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We study the possibility of kink motion induced by pure ac driving in damped nonlinear lattices, focusing on 
the Frenkel-Kontorova and Toda models. Numerical simulations of the Frenkel-Kontorova model show no 
evidence for steady kink motion. We point out that momentum-balance in addition to energy-balance argu­
ments are needed to understand the translation of the collective excitation. Finally, our result is discussed in 
view of related theoretical predictions and numerical simulations. 

I. INTRODUCTION 

The relevance of nonlinear models to many problems in 
condensed-matter physics is nowadays widely recognized. l 

One class of such models that has received considerable at­
tention lately is that of nonlinear lattices.2 These have 
been mainly used in connection with commensurate­
incommensurate transitions, localization, and other phenom­
ena where lattice discreteness plays an essential role. Among 
these models, the Frenkel-Kontorova (FK) chain3 and the 
Toda lattice4 (TL) are two of the most studied ones. The 
motivation for these studies stems from the fact that the two 
models capture a number of interesting features of some 
condensed-matter problems, like nonlinear effects on lattice 
vibrations in crystals or the motion of dislocations. Most of 
the work to date deals with the motion of solitons and dislo­
cations (kinks) subject to dc driving. The case of ac driving 
has been recently considered in Ref. 5 for the TL and in Ref. 
6 for the FK chain. This last model was also studied in the 
presence of simultaneous ac and de driving in Ref. 7. Re­
stricting ourselves to pure ac driving, in the above papers a 
theoretical analysis of the problem with a spatially homoge­
neous or staggered ac driving was developed, and on the 
basis of these calculations it was suggested that this pure ac 
driving might support steady motion of solitons (TL) or 
kinks (FK). To our knowledge, there has been no direct nu­
merical or experimental work to check this prediction. 
Therefore, we addressed the task of making a detailed check 
of this possibility. We note that in Ref. 9, experiments on a 
nonlinear electrical line related to but different from the TL 
showed that it was possible to drive soli tons with pure ac 
driving. Results were also confirmed by numerical 
simulation&.lo We will return to this point in our conclusions 
after we have reported our results. 

This paper is organized as follows. In Sec. 11, we report 
some simulations of the ac-driven damped FK chain, which 
we take as our working example. Our numerical work pro­
vided no evidence supporting the possibility of kink steady 
motion in this system over a wide range of parameter values. 
To explain this negative result, in Sec. III we develop a theo­
retical approach based on momentum-balance equations for 
both the TL and the FK chain. Our analysis shows that 
steady motion is indeed not possible. However, the same 
argument suggests that some of the results in Ref. 6 for para­
metric driving may be possible. Our simulations support the 
steady motion of kinks induced by parametric ac driving. In 
closing, we summarize our results and draw some more gen­
eral conclusions on ac-driven nonlinear problems. 

11. MODEL AND NUMERICAL RESULTS 

For the sake of definiteness, in this section we will be 
dealing with the FK chain; later we will comment on the TL 
model. The ac-driven damped Frenkel-Kontorova chain is 
governed by the equation 

Xn= - (l'Xn - sinxn +a- 2(xn +l + Xn-l- 2xn ) + Fcos(wt), 

(1) 

where Xn stands for the displacement of particle n, 
n= 1, ... ,N, and a- 2 is the stiffness of the linear interpar­
ticle interaction. Periodic boundary conditions (modulo 
21T) are used. Equation (1) can also be realized as a discreti­
zation of the ac-driven, damped sine-Gordon (SG) equation; 
in that context, a would be the mesh size or lattice spacing. 
We deal here with the regime in which there is only one 
dislocation in the system, meaning that there is one particle 
more than the number of wells. 
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FIG. 1. (a) Center of mass motion for a kink propagating along 
the FK chain with initial velocity V = 0.06. Simulation parameters 
are a=0.2, F=O.l, w=2, a=O.1. (b) Total energy in the simula­
tion in (a) showing its approximate balancing. 

In Ref. 6 (and in Ref. 5 for the TL), this problem 
was addressed by means of an energy-balance calcula­
tion for a general traveling dislocation of the forms 
xn(t) = ~(2?Tn - Vt). It was shown that the energy-balance 
condition, i.e., where the dissipative losses are compensated 
by the ac energy input, could only be satisfied for a particular 
set of velocities, V = V N= w/ N, with N = ± 1, ± 2, . .. . It 
was argued that propagation of the dislocation might be pos­
sible provided the amplitude exceeds a certain threshold 
value F N • The threshold was computed in the 
quasicontinuum limit, in which the dislocation size 
( - a-I) is assumed to be much larger than the chain 
spacing 2?T. The profile g was then taken to be the kink 
solution of the pure SG equation, and it yielded 
F N=4a?TVN(I- vt)-lf2cosh[7Tw(I- Vt)1I2/2VN], with VN 
=aw/2?TN. It was noted that when a->O the threshold be­
comes infinitely large, implying that ac-driven propagation 
would not be possible in the continuum limit. 

