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Mode locking in discrete soliton dynamics under ac forces
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We present here analytical arguments and numerical evidence for the existence of net directional motion of
highly discrete sine-Gordon kinks under ac forces of zero average. We have also characterized the depinning
of the oscillating kink under those circumstances, and analyzed the instability mechanisms of the phase-locked
running solutions. Possible experimental relevance of this phenomenon in circular arrays of Josephson junc-
tions is discussedS0163-1829(97)02726-4]

The discrete sine-Gordon equatidRrenkel-Kontorova these comparisons between theory and experiments is the
model) appears as a mathematical description of variougssential role played by thdiscretecharacter of the model
condensed-matter physical systems such as charggpin) and the finite number of degrees of freedom of the experi-
density waves, arrays of superconducting Josephson juncaental system; in other words, essential aspects of the physi-
tions (JJA’s), crystal dislocations, domain walls in magneticcal phenomena are lost when a continuum limit of equations
and ferroelectric systems, etc. This ubiquity is not surprising1) is taken. In particular, these experiments clearly confirm
for it describes, in an abstract way, a discrete elastic mediurthat a kink solutiona quantum of flux trapped in the JJA’s
modulated by a periodic substrate potential, a paradigmatim the low-voltage regiorii.e., low values ofF), radiates
notion in condensed-matter physics. As such, the study of themall-amplitude oscillations which couple with its own mo-
Frenkel-Kontorova(FK) model has provided much insight tion giving new phase-locked steps in the measured
into the physical consequences of length and time scale coneharacteristic§.
petition in macroscopic systems? The second effect is thginning of the kink to the under-

The equations of motion of the Frenkel-Kontorova chainlying discrete lattic:*~® The kink has to overcome an en-
submitted to additional damping and driving forces are, inergy barrier[the so-called Peierls-Nabar(®N) barrier] to
dimensionless form, start to move; otherwise the soliton stays trapped oscillating

with a characteristic frequency, known as the PN frequency.
. . K This frequency appears in the gap of the linear waves spec-
Ujtauj+ o—sin(27uj) =uj1—2uj+ U1 +F, (1) trum and substitutes the zero frequer(@oldstone mode)

associated with the translation invariance of the continuous

whereu; is the phase of th¢th oscillator,F is the driving ~ System. In this situation, the kink isighly localizedin the
force, a is the damping, an& measures the strength of the lattice and itsdynamicslook like the one of a particle mov-
substrate potentidko that it can be regarded as the discreti-iNg in a periodic potential which strength is given by the PN
zation parameter). In the limiK— 0 we recover the continu- €Nergy. _ _

ous sine-Gordon model. Aubhas shown the influence of  In this paper we will study the underdamped dynamics of
discretization in the ground-state properties of the model. Ofhe kink whenF is a periodic function of time wittzero
the other hand, discreteness has dramatic effects in the dpverage,

namics of defects of the FK chaikink or solitong. Let us

mention two important observable effects which are imme- F=FLoswt. 2)
diate consequences of the discreteness. The first one is the

emission of radiation of small-amplitude oscillatiofimear =~ The main result we report in this paper is that the kink can
waves or phononsh the motion of defect$>® Recent stud- slide and move withnet average velocity. This type of
ies of equationg1), with constant homogeneous for€e  symmetry-breakingolutions occur for certain ranges of the
have provided a good quantitative explanation of experimenparameter valuesK(, «, F,., andw).

tal measurements of the current-voltage characteristics of cir- A useful way to obtain information on the overall behav-
cular arraydqrings) of underdampedosephson junctions bi- ior of the kink is to make use of the collective coordinate
ased by constant currert8.An important outcome from formalism? Following this procedure, the motion of the cen-
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2 wherel, stands for the soliton width. Such a parameter is
directly related t&K. We can derive a second-order differen-
tial equation for the soliton CMX(t):

: 03
) X(t) + pX(t) — Z—S’T’“sin(zwx(t)): —F,comt.  (4)
Here we have averaged over the phonon degrees of free-
dom, which “dress” the parameters to give the following
: expressions:
0
0 02,  m+27%3 ~ 7,

1T m T Blisinh(wly) Fam 5 Fac: 9

FIG. 1. Schematic phase diagram in thevs K plane showing
(dotted areayalues of the parameters for which a mode-locking ~ Equation(4) is the familiar expression for a damped and
motion of the kink at some value of the intensity of the externalforced simple pendulum. Such an equation presents a rich
force F . is found(herea=0.1). Upper and lower curves show the variety of different solutions when the initial conditions
phonon band gap and the Peierls-Nabarro frequency, respectivelyand/or the parameters are varied. Of particular interest here

are the so-calléd*? running solutions(appearing in pairs)

