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We derive a discrete Hamiltonian describing a Fibonacci superlattice in which the electronic po­
tential is taken to be an array of equally spaced 0 potentials, whose strengths modulate the chemical 
composition in the growth direction. In this model both diagonal and off-diagonal elements of the 
Hamiltonian matrix become mutually related through the potential strengths. The corresponding 
energy spectrum and related magnitudes, such as the Lyapunovcoefficient, transmission coefficient, 
and Landauer resistance, exhibit a highly fragmented, self-similar nature. We investigate the influ­
ence of the underlying spectrum structure on the dc conductance at different temperatures obtaining 
analytical expressions which relate special features of the dc conductance with certain parameters 
that characterize the electronic spectrum of Fibonacci superlattices. 

I. INTRODUCTION 

The rapid progress achieved with crystal growth tech­
nologies, like molecular beam epitaxy, has made it possi;. 
ble to grow artificial structures with periodic or aperiodic 
modulation of chemical composition along the growth di­
rection. In this way, the one-dimensional (ID) order­
ing introduced in the manufacturing process gives rise to 
novel physical properties such as the formation of mini­
bands which reflect the long-range, quantum correlation 
present in multilayered superstructures. In fact, the elec­
tronic properties of superlattices are determined both 
by the chemical nature of the constituent bulk materi­
als as well as the layer thicknesses so that these struc­
tures can be grown to tailor their electronic properties as 
required. On the other side, the discovery of quasicrys­
tals has attracted strong interest in the physical proper­
ties of quasiperiodic systems, and numerous theoretical 
works have been focused on the electronic properties of 
ID specific realizations.I - 4 In these systems quasiperiod­
icity leads to higly fragmented spectra that are Cantor 
sets having pure-point, absolutely continuous, and singu­
lar continuous components which respectively determine 
the existence of localized, extended, and critical states. 
In some cases, quasiperiodic potentials admit the exis­
tence of a mobility edge and allow for a metal-insulator 
transition under appropriate conditions.5 ,6 Therefore, it 
seems natural to consider the transport properties which 
could appear in quasiperiodically modulated superlat­
tices. 

Following -the first fabrication of a quasiperiodic semi­
conductor superlattice by Merlin and co-workersT

,8 most 
works have considered the Fibonacci sequence as a typ­
ical example of a quasiperiodic system. However, we 
think it has not properly been stressed in the litera­
ture that systems ordered according to the Fibonacci 
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sequence exhibit some characteristic properties which 
are not shared by other quasiperiodic modulations. In 
fact, Fibonacci arrangements show spectra with a hier­
archy of splitting minibands displaying self-similar pat­
terns. This point has been experimentally observed in 
a variety of situations including electronic,9 phonon,lO 
third-sound transmission,11 and absorption spectra with 
magnetic fields12 for different Fibonacci systems. Fur­
thermore, theoretical calculations indicate that almost 
all electronic eigenstates are neither extended nor lo­
calized but critical in a Fibonacci lattice.13 Similar re­
sults also apply to the plasmon spectrum of Fibonacci 
semiconductor superlattices.14 In addition, no evidence 
of mobility edges has been found, in contrast to what 
has been reported for other, non-Fibonaccian, quasiperi­
odic lattices.15 All these considerations clearly indicate 
that the study of Fibonacci superlattices (FSL's) is in­
teresting in its own right, since they are ideally suited 
for the understanding of the physical nature of critical 
states. Furthermore, as far as experimental studies are 
concerned, we must remark' on the fact that FSL proper­
ties are robust, i.e., may be preserved in the presence of 
significant levels of randomness. In fact, x-ray diffraction 
studies show that moderately large growth fluctuations 
in the sequential deposition of layers do not disturb seri­
ously the quasiperiodic order exhibited by FSL's.8 

Recent investigations on perpendicular transport prop­
erties of photo excited carriers in semiconductor FSL's 
revealed the existence of a self-similar structure in the 
energy spectrum with localization properties somewhat 
intermediate between periodic and random systems.16 

Moreover, small oscillations of the resistance of a FSL 
under a fixed magnetic field have been reported very 
recently.1T The peak positions of the measured resistance 
are in good agreement with those of the transmission gaps 
predicted in simple theoretical models, indicating a well­
defined self-similar scheme. These results clearly renew 
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the interest in the peculiar transport properties through 
Fibonacci systems. 

