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Mode locking in discrete soliton dynamics under ac forces
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We present here analytical arguments and numerical evidence for the existence of net directional motion of
highly discrete sine-Gordon kinks under ac forces of zero average. We have also characterized the depinning
of the oscillating kink under those circumstances, and analyzed the instability mechanisms of the phase-locked
running solutions. Possible experimental relevance of this phenomenon in circular arrays of Josephson junc-
tions is discussed.@S0163-1829~97!02726-4#
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The discrete sine-Gordon equation~Frenkel-Kontorova
model! appears as a mathematical description of vari
condensed-matter physical systems such as charge~or spin!
density waves, arrays of superconducting Josephson j
tions ~JJA’s!, crystal dislocations, domain walls in magne
and ferroelectric systems, etc. This ubiquity is not surpris
for it describes, in an abstract way, a discrete elastic med
modulated by a periodic substrate potential, a paradigm
notion in condensed-matter physics. As such, the study of
Frenkel-Kontorova~FK! model has provided much insigh
into the physical consequences of length and time scale c
petition in macroscopic systems.1–4

The equations of motion of the Frenkel-Kontorova cha
submitted to additional damping and driving forces are,
dimensionless form,

ü j1au̇ j1
K

2p
sin~2puj !5uj1122uj1uj211F, ~1!

whereuj is the phase of thej th oscillator,F is the driving
force,a is the damping, andK measures the strength of th
substrate potential~so that it can be regarded as the discre
zation parameter!. In the limitK→0 we recover the continu
ous sine-Gordon model. Aubry1 has shown the influence o
discretization in the ground-state properties of the model.
the other hand, discreteness has dramatic effects in the
namics of defects of the FK chain~kink or solitons!. Let us
mention two important observable effects which are imm
diate consequences of the discreteness. The first one i
emission of radiation of small-amplitude oscillations~linear
waves or phonons!in the motion of defects.2,5,6Recent stud-
ies of equations~1!, with constant homogeneous forceF,
have provided a good quantitative explanation of experim
tal measurements of the current-voltage characteristics of
cular arrays~rings!of underdampedJosephson junctions bi
ased by constant currents.7,8 An important outcome from
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these comparisons between theory and experiments is
essential role played by thediscretecharacter of the mode
and the finite number of degrees of freedom of the exp
mental system; in other words, essential aspects of the ph
cal phenomena are lost when a continuum limit of equati
~1! is taken. In particular, these experiments clearly confi
that a kink solution~a quantum of flux trapped in the JJA’s!,
in the low-voltage region~i.e., low values ofF), radiates
small-amplitude oscillations which couple with its own m
tion giving new phase-locked steps in the measu
characteristics.8

The second effect is thepinningof the kink to the under-
lying discrete lattice.1,4–6 The kink has to overcome an en
ergy barrier@the so-called Peierls-Nabarro~PN! barrier# to
start to move; otherwise the soliton stays trapped oscilla
with a characteristic frequency, known as the PN frequen
This frequency appears in the gap of the linear waves sp
trum and substitutes the zero frequency~Goldstone mode!
associated with the translation invariance of the continu
system. In this situation, the kink ishighly localizedin the
lattice and itsdynamicslook like the one of a particle mov
ing in a periodic potential which strength is given by the P
energy.

In this paper we will study the underdamped dynamics
the kink whenF is a periodic function of time withzero
average,

F5Faccosvt. ~2!

The main result we report in this paper is that the kink c
slide and move withnet average velocity. This type o
symmetry-breakingsolutions occur for certain ranges of th
parameter values (K, a, Fac, andv).

A useful way to obtain information on the overall beha
ior of the kink is to make use of the collective coordina
formalism.9 Following this procedure, the motion of the ce
87 © 1997 The American Physical Society
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88 56BRIEF REPORTS
ter of mass of the kink is described by the equation of mot
for an effective pendulum where the parameters are dre
by the influence of the nonlinear waves. This equation
known to possessrunning solutionsunder ac forces of zero
average. We have checked that these types of solution
exist for the kink in the Frenkel-Kontorova chain, by dire
simulation of the complete equations of motion, confirmi
the prediction from the collective coordinate formalism. A
interesting aspect of these solutions is that the velocity of
kink is determined by the external driving frequency, a p
rameter that the experimentalist can easily control.

In order to keep the analysis as close as possible to
experimental situations referred to above,8 let us consider a
finite chain ofN particles withuj1N5uj1N. The spectrum
of linear modes~phonons!is v(q)5AK14sin2q/2 where
q52p(m/N) (m50,61,62, . . . ). Discreteness~nonzero
K) breaks the continuous translational invariance of
chain, pinning it to the substrate. The consequence is
appearance of a gap in the linear waves spectrum of
latticevg5min v(q)5AK.

