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Abstract

This dissertation addresses two complex stochastic and dynamic resource allocation
problems, with application in modern sensor systems: (i) hunting multiple elusive hid-
ing targets and (ii) tracking multiple moving targets. These problems are naturally for-
mulated as Multi-armed Restless Bandit Problems (MARBPs) with real-state variables,
which introduces technical difficulties that cause its optimal solution to be intractable.
Hence, in this thesis we focus on designing tractable and well-performing heuristic poli-
cies of priority-index type.

We consider the above MARBPs as Markov Decision Processess (MDPs) with spe-
cial structure, and we deploy recent extensions to the unifying principle to design a
dynamic priority index policy based on a Lagrangian relaxation and decomposition ap-
proach. This approach allows to design an index rule based on a structural property
of the optimal solution to the decomposed parametric-optimization subproblems. The
resulting index is a measure of the Marginal Productivity (MP) of resources invested in
the subproblems, and it is then used to define a heuristic priority rule for the original
intractable problems.

For each of the problems under consideration we perform such a decomposition, to
analyze the conditions under which the index recovering the optimal policies for the
subproblems exists. We further obtain formulae for the indices which do not admit a
closed form expression, but which are approximately computed by a tractable evalua-
tion method.

Apart from the practical contribution of deriving the tractable sensor scheduling po-
lices which improve on existing heuristics, the main contributions of this thesis are the
following: (i) deploying the recent extensions of Sufficient Indexability Conditions (SIC)
to the real state case, for two problems in which direct verification of the SIC and obtain-
ing a closed-form index formula are not possible, (ii) addressing the technical difficulties
to analyze PCL-indexability introduced by the uncountable state space of the MARBPs
of concern, and the state evolution over it given by non-linear dynamics by exploit-
ing the special structure of the trajectories of the state and the action processes under a
threshold policy using properties of Möbius Transformations, and (iii) providing with
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a tractable approximate evaluation method for the resulting index policies.
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Resumen

Esta tesis estudia dos problemas dinámicos y estocásticos de asignación de recursos,
con aplicación a sistemas modernos de sensores: (i) localización de mútiples objetivos
evasivos que se ocultan y (ii) el rastreo de mútiples objetivos que se mueven. Estos
problemas son modelizados naturalmente como problemas de “Multi-armed Restless
Bandit” con variable de estado real, lo que introduce dificultades técnicas que causan
que su solción óptima no sea computacionalmente tratable. Debido a esto, en esta tesis
nos concentramos en cambio en diseñar polı́ticas heurı́sticas de prioridad que sean com-
putacionalmente tratables y cuyo rendimento sea casi óptimo.

Modelizamos los problemas arriba mencionados como problemas de decisión Marko-
vianos con estructura especial y les aplicamos resultados existentes en la literatura, los
que constituyen un principio unificador para el diseño de polı́ticas de ı́ndices de priori-
dad basadas en la relajación Lagrangiana y la descomposición de esos problemas. Este
enfoque nos permite considerar una propiedad de los subproblemas: la indexabilidad,
por la cual podemos resolverlos de manera óptima mediante una polı́tica ı́ndice. El
ı́ndice resultante es una medida de productividad de los recursos invertidos en los sub-
problemas, y es usado luego como medidad de la prioridad dinámica para los proble-
mas originales intratables.

Para cada uno de los problemas bajo estudio realizamos tal descomposición, y ana-
lizamos las condiciones bajo las que una polı́tica ı́ndice que recupere la solución óptima
de los subproblemas existe. Además obtenemos fórmulas para los ı́ndices, las que a pe-
sar de no admitir una expresión cerrada, son calculadas aproximadamente de manera
eficiente meadiante un método tratable.

Aparte de la contribución práctica de obtener reglas heurı́sticas de ı́ndices de priori-
dad para el funcionamiento de sistemas de múltiples sensores en el contexto de los dos
problemas analizados, las principales contribuciones teóricas son las siguientes: (i) la
aplicación de las extensiones recientes de las condiciones suficientes de indexabilidad
para el caso de variable de estado real, para dos problemas en los que tanto la verifi-
cación directa de ellas como la obtención de fórmulas cerradas no son posibles, (ii) el
tratamiento de las dificultades técnicas para establecer la indexabilidad introducidas
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por el espacio de estado infinito de los problemas bajo consideración, y por la evolución
sobre este estado dada por dinámicas no lineales, explotando propiedades estructurales
de los procesos de la variable de estado y trabajo bajo polı́ticas de umbral como recur-
siones de Transformaciones de Möbius, and (iii) un método aproximado de evaluación
de las polı́ticas de ı́ndices resultantes.
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A journey of a thousand miles
must begin with a single step.
Lao Tzu.

Chapter 1

Introduction

1.1 Research Contributions and Thesis Organization

The fundamental economic problem arises because resources are scarce in relation to
their alternative uses. Scarcity forces economic agents to make decisions among those
possible uses, and therefore to sacrifice the benefits of the unselected ones. Moreover,
these decisions must be made under uncertain conditions, which further evolve over
time. In economics, the value of the second best alternative forgone is known as oppor-
tunity cost and rational decision agents are assumed to make choices which yield the
minimum expected opportunity cost over time. Such an economic problem, namely
how to optimally allocate scarce resources under uncertainty over time, is ubiquitous
and leads us to ponder how to set priorities among the activities competing for our
limited resources.

This dissertation addresses two concrete problems of this sort, which arise in mo-
dern sensing systems, thereby making a twofold contribution. First, at the broadest
level, a major contribution of this dissertation is the design of novel and well-performing
tractable sensing policies for two of the most challenging applications in sensor manage-
ment: smart target detection and multitarget tracking. Second, at the deepest level, this dis-
sertation contributes to the indexation literature for Restless Bandits (RBs) by favorably
solving the challenges posed by the specific technical difficulties of these applications,
as, e.g., its real state-space.

Modern sensing technologies offer the possibility of efficiently performing tasks by
adaptively deploying its sensing resources based on the information extracted from past
measurements. Yet, realizing such system’s overall performance gains requires appro-
priate on-line sensing rules. Thus, the general problem in sensor management is to design
sensing algorithms that allow for the fruitful adoption of cutting edge technologies. A
natural procedure to derive those rules is to represent the underlying resource alloca-
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4 CHAPTER 1. INTRODUCTION

tion problem by some stochastic dynamic optimization model, whose optimal solution
is traditionally characterized by a dynamic programming framework. However, those
formulations, at least for realistic scenarios, typically have a prohibitively large size
(possibly infinite), which dramatically hinders its practical application. Thus, fully ex-
ploiting the performance advantages offered by the new technologies by means of active
dynamic sensing policies remains very challenging, mainly due to the well known curse
of dimensionality. For this reason, the design of both computationally feasible and nearly-
optimal sensing strategies, as the ones proposed in this thesis, continues to be a highly
active applied research area. For a comprehensive review of the most general issues
originating the sensor management literature, see e.g. Xiong and Svensson (2002); Ng
and Ng (2000).

The approach followed in this work to achieve such a practical contribution is to
formulate both applications as stochastic dynamic optimization models within a spe-
cial class of Markov Decision Processes (MDP): the Multi-armed Restless Bandit Pro-
blem (MARBP) with real state projects, seeking to exploit the special structure of its
optimal policy (when possible) to design a tractable heuristic of priority index-type. Such
a class of policies defines, for each alternative, an index which represents the priority
that allocating resources to that use should have, given its state at a given period of time.
Naturally, the resulting priority index policy distributes the available resources to the
alternatives yielding the currently largest index values, as long as they are profitable.
Probably the most fruitful example of this procedure is the optimality of a priority-
index rule for the classical Multi-armed Bandit Problem (MABP) in Gittins and Jones
(1974). For alternative proofs of this fundamental result in the discrete state case, each
offering complementary insights see, e.g., Whittle (1980), Varaiya et al. (1985), Weber
(1992),Bertsimas and Niño-Mora (1996).

However, as shown in this dissertation, deriving a solution strategy based on such
indexation approach for these two specific sensor management applications, as well as
many others, raises substantial research challenges. Specifically, a fundamental issue is
that both models call for the use of the restless variant of the MABP, for which the exis-
tence of an index rule that yields its optimal solution is not guaranteed. Furthermore,
even if such an index exists, for the sake of practical implementation, providing with
an efficient index evaluation method is of key relevance. This dissertation solves these
challenges, among others, by application of the methodology based on a Lagrangian
relaxation and decomposition approach introduced by Whittle (1988) and further de-
veloped by Niño-Mora into a systematic framework in work reviewed in Niño-Mora
(2007a).

The present work illustrates the advantages of Niño-Mora’ s approach to alleviate
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the often baffling effort required to exploit special structure of resource allocation pro-
blems of this sort by deploying it to the formulations of concern. Additionally, the in-
dex policies proposed in this dissertation constitute, together with work in Niño-Mora
(2009), preeminent early examples of the application and effectiveness of the general
indexability conditions for real-state RBs introduced in Niño-Mora (2008).

Consequently, the contributions of this thesis are relevant to: (a) practitioners, who
may wish to augment the productivity of their sensing systems; (b) researchers, who are
challenged to design efficient algorithms to optimize a dynamic and stochastic systems,
and (c) researchers struggling to design a mathematically based priority-index rule for
real state RB models.

The thesis is structured as follows: the first three chapters provide the reader with
an introductory description of the applied problems of concern as well as with the nec-
essary overview of the basic methodological aspects of their theoretical formulations.
Thus, the remainder of Chapter 1 discusses some of the main challenges and open pro-
blems in sensor management, and describes the ones related to the specific applications
of concern. The chapter concludes with an overview of the two algorithms for recur-
sive estimation most commonly used in signal processing applications, which provide
the state dynamics of both proposed dynamic optimization models. Next, Chapter 2
reviews theoretical aspects of RB problems that naturally precede the background on
RB indexation presented in Chapter 3.

The rest of the thesis presents the methodological and applied results, and it is struc-
tured as follows. Chapter 4 introduces the target hunt formulation and its indexabi-
lity analysis while Chapter 5 discusses the corresponding computational experiments.
Chapter 6 introduces the multitarget formulation and its indexability analysis while
Chapter 7 discusses the corresponding computational experiments.

To conclude, Chapter 8 provides a summary of our work and its main research con-
tributions, and discusses directions for future research.

There are 3 appendices at the end of this thesis. The first Appendix presents a re-
view of basic concepts and properties of Möbius Transformations while the other two
Appendices presents the detailed proofs of the indexability sections of Chapter 4 and
Chapter 6.

1.2 Sensor Management Problems

Over the past few years, advances in sensing technology have provided modern multi-
sensor systems with an increased operating flexibility to achieve different performance
objectives, for instance when performing tasks as target detection, tracking or identi-
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fication. The common element in the novel features introduced by such technologi-
cal advances reduces to an increased agility of selection among possible sensing ac-
tions. In traditional sensing systems, parameters such as beam direction or waveform
mode among others, are typically hard-wired, i.e. they are selected by fixed off-line
approaches. In contrast to that, agile systems are capable of electronically controlling
their sensing parameters during system operation so as to best extract information from
the scene. Such an unprecedented feature provides new systems with the possibility
of rapidly adapting its functioning to suit a variety of highly dynamic environments,
which in turn raises a general sensor management question: how to dynamically allocate
sensing resources and modalities to optimize the system’s overall performance?

The widespread adoption of these cutting-edge technologies has therefore led to
research activity (both in academia and in industry) that seeks to improve modern sys-
tem’s performance through an adequate design of on-line active sensing schemes. The
decision problem can be summarized as follows: the system’s manager must select the
parameters of the system’s sensing resources sequentially over time, where each deci-
sion will provide him/her with a reward (in terms of the information gained) which is
uncertain. Thus, the system’s manager goal is to select parameters over time so as to
maximize the total expected reward generated as a result of the system’s operation.

Within Operations Research the interest has been mostly concentrated in the devel-
opment of appropriate scheduling algorithms or heuristics to fully exploit the benefits of
flexible systems. The design of such active sensing rules has been thus naturally posed
as the optimal solution to some stochastic sequential resource allocation problem. See
Williams (2007); Washburn et al. (2002); Krishnamurthy and Evans (2001); Castanon
(1997) for examples of the application of these ideas. Yet, these specific applied pro-
blems have also motivated significant research efforts in related areas such as signal
processing, statistics, or machine learning, thus becoming a multidisciplinary research
literature which is now currently known as sensor management. A notorious example in
such a vein is given by the book Hero et al. (2006).

Besides the specific challenges posed by a particular sensor management problem, like
multiple target tracking, there are some general issues which play a prominent role in
the design of active system’s operating policies for the inherent benefits of these flexi-
ble systems to be fully realized. Such general issues are the following: (i) the real-time
operational management of modern sensing systems requires implementable scheduling
algorithms, which ideally run in polynomial time, since they will be on-line; (ii) the need
to account for the long term effects of current actions to achieve greater performance
gains calls for non-myopic policies; (iii) when the system is to be used in fairly dis-
tinct environments, robustness of scheduling methods is of vital importance (i.e., rules
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leading to near-optimal performance in one environment should not yield in a poor
performance in another environment) and; (iv) policy design should take into account
that a low system utilization may become highly advantageous, either for the sake of
maximizing system’s lifetime in battery-constrained networks or simply because idle
radar time can be allocated to other tasks in multi-function radars.

The development of sensor management scheduling policies going from a theoreti-
cal approach based on stochastic control theory to its practical application exposes a
stark trade-off between issue (i) and the issues (ii)-(iv): optimal dynamic stochastic deci-
sion rules which are robust, non-myopic and cost efficient have computationally inten-
sive requirements, whereas computationally efficient suboptimal heuristics are imple-
mentable at the expense of losing robustness, cost efficiency or long-run performance
gains. The scheduling rules proposed in this thesis, as illustrated by the computational
experiments reviewed in Chapter 5 and Chapter 7, successfully address such a give-
and-take between implementability and optimality loss.

In the next subsections, a basic description of the two specific motivating applica-
tions is provided together with a brief overview of previous related work.

1.2.1 Hunting Elusive Hiding Targets

In Chapter 4 we formulate and investigate the following problem.

Problem 1. There are N independent locations (or sites), each containing (at most) one
target (or object) hidden in it. There areM (1 ≤M ≤ N) sensors, each of which at every
discrete period can search at most one of those locations. All sensors in the system are
synchronized to operate over time slots t = 0, 1, . . ., where a time slot corresponds to a
Pulse Repetition Interval (PRI).
Each target can choose between two possible visibility states: a hidden state, in which it
is invisible to sensors but cannot perform its tasks, and an exposed state, in which it can
perform its tasks but is detectable by sensors. Targets are such that: 1) they perceive
they are being sensed; 2) they do not wish to be found, but they wish to perform their
tasks; and 3) they react to sensing by becoming elusive. Thus, if a target n is in the hidden
state in period t it becomes exposed in period t + 1 with probability p0

n if its location is
not sensed in period t and with probability p1

n if sensed. Further, if a target is in the
exposed state in period t it becomes hidden with probability q0

n if its location is not sensed
in period t and with probability q1

n if sensed. Finally, to model the elusive reaction of
the targets we assume that p0

n > p1
n and q0

n < q1
n. See Figure 1.1.

The probability that a sensor searching target n finds it when it is visible is 0 < αn ≤ 1,
and hence the probability that an unfound target is visible at slot t changes by Bayes’
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theorem as the sensor’s detection output is observed. The cost of a single search of
a location that possibly contains target n is cn ≥ 0 and yields a reward rnβ

t when it
succeeds at finding target n in slot t, where 0 ≤ β ≤ 1 is a discount factor.

0

p0n

''

1−p0n
��

1

1−q0n
��

q0n
gg 0

p1n

''

1−p1n
��

1

1−q1n
��

q1n
gg

Figure 1.1: A model of a 2-state Markov chain. The arrows represent one-period transi-
tions among the states 0 (hidden) and 1 (exposed) with given probabilities under actions
0 (on the left) and 1 (on the right).

The goal is to design a tractable policy which addresses the following question:

How should the N locations be scheduled for being sensed so as to be close to maximizing the
total expected discounted reward of finding all targets, using at most M sensors at each time
slot?

The main concern in Problem 1 is to determine how to conduct the search of the tar-
gets with the available sensors so as to achieve the stated performance objective. In this
sense, the problem is a search problem. Search problems have been the subject of scientific
research for more than sixty years now, constituting one of the oldest areas of Operations
Research. Actually, initial research on search problems can be traced to work done by
Bernard Koopman during World War II, when the term Operations Research was coined,
to refer to the attempts of finding most efficient and effective ways of conducting mili-
tary missions. In fact, at that time one of the most important military operations during
war was searching. Koopman (1946), through his work for the US Navy trying to pro-
vide efficient methods for detecting submarines, laid the basis for later developments
in search theory.

Developments of the theory have taken place since then along many directions, and
have appeared scattered through the literature of operations research, applied mathe-
matics, optimization theory and statistics. A comprehensive presentation of major re-
sults in search theory published during the 30 years that followed Koopman’s work is
the book by Stone (1975). The most complete results refer to the optimal search problem
for a unique stationary object hidden within a discrete set of locations and when no false
targets (i.e., objects capable of causing a detection but which are not objective targets)
are present. Two examples of this type of problems of particular relevance to this dis-
sertation, are the search problems in Gittins (1989, chap. 8) and in Song and Teneketzis
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(2004), which are formulated into a classic MABP and are thus optimally solved by an
index policy.

There have also been efforts to address search problems dealing with more general
situations, e.g. with multiple objects, or with mobile objects, and even to include false
targets. Yet, despite this abundant literature, the case in which targets may evade the
searcher, as it occurs in Problem 1, remains understudied today. The main obstacle to
deploying the strategy followed by Gittins (1989, chap. 8) and in Song and Teneketzis
(2004) is the fact that when modeling moving or elusive targets the natural MARBP
formulation is restless. There are some papers implementing alternative approaches.
For instance, in Savage and La Scala (2009) game theory is applied to formulate and
solve search problems with reactive targets. Reinforcement learning is used in Kreucher
et al. (2006) to derive a non-myopic scheduling rule for both detection and tracking of
“smart” targets, a particle filter approach is used in Liu et al. (2009), while in Rucker
(2006) agent-based modeling is used to address an application model similar to Problem
1.

1.2.2 Multitarget Tracking

In Chapter 6 we formulate and investigate the following problem.

Problem 2. There areN independent targets whose position on the real line xn,t changes
stochastically over time periods t = 1, 2, . . . , following linear Gauss-Markov dynamics,
i.e., with the increments corresponding to a zero-mean white noise with variance qn.
There are M (1 < M ≤ N) phased array radars, each of which at every discrete period
of time can track at most one of those targets. All radars in the system are synchronized
to operate over time slots t = 0, 1, . . ., where a time slot corresponds to a PRI. Any
radar, if allocated to measure target n’s position, provides a noisy measurement yn,t of its
true position xn,t. Measurements are also generated by linear Gauss-Markov dynamics
having zero-mean white noise with variance rn.
The optimal minimum-variance predicted position of target n at slot t for this model is
given by the Kalman Filter prediction and updating equations, depending on whether
a radar’s measurement for that target is available at time t or not. The Tracking Error
Variance (TEV) pn,t, measuring the uncertainty in target n’s track, will be larger when
no measurement of that target’s position is available at the beginning of the slot.
The system incurs a sensing cost cn ≥ 0 when measuring target n’s position for a single
slot and, when predicting target n’s position at slot t, it incurs a precision cost/error
equal to pn,tβt, where 0 ≤ β ≤ 1 is a discount factor.
The goal is to design a tractable policy which addresses the following question:
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How should the targets be scheduled for being measured so as to be (at least) close to minimizing
the total expected discounted sensing and precision cost of tracking all N targets using at most
M sensors at each time slot?

In this problem, the main concern is to derive the most precise and cost efficient
target track updates scheduling policy. Multiple moving target tracking models such
as this one have been one of the earliest and most challenging applications of sensor
management. Early work on the subject dealt with the minimization of radar energy
required for track maintenance, see, e.g., van Keuk and Blackman (1993), Stromberg
(1996), Hong and Jung (1998). Since the 1960’s there have been many solutions proposed
for addressing this problem, mostly based on the use of the Kalman Filter. However,
recent progress on particle filter approaches has been extended to Bayesian multi-target
tracking problems as well.