The electronic spectrum structure of FSL's, within the 
tight-binding, single-band approximation, is firmly estab­
lished for two special cases. These correspond to the 
situation in which we choose the (say, GaAs) wells to 
have all the same width but the barriers (say, GaAIAs) 
to have either different widths (transfer models) or dif­
ferent heights (on-site models). In these tight-binding 
analyses the multilayered heterostructures can be identi­
fied with a series of quantum wells which are coupled by 
a nearly constant interaction energy. Less attention has 
been paid to the class of models for which both diagonal 
and off-diagonal terms are present in the Hamiltonian de­
scribing the interaction between nearest-neighbor quan­
tum wells.13,18 These mixed models are more appropriate 
in order to describe realistic-FSL's in which the hopping 
terms would take different values depending upon the 
chemical nature of the layers. 

The aim of this paper is to uncover the relationship 
between the transport properties of a Fibonacci system 
and the structure of its underlying energy spectrum. To 
this end we will work out a general treatment, within the 
tight-binding approximation, which will allow us to ob­
tain the electronic spectrum of a system describing a FSL 
in which specific interactions between nearest-neighbor 
building blocks are taken into account. 

The rest of the paper is planned as follows. The ma­
jor features of our model are presented at the beginning 
of Sec. II. Mterward, the one-electron Schrodinger equa­
tion describing the electron dynamics is reduced to an 
appropiate tight-binding form. We solve this equation 
by means of standard transfer-matrix techniques and dis­
cuss the resulting energy spectrum in Sec. Ill. Next, we 
turn to our main il?sue: the conductance properties of 
the superIattice. In Sec. IV we present the conductance 
behavior at zero temperature and relate the fractal struc­
ture of the spectrum with the presence of strong conduc­
tance fluctuations. In Sec. V we take into account finite­
temperature effects in the dc conductance. Through this 
section interesting features appearing in the conductance 
at low temperatures are described and its relationship 
with the fragmented nature of the electronic spectrum 
discussed. We close Sec. V _ with the study of the high­
temperature limit where we find a power-law scaling of 
conductance with system size. Section VI contains final 
considerations as well as possible applications to a num­
ber of physical contexts. 

IT. DESCRIPTION OF THE MODEL 

Before entering into the description of the model it­
self, some words are in order regarding its physical rel­
evance and its applicability. To grow a FSL we must 
define two distinct building blocks, say A and B, and 
order them according to the Fibonacci sequence. Each 
building block can be composed of one or more layers 
of different materials and can have arbitrary thicknesses. 
A Fibonacci sequence Sn of order n is obtained by n 
succesive applications of the transformation A -+ AB 

and B -+ A. The sequence Sn comprisesFn elements A 
and Fn - 1 elements B, F .. being the nth Fibonacci num­
ber given by the recurrent law Fn = Fn - 1 + Fn - 2 with 
Fo = Fl = 1. As n increases the ratio Fn-l/Fn con­
verges toward T = (.;5 - 1)/2 which is known as the 
inverse golden mean. For the sake of generality we do 
not consider any specific potential shape associated with 
the A and B building blocks composing our FSL, since, 
at- present, there exists a number of different potential 
profiles (square barriers, V-shaped, sawtooth, parabolic) 
for multilayered structures. Instead, we shall assume a 
quite general expression for the block potentials given by 
means of point interaction potentials. The term point in­
teraction potential refers to any arbitrary sharply peaked 
potential approaching the c)-function limit (zero width 
and constant area). Such potentials are often used in 
some physical contexts in solid state physics19 since, with 
limitations, they are good candidates to replace actual, 
short-ranged, ID potentials.20 

Let us cop.sider a FSL with N == Fn building 
blocks. Since we are dealing with a chemically modu­
lated quasiperiodic structure, we will take equally spaced 
blocks defining a periodic array of period d and we in­
troduce the quasiperiodic modulation by means of an 
appropiate choice of their chemical composition. The 
dynamics of electrons in this superstructure will be de­
scribed by the following Schrodinger equation in units 
such that Ii, = m* = 1: 

where we allow the potential strength An to take on two 
values, AA and AB, arranged according to the Fibonacci 
sequence. Hereafter we restrict ourselves to attractive 
potentials (An> 0) and take AA = 1 without loss of gen­
erality. We express the electron wave function as a linear 
combination of localized orbitals 1jJ(x) = Z::n Cn<Pn(x -
nd), where <Pn(x-nd) = ~exp( -Anlx-ndl) is the nor­
malized eigenfunction of a 8 function placed at x = nd. 
Neglecting the overlap between different orbitals and as­
suming that only nearest-neighbor interactions are sig­
nificant , we obtain the following tight-binding equation 
for the amplitudes: 

where the on-site energies and the hopping integrals are 
mutually related by the expressions 

