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Delocalized vibrations in classical random chains 
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Normal modes of one-dimensional disordered chains with two couplings, one of them assigned 
at random to pairs in an otherwise perfect chain, are investigated. We diagonalize the dynamical 
matrix to find the normal modes and to study their spatial extent. Multifractal analysis is used 
to discern clearly the localized or delocalized character of vibrations. In constrast to the general 
viewpoint that all normal modes in one dimensional random chains are localized, we find a set 
of extended modes close to a critical frequency, whose number increases with the system size and 
becomes independent of the defect concentration. 

In his famous paper on vibrations of glasslike disor­
dered chains, l Dean stated that when disorder (in any 
fONn) exists in a system the lattice modes are localized. 
Since Dean's paper was published, it has been claimed 
that unless the chain is ordered, or unless W = 0, allvibra­
tional modes are localized in one dimension.2 Later on, 
in analogy to previous works concerning related vibra­
tional problems, some authors conjectured that electrons 
in one-dimensional disordered lattices are also localized. 
That is, localization of all eigenstates by disorder in one­
dimensional systems is viewed as an exact statement.3 In 
a series of recent papers,4-7 however, Wu, and co-workers 
have proposed some discrete (tight-binding) models that 
exhibit metal-insulator transitions in spite of their ran­
domness. These authors have shown that when defects 
containing a plane of symmetry 7 are introduced at ran­
dom in an otherwise ordered chain, ../IV states (N be­
ing the total number of states) remain unscattered by 
the disorder and consequently are extended. In addi­
tion, Sanchez and Dominguez-Adame8 have presented 
evidence that a large number of states whose localization 
length is greater than the system size arises in contin­
uous (Kronig-Penney) models, in which 8 functions are 
regularly spaced and their strength takes two values, one 
of them in pairs at random (dimer defects). As a con­
sequence, in such random systems electronic transport 
can take place almost ballistically. In view of these re­
sults, it is a natural question to ask whether classical 
vibrational modes in all random lattices are actually lo­
calized. In this paper we attempt to answer this question 
showing a particular random system that presents a set 
of delocalized vibrations. We feel that this is a novel re­
sult because, whereas electron dynamics is quantum me­
chanical and tunneling allows for transitions classically 
forbidden (roughly speaking, tunneling favors delocaliza­
tion), we are dealing with a purely classical problem -it 
is well known that energy levels of the vibrating system 
can be derived by considering the corresponding classical 
problem. Quantum features of phonons appear in their 
statistics, not in their dynamics. 
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A standard way to study the acoustic properties of a 
lattice is to consider a nearest-neighbor harmonic chain. 
The equation of motion for the N atoms reads 

d2 Un 
mn dt2 = K nUn+1 + Kn-1Un- 1 - (Kn + Kn-dUn , 

n = 1, ... , N, (1) 

where Un is the displacement of the nth atom from its 
equilibrium position, mn is the corresponding mass, and 
Kn denotes the strength of the harmonic coupling be­
tween atoms. We build our model in the following way: 
we take all the masses to be the same mn = m, and 
we allow only two values for K n , K, and K', with the 
additional constraint that K' appears only in pairs. As­
suming a time harmonic dependence Un ex exp(iwt) in 
Eq. (1), the stationary equation of motion can be cast in 
the following matrix form: 

_Ki(:l ) ( Un ) 
o Un - 1 

(2) 

with A = mw2 /K. 
Consider now a single defect in which three atoms, 

placed at sites l- 1, l, and 1 + 1, are coupled by strengths 
K' between them and by strengths K to the surrounding 
lattice. The transfer matrix across such a defect is sim­
ply given by the matrix product Pl+1(A)Pl(A)Pl-l(A). It 
is a matter of simple algebra to demonstrate that at the 
particular value A = 2K' / K this matrix product equals, 
appart from a constant phase change without physical 
relevance, the transfer matrix at any site of the perfect 
lattice. The meaning of this result is easy to understand: 
There exists a special frequency Wc = ..j2K'/m for which 
the reflection coefficient at the defect vanishes. Since Wc 

must be below the highest frequency of vibrations in the 
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perfect lattice Wmax = 2JK/m, the additional condition 
K' < 2K is required. This result is related to that found 
for electrons in tight-binding models containing symmet­
rical defects, where the location in the energy band of 
the unscattered states is determined by the vanishing of 
the reflection coefficient at a single defect. 7 It is worth 
mentioning that the special frequency Wc is nothing but 
the frequency of the longitudinal mode of a single atom 
of mass m attached to two springs of constant K' with 
fixed ends. 

Bearing in mind the above result, we now proceed 
to study the localization properties of vibrating systems 
when several of such defects are located at random along 
the chain. For comparison, we have also studied ordinary 
random chains, that is, without requiring the constraint 
that K' appears in pairs. In addition, we have obtained 
results both realizationwise and on average. With no 
loss of generality we set K' = 1.5 K, so the special fre­
quency for which the reflection coefficient at a single de­
fect vanishes is Wc = J3K/m. For brevity let us denote 
Ac = mw; / K = 3. Another important parameter in our 
model is p, defined as the ratio between the number of 
couplings K' and the total number of couplings, which 
we set in the range 0.01 up to 0.8. 

The localized or delocalized character of the vibrations 
has been elucidated by means of multifractal analysis, a 
method succesfully used in characterizing electronic wave 
functions in disordered samples (see Ref. 9 and references 
therein). The amplitude distribution of normal modes 
can be characterized by the scaling with the system size of 
moments associated to the measure defined in the system 
by us. We use the standard definition of those moments 

(N) _ L::=IIUn I2q 

J-Lq - ( )q. 
L::=l JUnl 2 

(3) 

Notice that the second moment J-L2(N) coincides with the 
inverse participation ratio (IPR), as introduced, for in­
stance, in Ref. 10. The multifractal dimension Dq is de­
fined via J-Lq(N) '" N-(q-I)Dq , for q i- 1. For localized vi­
brations one finds that Dq vanishes for all q, whereas Dq 
equals unity (the space dimension) for vibrations spread­
ing uniformly. In these two extreme cases trivial multi­
fractal spectra are obtained. 