In Krishnamurthy and Evans (2001) a beam scheduling algorithm is derived from a
discrete-time and discrete-state Partially Observed Markov Decision Process (POMDP)
model, assuming that targets’ motion from one PRI to the next is negligible (i.e., tar-
gets are stationary). Exploiting the special structure of the resulting POMDP as a classic
MABP, the optimal policy is characterized in terms of an index policy. Of particular
relevance to this dissertation is the work of La Scala and Moran (2006), in which the in-
adequacy of assuming the negligibility of targets’ motion is pointed out and the authors
extend the results in Howard et al. (2004) on optimality of the myopic-index scheduling
policy for tracking two symmetric targets to more general linear dynamical systems un-
der the same finite-horizon total TEV performance objective. Despite remarking that
such a problem falls within the framework of the restless MABP, they suggest a heuris-
tic policy which is not based on the indexation approach deployed in this work and
which, as shown by simulation experiments in Niño-Mora and Villar (2009), does not
perform well in the case of multiple asymmetric targets.

1.3 Statistical Signal Processing

Recursive estimation plays a central role in many applications of signal processing
which are commonly encountered in sensor management problems, e.g., in target track-
ing and in navigation applications. Whenever we must infer the knowledge about some
parameters which are indirectly observable from the outcome of a related experiment,
and this knowledge can be updated as new measurements are collected, the underlying
estimation is naturally done recursively.
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In the following we review two particular estimation algorithms for optimally and
recursively estimating an underlying parameter of interest: the general Bayes filter and
a special case of that filter for the multivariate normal distributions: the Kalman filter.
The former is used when formulating the MABP model for Problem 1, while the latter
is used for the formulation of Problem 2.

The Bayesian approach to filtering has recently become widely adopted in sensor
management applications, especially in multi-target tracking problems. For the latter
applications, a Joint Multi-target Probability Density Function (JMPD) describing the
posterior density given past measurements (also known as the belief state) is defined
together with the construction of a filter to update it as measurements become available
according to the usual rules of Bayesian filtering. The main issue with this approach is
naturally the computational cost of the JMPD as the number of targets increases. The
incorporation of such filters within this literature has been justified by its capability of
handling situations which the Kalman Filter fails to address, as for example non-linear
states or non Gaussian measurements.

However, the importance of the Bayesian Filter for sensor management applications
is actually enlarged by the fact that in most sensor management applications, the full
state of the system is not directly observable, instead a noisy measurement is available.
Hence, when formulating such sensor management problems as Markov Decision Pro-
cesses (MDP), the resulting models fall within the framework of POMDPs. The POMDP
is equivalent to a standard MDP whose state variable corresponds to a belief state which
evolves according to a Bayes rule. In subsection 2.1.5 we deal with this issue in more
detail.

The General Recursive Bayesian Filter is an algorithm used for estimating the cur-
rent unobservable state variable in a Hidden Markov Model (HMM) given past obser-
vations. A HMM is a statistical Markov model in which the system being modeled is
assumed to be a Markov process with unobserved (hidden) states. HMMs are especially
known for their application to robotics and bioinformatics.

Let the true state variable, denoted as Xt ∈ Rk, follow an unobserved Markov pro-
cess over time, that is

P(Xt|Xt−1, . . . , X0) = P(Xt|Xt−1), (1.1)

and assume a stochastic measurement process Yt ∈ Rk such that:

P(Yt|Xt, . . . , X0) = P(Yt|Xt). (1.2)

Then, under these assumptions, the joint probability distribution for a vector of mea-
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surements and unobserved states is computed as follows:

P(Yt, . . . , Y0, Xt, . . . , X0) = P(X0)

t∏
j=1

P(Yj |Xj)P(Xj |Xj−1). (1.3)

Thus, a natural way to predict the unobservable state in t given information up to t − 1

is to use the probability distribution of the state variable at period t given the measure-
ments available at period t− 1. That distribution is given by:

P(Xt|Yt−1) =

∫
P(Xt|Xt−1)P(Yt−1|Xt−1)dXt−1. (1.4)

Next, once the measurements at period t becomes available, the prediction of the state
at t may be updated, by means of the probability distribution associated with the state
for t. That distribution is given by:

P(Xt|Yt) =
P(Yt|Xt)P(Xt|Yt−1)∫
P(Yt|Xt)P(Xt|Yt−1)dXt

. (1.5)

Thus, the predictive step of the filter is the conditional expectation X̂t|t−1 , E [Xt|Yt−1],
while the updating step of the filter is X̂t , E [Xt|Yt].

In the special case of a HMM in which both the unobservable state variable and the
measurement processes follow linear dynamics perturbed by a Gaussian noise, then the
Bayes Filter becomes the Kalman Filter. In its most general version, the associated linear
unobserved component model can be written as the following state space model:

Xt = FtXt−1 + Ct + Ωt, t ≥ 1, (1.6)

Yt = HtXt +Dt +Nt, t ≥ 0, (1.7)

where Ωt andNt are two independent and identically distributed (i.i.d) zero-mean Gau-
ssian white noise with varianceQt andRt, respectively called as the position-noise process
and measurement-noise process, and Ft and Ht are in Rk×k and Ct and Dt are in Rk. Qt,
Rt, Ft, Ht, Ct and Dt are predetermined parameters, in the sense that they are known
at time t− 1. In the case they are fixed for all t, the model is said to be time-invariant. In
this Gaussian state space model, equation (1.6) is commonly known as transition equa-
tion while equation (1.7) as the measurement equation. The initial state X0 is assumed
to be normally distributed with mean µ0 and variance Σ0 and both noise processes
are assumed to be uncorrelated with the initial state and also with each other (which
due to the normality assumption is ensured if E(X0,Ωt) = 0 and E(X0, νs) = 0 for all
t = 1, 2, . . . , T and E(Ωt, νs) = 0 for all s, t = 1, 2, . . . , T .)
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The verification of properties (1.1) and (1.2) is straightforward, in fact in this case
those probabilities distributions are computed using properties of the multivariate nor-
mal distribution to be:

P(Xt|Xt−1) = N
(

(Ft−1X̂t−1 + Ct), Q
)

(1.8)

P(Yt|Xt) = N
(

(Ht−1X̂t +Dt), R
)

(1.9)

Therefore, the predictive X̂t|t−1 and updating X̂t steps defined as in (1.4) and (1.5) result
in the following estimation equations which constitute the Kalman filter algorithm

E [Xt|Yt−1] = FtX̂t−1 + Ct (1.10)

E [Xt|Yt] = X̂t|t−1 + Pt|t−1YtS
−1
t it, (1.11)

where Pt|t−1 , E

[(
Xt − X̂t|t−1

)2
|Yt−1

]
is the Mean Square Error (MSE) associated to

the predictive step estimator, it ,
(
Yt − Ŷt

)
= Ht

(
Xt − X̂t|t−1

)
+ Nt, is known as

the innovation or measurement residual. Notice that it ∼ N (0, St) with St , E(i2) =

HtPt|t−1H
′
t +Rt. Define also the MSE associated to the updating step estimator as Pt ,

E

[(
Xt − X̂t

)2
|Yt
]

. Both MSE are respectively computed to be:

Pt|t−1 = FtPt−1F
′
t +Qt (1.12)

Pt = Pt|t−1 − Pt|t−1H
′
tS
−1
t HtYtPt|t−1 (1.13)

These results follow from the properties of the multivariate normal distribution. In
particular, results (1.11) and (1.13) require properties of the conditional distributions
and moments of the random vector (Xt, Yt)|Yt−1.

Under the assumptions that both the initial state and the disturbances are normally
distributed, the estimators for the state vectors (as each measurement becomes avail-
able), (1.10) and (1.10), are optimal, in the sense that they yield the minimum MSE. This
optimality still holds when dropping the normality assumption yet it is restricted to the
class of linear estimators.
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Motivation is what gets you started.
Habit is what keeps you going.
Jim Rohn.

Chapter 2

The Real-State MARBP

In this chapter we survey key theoretical aspects of the MARBP, with special empha-
sis on its real-state variant, highlighting the mathematical interest of the research cha-
llenges it raises and on its diverse variety of possible applications. The main goal of
such a summary of ideas and methods is to provide the reader with a clear perspec-
tive from which to assess the contribution of the present work as well as its motiva-
tion. The summary is completed with a brief account of the historical background and
an overview of the most influential previous research effort on MARBP. The chapter
concludes with a concise description of the specific challenges posed by the real-state
MARBP applications investigated in this dissertation.

2.1 The MARBP

The MARBP represents in a simplified way the overarching concern of how to best
allocate scarce resources over time under uncertainty. It can be simply formulated as
follows. Imagine a manager who must decide over some infinite horizon of discrete
time slots t = 0, 1, . . . how to best allocate a fixed (and limited) endowment of re-
sources W̄ to a finite number of binary-action (active/passive) stochastic projects labeled
by n = 1, . . . , N . Specifically, assume that the resource scarcity forces the manager to
choose at the start of each period a subset of those projects worth (at most) W̄ to form the
realized portfolio. Each project yield rewards in time, depending both on the manager’s
action and on the project’s state. The project’s state lives on a state space X and evolves
randomly over it according to an active/passive transition law, based on the manager’s
action. In some cases, it may be more convenient to consider that projects incur costs
instead of rewards when active. In the remainder of this chapter we focus on the case
of reward yielding projects for ease of presentation and interpretation of the reviewed
concepts. Further, throughout the remainder of this work we shall stick to the following

15
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notational conventions: uppercase letters denote random variables (X , Y ) while a real-
ization of that random variable will be denoted with the corresponding lowercase (x,
y).

In the MARBP, every project is modeled as a discrete-time Markov Control Process
(MCP) whose defining elements are described in detail in the following subsection.

2.1.1 The One-Arm Bandit Control Model

The discrete-time MCP representing project n’s decision problem is given by the five-
tuple:

(Xn, An, Pn(.|xn, an), Rn(xn, an),Wn(xn, an)), (2.1)

consisting of

• The state space Xn. In the most general setting, Xn may be a Borel space, although
most frequent MARBP applications investigated on the recent literature have fo-
cused on the case in which Xn is a finite set (or an infinite denumerable set) of
possible states which project n may occupy. Instead, the problems addressed in
this dissertation have the distinguishing feature of dealing with a state variableXn

that lives in a closed interval (possibly unbounded) of the real line R, i.e. Xn ⊆ R.
Thus, Xn for such real-state MARBP applications admits infinite possible values.

• The action set An. For general Markov control models, the action set consists of a
Borel space, yet for the standard MABP the action set is a binary set representing
the work/rest of projects. i.e. An , {0, 1}, with an = 1 : active; an = 0 : passive.
We denote by An(xn) the set of feasible actions at some xn ∈ Xn. Notice that
in the case that there exists some state xun ∈ Xn for which it either holds that
An(xun) = {0} or that An(xun) = {1}, then xun is an uncontrollable state. Hence,
if there exists at least one uncontrollable state, we define the set of controllable
states, i.e., those states for which both actions are feasible, as follows

X0,1
n , {xn ∈ X : An(xn) = {0, 1}}

• A Markovian transition law Pn(.|xn, an), describing the evolution of the state vari-
able Xn,t given xn,t−1 and an,t−1. Thus, the state variable of the MCP is a Xn-
valued random variable taking values in Xn according to some probability kernel

Pn(B|xn, an) , Pn{Xn,t ∈ B|xn,t−1 = xn, an,t−1 = an}, for B ⊂ B (Xn) ,

where B (Xn) denotes the Borel subsets of Xn.
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Notice that the above dynamics definition allows for changes in the state of pa-
ssive projects. When the MABP incorporates such a feature, the model is called
restless. In the case where passive projects remain frozen in their current states,
then the MABP is said to be classic, and Pn(.|xn, an) is such that:

Pn(B|xn, 0) , Pn{Xn,t ∈ B|xn,t−1 = xn, an,t−1 = an} = 1{xn,t−1∈B}, for B ⊂ B (Xn) .

A fundamental feature of both types of MABP is the fact that the state transitions
across projects are assumed to be independent. Such a feature is key to the La-
grangian relaxation and decomposition indexation approach that will be reviewed
in the following chapter.

• One-period expected reward Rn(xn, an) and work (i.e. expected resource consump-
tion) Wn(xn, an) functions respectively giving the one-period expected rewards
and expected work when project n occupies some state xn ∈ Xn and it is operated
under action an ∈ {0, 1}. In the cases in which it is most natural to consider cost
functions, we shall denote them as Cn(xn, an).
Notice that given the Markovian transition law assumed, the resulting MCP has
the property that, at any given time slot, reward and work transitions depend only
on the current state of the project and on the selected action.

Regarding these one-period work functions it is assumed that:

(i) Resource consumption when active is non-negative, i.e. Wn(xn, 1) ≥ 0;

(ii) Resource consumption when active is at least as large as when passive, which
is also non-negative, i.e. Wn(xn, 1) ≥Wn(xn, 0) ≥ 0.

(iii) Idling of all projects is a feasible action, i.e.
N∑
n=1

Wn(xn, 0) ≤ W̄ ;

In both applications investigated in this thesis we letWn(xn, an) , an as in Whittle
(1988) and thus W̄ is an integer between 1 and N . Therefore, verification of the
above stated assumptions is straightforward. Henceforth we focus our discussion
for the case Wn(xn, an) , an.

2.1.2 The Multi-Armed Bandit Control Policies

Decisions on which projects to work on at each time slot t, if any, are based on a control
(scheduling) policy π which defines a feasible sequence of actions {an,t} for each project
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n and at every state and period. In words, a policy is a rule that specifies how to act at
each time for every possible state of the projects given the available limited resources.
Feasible policies are drawn from the set of history-dependent randomized policies Π, which
for the applications considered in this dissertation reduces to

N∑
n=1

an,t ≤M, t ≥ 0 (2.2)

We shall denote such a class of policies as Π(M) . Notice that within the class Π(M) we
can further define restricted sets of policies, such as deterministic policies, or Markov or
stationary policies, both within the sets of randomized and deterministic policies. To clarify
this idea, we review below some of these definitions.

Consider the space Hn,t of all admissible t-histories (i.e. histories up to time t) for
the above described project n MCP, where a t-history is a vector of the form:

ht = (xn,0, an,0, . . . , xn,t−1, an,t−1, xn,t)

Definition 2.1. A history dependent randomized policy is a set of functions πn,t which map
any possible history hn,t to a probability distribution, denoted as γn,t, onAn, from which
the manager will draw a random action an,t, i.e. {πRn,t : Hn,t → γn,t(An), t ≥ 0}.

Definition 2.2. A history dependent deterministic policy is a set of functions πn,t which
map any possible history hn,t to an action in An, i.e. {πDn,t : Hn,t → An, t ≥ 0}. Notice
that deterministic policies correspond to the subset of randomized policies in which γn,t
has probability mass 1 concentrated on the corresponding action for any t and hn,t

Definition 2.3. A Markovian policy is a set of functions πn,t which for all t depend only
on the current state xn,t instead of the whole t-history ht, i.e. {πRMn,t : xn,t → γn,t(An), t ≥
0}, if randomized, or {πDMn,t : xn,t → An, t ≥ 0}, if deterministic.

Definition 2.4. A stationary policy is a set of functions πn,t which map any possible state
either to an action or to a probability distribution on the action space, regardless of t,
i.e.{πRSn : xn → γn(An), t ≥ 0}, if randomized or {πDSn : xn → An, t ≥ 0}, if deterministic.

For a rigorous presentation of these definitions see Hernández-Lerma and Lasserre
(1996, Chapter 1). Respectively, denote by ΠR(M), ΠD(M), ΠRM (M), ΠRS(M), ΠDM (M),
ΠDS(M) to the sets of all randomized, deterministic, randomized Markovian, random-
ized stationary, deterministic Markovian and deterministic stationary policies that sa-
tisfy the hard sample-path resource constraint (2.2). It is important to note that the
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following relationship holds:

ΠDS(M) ⊂ ΠDM (M) ⊂ ΠD(M) ⊂ Π(M) (2.3)

With this fact in mind, it is worth pointing out here that the relevance of studying
restricted families of polices is explained both by theoretical and computational reasons
as when optimal policies can be guaranteed to exist within these reduced classes, im-
plementation and interpretation becomes significantly simpler. In fact, this is a central
topic in Markov control theory among which the restless bandit indexation approach
researched and deployed in this thesis may be included.

2.1.3 The Performance Measures

To complete the specification of the real-state MARBP, in addition to the projects’ dy-
namical systems (given by the previously described MCP), we must define a performance
measure on the set of feasible control policies Π(M) upon which the portfolio’s response
to the selected policies will be evaluated and allocation decisions will be made. Once
we have included this final element, the MARBP optimal control problem is to find a
feasible policy in Π(M) that optimizes the selected performance measure.

Naturally, in the setting of a optimization problem we would like to choose a per-
formance measure that in some way maximizes the total investment rewards over the
manager’s operating horizon. Thus, we may want to consider the optimal control pro-
blem of finding an expected total-optimal policy, which maximizes

max
π∈Π(M)

Eπx0

[ ∞∑
t=0

∑
n∈N

Rn
(
Xn,t, an,t

)]
, (2.4)

where x0 = (xn,0)Nn=1 is the initial joint belief state, and Eπx0
[·] denotes expectation under

policy π conditional on the initial joint state being equal to x0 (for any possible joint
initial state). We denote by V ∗T (x0) to the optimal total value function.

Yet, when considering infinite horizon problems, which is usually an adequate frame-
work for many problems in which there is no natural stopping time specified a priori
or there is just number of decision stages is really infinite, or at least a large number of
decision periods, summing up the overall flow of rewards yielded may not converge,
at least under some policies.1 For this technical reason (or even just for the sake of
the interpretation of the performance objective) it may be more convenient to use other

1Consider for instance the case in which resting all projects generates a nonnegative constant reward at
any possible state xt, then the policy of at = 0 for all t, then ET objective function does not converge.
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performance measures for some infinite horizon problems rather than the Expected To-
tal (ET) measures.

The applications researched in this thesis inherently call for infinite horizon formu-
lations. Thus, we have considered two widely used performance measures for such pro-
blems: the Expected Total Discounted (ETD) rewards and the Long Run Average (LRA)
rewards, for which the optimal control problems can be respectively defined as follows:

(1) find a discount-optimal policy,

max
π∈Π(M)

Eπx0

[ ∞∑
t=0

∑
n∈N

βtRn
(
Xn,t, an,t

)]
, (2.5)

where 0 < β < 1 is the discount factor.

(2) find an average-optimal policy,

max
π∈Π(M)

lim inf
T→∞

1

T
Eπx0

[
T−1∑
t=0

∑
n∈N

Rn
(
Xn,t, an,t

)]
, (2.6)

focusing on the ETD problem (2.5). We respectively denote by V ∗D(x0) and V ∗A(x0) to
the optimal discounted value function and the optimal average value function. For
a detailed discussion of these performance optimization criteria see e.g., Hernández-
Lerma and Lasserre (1999).

2.1.4 The Optimality Equation

For a given performance measure, the resulting MARBP can be analyzed using the ideas
introduced in Bellman (1957). Consider for instance the β-discounted control problem
(2.5). Its solution satisfies the following Dynamic Programming Equations (DPE)

V ∗D(x0) = max
a∈{0,1}

[
R(x0, a) + β

∫
X
V ∗D(y)P (dy|x0, a)

]
, ∀x0 ∈ X (2.7)

Under appropriate conditions on the one-stage reward (cost) and work functions and
on the transition law P (see, e.g., Hernández-Lerma and Lasserre, 1996, Assumption
4.2.1 & 4.2.2) it can be shown that there exists an optimal β-discounted policy for (2.7)
which is further deterministic and stationary. A similar, though somehow more technical
analysis, can be performed for the long-run average control problem (2.6) to study the
conditions under which the existence of deterministic stationary LRA policies is guaran-
teed.

Except for rare special cases in which the solution can be analytically derived in
closed form, the most frequently used method for finding the optimal policy of such
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decision problems is the application of iterative procedures or algorithms. These tra-
ditional solution techniques include: value iteration (Bellman, 1957) and policy iteration
(Howard, 1960), as well as its variation called modified policy iteration (Puterman, 1994).
The Markovian property lying at the heart of these approaches allows for the reduction
of the original problem’s complexity by breaking it down into simpler subproblems at
various moments of time.

Yet, this reduction may not be enough to ensure tractability of the resulting optimal
policies. The burden of these algorithms lies within the cardinality of the state space
where x0 lives, since its size determines the computation and storage requirements for
solving (2.7). Further, even for problems in which the cardinality of Xn is finite and
relatively small, the number of Dynamic Programming (DP) equations in (2.7) grows
exponentially in the number of projects, severely hindering the conventional numeric
DP approach. Indeed, the special case of MARBP in which a finite state space is consi-
dered, the transition laws are deterministic, Wn(xn, an) , an and W̄ ,M = 1, has been
shown by Papadimitriou and Tsitsiklis (1994) to be PSPACE-hard (i.e. computationally
intractable) despite the deterministic state dynamics assumption.