Let us now turn to our results. We numerically simulated 
Eq. (1) by means of a fifth-order adaptive-stepsize Runge­
Kutta routine. lI A difficult point was the choice of the pa­
rameters, which we detail in the following. First of all, the 
threshold is lowest when N= 1, so we fix this value. Second, 

a should not be very small, to keep reasonable values for the 
threshold, but should not be very large either, otherwise the 
SG kink would not be a good approximation (and it would 
not even be able to propagate due to the Peierls-Nabarro 
pinning, as discussed in Ref. 12). We chose different values 
in the range 0.1 ~ a ~ 1. Finally, the resonant velocity should 
be proportional to w, so in order to clearly discern the kink 
motion, w should be large, but not so large as to require a 
very small time step or give rise to velocities greater than the 
maximum allowed one. Thus we worked on the range 
O.I~w~lO. In principle, the predictions above do not de­
pend on a except for the threshold, so we usually took two 
typical values, a= 0.01 and 0.1. We swept these ranges of 
the parameters with initial conditions given either by a kink 
with the expected resonant velocity, or a velocity greater than 
that, or at rest. All the simulations led to the same result: 
namely, propagation of the kink did not take place for any 
value of the ac-driving amplitude. An example is shown in 
Fig. 1; let us stress, however, that the same outcome was 
obtained for all the studied range of parameters, and if a was 
taken around 1 or larger, the propagation of the kink was 
even more difficult due to the strong Peierls-Nabarro pin­
ning. Actually, much before reaching the threshold F N, the 
chain undergoes a transition to the chaotic regime (see, e.g., 
Ref. 13 for a discussion of this aspect), and the notion of a 
kink loses all its meaning. In this regime only large values of 
the dissipation can prevent the appearance of chaos. For driv­
ing amplitude values such that the kink is preserved and the 
input and output of the energy of the system is balanced in 
each period, as happens in Fig. l(b), we always found that 
the kink velocity decreased (or remained zero if started at 
rest) and the motion eventually became oscillatory, trapped 
around a certain lattice point. Therefore, our numerical re­
sults strongly suggest that steady kink motion does not occur 
in the ac-driven damped FK chain. 

Ill. ANALYTICAL RESULTS AND DISCUSSION 

Bearing the above results in mind, we now turn to an 
analytical approach to gain further insight into this problem. 
Notice that the total momentum of the particles 

(2) 
n 

the dot meaning derivative with respect to time, is directly 
related to the velocity of a steady traveling dislocation 
xn(7J)=~(an-Vt) by 

(3) 

Therefore, this is a very good indicator of the possibility of 
steady motion of collective excitations. We note that this 
Ansatz amounts to neglecting higher order effects such as 
radiation and, on the other hand, it is the same one used by 
Bonilla and Malomed.6 It can be easily seen from Eq. (2) that 
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n 

=-ap+ ~ [Fcos(wt)-sinxnJ. (4) 
n 

The condition for stable translation of the profile x n requires 
(jJ) = 0, where ( ... ) means average over a period of the 
driving frequency. Imposing this condition on Eq. (4) leads 
to the following relationship: 

(5) 

which must hold if the considered excitation is to move with 
a constant velocity. Equation (5) has to be particularized for 
each specific profile considered. Following Ref. 6, we con­
cern ourselves with a single dislocation motion. In the qua­
sicontinuum approximation, the unperturbed dislocation is 
well described by the kink solution of the sine-Gordon (SG) 
equation, given by 

X( 1]) = 4 tan -l{ exp[ O''Y( an - Vt)]}, (6) 

where 'Y= (1 - V2) -1/2 and 0' is the polarity of the kink. By 
substituting Eq. (6) for Xn into Eq. (5), it leads to 

( f +ood1] 
a(p)= - -00 --;- sin[x( 1])] 

The terms in the right-hand side of Eq. (7) can be regarded as 
the time average of the Fourier modes of the PeierIs-Nabarro 
pinnings. For the kink profile (6) and the resonant velocity, 
V=aw/(277) (from the energy-balance argument), the time 
averaged PeierIs-Nabarro pinnings vanish. Therefore, the 
only value of V which will balance the total momentum is 
V= 0, and constant kink motion will not be possible. As a 
matter of fact, this conclusion holds for any profile xn( 1]) 

which is an odd function of 1] under the quasicontinuum 
approximation. We also point out that the same calculation 
can be carried out for a periodically varying velocity, and the 
conclusion (V= 0) remains true, now in the sense of average 
velocity. 