For a lattice ofN particles a~anti-! soliton is given by the
following boundary condition:uj1N5uj1N61. With this
boundary condition an eigenvalue corresponding to a lo
ized mode appears in the gap. In the continuum lim
(K→0) this eigenvalue vanishes, a fact which correspo
to the unpinned character of the soliton in this limit. Figure
shows the eigenvalue associated with the localized mode
a soliton in a lattice of 80 particles. This eigenvalue rema
~numerically!close to zero~sliding soliton!until K.0.4. For
higher values ofK the soliton becomes more and more l
calized ~i.e., its width decreases! and is pinned to the sub
strate ~Peierls-Nabarro barrier1,4!. The squared root of the
eigenvalue defines the frequency of small oscillations of
soliton around its equilibrium position, the Peierls-Naba
frequencyVPN.

Using the formalism developed in Refs. 9 and 10 we c
find the effective equation of motion for the soliton center
mass~CM! by assuming a sine-Gordon profile for the d
crete~anti-! soliton,

un5n6
2

p
tan21$exp@n2X~ t !#/ l 0%, ~3!

FIG. 1. Schematic phase diagram in thev vs K plane showing
~dotted area!values of the parameters for which a mode-locki
motion of the kink at some value of the intensity of the exter
forceFac is found~herea50.1). Upper and lower curves show th
phonon band gap and the Peierls-Nabarro frequency, respectiv
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where l 0 stands for the soliton width. Such a parameter
directly related toK. We can derive a second-order differe
tial equation for the soliton CM,X(t):

Ẍ~ t !1hẊ~ t !2
VPN

2

2p
sin„2pX~ t !…52F̃accosvt. ~4!

Here we have averaged over the phonon degrees of f
dom, which ‘‘dress’’ the parameters to give the followin
expressions:

h5a,
VPN

2

2p
5

p312p5l 0
2

6l 0
4sinh~p2l 0!

, F̃ac5
p2l 0
2

Fac. ~5!

Equation~4! is the familiar expression for a damped an
forced simple pendulum. Such an equation presents a
variety of different solutions when the initial condition
and/or the parameters are varied. Of particular interest h
are the so-called11,12 running solutions~appearing in pairs!

which are attractors with nonzero average velocity^Ẋ(t)&.
As Eq. ~4! is obtained under the assumption~3! for the soli-
ton shape and reducing drastically the number of degree
freedom, the question arises whether or not these runn
solutions correspond to true solutions for the kink of t
Frenkel-Kontorova chain~1!. Mode-locking solutions of the
pendulum would allow kink velocities controlled by the e
ternal frequency.

In order to check the prediction of the collective coord
nate scheme we have simulated the dynamics of a so
driven by a pure uniform ac driving force. A fourth-orde
Runge-Kutta method was used to integrate Eq.~1! with the
appropriate boundary conditions. The lattice size was cho
to be much larger than the soliton width in order to avo
soliton-soliton interaction via boundary conditions. We ha
worked out the response of the chain as a function
Fac, v, and K for an intermediate value of dampin
a50.1 in which the collective coordinates scheme wor
well. In Fig. 1 we indicate the ranges of parameter values
which a coherent mode-locking motion of the soliton a
pears. We compare them with the frequency of phonons
the PN frequency. Figure 2 shows a typical response
fixed values of parametersK andv in the region of interest
for high and low frequencies and a comparison with colle
tive coordinate equation of motion.13 Next, we discuss these
response curves.

Low-frequency response@Fig. 2~a!#: We analyze here th
response for low values ofv—approximately a half of the
PN frequency. For low values of the strengthFac of the
driving force, the soliton remains trapped in the bottom o
single PN well, oscillating with the driving frequency. A
soon as the strength of the force reaches a critical value
soliton starts to jump to contiguous wells.

The Floquet analysis14 of periodic ~pinned or moving!
solutions gives insights into the mechanisms of this dep
ning of the kink under the action of just an ac force. This
to analyze the local stability matrix~small perturbation ma-
trix! of such solutions generated along a period of the sta
periodic attractor. An eigenvalue crossing the unit circle
dicates the breaking of stability. In this case when the dep
ning instability occurs the largest eigenvalue~which is real!
tends to11. This characteristic corresponds to a saddle-n
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56 89BRIEF REPORTS
bifurcation, which has associated type-I intermittencies14

The eigenvector associated with this soft mode is an as
metric ‘‘depinning mode’’ and it is localized in the solito
CM. In the depinned phase~close enough to the critical de
pinning point!we observe intermittencies of type I: The so
ton stays for a long time in the bottom of a well, sudden
jumps to another, and temporally remains in it@see Fig.
3~a!#. We can characterize the chaotic state as the resu
the competition of~at least!three ‘‘metastable attractors’’
the kink trapped in a well and running in two opposite dire
tions. Hops between these states determine the dynam
state in this region. The frequency of these jumps increa
with Fac until a diffusive motion is reached@Fig. 3~b!#. Fur-
ther increment of the control parameter causes the resid
time in the running attractors to increase. Finally a mo