This well known curse of dimensionality affects also alternative solution approaches,
such as the mathematical programming technique based on solving a linear programming
reformulation of the Bellman equations. Although this solution strategy exhibits an
advantage over traditional dynamic programming algorithms to find the solution of
constrained MDP, as it successfully exploits the reduction on the set of feasible policies
imposed by the extra constraints, it still suffers from computational intractability for
general MDP models. For a review of some of the most important results concerning
this technique see e.g., Heilmann (1978).

In conclusion, despite optimal policies for these control problems are known to exist,
their applicability to a great deal of relevant problems is severely hindered for realistic
scenarios due to computational or technical reasons. The exact numerical solution to
their corresponding MARBP formulations is usually unavailable not only because the
DPE formulation is quickly rendered intractable but, most importantly to this disser-
tation, because considering a real-state space introduces special difficulties. This fact
explains that when forced to dealing with practical applications, as the ones addressed
in this thesis, the necessity for implementable approaches becomes excruciating. As
well, such a fact highlights the relevance of relationship (2.3), since as long as condi-
tions which ensure that a deterministic stationary solution exists hold, it is is sufficient to
search for the optimal policy within such a reduced set of policies. This simple idea,
motivates the research on alternative solution approaches based on establishing condi-
tions for the existence of optimal policies within reduced classes of policies, so that by
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restricting attention e.g. to ΠDS(M) (or even subsets of ΠDS(M)) both computational
and analytical advantages are exploited. As it will be discussed in the following chap-
ter, the indexation methodology deployed in this dissertation constitute an alternative
approach to traditional dynamic programming techniques based on this key idea.

To illustrate the ideas on real-state MARBP reviewed up to this point, we propose
the example below.

Example 2.1 (Treasure Hunting Problem: MARBP formulation). (Bertsekas, 2007, p. 70)
Consider N boxes, each of which may contain a hidden and unmoving treasure in it, and
a searcher that may search one box at every time period. Let αn be the probability
that a search in box n finds a treasure provided that it is hidden at that box. Searching
box n costs cn and it produces two possible outcomes: either the treasure is found,
yielding reward rn to the searcher, or information is gained on the likelihood that the
box contains a treasure. Hence, the probability that a treasure lies within each box
changes by Bayes’ theorem as boxes are successively searched. A natural question in
this context is how to schedule the boxes for being searched so that the expected net
reward of finding the objet is maximized?

Notice that after finding a treasure at box n, it does make sense to continue search-
ing it, thus the project of searching it concludes after a random number of searches.
Following Bertsekas, we model this by letting the probability state drop to zero after
finding a treasure at site n. 2 To formulate this simple problem into a MARBP frame-
work, we start by defining a generic project as searching box n with the following MCP
representing its corresponding decision problem.

• The state space Xn , [0, 1]: the state is the probability that the object is hidden at
box n at time t.

• The action set An , {0, 1}, with an = 1 : Search box n; an = 0 : Do not Search box n.

• The Markovian transition law Pn(.|xn, an) given by

if an,t = 0, xn,(t+1) = xn,t w.p. 1,

if an,t = 1, xn,(t+1) =


αnxn,t

αnxn,t+(1−xn,t)
w.p. αnxn,t + (1− xn,t)

xn,(t+1) = 0 w.p. (1− αn)xn,t

2 The goal of this convention is to model that the project reaches an uncontrollable state once the treasure
has been found in which the only possible action is not to search for that treasure.
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• One-period expected cost and work (i.e. expected resource consumption) functions
respectively given by

Rn(xn, an) , (rn(1− αn)xn − cn) an and Wn(xn, an) , an

Notice that the above formulation is classic, in the sense that passive projects remain
frozen.

• • •

2.1.5 POMDP and the MARBP

In general, the MDP model described in subsection 2.1.1 constitutes a widely-used
framework for modeling decision making in complex stochastic dynamical systems.
Yet, in such a theoretical context the unique source of uncertainty in the model proceeds
from state transitions from one state value to another. Unfortunately, in many practical
applications we cannot rely on having an exact observation of the state of the process
to base our decisions and we are thus forced to estimate it as precisely as possible given
some observational data.

This is the case of most sensor management problems, in which the state of the con-
trolled process (e.g. a target’s position or target’s type) is only partially observed due to
measurement errors or clutter degradations. More examples of this nature arise in ar-
tificial intelligence or automated planning applications (see e.g. Kaelbling et al., 1998). All
these applied problems illustrate a central characteristic of the general optimal control
problem for POMDPs: optimal resource allocation must be done while simultaneously
estimating optimally the unobservable state of the system given the error-prone obser-
vations.

Formally, the discrete time MCP associated with project n’s POMDP is given by the
tuple:

(Xn, An, Pn(.|xn, an),Yn,Ωn(.|xn, an), Rn(xn, an),Wn(xn, an)), (2.8)

where Xn, An, Pn(.|xn, an), Rn(xn, an),Wn(xn, an) are defined as in subsection 2.1.1 ex-
cept for the fact that we focus on the case in which the cardinality Xn is finite and thus
Pn(.|xn, an) stands for transition matrices. The novel elements on the tuple, namely Yn
and Ωn(.|xn, an), respectively stand for the set of observations and a probability law
describing the probability that we observe Yn,t = yn,t given xn,t and an,t.

Although the state of the process is not directly observed, a probability distribution
over the states bn(xn) can be maintained giving the probability or belief, that the unob-
servable process is in state xn. Since xn is Markovian, keeping such beliefs over the
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states is done in the following way: if action an,t is taken and it is followed by observa-
tion yn,t, the next belief state, denoted as bn(xn,(t+1)), is determined by updating each
state probability using Bayes’ theorem, as follows,

bn(xn,(t+1)) =
Ω(yn,(t)|xn,(t+1), a)

∑
s∈Xn

P (xn,(t+1)|s, an,t)b(s)∑
s,s′∈Xn

Ω(yn,t|s′, an,t)P (s′, s, an,t)b(s)
(2.9)

Since a feasible policy for (2.8) maps any possible belief state to the action space, a
convenient way to analyze such a problem is to reformulate the POMDP as a fully ob-
servable equivalent MDP with a real-state variable. The resulting MDP will be defined
by the tuple

(Bn, An, Tn(.|xn, an), Rn(bn, an),Wn(bn, an)), (2.10)

where Bn,⊆ [0, 1] is the set of belief states over the original POMDP states, Tn(.|xn, an)

is the belief state update function resulting from the Bayes’ update rule, one-period
reward and cost functions are now defined over the belief state set, and An is the same
as in (2.8).

In conclusion, POMDPs often suit better than MDPs for many relevant applied pro-
blems yet, their optimal strategies are in general intractable, as its state space Bn is
infinite. In practice, as exact optimal solutions are not derivable analytically, approxi-
mate solution methods (based discretizations) are the most frequently deployed solu-
tion techniques. Nontheless, a realistic state space discretization is unlikely to result
implementable since POMDPs are PSPACE-complete problems.

As already announced in section 1.3 of the previous chapter, this chapter explains
why the relevance of successfully solving the real-state MARBPs, as the ones addressed
in this dissertation, goes beyond the scope of the concrete applications of concern.
Specifically, as the POMDP described in (2.8) has a special structure, usually fitting into
the framework of the continuous-state MABP (either in its classic version or, more often,
in its restless variant), the effective design of solution strategies for real-state MARBP
offers the potential impact of achieving simultaneously tractability and performance
improvements for a large class of POMDPs.

2.2 Index Policies

All the appealing theoretical features of the MDP framework are clearly obscured by
the lack of applicability of the resulting optimal polices to optimize the performance of
modern technological systems. Such a state of affairs is the main motivation for investi-
gating the design of heuristic policies which achieve tractability, possibly at the expense
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of optimality, but which nonetheless manage to achieve a preestablished performance
objective. Within the astoundingly large family of possible heuristics, a class stands out
as sound and natural for these allocation problems: the priority index polices.

A priority index policy assigns a value to each project as a function of its state, where
such value prioritizes its access to the scarce resources in the following sense: projects at
each time slot are incorporated into the realized portfolio ordered with respect to their
index values as long as the resulting portfolio remains affordable, given the resource
endowment. Hence, a priority index policy activates a number of projects, feasible in
terms of the hard sample-path constraint, whose index is currently the largest.

Formally, an index rule of priority-index type requires a function λn(.) which, for
every project n, maps its state space to the set of real numbers R, i.e.

λn : X0,1
n 7→ R (2.11)

One of the simplest example, and also one of the most widely used heuristics of priority-
index type, is the myopic index policy (sometimes also called the greedy heuristic in
some literature) which defines λn(.) as follows

λMyopic
n (x) , R(x, 1), ∀x ∈ X0,1

n (2.12)

Notice that the myopic policy is equivalent to setting β = 0 in (2.7) for a given project n
and selecting as its current index value the best possible next-step reward. Obviously,
the computational feasibility of such an index is attained at the expense of ignoring the
future consequences of today’s selected actions.

Another simple example of a priority-index policy, which is also relevant for this
thesis, is to consider as a priority index value the current state of the project, i.e.

λn(x) , x, ∀x ∈ X0,1
n (2.13)

In the POMDP context, this heuristic is simply to use the belief state of the projets as
an index. In the multitarget tracking setting this heuristic corresponds to considering
the tracking error variance for each target as the priority index, as it was proposed by
Howard et al. (2004); La Scala and Moran (2006).

As we will illustrate in the parts II and III of this dissertation, there are situations in
which we can expect these two simple heuristics to perform equally well and even to be
as good as the index policies derived from the indexation methodology deployed to the
applications of concern. However, in realistic settings these two heuristics achieve diffe-
rent performance results and moreover they are normally significantly outperformed by
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the index rules proposed by this thesis.

In the following chapter we will review the background material for designing
mathematically-based priority-index polices based on Lagrangian optimization methods.
To introduce and motivate that background, we finish this chapter with a section pro-
viding a historical account of the development of central ideas of the indexation frame-
work that shall be deployed throughout chapters Chapter 4 and Chapter 6.

2.2.1 Overview of Historical Development

The persistence in time of this idea of addressing the computational challenges by de-
signing heuristics of priority-index type can be mostly attributed to early results on the
optimality of this sort of rules. Such results prompted researchers to take advantage
of the special structure of specific problems to provide with a solution method which
offered not only tractability but also economic insights and insightful interpretations
of the underlying system. In such a vein, a classical result is given by the optimality
of the cµ-rule for the problem of optimally sequencing a batch of jobs with mean pro-
cessing time (1/µ) and linear holding costs (c) in the single-machine case (Smith, 1956).
The index rule in this case prescribes to schedule the job yielding the highest expected
cost reduction per unit of effort, which can also be interpreted as the job achieving the
maximum average productivity rate of the machine.

Regarding the origins of bandit indexation, Bradt et al. (1956) first showed the opti-
mality of an index policy for the classic finite-horizon undiscounted one-armed Bernoulli
bandit problem. The index was defined as in (2.11) but taking as an argument an aug-
mented state including both the current project state and the number of remaining pe-
riods. Bellman (1956) in turn extended such a result to the infinite-horizon problem,
establishing the existence of an optimal policy of index type, in which the index is a
function of the state only. Yet, efforts to apply these indexation ideas to the multi-armed
bandit case, still in its classic version, were long deemed sterile as it was not until Gittins
and Jones (1974) that its optimal solution was first shown to be attained by a priority-
index rule, which has become known as Gittins’ index policy.

The classical MABP, was formulated during the Second World War, but its roots can
be traced back to the early thirties in the seminal work of Thompson (1933). Thompson
presented a characteristic dilemma arising in the area of sequential design of experi-
ments in terms of the problem of deciding how to assign patients to two distinct clinical
treatments. The difficulty of the decision, as he pointed out, lies within the fact that
giving a patient a treatment that currently appears to be inferior instead of the treat-
ment with the highest estimated probability of success, can eventually lead to obtain a
more accurate belief estimate which might show that the apparently inferior treatment
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is actually the best one. In short, the dilemma is to assign the present patient a treatment
that is most likely to succeed based on information gathered so far (exploitation) or to
assign a treatment with less chances of being efficient but that might eventually turn
out to outperform the other, thus allowing for a higher rate of future successes (explo-
ration). This idea was followed later by Robbins (1952) who posed a family of optimal
sequential estimation problems, in which optimization and information estimation ar
simultaneously.

The optimality of the Gittins’ index rule led the way to substantial generalizations
of this optimality result, however, in Whittle’s words, “one class seemed to remain un-
nameable”: those in which projects continue to evolve even when rested. This particular
class, corresponding to the MARBP, first announced by Whittle (1988) as an extension
to the classical MABP, offered increased modeling power as well as many interesting
and novel mathematical challenges to researchers. In models in which the project’s
state is an information state, as is the case of the applications studied in this thesis, it is
adequate to assume that information is gained (or lost) when we work (or rest) on the
project. Actually, Whittle illustrated this point with a multitarget tracking example, in
which, as he put it, “the bandits are restless in the most literal sense”.

Whittle proposed a Lagrangian relaxation and decomposition approach to develop
de index heuristic. Yet, he also realized that existence of such index for MARBP was
only ensured for those which satisfied a structural property, which he termed indexabi-
lity. Those circumstances called for general sufficient indexability conditions, to allow
for exploitation of the enhanced modeling power. Such conditions were successfully
provided through work done for discrete-state bandits in Niño-Mora (2001, 2002, 2006b)
by deploying an achievable region approach, based on the introduction of Partial Con-
servation Laws (PCLs) (See the review Niño-Mora, 2011a). Moreover, those results in-
clude an adaptive-greedy algorithm for indexability verification and index computa-
tion. As reviewed in Niño-Mora (2007a), the resulting approach has been generalized
into a widely applicable unifying framework to design index policies which admit eco-
nomic interpretation and which have been found to exhibit near-optimal results. Of
special relevance for this dissertation are the extensions of those sufficient indexabi-
lity conditions and other results to the continuous-state case introduced in Niño-Mora
(2008).

For brief and basic introduction to MARBPs and also for a more detailed historical
account of development of this emerging research area see e.g., Niño-Mora (2011b).
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2.3 Research Challenges & Applications

In this section, in light of the previous reviewed concepts, we reexamine and summarize
the main challenges for solving the applications proposed in problem 1 and problem 2
(as stated in Chapter 1) by formulating them as real-state MARBPs and solving these by
means of a priority index policy.

In modern sensing systems, depending on the system’s mission, we can associate
to its operating performance some statical model capturing the unobservable process
evolution and relating sensor output to the state of that process. Next, using sensor ob-
servations an associated optimal sequential estimation problem is to predict the state of
the underlying physical process according to some sensible criteria (e.g. mean square
error). In turn, sensor observations should result from solving an optimal resource allo-
cation problem which distributes sensing resources among projects so as to best extract
the required information.

Hence, both for the detection and tracking problems, the underlying optimal se-
quential estimation problem can be easily put into a MABP framework, in which the
sensing decisions are made incrementally as additional information is received. This
step will be respectively done in Chapter 4 and Chapter 6 of this thesis. However, after
doing so we will be faced with the following general issues:

(i) The most adequate MABP formulation for both problems will be restless, since pre-
dicting a project’s state will be generally different depending on the information
provided by sensing actions.

(ii) The state variable (capturing project’s information state) will naturally belong to a
continuous state-space.

The first issue will subsequently lead us to the dealing with the challenging ques-
tions of establishing under which conditions the index exists for the problems at hand,
how to compute it in a reasonable time, and since optimality of the index policy is not
ensured for the restless case, how far is the resulting heuristic from the optimal. The
second issue will be introducing extra technical difficulties that must be successfully
addressed to answer all the previous questions.



Action expresses priorities.
Gandhi

Chapter 3

Real-State RB Index Policies:
Lagrangian Relaxation and
Decomposition approach

3.1 Whittle’s Relaxed Problem: Lagrangian relaxation and Per-
formance Bound

As reviewed in the previous chapter, Whittle (1988) was the first to extend the scope of
the indexation approach beyond the framework of classic bandits by proposing a relaxa-
tion of the original problem’s hard sample path constraint for the equality-constrained
case. The relaxed problem would thus have an enlarged family of feasible policies in
which the resource constraint, instead of being fulfilled at each period of time, is ful-
filled in expectation in terms of the selected performance measure over the whole ope-
rating horizon. For the ETD problem (2.5), the Whittle relaxation, which was originally
defined for the case Wn(xn, an) = an and W̄ = M , can be extended as (2.5)-(3.1) with

max
π∈Π(M)

Eπx0

[ ∞∑
t=0

∑
n∈N

βtRn
(
Xn,t, an,t

)]
, (2.5)

Eπx0

[ ∞∑
t=0

N∑
n=1

βtan,t

]
≤ Eπx0

[ ∞∑
t=0

βtM

]
=

M

1− β , (3.1)

where (3.1) only requires that the expected total β-discounted resource consumption
does not exceed the total β-discounted resource availability endowment. Respectively,

29
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for the LRA problem, the Whittle relaxation is (2.6)-(3.2) with

max
π∈Π(M)

lim inf
T→∞

1

T
Eπx0

[
T−1∑
t=0

∑
n∈N

Rn
(
Xn,t, an,t

)]
, (2.6)

lim sup
T→∞

1

T
Eπx0

[
T−1∑
t=0

N∑
n=1

an,t

]
≤M. (3.2)

Whittle’s relaxed primal ETD problem is

V R
D (x0) , max

(3.1),π∈Π

Eπx0

[ ∞∑
t=0

N∑
n=1

βtRn
(
Xn,t, an,t

)]
. (3.3)

where Π is the class of history dependent randomized scheduling policies (which may
engage in any number of projects at any time), and under the long-run average criterion
we obtain Whittle’s relaxed primal LRA problem

V R
A (x0) , max

(3.2),π∈Π

lim inf
T→∞

1

T
Eπx0

[
T−1∑
t=0

N∑
n=1

Rn
(
Xn,t, an,t

)]
. (3.4)

Note that the optimal values of (3.3) gives an upper bound on the optimal value of the
original problem (2.5), i.e. V R

D (x0) ≥ V ∗D(x0). Respectively, (3.4) gives an upper bound on
the optimal value of (2.6), i.e., V R

A (x0) ≥ V ∗A(x0).

To address the constrained MDPs defined by the relaxed problems we next deploy a
Lagrangian approach, including as a coupling constraint the relaxed resource constraint
by attaching a Lagrange multiplier λ ≥ 0 to it. The resulting unconstrained MDPs are

V L
D(x0;λ) , max

π∈Π
Eπx0

[ ∞∑
t=0

N∑
n=1

βt
{
Rn
(
Xn,t, an,t

)
− λan,t

}]
+ λ

M

1− β , (3.5)

and

V L
A (x0;λ) , max

π∈Π
lim inf
T→∞

1

T
Eπx0

[
T−1∑
t=0

N∑
n=1

{
Rn
(
Xn,t, an,t

)
− λan,t

}]
+ λM (3.6)

For any arbitrary nonnegative value of the multiplier λ, the optimal values of (3.5)
and (3.6) respectively give an upper bound on the optimal values of (3.3) and (3.4), i.e.
V L
D(x0;λ) ≥ V R

D (x0) and V L
A (x0;λ) ≥ V R

A (x0). Notice that a policy solving either (3.5)
or (3.6) for a given λ ≥ 0, performs at least as well as the optimal policy for the original
MABP, yet it is important to bear in mind that they will not typically be feasible for that
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problem, since they may not satisfy the resource sample path constraint. 1

The Lagrangian dual problem is to find an optimal value of the multiplier λ∗(x0) giving
the best upper bound on V R

D (x0) or V R
A (x0), which we denote by V D

D (x0) or V D
A (x0). If

such a λ∗(x0) exists, it solves the following scalar optimization problem for the ETD
problem

V d
D(x0) = min

λ≥0
V L
D(x0;λ), (3.7)

and for the LRA problem it solves

V d
A (x0) = min

λ≥0
V L
A (x0;λ). (3.8)

Note that (3.7) and (3.8) are convex optimization problems, since λ 7→ V L
D(x0;λ) and

λ 7→ V L
A (x0;λ) are convex. Under suitable regularity conditions, λ∗(x0) exists and

strong duality holds. Notice that although weak duality (V R(x0) ≥ V d(x0)) is ensured,
satisfaction of strong duality, i.e. V R(x0) = V d(x0), calls for further investigation.