ter of mass of the kink is described by the equation of motionyhich are attractors with nonzero average veIo«éDk;(t)).
for an effective pendulum where the parameters are dresseg Eq. (4) is obtained under the assumpti(8) for the soli-
by the influence of the nonlinear waves. This equation ion shape and reducing drastically the number of degrees of
known to posseseunning solutionsunder ac forces of zero  faeqom, the question arises whether or not these running
average. We have checked that these types of solutions d®ytions correspond to true solutions for the kink of the
exist for the kink in the Frenkel-Kontorova chain, by direct frenkel-Kontorova chaifil). Mode-locking solutions of the
simulation of the complete equations of motion, confirmingpendu|um would allow kink velocities controlled by the ex-
the prediction from the collective coordinate formalism. Anarnal frequency.
interesting aspect of these solutions is that the velocity of the | grder to check the prediction of the collective coordi-
kink is determined by the external driving frequency, a pa-nate scheme we have simulated the dynamics of a soliton
rameter that the experimentalist can easily control. driven by a pure uniform ac driving force. A fourth-order
In order to keep the analysis as close as possible to thgnge-Kutta method was used to integrate @g.with the
experimental situations referred to abdvet us consider @ appropriate boundary conditions. The lattice size was chosen
finite chain ofN particles withu; ,y=u;+ N. The spectrum {5 he much larger than the soliton width in order to avoid
of linear modes(phonons)is w(q)= yK+4sifq/2 where  sgjiton-soliton interaction via boundary conditions. We have
q=2m(m/N) (m=0,%x1,+2,...). Discreteness(nonzero worked out the response of the chain as a function of
K) breaks the continuous translational invariance of thq:ac, w, and K for an intermediate value of damping
chain, pinning it to the substrate. The consequence is thg=0.1 in which the collective coordinates scheme works
appearance of a gap in the linear waves spectrum of thge||. In Fig. 1 we indicate the ranges of parameter values for
lattice wy=min w(g)=VK. which a coherent mode-locking motion of the soliton ap-
For a lattice ofN particles aanti-) soliton is given by the  pears. We compare them with the frequency of phonons and
following boundary conditionu;, y=u;+N=1. With this  the PN frequency. Figure 2 shows a typical response for
boundary condition an eigenvalue corresponding to a localfixed values of parameteté and  in the region of interest
ized mode appears in the gap. In the continuum limitfor high and low frequencies and a comparison with collec-
(K—0) this eigenvalue vanishes, a fact which correspondsive coordinate equation of motidri.Next, we discuss these
to the unpinned character of the soliton in this limit. Figure 1response curves.
shows the eigenvalue associated with the localized mode for |ow-frequency respong€&ig. 2(a)]: We analyze here the
a soliton in a lattice of 80 particles. This eigenvalue remaingesponse for low values ab—approximately a half of the
(numerically)close to zerdsliding soliton)until K=0.4. For PN frequency. For low values of the strend®, of the
higher values oK the soliton becomes more and more lo- driving force, the soliton remains trapped in the bottom of a
calized (i.e., its width decreasgsnd is pinned to the sub- single PN well, oscillating with the driving frequency. As
strate (Peierls-Nabarro barriéf). The squared root of the soon as the strength of the force reaches a critical value the
eigenvalue defines the frequency of small oscillations of theoliton starts to jump to contiguous wells.
soliton around its equilibrium position, the Peierls-Nabarro  The Floquet analysté of periodic (pinned or moviny
frequencyQpy. solutions gives insights into the mechanisms of this depin-
Using the formalism developed in Refs. 9 and 10 we caming of the kink under the action of just an ac force. This is
find the effective equation of motion for the soliton center ofto analyze the local stability matrigsmall perturbation ma-
mass(CM) by assuming a sine-Gordon profile for the dis- trix) of such solutions generated along a period of the stable
crete (anti-) soliton, periodic attractor. An eigenvalue crossing the unit circle in-
dicates the breaking of stability. In this case when the depin-
3) ning instability occurs the largest eigenvaliwehich is real)

2
— e+ —tan-l _
Un=n= Wtan {exdn=X(01/lo}, tends to+1. This characteristic corresponds to a saddle-node
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kink: (a) low-frequency regimew=27X0.02 and (b) high-
frequency regimeo=2mx0.04.(c) shows the result of the collec-
tive coordinate formalism for the values of the parametergbpf

a=0.1, K=1.0, Q3,=0.06, andF ,=5F .

time

FIG. 3. Three different types of possible motion of the soliton in

. . . . . . the lattice corresponding to three different points of the curve
bifurcation, which has associated type-l intermittenéfes. shown in Fig. 2a). (a) Intermittent motion of the soliton

The eigenvector associated with this soft mode is an asyme_—0.001 631 15). (b) Diffusive motion of the kink
metric “depinning mode” and it is localized in the soliton (F_ —0.0018).(c) Mode-locking motion of the kink corresponding
CM. In the depinned phagelose enough to the critical de- to a step of resonant velocity,v =1 (F.=0.00185).
pinning point)we observe intermittencies of type I: The soli- w=2#x0.02, «=0.1, andK =1.0. The insets show the motion of
ton stays for a long time in the bottom of a well, suddenlythe CM of the kink.

jumps to another, and temporally remains in[see Fig.