(3) 

(4) 

Thus, in our model the chemical modulation parameter 
An determines both the on-site energies and the hopping 
integrals describing the coupling between nearest build­
ing blocks. Equation (2) can be cast into the matrix form 
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(5) 

where E is the electron energy. The solution of the 
dynamical equation (5) is obtained by using standard 
transfer-matrix techniques. To minimize end effects we 
take periodic boundary conditions. Hence, the allowed 
regions of the electronic spectrum can be numerically de­
termined from the usual condition 

We address this calculation in the next section. 

IH. ELECTRONIC STRUCTURE 
OF THE FIBONACCI SUPERLATTICE 

(6) 

In our numerical simulations, we have studied in detail 
different realizations of the FSL by varying the sample 
length N, the period d, and the ratio Q == AB/AA which 
accounts for the chemical diversity of the superlattice. 
The more distant Q from unity, the more different the 
chemical nature of the two building blocks. We set pa­
rameter ranges given by 8 ~ N ::; 1597, 0.05 ~ Q ~ 3, 
and 1 ::; d ::; 6. In all cases considered we have ob­
served a tetrafurcation pattern of the energy spectrum, 
characterized by the presence of four main subbands sep­
arated by well-defined gaps. Inside each main subband 
the fragmentation scheme follows a trifurcation pattern 
in which each subband further trifurcates obeying a hier­
archy of splitting from one to three subsubbands. These 
results are illustrated in Fig. 1. In this figure we show 
the behavior of the Lyapunov coefficient given by the 
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FIG. 1. Lyapunov coefficient versus energy plot for system 
parameters Q = 0.75, d = 2.5, and N = 987. The labels a, b, 
c, and d denote the main subbands appearing at the first level 
of fragmentation of the spectrum. Correspondingly, the labels 
91,92,93 indicate the position of the main gaps. The global 
tetrafurcation of the spectrum is clearly visible from this plot 
as well as its self-similar character, displayed in more detail 
in the inset. 

expression r = (Mrl + Mr2 + M?1 + M?2)/N where 
Mij stand for the elements of matrix M (N). 21 The four 
main subbands, labeled a, b, c, and d, are separated 
by well-developed local maxima of the Lyapunov coef­
ficient which define the main gaps positions 910 92, and 
93' In the inset an enlarged view of the centralmost main 
subband c shows the self-similar nature of the spectrum 
structure. It is well known that the total number of sub­
bands composing the fragmented spectrum of a FSL of 
length Fn is just given by the number of building blocks 
present in it. 22 In addition, we have observed that the 
number of subsubbands in each main cluster is given by 
Na = Ne = Fn- 3 , Nb = Fn- 4 , Nd = Fn- 2 • A similar 
distribution rule has been reported for on-site models.23 

In our numerical study we have analyzed the depen­
dence of the relative widths of both main subbands and 
gaps with the model parameters Q .and N. In the first 
place we consider the dependence of the energy spectrum 
structure on the sample length. Since, strictly speaking, 
quasiperiodicity is only observable in the limit N --+ 00, 

oUr results provide information on the prefractal signa­
ture of the FSL. We have observed that both the position 
and widths of the main subbands of the spectrum con­
verge very rapidly to stable values with increasing sam­
ple size for any fixed value of the parameter Q. We shall 
refer to this behavior as asymptotic stability of the spec­
trum; it implies that its global structure can be obtained 
in practice by considering very short approximants to 
the infinite quasiperiodic chain (as short as 55 = FlO 
units). This remarkable behavior suggests that the first 
stage of the spectrum hierarchical splitting is mainly de­
termined by short-range effects, in agreement with real 
space renormalization group ideas where the number of 
energy levels appearing at the first stage of the renormal­
ization process determines the number of main clusters 
in the spectrum.24,25 

Next we consider the dependence of the main features 
of the spectrum on the chemical diversity parameter Q. 