3.2 Indexability and the Whittle Index Policy

Next, to introduce the notion of indexability, we will make use of the key assumption
that projects’ state variables evolve independently from one another. This allows us to
decompose the problems (3.5) and (3.6) intoN independent parts, denoted as V L

D,n(xn,0;λ)

and V L
A,n(xn,0;λ), each representing a single-project subproblem, consisting of the fo-

llowing ETD problem considered for some project n in isolation,

V L
D,n(xn,0;λ) , max

πn∈Πn

Eπn
xn,0

[ ∞∑
t=0

βt{Rn
(
Xn,t, an,t

)
− λan,t}

]
, (3.9)

or the following LRA problem for some project n in isolation,

V L
A,n(xn,0;λ) , max

πn∈Πn

Eπn
xn,0

lim inf
T→∞

1

T

[
T−1∑
t=0

{Rn
(
Xn,t, an,t

)
− λan,t}

]
(3.10)

where Πn denotes the class of admissible policies for operating a single project, i.e.,
deciding when it should be active (an,t = 1) and passive (an,t = 0), and where λ is the
Lagrangian multiplier. incorporated into the project’s original flow of rewards.

As project state transitions are independent, the optimal value of the Lagrange re-

1We stress at this point that the heuristic policy based on this indexation approach is always feasible in
terms of the hard sample path constraint as it is not prescribing to operate the system based on a policy
solving the Lagrange relaxation.
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laxation is decomposed as follows

V L
D(x0;λ) =

N∑
n=1

V L
D,n(xn,0;λ) +

Mλ

(1− β)
, (3.11)

or

V L
A (x0;λ) =

N∑
n=1

V L
A,n(xn,0;λ) +Mλ, (3.12)

Now, we can present the concept of indexability, introduced by Whittle (1988) as a
key structural property of subproblems (3.9) and (3.10). In the remainder of the chap-
ter, for ease of presentation, we will focus the ensuing discussion on the β-discounted
subproblem (3.9). The analysis for the LRA case can be completed bearing in mind
that its corresponding Whittle’s index policy can be derived by letting β ↗ 1 in the
β-discounted index policy, provided that the limit defining (2.6) exists.

Definition 3.1. (Indexability) We say that project n is indexable if there exists a index
function λ∗n : X0,1

n 7→ R such that for any value of the multiplier λ ∈ R and any con-
trollable state xn ∈ X0,1

n , it is optimal in subproblem (3.9), regardless of its initial state,
to work in the project when it occupies state xn iff λ∗n(xn) ≥ λ

Whittle (1988) introduced the notion of indexable RB projects for the special case in
which Wn(xn,t, an,t) = an,t, while Niño-Mora (2002) extended such a concept to the
case of general one-period resource consumption functions Wn(xn,t, an,t). When Defi-
nition 3.1 holds, there exist a family of optimal policies for subproblem n which have a
special structure that can be exploited to reduce the complexity of relaxed problem (3.7)
as it implies that a reduced class of admissible policies in πn may considered in order
to solve its individual parts. Clearly, π∗n belongs to the family of deterministic stationary
policies ΠDS

n , since indexability implies the optimality of these family of policies for
each λ-subproblem.

Thus, we can narrow our focus down to those policies and conveniently represent
them by means of active sets S ⊆ X0,1

n , i.e., the set of controllable states in which the
optimal action is to be active. Further, within deterministic stationary policies we can
even focus on those policies with a certain monotonicity property with respect to this
λ parameter, i.e. the (maximal) optimal active set S∗(λ) expands monotonically as λ
decreases.
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3.3 Sufficient Indexability Conditions and Index Evaluation

If Whittle’s indexability holds for a project, it ensures that the optimal policy for the RB
subproblem can be characterized by a scalar priority index. Yet, this structural property
needs to be analytically established for the model at hand, which is more often than
not a challenging task. Furthermore, the characterization of the index given by Defini-
tion 3.1 is only implicit, and hence index computation may also demand a significant
effort.

Such a state of affairs, motivated research to develop tractable sufficient indexability
conditions. The first of such conditions for discrete-state restless bandits, along with an
index algorithm, were introduced, developed and deployed in Niño-Mora (2001, 2002,
2006b). Such sufficient conditions draw on polyhedral arguments of having a problem
which satisfies the Partial Conservation Laws (PCLs) for a postulate family of active
sets. Such an approach has proven to be fruitful both in theoretical and algorithmic
aspects, as well as in terms of the wide scope of successfully addressed applications.
(For a detailed review of this indexation framework, see Niño-Mora, 2007a).

The scope of such discrete-state restless bandits sufficient indexability conditions
has been extended to the real-state case in results announced in Niño-Mora (2008), as
reviewed next. The following discussion focuses on a single-bandit problem modeling
the optimal resource allocation problem of an individual project, whose label n is hence-
forth dropped from the notation. The MDP formulation is the following:

• The state space (we will focus on the controllable states) is a closed interval (possi-
bly unbounded) of the real line X0,1 ⊆ X ⊆ R;

• The action set A(x) ⊆ {0, 1}, with a = 1 : active/work; a = 0 : passive/rest.

• Active dynamics: If the project is at state x and the active action is selected at a
given period, then during that period the system generates R(x, 1) consuming
W (x, 1) unit of resources and paying λ per each of them. Next, the project moves
to another state Y 1 = y1 according to a stochastic kernel P 1(.|x, 1).

• Passive dynamics: If the project is at state x and the passive action is selected at
a given period, then during that period the system generates R(x, 0) consuming
W (x, 0) unit of resources and paying λ per each of them. Next, the project moves
to another state Y 0 = y0 according to a stochastic kernel P 0(.|x, 0).

• One-period net expected reward R(x, a)− λa if action a is deployed in state x.

The key to analytically establishing indexability conditions is to guess a family of
stationary deterministic policies among which an optimal policy for (3.9) exists for
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every λ. For such a purpose, we shall evaluate the performance of an admissible policy
π ∈ Π along two dimensions: the work measure

g(x, π) , Eπx

[ ∞∑
t=0

βtat

]
,

giving the ETD resource consumption of the project under policy π starting at x0 = x;
and the reward measure

f(x, π) , Eπx

[ ∞∑
t=0

βtR(xt, at)

]
,

giving the corresponding ETD reward achieved.

Note that the project’s optimal control problem (3.9) is then reexpressed in terms of
these measures as

V ∗(x;λ) = max
π∈Π

f(x, π)− λg(x, π). (3.13)

In order to show indexability of (3.9), we must consider the existence of a structural
property of optimal policies for the real-state MDP (4.6) as a function of the parameter
λ. Henceforth, we refer to (4.6) as the project’s λ-charge subproblem.

We shall further focus attention on the family of threshold policies. More precisely, for
a given threshold level z ∈ R , R ∪ {−∞,∞}, the z-threshold policy activates the project
in state x iff x > z, so its active set is B(z) , {x ∈ X0,1 : x > z}. We let B(z) = X0,1 for
z = −∞,, and B(z) = ∅ for z = ∞. We denote by g(x, z) and f(x, z) the corresponding
work and reward measures.

For fixed z, work measure g(x, z) is characterized as

g(x, z) =

1 + β
∫
X g(y, z)P 1(dy|x, 1), x > z

0 + β
∫
X g(y, z)P 0(dy|x, 0), x ≤ z,

(3.14)

whereas reward measure f(x, z) is characterized by

f(x, z) =

R(x, 1) + β
∫
X f(y, z)P 1(dy|x, 1), x > z

R(x, 0) + β
∫
X f(y, z)P 0(dy|x, 0), x ≤ z.

(3.15)

We shall use the marginal counterparts of such measures. For threshold z and action
a, denote by 〈a, z〉 the policy that takes action a in the initial slot and adopts the z-
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threshold policy thereafter. Define the marginal work measure

w(x, z) , g(x, 〈1, z〉)− g(x, 〈0, z〉), (3.16)

= 1 +

[∫
X
g(y, z)P 1(dy|x, 1)−

∫
X
g(y, z)P 0(dy|x, 0)

]
and the marginal reward measure

r(x, z) , f(x, 〈1, z〉)− f(x, 〈0, z〉). (3.17)

= R(x, 1)−R(x, 0) +

[∫
X
f(y, z)P 1(dy|x, 1)−

∫
X
f(y, z)P 0(dy|x, 0)

]
These measures respectively represent the marginal increase in resource expended and
the marginal increase in rewards earned resulting from working instead of resting/iddling
in the initial period and following the z-threshold policy afterwards. If w(x, z) 6= 0, de-
fine further the Marginal Productivity (MP) measure

λMP (x, z) ,
r(x, z)

w(x, z)
. (3.18)

Niño-Mora (2006b) coined the term marginal productivity based on the economic
interpretations of this indexation methodology that will be reviewed in the following
section. The following definition extends to the real-state setting a corresponding defi-
nition introduced by Niño-Mora (2001) for discrete-state restless bandits.

Definition 3.2. We say that subproblem (4.6) is PCL-indexable (with respect to threshold
policies) if:

(i) positive marginal work: w(x, z) > 0, x ∈ X0,1, z ∈ R;

(ii) nondecreasing index: the index defined by

λMP (x) , λMP (x, x), x ∈ X0,1. (3.19)

is monotone nondecreasing and continuous in x

The next result, which was first stated in Niño-Mora (2008), extends the scope of a
corresponding result in Niño-Mora (2001) for discrete-state restless bandits to the real-
state setting, states the validity of the PCL-based sufficient indexability conditions re-
viewed in this section. It further shows how to evaluate the Whittle’s MP index. The full
proof of this result will be included in a paper, which is currently under preparation.

Theorem 3.1. If subproblem (4.6) is PCL-indexable, then it is indexable and its MP index
λMP (x) in (3.19) is its Whittle’s index λ∗(x).
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If Theorem 3.1 holds, then we define the extended Whittle index policy for the origi-
nal MARBP as follows: a t time t, the Whittle MP index policy selects at mostM projects
to work on, using λ∗n(xn,t) as a priority index for working on project n (where a larger
index value means a higher priority), among those projects, if any, for which the index
exceeds the λ charge, i.e., λ∗n(xn,t) > λ, breaking ties arbitrarily.

3.4 Indexability: Economic Interpretation

The indexability approach revised in this chapter admits an interesting geometric inter-
pretation which highlights the economic meaning of the index. For some initial state
x, consider project’s (4.6) achievable work-reward region, as defined by Niño-Mora (2002,
2006b),

Hx , {(g(x, π), f(x, π)) : π ∈ Π} (3.20)

This is the region spanned in the plane by the pairs of total resource consumption-
reward performance points under all admissible polices, and it is a closed convex poly-
gon due to the optimality of the stationary deterministic policies for this kind of pro-
blems (see subsection 2.1.4). The z-threshold PCL-indexability property previously dis-
cussed can be assessed in terms of this region by analyzing the structure of the upper
boundary of this region, which is defined as

∂̄Hx , {(g(x, π), f(x, π)) ∈ Hx : f(x, π) ≤ f for any (g(x, π), f(x, π)) ∈ Hx : g(x, π) = g}
(3.21)

Whenever ∂̄H is characterized by a nested active set family of z-threshold type in the
following sense:

g(x,∞) ≤ g(x, zi) ≤ g(x, zj) ≤ g(x,−∞) ∀zi, zj ∈ X0,1 : zi > zj (3.22)

with g(x, zi) and g(x, zj) computed as in (7.7), and letting g(x,∞) = 0 and g(x,−∞) =

E

[ ∞∑
t=0

βt

]
= 1

1−β then the project is PCL-indexable with respect to threshold polices.

To illustrate the idea, consider a restless bandit whose controllable state space is
some interval of the real line and whose corresponding achievable work-reward region
is given by Figure 3.1. The slope of the upper boundary represents the infinitesimal
change in total rewards per unit of infinitesimal change in total work level, being thus a
measure of productivity or return of the resources invested in the margin, before paying
the current λ-charge. Given a particular λ-charge, e.g. λ = λ0, we can determine the
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optimal total resource-reward pair as follows: provided that the marginal rate of pro-
ductivity exceeds the marginal cost of investment λ0 there is a net profit of allocating
resources to this project. Thus, the optimal investment level for such a project, given
λ = λ0, corresponds to the pair (g(x, z∗), f(x, z∗)) Figure 3.1, in which the slope of the
achievable work-reward region equals the current the λ-charge, achieving the best po-
ssible value (4.6).

As shown by Figure 3.2, for such subproblem the slope of the achievable work-
reward region, representing the marginal productivity rate of resources invested, defines
a monotone nondecreasing function of the subproblem’s state x, λ∗(x), which can be
thus used to describe the subproblem’s optimal investment policy: invest/work in the
project provided in its current state the marginal productivity rate λ∗(x) is greater or equal
to the λ-charge. Furthermore, such a rule induces a natural monotone ordering of the
bandit’s controllable states.

HgHs,z*L,fHs,z*LL

Λ=Λ0

gHx,-¥LgHx,¥L gHx,zL

fHx,-¥L

fHx,zL
Achievable Work-Reward Region

Figure 3.1: An illustration of the achievable work-reward region leading to an optimal
family of z-threshold polices

In view of these results, it can be concluded that indexable subproblems are strongly
connected to two fundamental ideas in traditional microeconomics: the law of dimini-
shing marginal returns and the profit maximization principle of investment. The former, as
already pointed out in Niño-Mora (2006b), derives from the fact that indexable projects
are those in which as resource consumption increases, its marginal return rate dimini-
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z
*

x

Λ=Λ0

ΛHx,xL
Single-Bandit Optimal Policy and the Whittle Index

Figure 3.2: An indexable project, z-threshold optimal polices and the Whittle MP index

shes. Whereas the latter, which is a widely used principle for economic-financial evalu-
ation of real-investment projects, prescribes to exploit a resource up the point in which
the marginal profit of employing an extra unit of it equals zero. From definition (3.19),
resources in indexable projects are allocated to work in a time slot only as long as the
marginal revenue of investing them when project n occupies state x: λ∗(x), exceeds the
marginal cost: the charge λ. Thus, the optimal solution of indexable subproblems prescri-
bes to engage in the project up to the point in which the marginal profit of investment is
0, i.e. λ∗(x)− λ ≥ 0.

3.5 Applications

The exposition of the indexation literature we have done so far has focused on the intrin-
sic mathematical challenges raised by research on restless bandits. Yet, the wide range
of applied problems falling within its scope has motivated a fast-growing attention of
researchers. Among the most attractive features of the framework, two stand out: it
yields both an intuitively appealing and economically sound heuristic index policy of
low computational complexity, and it provides a practical way to asses the policy’s sub-
optimality gap, through a bound on the optimal problem value.
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Accompanying the work on theoretical aspects of bandit indexation, there have been
many relevant and disparate applications of the methodology, unified in someway by
this indexation framework. To give a glimpse of them, we refer to the following non-
exhaustive list.

Related to queuing theory and optimal scheduling literature, we can mention: the
dynamic control problem of customer admission and routing to parallel queues (Niño-
Mora, 2002, 2007b) or the dynamic scheduling problem of a multiclass queue with finite
buffers Niño-Mora (2006a), the scheduling of a multi-class make-to-stock queue (Niño-
Mora, 2006b; Veatch and Wein, 1996; Dusonchet and Hongler, 2003). The indexation
approach deployed to them yielded new insights and connections with routing pro-
blems.

Some applications arising in modern computer-communication networks: the pro-
blem of broadcast scheduling in information delivery systems (Raissi-Dehkordi and
Baras, 2002); the dynamic bandwidth allocation in a communication channel with de-
lays (Ehsan and Liu, 2004); and the dynamic scheduling of multiclass wireless transmi-
ssions (Ehsan and Liu, 2004; Niño-Mora, 2006a) Of special interest to this thesis, are the
concrete applications of real-state MARBP: on opportunistic spectrum access, based on
partial information (Niño-Mora, 2008; Liu and Zhao, 2008) and including sensing errors
(Niño-Mora, 2009); multitarget tracking (Niño-Mora and Villar, 2009) and smart target
hunt (Niño-Mora and Villar, 2011).

All these works form part of the large and still growing body of experimental evi-
dence on the frequent near optimality of the resulting index policies and on their supe-
rior performance with respect to previously proposed heuristic index policies devised
via ad hoc arguments.
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Hunting Elusive Hiding Targets
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But I still haven’t found what I’m looking for
Bono.

Chapter 4

MARBP Formulation for Hunting
Elusive Hiding Targets

In this chapter we formulate problem 1, stated in subsection 1.2.1, as a POMDP with
special structure, which further fits into the frame of the real-state MARBP. We de-
ploy the indexation methodology reviewed in Chapter 3 to propose a tractable heuristic
search policy of priority-index type based on the Whittle index for RBs.

4.1 Background and Motivation

In recent years, the investigation of effective dynamic policies for operating wireless
sensor networks has become an active research area. An issue that has received much
attention is the design of scheduling policies to allocate over time a relatively small set
of sensor resources to extract the required information about a scene containing a larger
set of targets of interest, in order to optimize a system-wide performance objective. See,
e.g., the survey Moran et al. (2008).

The sensors provide error-prone measurements of the sensed targets, such as their
location, or their presence (or absence) at a given location. The current knowledge on
each target is represented by its information state, which evolves via Bayesian updates
depending on whether or not the target is sensed at each time slot. This allows for
the formulation of a variety of optimal sensor scheduling problems as a POMDP with
special structure, which often fit into the framework of the real-state MARBP, either
in its classic version or, more often, in its restless variant. See, e.g., Washburn (2008).
Although the restless variant is, generally, computationally intractable, formulating a
sensor scheduling problem in such a framework allows for the use of the indexation
methodology reviewed in the previous chapter. Such an approach, further provides

43
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with a bound on the optimal problem value that can be used to assess the deviation
from optimality of a given policy.

In certain situations, sensing actions do not only affect the system’s information
state (e.g. in terms of its precision) but also alter targets’ behavior. This is the case when
objective targets are smart, in the sense that they react to being sensed by changing
their dynamics, so as to hinder their detection or tracking. Sensor scheduling problems
complicate substantially when targets under surveillance are able to detect and respond
to sensing activities yet, it is natural to expect that different types of reaction would
require a different operating rule to optimize system’s performance.

Specifically, sensor scheduling to detect (and/or track) smart targets is an application
that would strongly benefit from non-myopic decision rules, indicating the controller
when it is better not to sense a site for the sake of the possible future gains obtained
by influencing the target located at it accordingly. On the contrary, tractable myopic
rules, of the type defined in (2.12) (Chapter 2), do not inform when a target should not
be searched (specially in the case in which there are enough sensing resources available
to do so). This is clearly undesirable if targets are elusive, as constantly searching for
them makes them more and more elusive, resulting in larger use of system resources
(especially in time) to successfully find them.

Despite all these problems, few papers have considered sensor scheduling problems
with such reactive targets. Instead targets are typically assumed to follow dynamics that
are unaffected by sensing decisions. In the recent literature, some sensor management
models have been proposed for smart object localization disregarding such an unrealis-
tic assumption. For instance, in Kreucher et al. (2006) reinforcement learning is used to
obtain a non-myopic policy for detection and tracking of smart targets, while Liu et al.
(2009) uses particle filter methods, and Savage and La Scala (2009) presents a game
theoretic analysis.

The model presented in this chapter extends such a line of work by investigating a
sensor scheduling model where a set of identical sensors are used to hunt a larger (or
at least equal) set of heterogeneous targets, each of which is located at a correspond-
ing site. As in Kreucher et al. (2006), target states change randomly over discrete time
slots between exposed and hidden, according to Markovian transition probabilities that
depend on whether sites are searched or not, so as to make the targets elusive. Sen-
sors have a binary mode, so they can be either active or passive at a site, and they are
imperfect, failing to detect an exposed target when searching its site with a positive
misdetection probability

As a specific motivating application for such a model, we propose the problem in-
vestigated in Rucker (2006), where the targets are mobile platforms (transporter-erector-
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launchers) for launching short-range ballistic missiles (known as Scuds), and the sites
are areas where it is known that such platforms are hidden. In this setting, the sen-
sors can be mounted on unmanned aerial vehicles (UAV). A metric frequently used to
measure the effectiveness of such operations is the time to detect all targets. Hence, an
effective sensor scheduling rule may be derived by designing a a search policy that aims
at maximizing the expected discounted rewards of detecting and destroying all missile
launchers, where the discount factor represents how future detections are penalized in
a given mission.

4.1.1 Goals and Contributions

It is the goal of this work to propose a dynamic and readily implementable index po-
licy for a hunting elusive target model of POMDP type which exhibits a near-optimal
performance both under the discounted and the total criterion.

We accomplish this by formulating the resulting POMDP as a real-state MARBP
and deploying the recent extensions of the existing theoretical and algorithm results on
discrete-state restless bandit indexation to the continuous-state case.