3(a)]. We can characterize the chaotic state as the result tdcking regime is achieved in which the averaged velocity is
the competition of(at least)three “metastable attractors”: exactly given by
the kink trapped in a well and running in two opposite direc-

tions. Hops between these states determine the dynamical

state in this region. The frequency of these jumps increases

with F,. until a diffusive motion is reacheld=ig. 3(b)]. Fur-

ther increment of the control parameter causes the residengéhere w is the frequency of driving force anpl andq are
time in the running attractors to increase. Finally a mode-some coprime integer numbers. The kink steadily moves in a

P w
Ukink:a P (6)
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direction depending on the initial conditiofBig. 3(c)]. An initial conditions. This forbids the symmetry-broken solu-
important point to emphasize is that the amplitude of the adions in the motion found here. On the other hand, for very
force is quite below(by approximately an order of magni- low damping the collective coordinate map cannot account
tude)the depinning dc force for the same parameters of théor the behavior of the many-particle system. To have a com-
model. At these values of the external frequency we do noplete description of the system, we need to include the equa-
observe hysteretic behavior in the curves so there is not cdlons of motion for the phonons. We have found some pa-
existence between pinned and unpinned attractors. Howeve@meter values for which E¢4) has mode-locking solutions
the kink motion within the mode-locking step is not periodic IN Which the simulations of the complete system show the

but substantially more complex. It undergoes a cascade dpStability of the kink motion by the emission of a large

-y i if : ith onl Il i f pe- amount of phonons. However, we have found that for inter-
ﬁggi?:?tfow ing bifurcations with only small windows of pe mediate values¢=0.05-0.5) the existence of mode lock-

High-frequency responsiFig. 2(b)]: Fore close to the ing holds and we can find parameter values for the steps.

PN frequency the depinning behavior is quite different. PriorFrelszllj_rQ&?gb\y;e cr;l:\i/rf (S:Qr?wsr;eg] da}lt amkc')r\]); Igugtgfg(;ef
to depinning, the symmetric oscillating state of the soliton y y

within a well breaks in two states in which it oscillates °11Y & ac force. This phenomenon can be understood in the

around one of the two sides of the well, depending on initial%og\}ﬁ:(t i?\ f :nagﬁ(l)n d%cth?)tl(;g]tli(almg{iegnl?rt]z aeﬂggall(lait pz:ctlglli
conditions. This instability is also driven by an eigenvalue 9 P P . 9 y

Wi crosses he Ui fle ougfL.and e correspord- 01018 26 T, e Sibect i, s benanor ca be ot
ing eigenvector is localized. By increasirtg,; these new y

states become unstable and a new cascade of double—perilt%t'ces(e'g" th_e continuum a_nd discrefe m_odels) |
This model is easily experimentally feasible, for instance

bifurcations appears. Once this confined motion is chaot|ch a ring of Josephson-junctidhwith trapped magnetic flux.

the I'<|.nk can move "’?”d a .mod'e-locklng s'tep IS observeq. 'éior the parameter of one of the samples given there, we find
significant fact, in this region, is the coexistence of runnmgK_0 5, ()= 0.04, and = 0.08. This system is moderately
— V.9, pPN— VY. y — V. .

and pinned stable solutions for the safg value. The con- dli]screte(see Fig. 1 and one can expect finite-size effects in

sequence is a hysteresis loop in the response. The behavior . ) . A
the upper branch is similar to that observed in the modeﬂ.1e flux dynamics. Simulations with these parameters and

locking step at low frequency. The instability of this running rings of N=8 andN=20 lattice sites, show mode-locking

state(by loweringF . also corresponds to a localized mode steps for a very few values' of the external freque.ncy. An-
associated with &+1) eigenvalue. other experimental system, in which tKeparameter is rea-

These curves have been obtained for finee 1. For sonably well controlled is a two-parallel array of JI&
. . ladder)® Although the dynamical behavior of vortex does
higherK values &4) we cannot observe coherent kink mo-

tion since the chaotic dynamics of tlehole lattice, domi- not follow t_he d|§crete sm_e-Gordon equation, preliminary
nates computer simulations confirm the validity of the above re-

Finally we discuss the role of damping in the dc motion ofSUItS'
the soliton. For overdamped dynamics, the “nonpassing We acknowledge A. R. Bishop and J. L. Marfor many
rule” of Middleton™ applies: for ac fields and convex inter- useful suggestions on this work. Financial support from
particle interactions Middleton has proved that the steadyDGES (PB95-0797)and CICYT (MAT95-0325), Spain is
state velocity of the chain is unique and independent of thacknowledged.
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