We first describe our studies realizationwise. To find 
eigenfrequencies and normal modes we directly diago­
nalize the tridiagonal, symmetrical matrix arising from 
Eq. (2) with rigid boundaries (Uo = UN+! = 0).11 The 
system size was as large as N = 5000. We systematically 
found that vibrations are more delocalized in approach­
ing the critical value Ac. Figure 1 shows the squared 
atomic displacements for three different frequencies close 
to the critical value Ac for a system of N = 5 000 and 
p = 0.2. A simple inspection of normal modes, however, 
does not suffice to discuss the localized or delocalized 
character of vibrations. Usually the IPR works fine to 
clearly discern localized and extended states. IO Delocal­
ized states are expected to present small IPR, of order 
of N- I , while localized states have larger IPR values. A 
typical situation is presented in Fig. 2(a), where the IPR 
for a chain with the same parameters as in Fig. 1 is plot-
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FIG. 1. Squared atomic displacements for three values of 
the frequency, indicated in each plot, in a system of size 
N = 5000 with p = 0.2. States become more delocalized 
in approaching the critical value Ac = 3. 
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FIG. 2. Inverse participation ratio, obtained by direct diag­
onalization of the secular matrix, for systems of size N =5000 
with p = 0.2 as a function of A = mw2 / K, where K' strengths 
are set (a) at random to pairs and (b) at random. The inset 
shows the inverse participation ratio close to Ac on a linear 
scale. 
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ted vs '\, in the range 0 < ,\ < 4. For comparison the 
IPR of an ordinary random chain with the same length 
and the same value of p is shown in Fig. 2(b). One can 
observe a deep minimum of the IPR around the criti­
cal value '\C, while this minimum is completely absent 
in ordinary random chains. Interestingly, the values of 
the IPR at that frequency are similar to those at ,\ rv 0, 
which so far were believed to be the only ones that could 
exhibit delocalization properties. Moreover, the inset of 
Fig. 2(a) shows a plateau close to '\c revealing the exis­
tence of a set of states with an IPR almost equal to the 
minimum value. This result indicates that in our model 
vibrations become extended for frequencies close to WC' 

We have estimated that the number of these states is 
about the square root of the system size, although this 
result cannot be stated rigorously due to the uncertainty 
in selecting these states. It is important to mention here 
that the same results are obtained for larger values of the 
concentration p. In particular, the value of the IPR at '\c 
only depends on the system size but not on p. Therefore 
it seems that the exact number of defects is inmaterial 
regarding the existence of extended vibrations. 

Let us now comment on the average results. We have 
numerically evaluated the positive integer moments as 
defined in Eq. (3) with q = 2, ... ,6. Atomic displace­
ments were recursively computed from the transfer ma­
trix equation (2), with the initial conditions Uo = 0 and 
Ul = 1, and the system size was as large as N = 106 • 

When computing averages, they were taken over a num­
ber of realizations up to 5000 to exclude errors due to 
poor statistics. Convergence of moments is reached after 
very few averages for frequencies close to WC' This fact 
is easily understood in view of our previous results: In 
such a frequency range almost all states are unscattered 
by defects and consequently no strong fluctuations are ex­
pected. Conversely, the number of averages to obtain ac­
curate results increases as one considers more distant fre­
quencies. Our data indicate that 500 averages are enough 
to investigate the main features of the scaling of moments 
with system size. Numerical calculations point out that 
moments scale very accurately as J-Lq(N) rv N-(q-l) for 
,\ = '\c in all systems we have studied, as illustrated 
in Fig. 3. Hence the generalized dimension Dq at this 
critical frequency is, within the numerical uncertainty, 
exactly one, Le., the space dimension. This means that 
vibrations spread homogeneously over the whole chain, 
supporting our claim that those states are completely ex­
tended. Close to '\c we find that J-Lq(N) follows a power 
law for small N but tends to a constant value for large 
N, as plotted in Fig. 3 for ,\ = 2.90. The critical size 
for which deviation from power fit occurs increases in 
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FIG. 3. Scaling of moments with system size for two dif­
ferent frequencies: ,\ = '\C (solid line) and ,\ = 2.90 (dashed 
line). The concentration of defects is p = 0.2 in both cases. 
The logarithms are to base 10. 

approaching '\C, suggesting that vibrations become more 
and more delocalized. This is a crucial point because it 
supports that these are main features of our model irre­
spective of the particular realization of the disorder. 

In summary, we have studied a one-dimensional dis­
ordered chain which, in contrast to the generally ac­
cepted viewpoint, presents a set of delocalized states close 
to a critical frequency. The number of such extended 
states roughly grows with the squared root of the system 
size. We have shown that correlation in coupling between 
atoms -foreign springs appear in pairs- leads to a clas­
sical resonance effect which allows for such extended vi­
brations. In our studies, not reported here, we also found 
that if correlation is introduced in the masses rather that 
in the couplings -foreign masses appear in pairs- the 
same resonance effect occurs yielding delocalized vibra­
tions. On the other side, it is clear that the main in­
fluence of these states concern transport properties of 
phonons. Accordingly, when computing the contribution 
of different modes to the thermal conductivity, as de­
fined in Ref. 12 we have observed a drastic enhancement 
around the critical frequency. Work currently in progress 
regarding these topics will be reported elsewhere. 
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