This work makes the following contributions: it successfully deploys the methodo-
logy announced in Niño-Mora (2008) to obtain a novel and dynamic index policy for the
model of concern. The PCL-indexability of the model is shown for the ETD problem for
discount factors smaller than a critical value. All this is done despite the lack of closed
form expressions for the required performance measures, which is a severe technical
difficulty introduced by considering a real state variable.

These contributions will be presented in this chapter in the following order: first we
describe the model and we formulate it as a real-state MARBP. Next, in the remainder
of the chapter we discuss the indexability analysis and the resulting index computation.

In the subsequent chapter, we present the empirical results which illustrate the in-
dexability ideas discussed in this chapter as well as some interesting instances in which
the proposed index policy not only outperforms alternative heuristic policies, but is
shown to be near optimal.

4.2 Model description and MARBP Formulation

We consider a model where M sensors are available to hunt N ≥ M elusive hiding
targets, where each target n is known to hide at a corresponding site n = 1, . . . , N . We
assume that the target present at site n alternates its visibility state sn,t at discrete time
periods t = 0, 1, . . . over an infinite horizon between the hidden state (sn,t = 0), in which
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it is invisible to sensors but cannot perform its tasks, and the exposed state (sn,t = 1), in
which it can perform its tasks but can be detected by a sensor surveying the site.

The visibility state sn,t evolves according to Markovian transition probabilities de-
pending on whether or not its site is searched. We assume that only one sensor can
search a site at each time slot, and model sensing decisions by binary actions processes
an,t, where an,t = 1 if site n is sensed at time t, and an,t = 0 otherwise. When the action
taken on site n is an,t = a the target moves from the hidden to the exposed state (resp.
from the exposed to the hidden state, in case the target is not detected) with probability
p

(a)
n (resp. q(a)

n ). Those transitions probabilities are such that after a site is searched and
the unhunted target on it is not detected, it is more likely that the target moves into or
remains in the hidden state than if the site had not been searched, i.e., q(1)

n > q
(0)
n and

p
(1)
n > p

(0)
n . Notice that such condition ensures also that after a site is not searched, it

is more likely that the target moves into or remains in the exposed state than if the site
had been searched. We further assume that the visibility state processes have positive
autocorrelation or memory, so ρ(a)

n , 1− p(a)
n − q(a)

n > 0.

The target at site n can only be hunted if it is exposed when searched, yielding a
reward rn for completing the site’s mission. Information on target n’s visibility state is
gained by sensing it, which provides a sensor outcome on,t ∈ {0, 1} : on,t = 1 if the target
is detected and hunted, and on,t = 0 otherwise. Sensing is imperfect in that the target
at site n will not be detected when it is exposed and its site was sensed with a positive
misdetection probability of αn = P (on,t = 0|sn,t = 1). Hence, target n’s visibility state
sn,t is not directly observable, but it is tracked by the information state Xn,t ∈ X , [0, 1],
giving the posterior probability that the target is exposed in period t conditioned on the
history {Xn,s, an,s : 0 ≤ s < t} ∪Xn,t.
Since successfully hunting a target completes the mission at its site, we assume that a
site n whose target has been hunted (xn = 0) is removed from further search. Hence,
we partition a target state space X into the set X0,1 , (0, 1] of controllable states, where
both actions A , {0, 1} are available, and the uncontrollable state 0, where only action
an = 0 is available.

The dynamics of the information state for target n under each sensing action are
obtained via Bayesian updates as follows. If the target at site’s n has not yet been hunted
at the beginning of period t, i.e. Xn,t > 0, and the site is searched (an,t = 1), then its
next state will depend on wether the search was successful or not. Thus, if the sensor
outcome is positive (ont = 1), which happens with probability (1 − αn)Xn,t, and the
target is detected on,t = 1, which happens with probability (1− αn)Xn,t, then the target
has been hunted and hence site n is removed from the search objectives. We model such
a situation by letting the target’s information state drop to zero, i.e. Xn,t+1 = 0.
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On the other hand, if the target is not detected on,t = 0, which happens with probability
1− (1− αn)Xn,t, it is readily calculated that the information state changes to

Xn,t+1 = p(1)
n + ρ(1)

n

(
αnXn,t

1− (1− αn)Xn,t

)
. (4.1)

Hence, when site n is searched, its next information state is obtained in a randomized
fashion depending on the sensing outcome.
Finally, if site n is not sensed (an,t = 0) in period t, with its information state being
Xn,t > 0, i.e., as long as the target has not been hunted yet, its next information state is
determined by

Xn,t+1 = p(0)
n (1−Xn,t) + (1− q(0)

n )Xn,t. (4.2)

Yet, if the target has already been hunted Xn,t = 0, then its information state remains at
0 under both sensing actions. Thus, we summarize the information state dynamics for
all controllable states Xn,t ∈ X0,1 as

Xn,t+1 =



p
(0)
n (1−Xn,t) + (1− q(0)

n )Xn,t, if an,t = 0 w.p 1,

0, if an,t = 1 w.p (1− αn)Xn,t,

p(1)
n + ρ(1)

n

(
αnXn,t

1− (1− αn)Xn,t

)
, if an,t = 1 w.p 1− (1− αn)Xn,t,

Sensing actions are prescribed by a scheduling policy drawn from the class of admissible
policies Π(M), consisting of the nonanticipative policies (i.e., based on the history of
states and actions) that search at most M sites per slot:

N∑
n=1

an,t ≤M, t = 0, 1, . . . . (4.3)

As for the economic results of the sensing actions, taking action an on site n when it
occupies the information state xn yields the expected one-slot net reward Rn(xn,t, an,t) ,

(rn (1− αn) xn − cn) an, where cn ≥ 0 is a fixed site/target specific sensing cost.

The sensing system described by this model operates over time slots of equal length,
assuming sensors are synchronized to operate over discrete time slots. The sequence of
events within each slot is described in Figure 4.1. At the beginning of each slot, the
system’s manager given site’s n current information state Xn,t, decides whether to sense
that site or not, afterwards earning an expected reward Rn(xn,t, an,t) which depends
on the selected action and the current belief state. Afterwards target’s n, if not hunted,
changes its visibility state depending on the selected sensing action and hence by the
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end of the slot, site’s n belief state is updated accordingly.

sn,t

Xn,t

sn,t+1

Xn,t+1

Observe
belief state

x

Select
action

a

(If a = 1)
Sensor
output

o

Yield
Reward
Rn(x, a)

Change
visibility
Update

belief state

Slot t

Figure 4.1: The sequence of events within a time slot for the elusive target hunt model.

4.2.1 Performance Objectives

We will consider the following dynamic optimization problem: find a β-discounted re-
ward optimal policy, i.e.,

max
π∈Π(M)

Eπx0

[ ∞∑
t=0

N∑
n=1

βtRn
(
Xn,t, an,t

)]
, (4.4)

where 0 < β ≤ 1 is the discount factor, x0 = (xn,0)Nn=1 is the initial joint belief state,
for n in {1, 2, . . . , N}, and Eπx0

[·] denotes expectation under policy π conditioned on the
initial joint state being equal to x0. Note that the undiscounted case β = 1, which corres-
ponds to the total expected reward criterion, is well defined in the present setting given
that the search plan terminates after a finite number of slots with probability one (but
the number of slots until termination, i.e., the horizon, is uncertain and unbounded).
Furthermore, when considering a discount factor β = 1 we may analize the case in
which there is interest in finding targets regardless of how long it takes to do so. When
there are reasons to penalise finding targets in a later futute, such as system’s lifetime
constraints, it makes sense to consider some β < 1.

As discussed in Chapter 2, problem (4.4) is a POMDP of restless MABP type, thus
being notoriously hard to solve exactly. In the following section we shall present the
results of deploying the real-state restless bandit Whittle MP indexation approach to
the model of concern.
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4.3 Real State Restless Bandit Indexation Analysis

4.3.1 Verification of PCL-indexability

As reviewed in Chapter 3, establishing Whittle’s indexability Definition 3.1 by means
of deploying sufficient indexability conditions 3.2 we focus on an individual site’s sub-
problem as

max
πn∈Π(n)

Eπn
xn,0

[ ∞∑
t=0

βt{Rn
(
Xn,t, an,t

)
− λan,t}

]
, (4.5)

where (4.5) is a single-project restless bandit subproblem, consisting of a hunting pro-
blem considered for some site n in isolation. Πn denotes the class of admissible poli-
cies for operating a single sensor on such site, i.e., deciding when it should be active
(an,t = 1) and passive (an,t = 0) and with λ being a constant parameter representing an
extra cost incurred per unit of time the sensor is active.

Next, we would like to establish that each subproblem (4.5) has the key structural
indexability property defined by Definition 3.1. For such a purpose, we will deploy
conditions 3.2 to establish that the problem is indexable with respect to the family of
z-threshold policies, and thus we start by computing the performance measures under
such a class of policies. In the remainder of this section we focus on a generic single
site/target subproblem as (4.5), and hence drop the superscript n from the above nota-
tion.

We recall from Chapter 3 that we can evaluate the performance of any admissible
sensing policies π ∈ Π along two dimensions: the work measure g(x, π), giving the ETD
number of times a site is sensed under policy π starting at X0 = x; and the reward
measure f(x, π), giving the corresponding ETD reward earned. Thus,

g(x, π) , Eπx

[ ∞∑
t=0

βtat

]
, f(x, π) , Eπx

[ ∞∑
t=0

βtR(Xt, at)

]
.

So that we can formulate the single-site’s optimal target hunting subproblem (4.5) as

max
π∈Π

f(x, π)− λg(x, π). (4.6)

Problem (4.6), is a real-state MDP, whose optimal policy, under certain assumption on
the reward functionR(x, a)1, belongs to the family of deterministic stationary policies ΠSD,
naturally represented by their active (state) sets (in this case, that is the set of information
states where sensing the site is prescribed). For an active set B ⊆ X0,1, we shall refer to

1Assuming, for instance, that R(x, a) is bounded and measurable ensures this fact by Blackwell Suffi-
cient Conditions.
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the B-active policy. We will further focus attention on the family of threshold policies. For
a given threshold level z ∈ R, the z-threshold policy senses the site in information state x iff
x > z, so its active set is B(z) , {x ∈ X0,1 : x > z}. Note that B(z) = (z, 1] for 0 ≤ z < 1,
B(z) = X0,1 = (0, 1] for z < 0, and B(z) = ∅ for z ≥ 1. We denote by g(x, z) and f(x, z)

the corresponding work and reward measures under a z-threshold policy.
In the following we will use the notation to stand for the functions in (4.1) and (4.2):

φ(0)(x) , (p(0) + ρ(0)x), φ(1)(x) , p(1) + ρ(1) αx

1− (1− α)x
. (4.7)

For some fixed z, the total work measure g(x, z) for any x ∈ X0,1 is characterized as
the unique solution in the Banach space of bounded measurable real-valued functions
on X endowed with the sup norm (See Hernández-Lerma and Lasserre, 1999) to

g(x, z) =

1 + β [1− (1− α) x ] g
(
φ(1)(x), z

)
, x ∈ (z, 1]

βg
(
φ(0)(x), z

)
, x ∈ (0, z],

(4.8)

whereas the total reward measure f(x, z) for any x ∈ X0,1 is characterized as the unique
solution in the Banach space of bounded measurable real-valued functions on X en-
dowed with the sup norm to

f(x, z) =

R(x, 1) + β [1− (1− α) x ] f
(
φ(1)(x), z

)
, x ∈ (z, 1]

βf
(
φ0(x, z

)
, x ∈ (0, z].

(4.9)

Notice that for deriving expressions (4.8) and (4.9) we have used the fact that at the
uncontrollable state the system does not operate, i.e., we let g(0, z) = f(0, z) = 0 for any
possible threshold value z.

We will further use the marginal counterparts of such total evaluation measures.
For any fixed threshold z and action a, denote by 〈a, z〉 the policy that takes action a in
the initial period and adopts the z-threshold policy thereafter. Define the marginal work
measure w(x, z) and the marginal reward measure r(x, z) as

w(x, z) , g(x, 〈1, z〉)− g(x, 〈0, z〉),
= 1 + β [1− (1− α) x ] g(φ(1)(x), z)− β g(φ(0)(x), z) (4.10)

r(x, z) , f(x, 〈1, z〉)− f(x, 〈0, z〉),
= R(x, 1) + β [1− (1− α) x ] f(φ(1)(x), z)− β f(φ(0)(x), z) (4.11)
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If w(x, z) 6= 0, we define the MP measure

λMP (x, z) ,
r(x, z)

w(x, z)
. (4.12)

Total and Marginal Evaluation Measures

In order to analyze the PCL-indexability of (4.6) by means of the sufficient indexability
conditions (SIC) stated in Definition 3.2 we must first solve the evaluation measures
g(x, z) and f(x, z) for any fixed threshold z ∈ R and any x ∈ X0,1.

In order to do so, we must successfully address the problem posed by the fact that
possible information state trajectories {Xt} are naturally infinite, since Xt can take any
value in X at each t. To do so, we will take advantage of the fact that under a z-threshold
policy for any initial state x, possible information state trajectories {Xt} are infinite
but numerable, as they exhibit recurrent cyclical patterns depending on the threshold
level. Yet, as we will next show, the total performance measures do not converge to a
simple closed-form expression. In the cases in which such measures can be solved in
closed form, as e.g. Niño-Mora (2008), both direct verification of the SIC and obtaining
a closed-form index formula are possible. Yet, in both models addressed in this disser-
tation, a significant challenge is establish indexability and to derive an index policy, is
to do so despite the fact that the evaluation equations do not admit a straightforward
algebraic manipulation.

Next, we outline how to solve the evaluation measures to perform an indexability
analysis and further shows how to use such solutions to evaluate the index λMP (x) and
to establish the PCL-indexability of the model.

To solve for (4.8) and (4.9) in closed form we further define φ(a)
t (x) for a = 0, 1 as the

recursion generated by letting φ(a)
0 (x) , x and φ(a)

t (x) , φ(a)
0 (φ

(a)
t−1(x)) for a = 0, 1. Note

that for any x ∈ X0,1, both recursions φ(a)
t (x) converge as t→∞ to the respective limits

φ(0)
∞ ,

p(0)

1− ρ(0)
φ(1)
∞ ,

γ −
√
γ2 − 4p(1)(1− α)

2(1− α)

with γ , 1− ρ(1) + (p(1) + ρ(1))(1− α).

Most importantly, notice that both functions (4.1) and (4.2) and their resulting itera-
ted mappings can be seen as (non-linear) functions known as Möbius transformations
(or also as Linear Fractional Transformations). This observation was crucial to deriving
the results of the subsequent indexability analysis. The Möbius transformations proper-
ties and results deployed in this dissertation are reviewed in Appendix A.

The definitions of (4.1) and (4.2) ensure that that φ(1)
∞ < φ

(0)
∞ (as shown in Lemma B.1
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in Appendix B), and both limits are attractive fixed points of the active and passive dy-
namics respectively. This naturally divides the state space into three parts as portrayed
in Figure 4.2 where the active and passive actions (depending on the initial information
state x and the threshold z) produce movements in the state space, which are either both
increasing (if x, z ∈ (0, φ

(1)
∞ )) or both decreasing (if x, z ∈ [φ

(0)
∞ , 1]) or moving in opposite

directions (if x, z ∈ [φ
(1)
∞ , φ

(0)
∞ )). Hence, we exploit this knowledge to solve the evalua-

tion equations by distinguishing among three z−threshold cases, as discussed below.
In the sequel we assume, without loss of generality, that c = 0.

1

Case I

Case II

Case III

0 φ
(0)
∞φ

(1)
∞p(1) p(0) + ρ(0)

at = 0

at = 1

Figure 4.2: The state space and the fixed points of the active and passive dynamics for
the single elusive target hunt model

Case I: Threshold z ∈ [0, φ
(1)
∞ ) (Low thresholds)

In this case, the active set B(z) = (z, 1] contains the attractive fixed points of the recur-
sions associated to both actions, i.e. φ(0)

∞ , φ
(1)
∞ . This implies that once the state reaches the

active set B(z) it stays in B(z) as long as the target remains unhunted. Such a result fo-
llows from Lemma B.2 in Appendix A by which for any x ≥ φ(1)

∞ then φ(1)
t (x) ≥ φ(1)

∞ > z

for all t ≥ 0. Further, for z ∈ Bc(z) , [0, z]: φ(0)
t (x) ↗ φ0

∞. Hence, after a finite number
of passive slots t∗0(x, z) < ∞: φ(0)

t∗0(x,z)(x) > z, where we define the first (deterministic)

hitting time to the active set as t∗0(x, z) , min{t ≥ 1 : φ
(0)
t (x) > z}

Also, denote by θ(x, z, t) the survival probability representing the probability that the
target has not been hunted before time slot t under the z-threshold policy, starting from
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state x. Note that, for x > z

θ(x, z, t) ,
t−1∏
s=0

[
1− (1− α) φ(1)

s (x)
]

(4.13)

where we let θ(x, z, 0) = 1. Thus, the total work measure has the following evaluation:

g(x, z) =



∞∑
t=0

βt θ(x, z, t) x ∈ (z, 1]

βt
∗
0(x,z)

[ ∞∑
t=0

βt θ(y, z, t)

]
x ∈ (0, z]

(4.14)

where y , φ(0)
t∗0(x,z)(x).

Similarly, we obtain the total reward evaluation

f(x, z) =


∞∑
t=0

βt θ(x, z, t)R(φ
(1)
t (x, z), 1) x ∈ (z, 1]

βt
∗
0(x,z)

∞∑
t=0

βt θ(y, z, t)R(φ
(1)
t (y, z), 1) x ∈ (0, z]

(4.15)

The above infinite series are convergent, yet they do not admit closed form formulae.
Hence, they must be truncated in practice to evaluate w(x, z) and r(x, z) via (4.10) and
(4.11), and hence also for establishing that SIC conditions i) and ii) in Definition 3.2 hold.

In the following we list our main results, drawing on the technical analysis of the
marginal work measure presented in Appendix B. As explained in detail in that Appen-
dix, β∗ is defined as the discount factor β such that:( ∞∑

t=0

(β∗)tθ(x, z, t)− β∗
∞∑
t=0

(β∗)tθ(φ(0)(x), z, t)

)
= 0 (4.16)

We further define β(1) as:

β(1) ,
1

1 +
[
1− (1− α)(1− φ(1)

∞ )
] .

The strategy deployed for proving the positivity of marginal work measures in all
the threshold cases of concern, despite the lack of a closed form formulae, is the fo-
llowing: for each z-threshold case and every possible initial state x, based on proper-
ties of the active and passive recursions as Möbius transformations, we derive a lower
bound on w(x, z) and then study its positivity (or the conditions under which its posi-



54 CHAPTER 4. HUNTING ELUSIVE HIDING TARGETS: MARBP

tivity it is ensured).
The lower bounds on w(x, z) in this case are given in the following lemma.

Lemma 4.1. For all z < φ
(1)
∞ ,

(a) w(x, z) > min{1− β (1−α) x
(1−β)+β (1−α) z , 1− β} ≥ 0

for any x ∈ (0, z], 0 ≤ β ≤ 1.

(b) w(x, z) > (1− β) ≥ 0 for any x ∈ (z, φ
(0)
∞ ], 0 ≤ β ≤ 1.

(c) w(x, z) > 0 for any x ∈ (φ
(0)
∞ , 1], only if β < β∗.

The following proposition, based on the above lemmas, provides the conditions un-
der which positivity of the marginal work measures is ensured.

Proposition 4.1. The marginal work measure w(x, z) in problem (4.5) with x ∈ X0,1 and
z ∈ [0, φ

(1)
∞ ) is strictly positive for β < β∗ with β∗ > β(1).

The complete derivation of these bounds which proves Proposition 4.1 in shown in
Appendix B.
As there is no closed form expression for those infinite sums, β∗ cannot be computed
exactly. β(1) is a lower bound on it obtained by imposing that the lowest bound on
w(x, z) for x = 1 is strictly positive. Further bounds can be obtained by truncation of
the infinite sums in (4.16).
Proposition 4.1 ensures that condition (i) in the SIC holds for this case. Regarding the
monotonicity condition of the index, first notice that it follows from the definition of
t∗0(x, z) that: t∗0(φ(1)(x), x) = t∗0(φ(0)(x), x) = 0, since φ(0)(x) > x and φ(1)(x) > x, which
allows us to compute the index (4.12) for case I as follows:

λMP (x) =

R (1− α)

[ ∞∑
t=0

βt
[
φ

(1)
t (x) θ(x, x−, t)− βφ1

t (φ
(0)(x)) θ(φ(0)(x), x, t)

]]
∞∑
t=0

βt
[
θ(x, x−, t)− β θ(φ(0)(x), x, t)

] , (4.17)

for x ∈ (0, φ
(1)
∞ ), where x− stands for the sensing policy with active set equal toB(x−) =

[x, 1].
Notice, that for all x ∈ [0, φ

(1)
∞ ) the λMP (x) is an infinite sum of continuous functions

of the state. Next, to ensure indexability we must prove that this index is nondecreasing
with respect to the information state. For such a purpose, we must take the derivative
of the two infinite sums defining the index with respect to x. Since, there is no closed
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form formulae for those sums to manipulate it algebraically, the strategy to accomplish
such a goal is to show that it holds that a) ∂w(x,x)

∂x < 0 and b) ∂r(x,x)
∂x > 0 by manipulating

the derivative of each term in the infinite sum.