Our results are plotted in Fig. 2. As the chemical diver­
sity of the lattice increases, the main subbands become 
progresively narrower [Fig. 2(a)] and the gaps steadily 
wider [Fig. 2(b)1. The behavior ofthe normalized widths 
is clearly nonlinear with Q. Another interesting feature 
shown in Fig. 2 concerns the existence of crossing points 
in the bandwidth evolution. The existence of such points 
implies that the relative importance of different sub bands 
and gaps appearing in the spectrum can be accurately 
controlled by an appropiate choice of the chemical com­
position of the sample. Thus, for Q =0.95 we have a 
globaf pattern spectrum in which b > a, 92 > 93, and 
c> d whereas for Q = 0.7 the situation is completely re­
versed. Finally, we have calculated the normalized equiv­
alent bandwidth of the spectrum S, defined as the ratio 
between the sum of all the allowed energy intervals and 
the bandwidth of a periodic lattice made of identical A 
blocks. As can be expected from the Cantor-like nature of 
Fibonaccian spectra, the equivalent bandwidth vanishes 
as the _system size grows. Moreover we have obtained 
that S varies as the square root of N for large enough N 
obeying a decay law which can be approximately written 
as 
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FIG. 2. Dependence ofthe main (a) subbands and (b) gaps 
normalized width on the chemical composition of the sample. 
The width of each spectrum feature is normalized to the band­
width corresponding to the perfect A superlattice. The labels 
appearing on each curve correspond to those given in Fig. 1. 

InS = ~(l- a)(4.3 + In .fii). (7) 

Therefore, for a given value of the chemical diversity pa­
rameter, we obtain a linear evolution of the equivalent 
bandwidth in a In S versus In N plot. According with 
earlier works1,14 such a behavior is characteristic of a 
singular continuous spectrum signature for which all the 
wave functions are critical, i.e., neither localized nor ex­
tended in a standard way. Since this fact becomes inde­
pendent of the superlattice chemical composition, we can 
conclude that a metal-insulator transition depending on 
a suitable choice of the chemical composition is not to be 
expected in our model. 

lV. CONDUCTANCE OF THE FIBONACCI 
SUPERLATTICE AT ZERO TEMPERATURE 

The richness in structure displayed by the electronic 
spectrum of a FSL should be reflected, to some ex­
tent, in its transport properties, and evidence for this 
to be the case has recently been reported in experimen­
tal works.9.16.11 Generally speaking there are two factors 
which must be taken into account in order to evaluate 
the relative importance of typical quasiperiodic effects on 
the perpendicular transport of FSL's. On the one hand, 
since these effects are esentially quantum in nature, we 
must consider systems with strong coupling between ad­
jacent blocks. In our model the degree of coupling be­
tween nearest-neighbor blocks is given by the parameter 
d. We have numerically checked that- the overall features 

of the electronic spectrum are rather insensitive to the 
adopted value of this parameter provided that d < 3. 
In our units this condition is fulfilled by GaAs-GaAIAs 
superlattices (electron effective mass m* = 0.067) with 
periods ranging from 70 it to 340 it and height barriers 
in the interval 4-100 me V, respectively. In order to ob­
tain general results from now on we shall take d = 2.5 
as a representative value for most of the FSL realiza­
tions discussed in the literature. On the other hand, we 
should consider electron-phonon scattering effects which 
tend to disrupt coherent quantum transport. These ef­
fects crucially depend on the sample temperature and 
it may be confidently expected that their influence can 
be neglected at very low temperatures. In this section 
we shall consider electron propagation through a FSL at 
zero temperature. In this case the relationship between 
the electrical conductance at zero temperature and the 
transmission coefficient, r(E), is given by the well-known 
dimensiouless single-channel Landauer formula26 
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FIG. 3. Landauer conductance at zero temperature for a 
FSL with N = 987 atoms and (a) Cl = 0.99, (b) 0.9, and (c) 
0.8. 
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T(E) 
KoCE) = 1 - T(E) . (8) 