Notice that the contradiction with the results in Ref. 6 
arises because the way the resonant velocities are obtained 
there is by imposing energy balance, not momentum balance. 
The fact that there could be Ansiitze with constant speed that 
could balance the energy in the system is not enough to 
guarantee that they are true solutions of the system. Indeed, 
in Ref. 6 another example is considered for a continuum 
model, described by a perturbed SG equation with a para­
metric driving of the form Fsin( l/J/3)cos( wt) ( l/J being the SG 
field) by means of a similar momentum-balance approach. It 
is predicted that steady motion of kinks can take place. We 
have checked this possibility by direct numerical simulation, 
and, opposite to the previous case, the result agrees with the 

prediction in Ref. 6. In spite of the fact that the kink velocity 
is not constant, it certainly exhibits motion towards a pre­
ferred direction. 

Turning now to the TL, its governing equation in the pres­
ence of ac driving and damping can be written as 

Yn= - aYn- e-(Yn+I-YnJ+e-(Yn-Yn-IJ+ F nCos( wt), (8) 

where F n = F for a spatially uniform drive, or 
F n = ( -1 Y F, a staggered drive as done in Refs. 5, 9, and 
10. We can now apply the same momentum-balance ap­
proach to the perturbed TL model. The momentum P=~Yn 
satisfies 

p=-ap (9) 

for the staggered force. For the spatially uniform drive, the 
above equation also holds in the time averaged sense. For a 
pure Toda lattice soliton, 

[ 
1 + e- 2ae -2a(n- Vt-XOJ] 

Yn=-In 1+e-2a(n-Vt- xoJ ' (10) 

where V= € sinha/a, a>O, €= ± 1, the magnitude ofthe mo­
mentum is 

Ipl=2aIVI=2 sinha. (11) 

From Eq. (9), it follows that the decay of the magnitude of 
the momentum leads to the decay of a, thereby, the decay of 
V, that is, a broadening of the soliton with a decreasing 
velocity in time. Thus the ac drive again cannot sustain the 
velocity of the TL soliton. 

IV. CONCLUSION 

In this paper, we have shown that according to the 
momentum-balance approach, it is not possible to sustain 
kinks (solitons) in the FK chain (TL) by means of pure ac 
driving. Similar results hold for the purely ac-driven, 
damped nonlinear Schrodinger and Ablowitz-Ladik 
systems.14 Numerically, in the studied range of parameters 
for the FK chain, we have never observed such a steady 
motion, but rather oscillatory motion around some lattice 
point which is the initial one if starting from V = 0 or a 
different one, which is reached after the decay of the initially 
nonzero velocity. We believe that earlier suggestions that this 
kind of phenomenon should occur are not correct as they use 
only an energy-balance instead of a momentum-balance con­
dition. We have also verified numerically some of these ear­
lier predictions that were obtained by this momentum­
balance approach. 

From a more general viewpoint, it seems that the propa­
gation of collective excitations in nonlinear lattices with pure 
ac driving is unlikely. Only special lattices, or parametric 
drivings which somehow break the symmetry of the excita­
tion making it possible to choose a preferred direction, 
would be good candidates for exhibiting this phenomenon. In 
this respect, it is worth mentioning the work in Refs. 9 and 
10, where experiments on a nonlinear electrical lattice and 
numerical simulations were conducted, showing that solitons 
could propagate by using pure ac driving. The system actu­
ally simulated is dual to the lattice which is obtained from 
the TL by a change of variables, r n=Yn-Yn-l [see Eq. (8)], 
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such that it admits all TL solutions as a subset. The equation 
of motion now is 

;: n= - ar n -e- rn + l - e- rn - I + 2e- rn + 2( _l)npcos(wt). 

(12) 

Once again for a steady translating profile r n( TJ) 
=r(n- Vt), the momentum p='Lrn= V'L( -drnldTJ), 
which is conserved for the unperturbed system, satisfies 

p=-ap, (13) 

but 

p=O (14) 

for a one-soliton solution, r n = -In[1 +.o,zsech2(kTJ»), where 
.0. 2 = sinh2k, V =.0.1 k. Actually, p = 0 for any solutions of the 
original TL equation. Hence Eq. (13) no longer imposes any 
constraint on the evolution of the soli ton parameters. This 
admits the possibility of a steady translating soliton driven 
by the staggered force, as long as the drive can supply suf-
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FIG. I. (a) Center of mass mot ion for a kink propagating along 
the FK chain with initial ve locity V = O.06. Simulation parameters 
are a = O.2 . F = O. I, w = 2, a = O.1. (b) Total energy in the simula­
tion in (a) showing its approx imate balancing. 