Lemma 4.2. For all x < φ
(1)
∞ , it holds that:

∞∑
t=1

βt

[
∂θ(x, x−, t)

∂x
− β ∂θ(φ

(0)(x), x, t)

∂x

]
< 0 (4.18)

∞∑
t=0

βt

[
∂φ

(1)
t (x) θ(x, x−, t)

∂x
− β ∂φ

(1)
t (φ(0)(x)) θ(φ(0)(x), x, t)

∂x

]
> 0 (4.19)

The following proposition, based on the above lemma, provides the conditions un-
der which MP index is monotone. Proof of Lemma 4.2 is included in the Appendix B.

Proposition 4.2. The index λMP (x) as defined in (4.17) for problem (4.5) is monotone increas-
ing and continuous in the information state x for x ∈ (0, φ

(1)
∞ )..

Case II: Threshold z ∈ [φ
(1)
∞ , φ

(0)
∞ ) (Intermediate thresholds)

In this case, the passive set Bc(z) contains the attractive fixed point of the recursion
associated to the active action, i.e. φ(1)

∞ , whereas the active set B(z) contains the attrac-
tive fixed point of the recursion associated to the passive action, i.e. φ0

∞. Hence, the
state Xt jumps above and below the threshold z, until the target is found. Following
the argument introduced in Niño-Mora (2009), define the map φ(x, z) , 1(x>z)φ

(1)(x) +

1(x≤z)φ(0)(x), and let φ0(x, z) = x, φt(x, z) = φ(φt−1(x, z), z) for t ≥ 1. Then, writing
at(x, z) , 1(φt(x,z)>z), (φa)t(x, z) , φt(x, z)at(x, z). In this case, the survival probability
has evaluation

θ(x, z, t) ,
t−1∏
s=0

[1− (1− α) (φa)s(x, z)] (4.20)

with θ(x, z, 1) = 0. Thus, total evaluation measures admit the following expressions

g(x, z) =

∞∑
t=0

βt at(x, z)θ(x, z, t) (4.21)

f(x, z) =

∞∑
t=0

βt R ( (φa)t(x, z), 1 ) θ(x, z, t) (4.22)

In this case also, since the expressions (4.21) and (4.22) cannot be calculated in a closed
form, truncation is neccesary for evaluating them numerically. However, we are able



56 CHAPTER 4. HUNTING ELUSIVE HIDING TARGETS: MARBP

to describe a recurrent cyclical pattern in the resulting information state Xt process un-
der a z-threshold policy, which allows us to describe the possible trajectories of the
information state to be considered. Specifically, using properties of the Möbius Trans-
formations we are able to establish regularities , in terms of the sequence of active and
passive slots until a target is hunted, that allow us to derive the corresponding lower
bounds on w(x, z) for this case, which is the most complex of the three threshold cases.
Those regularities are summarized in Lemma B.10, Lemma B.11 and Lemma B.12 of the
Appendix B. In the following we list the main results for this case.

Lemma B.10, Lemma B.11 and Lemma B.12 are used to derive the lower bound on
w(x, z) for this case.

The lower bounds on w(x, z) in this case are given in the following lemma.

Lemma 4.3. For all z ∈ [φ
(1)
∞ , φ0

∞),

(a) w(x, z) > min{1− β (1−α) x

(1−β)+β (1−α) φ
(1)
∞
, 1− β} ≥ 0

for any x ∈ (0, z], 0 ≤ β ≤ 1.

(b) w(x, z) > (1− β) ≥ 0 for any x ∈ (z, φ0
∞], 0 ≤ β ≤ 1.

(c) w(x, z) > 0 for any x ∈ (φ0
∞, 1], only if β < β∗

The following proposition, based on the above lemma, provides the conditions un-
der which positivity of the marginal work measures is ensured. The complete deriva-
tion of these bounds in shown in Appendix B.
Proposition 4.3 ensures that condition (i) in the SIC holds for this case.

Proposition 4.3. The marginal work measure w(x, z) in problem (4.5) with x ∈ X0,1 and
z ∈ [φ

(1)
∞ , φ

(0)
∞ ) is positive for β < β∗ with β∗ > β(1).

Further, Proposition 4.3 implies that Proposition 4.1 holds in this threshold case also.
Next, we compute the index (4.12) in this case, using the fact that t∗0(x, x) = 1 and,
given that φ(1)(x) < x < φ(0)(x), as follows:

λMP (x) =

∞∑
t=0

βtR (1− α)
[
(φa)t(x, x

−)θ(x, x−, t)− β(φa)t(φ
(0)(x), z) θ(φ(0)(x), x, t)

]
∞∑
t=0

βt
[
θ(x, x−, t)at(x, x−)− β θ(φ(0)(x), x, t)at(φ

(0)(x), z)
] ,

(4.23)
for x ∈ [φ

(1)
∞ , φ0

∞), where where x− stands for the sensing policy with active set equal to
B(x−) = [x, 1].
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Such an index can be expressed as an infinite sum of functions defined by a composition
of the two the Möbius transformations describing the active and passive dynamics, de-
pending on the concrete cycle that a given threshold x generates. Showing continuity of
the index in this case calls for further research, but the experimental evidence suggests
it holds.

Lemma 4.4. For all x < φ
(1)
∞ , it holds that:

∞∑
t=1

βt

[
∂θ(x, x−, t)at(x, x−)

∂x
− β∂θ(φ

(0)(x), x, t)at(φ
(0)(x), z)

∂x

]
< 0 (4.24)

∞∑
t=0

βt

[
∂(φa)t(x, x

−)θ(x, x−, t)
∂x

− β∂(φa)t(φ
(0)(x), x) θ(φ(0)(x), x, t)

∂x

]
> 0 (4.25)

The following proposition, based on the above lemma, provides the conditions un-
der which MP index is monotone. roof of Lemma 4.3 and Lemma 4.4 are included in
the Appendix B and also follow from the application of Lemma B.10, Lemma B.11 and
Lemma B.12 and further properties of the Möbius Transformations.

Proposition 4.4. The index λMP (x) as defined in (4.23) for problem (4.5) is monotone increas-
ing and continuous in the information state x for x ∈ [φ

(1)
∞ , φ

(0)
∞ ].

Case III: Threshold z ∈ [φ
(0)
∞ , 1] (High thresholds)

In this case, the passive set Bc(z) contains the attractive fixed points of the recursions
associated to both actions, i.e. φ(0)

∞ , φ
(1)
∞ . This, in turn, implies that once the information

state reaches the passive set Bc(z), it remains in it, regardless if the target has been
hunted or not at that moment of time. Such a result follows from Lemma B.2 by which
for all x > z, z ≥ φ

(0)
∞ ≥ φ

(0)
t (x) for all t ≥ 0. Further, for z ∈ [φ

(0)
∞ , 1] and x > z by

Lemma B.2: φ(1)
t (x) ↙ φ

(1)
∞ . Hence, after a finite number of active slots τ∗(x, z) < ∞,

with τ∗ , min{t ≥ 1 : Xt ≤ z},: φ1
τ∗(x) ≤ z. Notice that τ∗(x, z) for some x > z is a

random variable with maximum value t∗1(x, z) , min{t ≥ 1 : φ
(1)
t (x) ≤ z}.

Then, we have that

g(x, z) = 1{x>z}

t∗1(x,z)−1∑
t=0

βtθ(x, z, t)

 , (4.26)

f(x, z) = 1{x>z}

t∗1(x,z)−1∑
t=0

βt R( φ
(1)
t (x), 1 )θ(x, z, t)

 . (4.27)
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where θ(x, z, t) is the survival probability as defined in Case I. For x > z, equations
(4.26) and (4.27) are readily computed by evaluating finite sums with t∗1(x, z)− 1 terms.

The lower bounds on w(x, z) in this case are respectively given by Lemma 4.5.

Lemma 4.5. For all z ≥ φ0
∞,

(i) w(x, z) = 1 for any x ∈ (0, z], 0 ≤ β ≤ 1.

(ii) w(x, z) > 0 for any x ∈ (z, 1] for β < β∗.

The following proposition, based on the above lemma, provides the conditions un-
der which positivity of the marginal work measures is ensured.

Proposition 4.5. The marginal work measure w(x, z) in problem (4.5) with x ∈ X0,1 and
z ∈ [φ(0)∞, 1) is positive for β < β∗ with β∗ > β(1).

Hence, for x ≤ z it is readily seen that w(x, z) = 1 and r(x, z) = R(x, 1). Therefore, the
index in (3.19)

λMP (x) = R(x, 1), φ(0)
∞ ≤ x ≤ 1 (4.28)

The following proposition, based on the above lemma, provides the conditions un-
der which MP index is monotone.

Proposition 4.6. The index λMP (x) as defined in (4.28) for problem (4.5) is monotone increas-
ing and continuous in the information state xfor x ∈ (φ

(0)
∞ , 1].

Proof. Given the MP index is, in this case, a continuous function of the information state,
we take partial derivative to index (4.28), it follows that:

∂λMP (x)

∂x
=
∂R(x, 1)

∂x
=
∂r(1− α)x

∂x
= r(1− α) > 0.

Notice that in case III, the MP index λMP (x) coincides with the myopic index λmyopic(x),
as defined in (2.12).

Verification of PCL-indexability Sufficient Conditions

Based on Proposition 4.1-Proposition 4.6, we conclude:

Theorem 4.1. The single-site elusive target hunt ETD problem (4.5) is PCL indexable for β ∈
[0, β∗), with

β∗ >
1

1 +
[
1− (1− α)(1− φ(1)

∞ )
] .
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Therefore, it is indexable for β ∈ [0, β∗), and the MP index λMP (x) calculated above is its
Whittle index λ∗(x).

Short Proof: Proposition 4.1, Proposition 4.3 and Proposition 4.5 ensure the positivity
of the marginal work measure for β ∈ [0, β∗). Proposition 4.2, Proposition 4.4 and
Proposition 4.6 ensure monotonicity and continuity.
Remark:
Once the information state process Xt reaches the set [φ

(1)
∞ , φ

(0)
∞ ], it never leaves it. Then,

for x ∈ [0, φ
(0)
∞ ] the ETD problem (4.5) is PCL-indexable for all discount values β ∈ [0, 1],

as shown by Proposition 4.1, Proposition 4.3 and Proposition 4.5. Hence, the set of
information states for which PCL-indexability in ensured only if β < β∗, i.e. x ∈ (φ

(0)
∞ , 1],

applies only to a set of states which the system will, with certainty, leave and never
return to, since the subset [φ

(1)
∞ , φ

(0)
∞ ] contains the absorbing set of states of the system

operated under any z-threshold policy (See Lemma B.10).

4.3.2 Index Computation

The Whittle index has evaluation given by (4.17), (4.23) and (4.28). As already men-
tioned during the indexability analysis, the index λ∗(x) for the information states 0 ≤
x < φ

(0)
∞ in practice must be computed by truncating the infinite series defining them to

a finite number of terms.

Performance Bound Computation

Once the indexability of subproblem (4.5) is ensured by Theorem 4.1 and having pro-
posed a tractable procedure to compute its optimal value given any λ (i.e. the optimal
active set B∗(z) contains those information states x such that λ∗(x) − λ ≥ 0), we can
solve the Lagrangian dual problem (3.7) stated as

V d
D(x0) = min

λ≥0

N∑
n=1

[
max
πn∈Πn

f(xn,0, π)− λg(xn,0, π)

]
+ λ

M

(1− β)
(4.29)

Hence, we may use V d
D(x0) as a upper bound on the best attainable performance for

problem (4.4). In the next section we will compute such a bound for the simulated sce-
narios considered and use it to evaluate the suboptimality gap of our proposed policy
and other possible heuristics.
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Life was always a matter of
waiting for the right moment to act.
Paulo Coelho

Chapter 5

Computational Experiments

In this chapter we clarify and extend the ideas on the elusive target hunt MARBP pre-
sented in Chapter 4. First, we discuss, through a series of computational experiments,
index tractability, the validity of PCL-indexability conditions and of theorem Theo-
rem 4.1, and relative and absolute performance of Whittle’s MP index policy. Through-
out the analysis, we will seek to draw insightful interpretations of the results in terms
of the search problem of concern.

5.1 Index Evaluation

As an example of the use of our index computation method, we have simulated 103 runs
of a scenario involving a target instance with the following parametric specification:
q(0) = 0.1, p(0) = 0.5, ρ(0) = 1 − p(0) − q(0), q(1) = 0.5, p(1) = 0.3, ρ(1) = 1 − p(1) − q(1),
R = 1, and α = 0.05. The fixed points dividing the state space X0,1 , (0, 1] into the
three analyzed threshold cases are φ(1)

∞ = 0.3043 and φ(0)
∞ = 0.8333. The discount factor

β varied over the range β ∈ {0, 0.1, 0.2, . . . , 0.9, 0.99} and the critical discount factor is
in this case β(1) = 0.7468.

The index was computed using a MATLAB script for index evaluation based on the
expressions (4.17), (4.23), (4.28). For each β, the index λ∗(x) was evaluated on a grid
of x information state values of width 10−2 and the infinite sums of cases I and II were
approximately evaluated by truncating them to T = 104.

Figure 5.1 plots the results. As required by the PCL-indexability conditions, in each
case the index λ∗(x) is monotone nondecreasing in x. Note that the index is continuous
in x and piecewise differentiable and it converges as β ↗ 1 to a limiting index that can
be used for the expected total criterion. For each x the time required to compute the
index is negligible.
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Figure 5.1: Whittle MP index for different discount factors β

From Figure 5.1 we derive the following relevant conclusions regarding the intuition
of the optimal search policy for one elusive target in isolation.
For small enough x, (i.e., for x ≤ φ

(1)
∞ ) the index λ∗(x) may be negative for large values

of β, reflecting the fact that it is unproductive to search a site when it is very unlikely that
the target is visible, as both actions result in an increased probability that it is exposed
(further, this increase is larger if we do not search for it).

For xwithin the absorbing set of states (φ(1)
∞ ≤ x ≤ φ(0)

∞ ), as β ↗ 1, the marginal profit
of searching the target practically vanishes. This reflects the fact that as the system’s
lifetime grows, it becomes counterproductive to try to hunt a target which is unlikely to
be exposed, as doing so will only drive the target into hiding, delaying the hunt.
By the same reasoning, the fact that the λ∗(x) is decreasing in the discount factor β
within the absorbing set φ(0)

∞ , suggests that as the moment in which the target is hunted
is less important, then the best search strategy is to let the target be unsensed so that
its probability of being exposed raises (up to its maximum value if β = 1), and only
then attempt to hunt it. In simpler terms, if we have enough time to hunt the target, it
is best to wait for the moment in which it becomes the most likely to be exposed, and
only then try to hunt it. For larger values of x (i.e., for x > φ

(0)
∞ ), it is optimal to behave

myopically, since in those states the target is most likely to be exposed, yet those states
are only transient. (See, Figure 4.2).
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5.2 PCL-indexability

As required by the PCL-indexability condition (ii), Figure 5.1 shows that in each case the
index λ∗(x) is monotone nondecreasing in x (in fact, it is strictly increasing in x). This
section reports some computational evidence on the validity of condition (i), regarding
the positivity of the marginal work measures, considering 103 runs of the target instance
analyzed in Section 5.1.

Figure 5.2 shows the results of computing the marginal work measure w(x, z) fixing
the z threshold value in {0.05, 0.5, 0.85} and letting x vary in X0,1, analyzing a z value
for each of the possible threshold cases described in Section 4.3.1. The discount factor β
varied over the range β ∈ {0, 0.1, 0.2, . . . , 0.9, 0.99, 0.999}. For each β and z, the index
w(x, z) was evaluated on a grid of x values of width 10−2 and the infinite sums of
cases I and II were approximately evaluated by truncating them to T = 104. Figure 5.2
illustrates how w(x, z) differs for each threshold case considered. Further, notice that
in these examples of case I (z = 0.05) and case II (z = 0.5), the marginal work measure
positivity condition only holds for β ≤ 0.8.

Notice that these simulation results are in accordance with the indexability analysis
described in Chapter 4 and Appendix B. Also, in light of the interpretations provided
in Section 5.1, note that since the target never returns to the largest values of x (i.e.,
x > φ

(0)
∞ ), then the total expected search effort to hunt it will be larger (in time) if we

miss the opportunity to hunt it in those states than if we do not. Hence, the marginal
work measure becomes negative for this range of x as the time horizon of the search
increases.

5.3 Alternative Index Policies

In this section we define some alternative heuristics for the elusive target hunt MARBP
(4.4) as stated in subsection 4.2.1. In the following section we will report simulation
studies that compare the performance of Whittle index policy against these simpler
alternatives.

The Myopic Index Policy

The myopic policy is based on index λMyopic(x) = R(x, 1) for all x ∈ X0,1, as defined in
(2.12). Notice from Figure 5.1 that this index also corresponds with Whittle index λ∗(x)

for the case β = 0 and also for all discount factors β when x is in the range (φ
(0)
∞ , 1].
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Figure 5.2: Marginal work measure for the z-threshold cases
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The Belief State Index Policy

The belief state policy is based on index λB(x) = x, for all x ∈ X0,1, as defined in (2.13). At
this point, it is worth pointing out that since λMyopic(x), λB(x) and λ∗(x) are monotone
increasing functions of the information state x, in instances of identical targets the three
policies result in equivalent sensing decisions, as the higher the information state the
greater the priority a target receives under all search rules.

The Random Search Policy

The random selection policy is based on picking a site to search (among the ones that
contain an uhunted target) at random, with each site having the same probability of
being selected.

5.4 Bechmarking the Whittle Index Policy

In this section we report on some small-scale preliminary simulation studies we have
performed. The studies are based on MATLAB implementations we have developed to
compare the performance of the proposed Whittle index policy against the the myopic
policy, the belief state policy, and the random selection policy for the elusive target hunt
MARBP model proposed in Chapter 4.
Further, we have computed an upper bound on the optimal value (4.4) based on the
ideas discussed in Section 3.1.

5.4.1 Cautious and Reckless targets

In this experiment we assess the relative performance of the Whittle index policy against
the other heuristics distinguishing target instances between reckless and cautious. We call
reckless those targets which “after not being searched, are highly likely to expose themselves”,
i.e. with p(0) ≈ 1, while cautious targets display the opposite behavior, i.e. with p(0) ≈ 0

(while having p(0) > p(1)).
Each base instance has a single sensor M = 1 for searching within N = 30 sites, in one
instance all targets are reckless with p

(0)
n = 0.95, while in the other instance all targets

are cautious with p
(0)
n = 0.35. In both instances, p(1)

n = 10−3, q(1)
n = 0.97, q(0)

n = 0.003,
αn = 0.30 and Rn = 1 for all n. Thus, for both targets φ(1)

∞ = 0.0010 while for reckless
φ

(0)
∞ = 0.9694 and for cautious φ(0)

∞ = 0.9211.
We take the initial state xn = 1, which corresponds to exact knowledge ofN exposed

targets at the start of the search. Sensing costs were taken to be zero and we consider
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two possible discount factors β ∈ {0.7, 0.99}, where β∗ is equal to 0.7688 both for the
reckless and cautious instance. Both base instances were modified, letting the number
of sensors increase from M = 1 up to M = N = 30. For each instance, 103 independent
runs were performed on a horizon of T = 104 time slots.

Figure 5.4 shows the ETD net rewards under each policy as the number of sensors
in the network grows. The upper bound from the relaxation for all the instances with
reckless targets was of 24.510 and 29.735 for discount factors 0.7 and 0.99, respectively,
whereas for cautious targets those values were 22.767 and 29.374. Note that the bound
on the best result of the search is always less when targets are cautious, since they are
harder to hunt.