The energy dependence of the transmission coefficient 
can be obtained in a straightforward manner in the 
transfer-matrix formalism. The calculation is carried out 
by embedding our finite FSL in an infinite periodic lat­
tice of identical A blocks. In this way we have calcu­
lated the Landauer conductance KO for a wide range of 
model parameters a and N. A typical example of the 
obtained results is shown in Fig. 3 for N = 987 and dif­
ferent values of the chemical diversity parameter. In the 
limit a ~ 1 the translational symmetry of the superlat­
tice is recovered and, accordingly, it should be expected 
that Landauer conductance would diverge almost every­
where. On the contrary we observe in Fig. 3(a) that, for 
a = 0.99, the Landauer conductance exhibits a highly 
fragmented structure displaying dramatic fluctuations. 
Actually, there exists only a minor fraction of energy val­
ues where conductance reaches large values, whereas at 
the remaining energies it takes on a wide range of lower 
conductance values. This result clearly indicates the ex­
treme sensibility of the conductance behavior to minute 
variations in the chemical composition of the FSL. Fur­
thermore, note the overall decrease of the conductance _ 
peaks as the chemical diversity increases [compare the 
vertical scales of Figs. 3(a)-3{c)J. Finally, by comparing 
Fig. 3(a) with both 3(b) and 3(c), it becomes apparent 
that the fragmentation of the energy spectrum progres­
sively manifests itself in the conductance pattern as a 
increases. Particularly, note the well-differentiated tri­
furcation structure of conductance peaks for a = 0.9 and 
a = 0.8. These features can be understood as follows. 27 

For any approximant to the FSL the allowed energies 
form a set of sparse points approximating a prefractal 
Cantor-set structure. As the electron energy equals one 
of these energy levels an enhanced resonant tunneling 
takes place leading to high conductance peaks. By in­
creasing either the approximant length or the chemical 
diversity of the superlattice, its spectrum becomes more 
and more fragmented and strong fluctuations appear as 
a function of the electron energy. Therefore, the detailed 
structure of the energy spectrum naturally determines 
the finer details of the conductance pattern at zero tem­
perature. 

V. FINITE-TEMPERATURE EFFECTS 
ON THE de CONDUCTANCE 

In order to obtain realistic outcomes from the model, 
it is convenient to include in our study finite-temperature 
effects. To this end we shall consider the following ex­
pression, earlier discussed by Engquist and Anderson, for 
the dimensionless conductance of the system28 

J (- gEl T(E)dE 
(9) 

The integration is extended over the periodic A super-. 
lattice band, n is the Fermi-Dirac distribution, and J1, 

denotes the chemical potential of the sample. We have 
calculated the expression (9) numerically using the trans­
mission coefficient obtained in the previous section. The 
analysis of the obtained K(T,JL) curves reveals interesting 
behaviors in both low- and high-temperature ranges. For 
convenience we consider these cases separately. 

A. dc conductance at low temperatures 

In the limit T ~ 0 the general form ofthe K(T, JL) curve 
strongly depends on the adopted JL value. This is illus­
trated in Fig. 4 for a chain with N = 55 and a = 0.85. We 
have observed the same conductance behavior, as that 
shown in Fig. 4, for larger approximants, up to N = 1597. 
In Fig. 4(a) we show the transmission coefficient for this 
chain. The dashed vertical lines, labeled by roman nu­
merals, indicate three different possible values for the 
chemical potential JL. The corresponding conductance 
curves are plotted in Fig. 4(b). If the chemical potential 
is close to a set of transmission peaks, the conductance 
exhibits several characteristic humps. This is the case of 
curve I. Conversely, if the chemical potential is located in 
a main gap region, the conductance increases monotoni­
cally with temperature to reach a limiting value and no 
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FIG. 4. Influence of the energy spectrum structure. on the 
finite-temperature conductance of the FSL. In (a) we show 
the transmission coefficient for a chain with N = 55 and 
a = 0.85. The vertical dashed lines indicate the position of 
the chemical potential in three different cases: (I) J.L ;= -0.628, 
(H) -0.585, and (IH) -0.4. The corresponding conductance 
curves IO,(T, JL) are shown in (b). 
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relevant features are present at all, as seen in curve Ill. 
Finally, if the chemical potential lies in an intermediate 
region, a pronounced broad hump occurs due to the con­
tribution of nearest transmission peaks. Such a hump is 
shown in curve n. Thus, it is clear that the occurrence 
of conductance humps at low temperatures is intimately 
related to the fragmented nature of the energy spectrum. 

