drives
to Save Energy in an Hybrid System. Laura Prada, J. Daniel Garcia, Jesus
Carretero. 16th International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA 2010). July, 2010.

– Power Saving-aware Solution for SSD-based Systems. Laura Prada, J. Daniel
Garcia, Jesus Carretero, Javier Garcia Blas. International Conference on Math-
ematical Methods in Science and Engineering (CMMSE 2010). Almeria, Spain.
June, 2010.

– Saving power in flash and disk hybrid storage system. Laura Prada, Jose Daniel
Garcia, Jesus Carretero, and Felix Garcia. 17th Annual Meeting of the IEEE/ACM
International Symposium on Modelling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS’09). London, England. Septem-
ber, 2009.

– Using black-box modeling techniques for modern disk drives service time simu-
lation. Jose Daniel Garcia, Laura Prada, Javier Fernandez, Jesus Carretero, Al-
berto Nunez. The 41th Annual Simulation Symposium (ANSS’08). April, 2008.

• National Conferences.

– Ahorro energetico en un sistema de almacenamiento hibrido compuesto por un
disco duro y varias memorias flash. Laura Prada, J. Daniel Garcia, Jesus Car-
retero, and Felix Garcia. Actas de las XX Jornadas de Paralelismo. La Coruña,
Spain. September, 2009.

– Modelado estocastico de las operaciones de entrada/salida sobre un disco. Laura
Prada, J. Daniel Garcia, Alberto Nuñez, Javier Fernandez, Jesus Carretero, Ra-
mon J. Flores. II Congreso Espaol de Informtica (CEDI 2007). XVIII Jornadas
de Paralelismo. Zaragoza, Espaa. September, 2007.

Other achievements of this thesis include research stays and research grants:

• Research stays

– Departament of Electrical and Computer Engineering at Texas A&M University.
Hosted by A.L. Narasimha Reddy. Fall 2008. College Station (USA). Duration:
3 months.

– Departament of Electrical and Computer Engineering at Texas A&M Univer-
sity. Hosted by A.L. Narasimha Reddy. Summer 2010. College Station (USA).
Duration: 3 months.

• Research grants

– Grant for PhD students mobility, November 2008. Grant funded with 2,135
euros by University Carlos III of Madrid for a 91 days internship at Texas A&M
University.

– Grant for PhD students mobility, May 2010. Grant funded with 3,115 euros
by University Carlos III of Madrid for a 89 days internship at Texas A&M
University.



6.3. Future directions 123

6.3 Future directions

There are several lines of research arising from this work that could be pursued:

We plan on designing another algorithms of prefetching/write-buffering for power sav-
ing architectures. Specially the ones that combine arrays of disks with one or several SSDs.

We also plan on applying our black box method for SSDs. As was described, SSDs
present different characteristics from disk drives. One remarkable characteristic is the asym-
metrical performance that some devices present, depending on the type of the request
(read/write).

Also, we plan on applying our black box method for arrays of disks/SSDs, and another
environments such as SANs and LVMs.
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