As depicted by Figure 5.4, the Whittle policy outperforms other heuristic policies for
any number of sensors with the performance improvement increasing as M ↗ N . In
fact, as the number of sensors grows all policies perform worse, except for the Whittle
policy for which the opposite occurs. The explanation of this results is that all other
heuristics overuse the network resources as they become available, searching more and
more sites possibly containing a target, thus making targets more elusive and hence,
more difficult to hunt. This is a salient result, since it points out a severe drawback
that myopic or simpler heuristic have for allocating resources in cases in which idling
is expected to have a greater impact on the system’s expected returns.

Another interesting result is that the Whittle index policy’s suboptimality gap tends
to 0 for a relatively small number of sensors when β ≈ 1, while the largest sensor
network size is required for the Whittle policy to be nearly optimal for smaller β (i.e.
when hunting targets is urgent). Such a result is related to the fact that all policies
successfully find the N targets, yet they differ significantly in the time they take to do
so. Thus, if the hunt mission is urgent a large sensor network (operated under the
Whittle index policy) will result nearly optimal whereas if the mission is just to find the
objects but not urgently a relatively small sensor network is required.

Table 5.1 shows the average time that the system takes to hunt all targets operated
under each policy. Such results illustrate the fact that a large sensor network which is
constantly searching will spend a larger period of time to hunt targets. However, all
policies succeed at finding the N targets at some period. The Whittle index policy takes
significantly less time to hunt targets than the alternative polices for both Reckless and
Cautious targets, yet hunting the Cautious targets naturally takes longer for all policies.
These results also show the overuse under other heuristics since their average opera-
ting time substantially increases as the number of sensors grows. Results in Table 5.1
are of particular relevance in terms of the specific motivating application proposed in
Section 4.1 and investigated in Rucker (2006). The main goal in that case was to have
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Figure 5.3: Experiment 1 - (5.3a) & (5.3b), Reckless and Cautious Targets instances
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Figure 5.4: Experiment 2 - (5.4a) & (5.4b), Reckless and Cautious Targets instances

-



5.4. BECHMARKING THE WHITTLE INDEX POLICY 69

Table 5.1: Average System’s time to hunt all targets

M / Reckless T̄MP T̄My T̄B T̄R

1 6.175 9.768 7.083 31.039
2 5.778 18.994 12.021 42.475
3 2.405 49.074 45.718 95.318
4 3.344 36.678 33.071 70.652
5 3.034 90.074 76.949 102.643

15 1.928 122.554 155.053 371.901
30 1.924 373.586 366.239 458.258

M / Cautious T̄MP T̄My T̄B T̄R

1 10.770 43.833 37.630 44.864
2 6.384 29.845 33.414 80.638
3 4.841 66.301 55.581 87.306
4 3.828 74.822 76.426 138.993
5 3.970 135.726 86.134 182.447

15 3.277 281.945 264.044 410.706
30 3.073 448.593 465.127 423.586

a scheduling policy which minimizes the average time until all missile launchers are
detected and destroyed. As Table 5.1 shows, the Whittle policy is the heuristic that
manages to find all targets in the least time.

To sum up, the proposed policy is always as good as the other heuristics, yet in
many instances it does yield important performance improvements. These performance
improvements of the Whittle policy are significant from a statistical point of view,and
from a practical point of view (performance gains can be up to 36,48%). Further, the
performance improvements become more important as the size of the sensor network
increases. In fact, the Whittle policy is even nearly optimal in both scenarios when
M ↗ N . Also, the Myopic and the Belief policy are not significantly different in these
scenarios, nor do they improve significantly on the random policy. Further, all the poli-
cies produce the same results when M = 1, basically because they are all equally forced
to not search the remaining unhunted targets. Performance differences are observed
when the system has the possibility of searching a site and a index policy prescribes not
to do so.
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5.4.2 Sensing Costs

In this experiment we assess the relative performance of the Whittle index policy against
the other heuristics as the sensing cost c increases. We consider two base instances of
N = 10 sites with M = 1 and M = 5 sensors. In both instances targets parameters are:
p

(1)
n = 10−3, q(1)

n = 0.97, p(0)
n = 0.05, q(0)

n = 0.003, αn = 0.30, xn = 1, β = 0.99 and
Rn = 1 for all n. Both base instances were modified, letting sensing costs for all sites
vary as c ∈ {0, 0.3, 0.5, 0.75}. For each instance, 103 independent runs were performed
on a horizon of T = 104 time slots.

Figure 5.5 plots the ETD net rewards under each policy and the upper bound as c
grows. Results show that the Whittle’s MP index policy outperforms the other policies
in all instances. The random policy performs significantly worse in this case, basically
because it prescribes to search sites, provided there are enough sensors, regardless of
the sensing cost, while the other two heuristics have been defined in such a way that
they prescribe to search only if their index value exceeds c.

Naturally, as searching becomes expensive, both the resulting performance under
all policies and its upper bound decrease. In the Figure 5.5 we observe that the system
yields 0 rewards for c > 0.75. Actually, the optimal value function vanishes when
c = R(1, 1), which in this case is c = 0.7.

Notice that the Whittle policy is nearly optimal for all values of the sensing cost
when M = 5 while the suboptimality gap of the other heuristics is larger for M = 5

than for M = 1, a result consistent with the overuse of the simpler heuristics pointed
out before.

5.4.3 Sensor Network Size

Perhaps one of the most notorious results obtained, with special consequence for the
design of sensing systems for hunting such elusive targets, is that if the horizon is long
enough (i.e. as β ↗ 1), operating a system’s under the Whittle index policy requires
a few sensors to optimally hunt a larger set of targets. In the instances plotted in 5.4a
we observe that a sensor network of M ≈ 12 or more sensors is enough to achieve the
best possible expected reward under the Whittle’index policy provided that targets are
reckless. If targets are cautious, as in 5.4b, a sensor network of M ≈ 8 is enough to
achieve optimality, as the system spends less time actively searching targets.

The results also suggest that if the optimal scheduling policy is not tractable, and we
are forced to operate the system under a simple heuristics, if we define heuristics which
do not advise the system to idle, it will take longer to find all targets. Thus, for this
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Figure 5.5: Experiment 2: Sensing Cost Effect with: M/N = 1/10 (5.5a) and M/N = 1/2
(5.5b)
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kind of problems it makes more sense to define heuristics of round-robin type, specify-
ing how to alternate between searching and not searching a target, as the Whittle index
does, than myopically operating the system.
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Multitarget Tracking
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Every step you take,
I’ll be watching you.
The Police.

Chapter 6

MARBP Formulation for a
Multitarget Tracking Kalman Filter
Model

In this chapter we formulate problem 2, stated in subsection 1.2.2, as a real-state MARBP
and we deploy the indexation methodology revised in Chapter 3 to propose a tractable
heuristic search policy of priority-index type based on Whittle index for RBs.

6.1 Motivation and Prior Work

As reviewed in Section 1.2, recent advances in sensor technology have provided mo-
dern multi-sensor systems with an increased operating flexibility to achieve given per-
formance objectives through the development of appropriate scheduling algorithms. The
widespread adoption of these cutting-edge technologies has stimulated this demand
and has ultimately matured into an emerging field of research: sensor management.

A concrete example of sensor management problems posed by the introduction of an
advanced sensing technology is given by the active electronically scanned phased-array
radar. Typical pulse radar systems operate by illuminating a scene with a short pulse of
electromagnetic energy and collecting the energy reflected from the scene. In contrast
to traditional radar systems, in which illumination parameters, such as beam direction
and shape among others, are typically hard-wired, phased-array radars are capable of
electronically controlling these parameters during system operation so as to best extract
information from the scene. Naturally, efficient usage of these flexible sensing resources
requires the scheduling of transmission parameters so as to optimize the system’s per-
formance. See Moran et al. (2008) for a survey of the substantial literature in the area.
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Phased-array radars, operating in the tracking or revisit mode, maintain targets’ lo-
cation estimates by steering the radar’s beam to point toward desired directions, as
opposed to conventional track-while-scan radars, which track targets while the radar’s
antenna mechanically rotates at a constant rate. In this context, appropriately switching
beam direction (which implies the monitoring of the total energy intercepted by a mea-
sured target) raises the possibility of improving tracking performance via the design
of a suitable scheduling control policy adopted for dynamic prioritization of target track
updates.

Early work on the subject of optimal scheduling of track updates in phased array
radars dealt with the minimization of radar energy required for track maintenance, see,
e.g., van Keuk and Blackman (1993), Stromberg (1996), Hong and Jung (1998). The
design of optimal target track updates scheduling policies in highly idealized system
models which ignore other relevant issues as target detection, waveform selection, and
control of the Pulse Repetition Interval (PRI) is addressed in recent work. In Krishna-
murthy and Evans (2001), a beam scheduling algorithm is derived from a discrete-time
and discrete-state POMDP model which assumes that targets’ motion from one PRI to
the next is negligible (i.e. targets are stationary). Exploiting the special structure of the
suggested POMDP as a classic MABP, the optimal policy is characterized in terms of an
index policy.

A discrete-time finite horizon formulation for non-stationary targets in which targets’
motions and targets’ track measurements follow scalar, linear Gauss–Markov dynamics,
and target Tracking Error Variances (TEVs) are updated via Kalman filter’s equations
is introduced in Howard et al. (2004). The authors seek to to optimize the sum of the
targets’ track error variances over a finite horizon and propose a myopic scheduling
policy, which updates at each time a target of largest TEV, thus taking a target’s current
TEV as its priority index . They further claim such a myopic-index policy to be optimal in
for the case of two symmetric targets, yet no full proof of such result is provided. The
inadequacy of the classic model is also pointed out in La Scala and Moran (2006), where
the authors extend the results in Howard et al. (2004) on optimality of the greedy-index
scheduling policy for tracking two symmetric targets to more general linear dynamical
systems under the same finite-horizon total TEV performance objective.

6.1.1 Goals and Contributions

It is the goal of this work to derive a multitarget track update heuristic scheduling
policy for a model that extends the one formulated in Howard et al. (2004), in which
targets’ motions and targets’ track measurements follow scalar, linear Gauss–Markov
dynamics, and target TEVs are updated via Kalman filter’s equations. Further, we aim
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at proposing a policy which is dynamic, readily implementable and further exhibits a
near-optimal performance both under the discounted and the total criterion.

We accomplish this goal by formulating the proposed extended model as a real-state
MARBP and deploying the recent extensions of the existing theoretical and algorithm
results on discrete-state RB indexation to the real-state case.

This work makes the following contributions. It investigates a MARBP formula-
tion of the dynamic problem of tracking multiple asymmetric targets with scalar linear
Gauss–Markov dynamics, which incorporates both tracking-error and measurement
(energy) costs, to obtain a tractable index policy that performs well based on restless
bandit indexation.

It further successfully deploys the methodology announced in Niño-Mora (2008)
to obtain a novel and dynamic index policy for the model of concern, which is both
non-myopic and depends on the target’s initial TEV as well as on its motion and mea-
surement dynamics’ specific parameters. The PCL-indexability of the model is shown
for the ETD problem and it is extendable to the LRA problem. All this is done despite
the lack of closed form expressions for the required performance measures, which is a
severe technical difficulty introduced by considering a real state variable.

These contributions will be presented in this chapter in the following order: first
we describe the model and we formulate it as a real-state MARBP. Next, in the re-
mainder of the chapter we discuss the indexability analysis and the resulting index
computation method. In the subsequent chapter, we present the computational results
obtained which demonstrate the tractability of index evaluation, the substantial perfor-
mance gains that the Whittle index policy achieves against myopic policies advocated
in previous work as well as the resulting index policies suboptimality gaps.

6.2 Model description and MARBP Formulation

We consider the tracking of N moving targets labeled by n ∈ N , {1, . . . , N} by means
of a sensing system composed of M phased array radars. All radars in the system are
synchronized to operate over time slots t = 0, 1, . . ., where a time slot corresponds to a
PRI. The system is controlled by a central coordinator, who at each slot t must decide to
update the tracks of at most M targets by steering toward them the beams of as many
radars to measure their positions.

As in Howard et al. (2004) and La Scala and Moran (2006), we assume that there are
no clutter or false measurements, and that the probability of target detection is unity.
For simplicity we also assume that targets move in one dimension. Let xn,t be the (un-
observable) position of target n in the real line R at the beginning of slot t. If a radar
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measures target n’s position in slot t, a noisy measurement yn,t is obtained. Decisions
on which target tracks to update at each time are formulated by binary action processes
an,t ∈ {0, 1}, where an,t = 1 if target n is measured in slot t and an,t = 0 otherwise.

The targets move over R following independent linear Gauss–Markov dynamics

xn,t = Fnxn,t−1 + ωn,t, t ≥ 1, (6.1)

where the position-noise process ωn,t is an i.i.d. zero-mean Gaussian white noise with
variance qn, and Fn is a fixed constant in R.

At a slot t in which target n is measured, the corresponding measurement yn,t is
generated by the following linear Gauss–Markov dynamics

yn,t = Hnxn,t + νn,t, (6.2)

which is target specific but independent of the radar being used (as radars are assumed
homogenous), and where the measurement-noise process νn,t is an i.i.d. zero-mean Gau-
ssian white noise with variance rn, and Hn ∈ R.
Although our approach applies to arbitrary parameters Fn and Hn, for simplicity of
exposition we will focus the subsequent discussion on the case Fn = 1 and Hn = 1.

If an initial estimate of the position and of the Tracking Error Variance (TEV), de-
noted by x̂n,0 and pn,0, respectively, are given for each target n, then, as discussed in
Section 1.3, the optimal minimum-variance predicted estimates are given by the Kalman
filter. The TEV pn,t, which describes the uncertainty in target n’s track at the beginning
of slot t, is recursively updated by the Kalman equations

pn,t =


pn,t−1 + qn, if an,t = 0

pn,t−1 + qn
pn,t−1/rn + qn/rn + 1

, if an,t = 1

(6.3)

To take actions an,t, the coordinator follows a scheduling policy π, which is drawn from
the class Π(M) of admissible scheduling policies that are nonanticipative (based on the
history of states and actions) and measure at most M targets per time slot,

N∑
n=1

an,t ≤M, t = 0, 1, 2, . . . (6.4)

We assume that a radar which updates the target n’s track in a time slot incurs a mea-
surement cost cn ≥ 0, representing the cost of beam energy expended for the track’s
update. Further, we take the tracking-error cost at slot t to be dn pn,t+1, where dn > 0 is
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a constant that may differ by target. The flexibility furnished by the dn will be of use if
the relative importance of tracking precision differs across targets. Hence, the one-slot
cost incurred by taking action a on target n when it occupies tracking error variance pn,t
is Cn(pn,t, a) , dn pn,t+1 + hna.

6.2.1 MARBP Formulation

First, we shall take the state of each target n to be its Scaled Tracking Error Variance
(STEV) sn,t , pn,t/rn, which follows the dynamics

sn,t =


φ

(0)
n

(
sn,t−1

)
, if an,t = 0

φ(1)
n

(
sn,t−1

)
, if an,t = 1,

where
φ(0)
n (s) , θn + s, φ(1)

n (s) ,
θn + s

1 + θn + s
(6.5)

and θn , qn/rn is the position to measurement noise variance ratio for target n.

Notice that such a STEV state, being a scaled variability measure of target’s n current
position estimate, naturally moves over a state space with is a subset of R+. In fact, it
holds that S , [0,∞), where φ(1)

∞ is the minimum STEV achieved after uninterrupted
measurement. Hence, for some rn ∈ (0,∞), sn,0 = 0 corresponds to exact knowledge of
the targets’ initial positions and sn,0 = ∞ to complete uncertainty of the targets’ initial
positions. Thus, S results from the union of the transient state 0 and the absorbing set
of states [φ

(1)
∞ ,∞).

As alleged by Whittle in Whittle (1988) when describing the submarine surveillance
example, the passive and active dynamics, φ(0)

n (s) and φ
(1)
n (s), result in contrary move-

ments in the state space S , [0,∞), which respectively correspond to loss and gain of
precision on target n’s location estimates.

Hence, the one-slot cost incurred by taking action a on target n when it occupies
STEV state s is Cn(s, a) , dnrnφ

(a)
n (s) + hna.

6.2.2 Performance Objectives

Given that there is no natural stopping time specified a priori for the tracking system,
we will consider the following infinite horizon dynamic optimization problems:



80 CHAPTER 6. MULTITARGET TRACKING KALMAN FILTER MODEL: MARBP

(1) find a β-discounted reward optimal policy, i.e.,

min
π∈Π(M)

Eπs

[ ∞∑
t=0

N∑
n=1

βtCn
(
sn,t, an,t

)]
, (6.6)

where 0 < β ≤ 1 is the discount factor, s0 = (sn,0)Nn=1 is the initial joint TEV state, for n
in {1, 2, . . . , N}, and Eπs0 [·] denotes expectation under policy π conditioned on the initial
joint state being equal to s0; and (2) find an average-optimal policy,

min
π∈Π(M)

lim sup
T→∞

1

T
Eπs

[
T−1∑
t=0

N∑
n=1

Cn
(
sn,t, an,t

)]
, (6.7)

which minimizes the expected long-run average cost.

Problems (6.6) and (6.7) are discrete-time MARBP with real-state projects. Each
project feeds on the limited sensing system’s resources and it is modeled as a binary-
action MDP whose STEV state sn,t lives on the Borel state space S. Note that, taking
action an,t on target n, with an,t = 1: a beam is steered toward target n to measure its
position; an,t = 0: no beam is steered toward target n to measure its position, leads to the
following consequences: (i) the tracking of target n results in a system cost Cn

(
sn,t, an,t

)
per PRI, which describes the tracking accuracy for a given resource consumption an,t;
and (ii) the target’s next state sn,t+1 is given by (6.5), which implies that, given an,t, state
transitions are deterministic and independent across projects.

As reviewed in chapter Chapter 2, the existence of an optimal solution for a MARBP
such as (6.6) is ensured under appropriate conditions on Cn and an,t, (cf. Hernández-
Lerma and Lasserre (1999)). Moreover, such a solution is a deterministic stationary policy
taken from the class Π(M) of admissible scheduling policies and it is characterized by the
corresponding Dynamic Programming Equationss (DPEs). Nonetheless, exact numeri-
cal solution to such DPEs is generally intractable due to specific difficulties introduced
by its continuous state space. This computational infeasibility is also the case for the
average-cost MARBP (6.7). Hence, instead of attempting to solve such problems op-
timally, we shall pursue the more practical goals of designing and computing a well-
performing heuristic policy of priority-index type.

6.3 Real State RB Indexation Analysis

As reviewed in Chapter 3, with the purpose of establishing Whittle’s indexability 3.1
by means of deploying sufficient indexability conditions 3.2, we focus on an individual
site’s subproblem. Thus, in the sequel we shall focus for concreteness on ETD-cost
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problem (6.6), although our approach also applies to LRA-cost problem (6.7).

min
πn∈Π(n)

Eπn
sn,0

[ ∞∑
t=0

βt{Cn
(
sn,t, an,t

)
+ λan,t}

]
, (6.8)

where (6.8) is a single-project restless bandit subproblem, consisting of tracking target n
in isolation. Πn denotes the class of admissible policies for tracking a single target, i.e.,
deciding when the radar tracking it should be active (an,t = 1) and passive (an,t = 0)
and with λ being a constant parameter representing the extra cost incurred per unit of
time the radar is active.

Next, we would like to establish that each subproblem (6.8) has the key structural
indexability property defined by 3.1. For such a purpose, we will deploy conditions 3.2 to
establish that the problem is indexable with respect to the family of z-threshold policies,
and thus we must start by computing the performance measures such policies. In the
remainder of this section we focus on a generic single target subproblem as (6.8), and
hence drop the superscript n from the above notation.

We recall from Chapter 3 that we can evaluate the performance of any tracking po-
licy π ∈ Π along two dimensions: the work measure g(s, π) giving the ETD number of
times the target is measured under policy π starting at s0 = s; and the cost measure
f(s, π) giving the corresponding ETD cost incurred. Thus,

g(s, π) , Eπs

[ ∞∑
t=0

βtat

]
, f(s, π) , Eπs

[ ∞∑
t=0

βtC(st, at)

]
.

So that we can formulate the single-targets’s optimal tracking subproblem (6.8) in
terms of these measures as

min
π∈Π

f(s, π) + λg(s, π). (6.9)

Once again, we shall consider problem (6.9), which is a real-state MDP, as target’s λ-
charge subproblem. Thus, its optimal policy belongs to the family of deterministic station-
ary policies ΠSD, naturally represented by their active (state) sets (in this case, that is the
set of STEV states where measuring the target is prescribed). For an active setB ⊆ S, we
shall refer to the B-active policy. As in Section 4.3, we shall focus attention on the family
of threshold policies. For a given threshold level z ∈ R , R∪{−∞,∞}, the z-threshold policy
measures the target in STEV state s iff s > z, so its active set is B(z) , {s ∈ S : s > z}.
Note that B(z) = (z,∞) for s ≥ 0, B(z) = S = [0,∞) for z < 0, and B(z) = ∅ for z =∞.
We denote by g(s, z) and f(s, z) the corresponding work and reward measures.