FIG. 2. vnor vsFac (vnor52pvkink /v) for aN520 lattice with a
kink: ~a! low-frequency regimev52p30.02 and ~b! high-
frequency regimev52p30.04.~c! shows the result of the collec
tive coordinate formalism for the values of the parameters of~b!.

a50.1, K51.0, VPN
2 50.06, andF̃ac.5Fac.
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locking regime is achieved in which the averaged velocity
exactly given by

vkink5
p

q

v

2p
, ~6!

wherev is the frequency of driving force andp andq are
some coprime integer numbers. The kink steadily moves

FIG. 3. Three different types of possible motion of the soliton
the lattice corresponding to three different points of the cu
shown in Fig. 2~a!. ~a! Intermittent motion of the soliton
(Fac50.001 631 15). ~b! Diffusive motion of the kink
(Fac50.0018).~c! Mode-locking motion of the kink correspondin
to a step of resonant velocity,vnor51 (Fac50.001 85).
v52p30.02, a50.1, andK51.0. The insets show the motion o
the CM of the kink.
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90 56BRIEF REPORTS
direction depending on the initial conditions@Fig. 3~c!#. An
important point to emphasize is that the amplitude of the
force is quite below~by approximately an order of magn
tude! the depinning dc force for the same parameters of
model. At these values of the external frequency we do
observe hysteretic behavior in the curves so there is not
existence between pinned and unpinned attractors. Howe
the kink motion within the mode-locking step is not period
but substantially more complex. It undergoes a cascad
period-doubling bifurcations with only small windows of p
riodicity.

High-frequency response@Fig. 2~b!#: Forv close to the
PN frequency the depinning behavior is quite different. Pr
to depinning, the symmetric oscillating state of the solit
within a well breaks in two states in which it oscillate
around one of the two sides of the well, depending on ini
conditions. This instability is also driven by an eigenval
which crosses the unit circle through11 and the correspond
ing eigenvector is localized. By increasingFac these new
states become unstable and a new cascade of double-p
bifurcations appears. Once this confined motion is chao
the kink can move and a mode-locking step is observed
significant fact, in this region, is the coexistence of runn
and pinned stable solutions for the sameFac value. The con-
sequence is a hysteresis loop in the response. The behav
the upper branch is similar to that observed in the mo
locking step at low frequency. The instability of this runnin
state~by loweringFac) also corresponds to a localized mo
associated with a~11! eigenvalue.

These curves have been obtained for fixedK51. For
higherK values (.4) we cannot observe coherent kink m
tion since the chaotic dynamics of thewhole lattice, domi-
nates.

Finally we discuss the role of damping in the dc motion
the soliton. For overdamped dynamics, the ‘‘nonpass
rule’’ of Middleton15 applies: for ac fields and convex inte
particle interactions Middleton has proved that the stea
state velocity of the chain is unique and independent of
.
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initial conditions. This forbids the symmetry-broken sol
tions in the motion found here. On the other hand, for ve
low damping the collective coordinate map cannot acco
for the behavior of the many-particle system. To have a co
plete description of the system, we need to include the eq
tions of motion for the phonons. We have found some
rameter values for which Eq.~4! has mode-locking solutions
in which the simulations of the complete system show
instability of the kink motion by the emission of a larg
amount of phonons. However, we have found that for int
mediate values (a50.0520.5) the existence of mode lock
ing holds and we can find parameter values for the steps

In summary, we have shown that a kink in a discre
Frenkel-Kontorova chain can steadily move sustained
only an ac force. This phenomenon can be understood in
context of mapping the kink motion into a single partic
moving in a periodic potential. Given the generality of th
methods used here, we expect that this behavior can be
served in the dynamics of localized defects in other nonlin
lattices~e.g., the continuum and discretef4 models!.

This model is easily experimentally feasible, for instan
in a ring of Josephson-junctions8 with trapped magnetic flux.
For the parameter of one of the samples given there, we
K50.5,VPN50.04, anda50.08. This system is moderatel
discrete~see Fig. 1! and one can expect finite-size effects
the flux dynamics. Simulations with these parameters
rings of N58 andN520 lattice sites, show mode-lockin
steps for a very few values of the external frequency. A
other experimental system, in which theK parameter is rea-
sonably well controlled is a two-parallel array of JJ’s~a
ladder!.16 Although the dynamical behavior of vortex doe
not follow the discrete sine-Gordon equation, prelimina
computer simulations confirm the validity of the above r
sults.
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