We will now prove that these different kinds of con­
ductance behaviors can be related to the position of the 
chemical potential JL by means of a closed analytical ex­
pression. To this end we must consider the expression 
(9) in the low-temperature limit. It is well known that 
in this limiting case the curve K(T,JL) is dominated by 
the weighting function (-an/aE) which appears in both 
integrands of (9).· This function vanishes everywhere ex­
cept for energies close to the J.L value. For the sake of clar­
ity let us assume that the chemical potential is located 
near a characteristic triplet of the transmission coeffi­
cient. Now we intrpduce a further assumption by consid­
ering that the triplet structure can be roughly described 
in the form 

3 

T(E) ~ 2: 'Yio(E - Ei), (10) 
i=l 

where li is the characteristic strength of each transmis­
sion peak and Ei denotes the position of the peak. Mak­
ing use of expression (10) the conductance (9) can be 
approximated by 

(T ) ,...... 1 + coshf3w ~ .f3 2(f3 E.) {3l!..E, 
K ,J.L - inhf3 ~ I' n ,. e , 

s w .=1 
(11) 

where f3 == l/kT, liE. == E. - J.L, and w is the width 
of the triplet measured on the energy scale. Thus, once 

the chemical potential has been fixed, the evolution of 
the conductance curve is determined by four basic pa­
rameters: the width wand the transmission strengths 
li. The prefractal nature of the spectrum implies that 
the triplet width depends on the hierarchical level con­
sidered so that one may expect different conductance fea­
tures to appear at different energy scales. In Fig. 5 we 
plot the mnductance curve for a FSL whose chemical 
potential is located inside a characteristic triplet of the 
energy spectrum. The curve displays two different be­
haviors depending on the considered temperature scale. 
At very low temperatures (kT '" 0.005), the curve ex­
hibits a prominent hump which displays finer structure. 
The inset shows the dependence of this structure on small 
variations of the sample chemical potential. The occur­
rence of the spik~ in the conductance hump is directly 
related to the proximity of J.L to the transmission peak 
located at E = -0.5484. On the other side, at higher 
temperatures (kT '" 0.05), the conductance curve shows 
a very broad maximum, due to the contribution of the 
a main subband as a whole. As we see, the influence of 
the spectrum structure on the finite-temperature conduc­
tance is rather significative. Most interestingly, we can 
account for most details appearing in the conductance 
curve by means of the analytical expression (11). As an 
example, in Fig. 6 we compare the conductance curve 
of Fig. 5, which has been obtained numerically from the 
expression (9), with that corresponding to the analytical 
expression (11) when suitable parameters for wand 'Yi are 
introduced. The agreement between both curves is ex­
cellent, especially if one considers that each peak appear­
ing in the considered triplet has a well-developed inner 
structure and the o-function approach may result rather 
crude. We wish to stress again that the parameters wand 
li used to evaluate expression (11) above completely de-
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FIG. 5. Conductance curve versus temperature for a FSL with N = 987, a = 0:75, and J-t = -0.5498. The inset gives a 
close view of the dependence of the hump structure on the adopted chemical potential value. From top to bottom the energies 
corresponding to the different curves range from p. = -0.5495 to P. = -0.5500 with a step of 0.0001. Note that the spike shifts 
to higher temperatures as the chemical potential separates from the transmission peak located at E = -0.5484. 
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FIG. 6. Comparison between the conductance obtained 
from the exact expression (solid line) and that obtained from 
the approximate analytical expression (11 ) (dashed line) with 
JL = -0.5493, w = 0.028, 1'1 = 1.085, 1'2 = 1.000, and 
1'3 = 1.533. 

termine the energy spectrum of the FSL. In consequence, 
the analytical expression (11) could provide a very useful 
tool to fit experimentally measured conductance curves in 
order to obtain from them relevant parameters describ­
ing the underlying energy spectrUID, structure, especially 
those determining the fragmentation splitting pattern. 
We have numerically checked that the validity of the ex­
pression (11) can be extended to higher fragmentation 
levels of the energy spectrum up to the third splitting 
stage. Hence, we can confidently conclude that. expres­
sion (11) allows for an excellent characterization of the 
influence of the highly fragmented nature of the FSL en­
ergy spectrum on the dc conductance at low tempera­
tures. 

B. dc conductance in the high-teIIlperature liIIlit 

In our numerical study we have observed that the 
K(T,/L) curves rapidly saturate reaching stable asymp­
totic values at about kT c::: 0.5 for all the values of a 
and N considered in our study. Note that this value is 
of the order of the A perfect superlattice minibandwidth 
n = 4e-d • Moreover, the asymptotic regime does not de­
pend on the position of the chemical potential at all. This 
fact can be explained as follows. Let !:::..E = E - JL; hence 
for (3!:::..E « 1 we can expand the weighting function as 

(12) 

Since !:::..E < n for every electron energy we consider, 
the expansion above becomes valid whenever the tem­
perature satisfies the condition kT > n. In this case 
expression (9) can be approximated by 

100 1000 

N 

FIG. 7. Dependence of the high-temperature limit conduc­
tance (dots) on the sample length for several values of the 
chemical diversity parameter. From top to bottom these val­
ues of a are 0.95, 0.90, 0.85, and 0.80. The solid lines give the 
least-squares fits describing a power-law behavior. The scal­
ing exponents are respectively given by -0.2968, -0.4245, 
-0.5887, and -0.6986. 

fr(E)dE 
K(T, fL) c::: f[l _ r(E)]dE' . (3 -+ 0, (13) 

where the integration extends over the allowed band. 
Note that expression (13) only depends on the model 
parameters a and N through the transmission coefficient 
'T(E). In Fig. 7 we show the behavior of the asymptotic 
dc conductance of the FSL with the sample size for sev­

. eral values of the parameter a. This plot clearly reveals 
that, in the high-temperature limit, the conductance of 
the FSL scales with the chain length. according to a power 
law, whose exponent strongly depends on the chemical 
diversity of the superlattice. . 

C. Discussion of the obtained results 

The conductance behavior in the high-temperature 
limit can be explained as due to the fact that when kT 
equals the perfect superlattice minibandwidth n, all elec­
trons contribute to the electronic transport in the super­
lattice growth direction. This result qualitatively agrees 
with time-resolved photoluminescence spectra obtained 
for GaAsJGaAlAs FSL's (Ref. 16) and allows us to es­
timate the temperature range for which our predicted 
conductance humps may be observable. In fact, typi­
cal bandwidths for periodic superlattice minibands are 
about 100 meV. Therefore, as can be seen from Fig. 4(b) , 
the high-temperature limit will be achieved for tempera­
tures of about T = IJlOk ~ 1100 K. As a consequence, 
conduction humps due to the first level of fragmentation 
should be observable at T ~ 200 K and conduction spikes 
due to the third level of splitting should be predominant 
at temperatures below T ~ 20 K. These temperature 
ranges are easily accessible to actual experimental ar­
rangements, hence indicating the possibility of experi­
mental observation of the prefractal spectrum structure 
in finite approximants to the Fibonacci lattice. 
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VI. CONCLUSIONS 

In summary, we have studied a general system describ­
ing a ID superlattice in which the constituent blocks are 
arranged according to the Fibonacci sequence. To this 
end we have derived a tight-binding description from a 
simple, continuous Schrodinger equation which allows us 
to explicitly take into account the interaction between 
nearest-neighbor blocks. The resulting energy spectrum 
has been obtained by means of the usual transfer-matrix 
techniques for a wide variety of possible realizations. The 
obtained spectra show typical features of quasiperiodic 
systems: The spectrum appears highly fragmented and 
displays a well-developed self-similar structure charac­
teristic of a prefractal Cantor-like set. Another typ­
ical signature of quasiperiodlc systems corresponds to 
its spectral measure which can be roughly characterized 
by means of the equivalent bandwidth of the spectrum. 
Our results corroborate the generalized view support­
ing that almost all eigenstates are criticpl in, Fibonacci 
chains. From the analysis of the equivalent bandwith 
dependence on the chemical diversity parameter a, we 
have been able to conclude that the existence of mobil­
ity edges characterizing a metal-insulator transition are 
not to be expected in this kind of superlaUice. However, 
the chemical composition of the superlattice has an in­
teresting effect on the global structure of the spectrum; 
i.e., it very precisely determines both the position and 
widths of the main subbands and gaps. Hence, one can 
think about the possibility of very accurately determining 
the electronic structure ofthe sample by usual computer 
controlled doping deposition techniques. The electronic 
structure of the energy spectrum is naturally translated 
to the magnitudes describing transport properties of the 
superIattice through the transmission coefficient. As has 
been fully discussed in Sec. V, when the chemical poten-
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