For fixed z, work measure g(s, z) is characterized as the unique solution to the func-
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tional equation

g(s, z) =

1 + βg
(
φ(1)(s), z

)
, s ∈ (z,∞]

βg
(
φ(0)(s), z

)
, s ∈ (0, z],

(6.10)

in the Banach space of bounded measurable real-valued functions on S endowed with
the sup norm. Whereas cost measure f(s, z) is characterized by

f(s, z) =

C(s, 1) + βf
(
φ(1)(s), z

)
, s ∈ (z,∞],

C(s, 0) + βf
(
φ(0)(s), z

)
, s ∈ (0, z].

(6.11)

We shall use the marginal counterparts of such measures. For threshold z and action
a, denote by 〈a, z〉 the policy that takes action a in the initial slot and adopts the z-
threshold policy thereafter. Define the marginal work measure

w(s, z) , g(s, 〈1, z〉)− g(s, 〈0, z〉),
= 1 + β g(φ(1)(s), z)− β g(φ(0)(x), z) (6.12)

and the marginal cost measure

c(s, z) , f(s, 〈0, z〉)− f(s, 〈1, z〉).
= (C(s, 0)− C(s, 1)) + β

(
f(φ(0)(s), z)− f(φ(1)(x), z)

)
(6.13)

If w(s, z) 6= 0, define further the MP measure

λMP (s, z) ,
c(s, z)

w(s, z)
. (6.14)

Total and Marginal Evaluation Measures

In order to analyze the PCL-indexability of (6.8) by means of the Sufficient Indexability
Conditions (SIC) stated in definition 3.2 we must first solve the evaluation measures
g(x, z) and f(x, z) for any fixed threshold z ∈ R and any s ∈ S.

As already mentioned in Section 4.3.1, the main challenge to do so is posed by the
fact that possible STEV state trajectories {St} are naturally infinite, since St can take
any value in a infinite non-denumerable set S ⊆ R+ at each t. Therefore, we will take
advantage of the fact that under a z-threshold policy for any initial state s, possible
STEV state trajectories {St} are infinite but numerable, as they exhibit recurrent cyclical
patterns depending on the threshold level. Further, these patterns (in terms of possible
active-passive cycles) are the same as the ones described for the model analyzed in
Chapter 4.
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Yet, as we will next show, the total and marginal cost measures do not converge to a
simple closed-form expression. Next, we outline how to solve the evaluation measures
to perform an indexability analysis of present model (analogous to the analysis done in
Section 4.3) and further show how to use such solutions to evaluate the index λMP (x).

To solve for (6.10) and (6.11) in closed form we further define φ(a)
t (s) for a = 0, 1 as

the recursion generated by letting φ(a)
0 (s) , s and φ

(a)
t (s) , φ

(a)
0 (φ

(a)
t−1(s)) for a = 0, 1.

Note that for any s ∈ S, both recursions φ(a)
t (s) converge as t → ∞ to the respective

limits

φ(0)
∞ ,∞ φ(1)

∞ ,
1

2

(√
θ(4 + θ)− θ

)
,

We recall that θn , qn/rn is the position to measurement noise variance ratio for target n.

Both of the resulting iterated mappings can be seen as (non-linear) functions known
as Möbius transformations (or also as Linear Fractional Transformations). This obser-
vation was crucial to deriving the results of the subsequent the indexability analysis.
The Möbius transformations properties and results deployed in this work are revised in
Appendix A.

The definitions in (6.5) ensure that, as long as θ < ∞, that φ(1)
∞ < φ

(0)
∞ = ∞ (as

shown in Lemma B.1 in Appendix B), and both limits are attractive fixed points of the
active and passive dynamics respectively. This naturally divides the state space in two
parts as portrayed in figure Figure 6.1 where the active and passive actions (depending
on the initial STEV state s and the threshold z) produce movements in the state space,
which are either both increasing (if s, z ∈ (0, φ

(1)
∞ )) or moving in opposite directions (if

s, z ∈ [φ
(1)
∞ , φ

(0)
∞ )). Hence, we exploit this knowledge to solve the evaluation equations

by distinguishing among two z−threshold cases, as discussed below.

Notice that the subset of states S , [φ1
∞,∞) is absorbing for target n. Note further that

φ1
∞ ≤ θ iff θ ≥ 1/2, which will be the case if, for instance, radar’s measurements on

target n are precise enough, while φ1
∞ ≥ θ iff θ ≤ 1/2.

In the sequel we assume, without loss of generality, that h = 0.

Case I: Threshold z ∈ [0, φ1
∞) (Low thresholds)

In this case, the active set B(z) = (z, 1] contains the attractive fixed points of the re-
cursions associated to both actions, i.e. φ(0)

∞ , φ
(1)
∞ . This implies that once the STEV state

reaches the active set B(z) it stays in B(z) for the rest of the tracking system’s life. Such
a result follows from Proposition B.2 in Appendix A by which for any s ≥ φ

(1)
∞ then
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φ
(0)
∞ = ∞

Case I

Case II0 φ
(1)
∞

at = 0

at = 1

Figure 6.1: The state space and the fixed points of the active and passive dynamics for
the single target tracking model

φ
(1)
t (s) ≥ φ

(1)
∞ > z for all t ≥ 0. Further, for z ∈ Bc(z) , [0, z]: φ(0)

t (s) ↗ φ0
∞. Hence,

after a finite number of passive slots t∗0(s, z) < ∞: φ(0)
t∗0(s,z)(x) > z, where we define the

first (deterministic) hitting time to the active set as t∗0(s, z) , min{t ≥ 1 : φ
(0)
t (s) > z}

g(s, z) =


1

(1− β)
x ∈ (z, 1]

βt
∗
0(x,z) 1

(1− β)
x ∈ (0, z]

(6.15)

Notice that the above total work measure admits a closed form expression as it can be
seen as a special case of (4.14) (corresponding to the case in which θ(s, z, t) = 1 for all
t). Similarly, we obtain the total reward evaluation

f(s, z) =


d r

∞∑
t=0

βtφ
(1)
t (s) s ∈ (z, 1]

d r

t∗0(s,z)−1∑
t=0

βtφ
(0)
t (s) + βt

∗
0(s,z)

∞∑
t=0

βtφ1
t (y) s ∈ (0, z]

(6.16)

where y , φ(0)
t∗0(x,z)(x).

The infinite series in (4.15) are convergent, yet they do not admit closed form formu-
lae. Hence, they must be truncated in practice to evaluate r(x, z) via (6.13), and hence
Möbius Transformations properties are required for establishing that SIC condition ii)
holds.
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The following proposition, based on the above lemma, provides the conditions un-
der which positivity of the marginal work measures is ensured.

Proposition 6.1. The marginal work measure w(s, z) in problem (6.8) with s ∈ S and z ∈
[0, φ

(1)
∞ ) is strictly positive for β ∈ [0, 1).

Proof.

w(s, z) =


1 s ∈ (z,∞]

1−DβM 1− βD
(1− β)

s ∈ (0, z]
(6.17)

where D ,
(
t∗0(s, z)− t∗0(φ(1)(s), z)

)
and M = t∗0(s, z).

For s > z, by Lemma C.1 in Appendix C, any initially active state s, it will hold that
φ(0)(s) > z and φ(1)(s) > z. Thus, w(s, z) = 1 for s ∈ (z,∞]. As shown in Appendix C,
Lemma C.2 ensures that D ∈ {0, 1}, thus w(s, z) > 0 for s ∈ (0, z].
Actually, it lowest bound w(s, z) ≥ 1 − βM > 0 given that M ≥ 1 for all s ≤ z for
β < 1.

Regarding index computation, first notice that it follows from the definition of t∗0(s, z)

that: t∗0(s, s) = 1 and, given that φ(1)(s) > s and φ(0)(s) > s, t∗0(φ(1)(s), s) = t∗0(φ(0)(s), s) =

0. This allows us to compute the MP index (6.14) for case I as follows:

λMP (s) =

d r

[ ∞∑
t=0

βt
[
φ

(1)
t (φ(0)(s))− φ(1)

t (φ(1)(s))
]]

(1− β)
, s ∈ (0, φ(1)

∞ ) (6.18)

Notice, that for all x ∈ [0, φ
(1)
∞ ) the λMP (x) is an infinite sum of continuous functions of

the state. Next, to ensure indexability we must prove that this index is nondecreasing
with respect to the STEV state. For such a purpose, we must take the derivative of the
two infinite sums in the denominator of the MP ratio defining the index with respect to
s. Since, there is no closed form formulae for those sums to manipulate it algebraically,
the strategy to accomplish such a goal is to show that it holds ∂c(s,s)

∂s > 0 by manipulat-
ing the derivative of each term in the infinite sum.

Lemma 6.1. For all s < φ
(1)
∞ , it holds that:

∞∑
t=0

βt

[
∂φ

(1)
t (φ(0)(s))

∂s
− ∂φ

(1)
t (φ(1)(s))

∂s

]
> 0 (6.19)

The following proposition, based on the above lemma, provides the conditions un-
der which MP index is monotone. Proof of Lemma 6.1 is outlined in Appendix C, and
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it follows from Proposition A.5 of the Appendix A.

Proposition 6.2. The index λMP (s) = c(x,x)
(1−β) as defined in (6.18) for problem (6.8) is monotone

increasing and continuous in the STEV state s for s ∈ (0, φ
(1)
∞ ).

Case II: Threshold z ∈ [φ1
∞,∞) (Intermediate thresholds)

In this case, the passive set Bc(z) contains the attractive fixed point of the recursion
associated to the active action, i.e. φ(1)

∞ , whereas the active set B(z) contains the attrac-
tive fixed point of the recursion associated to the passive action, i.e. φ0

∞. Hence, the
state St jumps above and below the threshold z, or the rest of the tracking system’s life.
Following the argument introduced in Niño-Mora and Villar (2009), we consider the it-
erates at(s, z) and φt(s, z), which are the action and STEV processes at and st generated
under the z-threshold policy starting at s. They can be recursively computed as follows.
Letting

φ(s, z) , 1s>zφ
(1)(s) + 1s≤z(s)φ(0)(s),

where 1s>z is the indicator of set B(z), φ0(s, z) , s and φt(s, z) , φ
(
φt−1(s, z), z

)
for

t ≥ 1. Further, a0(s, z) , 1s>z , and at(s, z) , 1s>z
(
φt(s, z), z

)
for t ≥ 1.

Note that the processes: φt(s, z) and at(s, z), can be respectively analyzed as forward
orbits through the initial state s of the underlying discrete deterministic dynamical sys-
tems: (N0,S, φ) and (N0, {0, 1}, a). Such orbits describe the evolution of the total cost
and work measure and, depending on the value of the threshold z, they converge to
some (asymptotically) periodic orbit. In case I, resulting orbits are closed since the pro-
cesses converge to some constant orbit (or fixed point). Hence, asymptotic or closed-
form formulae for the work and cost evaluation measures can be derived by studying
the limiting behavior of the corresponding orbits. For an introductory review of discrete
nonlinear dynamical systems and chaos theory see e.g. Wiggins (2003).

In the following we list our main results, drawing on the technical analysis of the
marginal reward measure presented in Appendix C. Those results are based on pro-
perties of the underlying discrete dynamical systems, we shall perform an indexability
analysis, as in this case SIC cannot be verified by algebraic means. This section outlines
how to do so, and further shows how to use such properties to evaluate the index λ∗(s).
The total evaluation measures admit the following expressions

g(x, z) =

∞∑
t=0

βt at(s, z) (6.20)
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f(x, z) = d r
∞∑
t=0

βt(φa)t(s, z) (6.21)

Expression (6.20) admits closed-form expressions depending on the specific z-threshold
value consired. As it is disccussed in Appendix C it is simply an alternated sum of
βt, depending on the resulting (asymptotically) periodic orbit of the discrete tracking
system. However, as in the previuos model, (6.21) cannot be calculated in a closed
form, and thus, truncation is neccesary for evaluating it numerically.

Next, we are able to describe a recurrent cyclical pattern in the resulting information
state St process under a z-threshold policy, which allows us to describe the possible
trajectories of the information state to be considered. Specifically, using properties of
the Möbius Transformations we are able to establish regularities , in terms of the se-
quence of active and passive slots until a target is hunted, that allow us to derive the
corresponding lower bounds on w(s, z) for this case, which is the most complex of the
three threshold cases. Those regularities are summarized in Lemma C.3, Lemma C.4
and Lemma C.5 of the Appendix C. In the following we list the main results for this
case.

Using Lemma C.3, Lemma C.4 and Lemma C.5 we derive the lower bound onw(s, z)

for all s ∈ S, as given by Lemma 4.3.

Lemma 6.2. For all z ∈ [φ
(1)
∞ ,∞), s ∈ S: w(x, z) ≥ (1− β).

The following proposition, based on the above lemmas, provides the conditions un-
der which positivity of the marginal work measures is ensured.A derivation of this
bound is outlined in Appendix C.

Proposition 6.3. The marginal work measure w(s, z) in problem (6.8) with s ∈ S and z ∈
[φ

(1)
∞ ,∞) is positive for β ∈ [0, 1).

Next we compute the index (3.18) in this case, using the fact that t∗0(s, s) = 1 and,
given that φ(1)(s) < s < φ(0)(s), as follows:

λMP (s) =

d r

∞∑
t=0

βt
[
(φa)t(φ

(0)(s), s)− (φa)t(φ
(1)(s), s)

]
∞∑
t=0

βt
[
at(φ

(1)(s), s)− at(φ(0)(s), s)
] , s ∈ [φ(1)

∞ ,∞) (6.22)



88 CHAPTER 6. MULTITARGET TRACKING KALMAN FILTER MODEL: MARBP

Such an index can be expressed as an infinite sum of functions defined by a composi-
tion of the two the Möbius transformations describing the active and passive dynamics,
depending on the concrete cycle that a given threshold s generates. Showing continu-
ity of the index in this case calls for further research, but the experimental evidence
suggests it holds.

Lemma 6.3. For all s ≥ φ(1)
∞ , it holds that:

∞∑
t=1

βt

[
∂ at(φ

(1)(s), s)

∂s
− β∂at(φ

(0)(s), s)

∂s

]
≤ 0 (6.23)

∞∑
t=0

βt

[
∂(φa)t(φ

(0)(s), s)

∂s
− ∂(φa)t(φ

(1)(s), s)

∂s

]
> 0 (6.24)

The following proposition, based on the above lemma, provides the conditions un-
der which MP index is monotone. Proof of Lemma 6.3 is outlined in Appendix C, and
it follows from Proposition A.5 of the Appendix A.

Proposition 6.4. The index λMP (s) = c(s,s)
w(s,s) as defined in (6.22) for problem (6.8) is monotone

increasing and continuous in the information state s for s ∈ [φ
(1)
∞ ,∞).

Notice that for the limit case z =∞, under the z-threshold policy St will never be above
threshold starting from any possible initial level of the STEV s, hence the active set is
the null set, i.e. B(z) = ∅. Thus, in this case every possible initial state is a passive initial
state which reduces the computation of work and reward total measures significantly,
as

St = φt(s, z) = φ
(0)
t (s, z) and at = 0 t ≥ 0 ∀s : s ∈ S

Hence, in this case at converges to a constant orbit whose fixed point is 0 while st
grows linearly in time up to infinite. Elementary arguments give that for any s in S the
total work and cost measure have the following limit:

g(s,∞) = 0

f(s,∞) = d r

(
s

(1− β)
+

θ

(1− β)2

)

Hence, for any s in S the corresponding marginal measures are:

w(s,∞) = 1 (6.25)

c(s,∞) = d r

(
(s+ θ)2

(1− β)(1 + s+ θ)

)
(6.26)
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From this, it is readily obtained that the MP measure λ(s,∞) = c(s,∞) can be expressed
as follows:

λMP (s,∞) = d r

(
(s+ θ)2

(1− β)(1 + s+ θ)

)

Therefore the index (4.12) λMP (s) has the limit:

lim
s→∞

λMP (s) = d r

(
lim
s→∞

(s+ θ)2

(1− β)(1 + s+ θ)

)
=∞ (6.27)

6.3.1 Verification of PCL-indexability

Based on propositions 6.1-6.4, we conclude:

Theorem 6.1. The single-target tracking ETD problem (6.8) is PCL-indexable for β ∈ [0, 1).
Therefore, it is indexable for β ∈ [0, 1)., and the MP index λMP (s) calculated above is its
Whittle index λ∗(s).

Short Proof: Proposition 6.1 and Proposition 6.3 ensure the positivity of the marginal
work measure for β ∈ [0, 1). Proposition 6.2 and Proposition 6.4 ensure monotonicity
and continuity.

We can also extend the result of Theorem 6.1 to the average criterion. Thus, denoting
by λ∗β(s) the MP index for discount factor β, it holds that λ∗β(s) increases monotonically
to a finite limiting index λ∗1(s) as β ↗ 1.

6.3.2 Index Computation

Whittle’s MP index has evaluation given by (6.18) and (6.22). As already mentioned
during the indexability analysis, the index λ∗(s) for every STEV state in practice must
be computed by by truncating the infinite series defining them to a finite number of
terms.

Performance Bound Computation

Once the indexability of subproblem (6.8) is ensured by Theorem 6.1 and having pro-
posed a tractable procedure to compute its optimal value given any λ (i.e. the optimal
active set B∗(z) contains those information states s such that λ∗(s) − λ ≥ 0), we can
solve the Lagrangian dual problem (3.7) stated as

V d
D(s0) = max

λ≥0

N∑
n=1

[
max
πn∈Πn

f(sn,0π) + λg(sn,0, π)

]
− λ M

(1− β)
(6.28)
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Hence, we may use V d
D(s0) as a lower bound on the best attainable performance for

problem (2.5). In the next section we will compute such a bound for the simulated sce-
narios considered and use it to evaluate the suboptimality gap of our proposed policy
and other possible heuristics.



Learn from yesterday,
live for today, hope for tomorrow.
Albert Einstein

Chapter 7

Computational Experiments

In this chapter we illustrate and extend the ideas on the Multitarget tracking Kalman
Filter MARBP presented in Chapter 6. We discuss, through a series of computational
experiments, index tractability, and relative and absolute performance of the Whittle
index policy. We also discuss the convergence rate of the index evaluation method by
truncation of the infinite series defining the Whittle index. Throughout the analysis,
we will seek to draw insightful interpretations of the results in terms of the tracking
problem of concern.

7.1 Index Evaluation

As an example of the use of our index computation method, we have implemented a
MATLAB script for index evaluation based on the expressions (6.18) and (6.22). The
Whittle index was then computed for a target instance with parameters d = 1, r = 1,
and q = 5, so θ = 5, φ(1)

∞ = 0.8541. The series in (6.18) and (6.22) were approximately
evaluated by truncating them to T = 102 terms for β = 0.1, 0.2, . . . , 0.9, and to T =

105 terms for β = 0.9999. For each β, the index λMP (s) was evaluated on a grid of s
values of width 10−3. Note that for the case β = 1 evaluation of the marginal work
measure by truncating the series to any number of time slots results in a 0 value, given
the infinite asymptotic periodical cycles that govern the evolution of the total work
measures under a threshold policy. Yet, the index converges to a limiting value for
β = 1 as a consequence of these asymptotic periodical cycles which can be used to
simplify the index computation in this case.

Figure 7.1 shows the results. As required by the PCL-indexability conditions, in
each case the index λMP (s) was monotone nondecreasing (in fact, strictly increasing)
in s. Note that the index λMP (s) is continuous in s, being also piecewise differentiable.
Further, for fixed s the index λMP (s) is increasing in β, converging as β ↗ 1 to a limiting

91
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index that can be used for the average-criterion problem (6.7), which we have approxi-
mated by taking β = 0.9999. For each s, the time to compute λMP (s) was negligible.

0 10 20 30 40
0

50

100

150

200

250

300

β=0.9999
λ*(s)

β=0

Figure 7.1: Whittle MP index for different discount factors β

From Figure 7.1, we draw the following conclusions regarding the intuition of the
optimal tracking policy for one target in isolation.
As β ↗ 1, the marginal profit of measuring the target grows non-linearly with its STEV
s. That is, as the operating horizon of the tracking system grows, the marginal return of
updating a target’s position whose STEV increases (s↗∞) becomes significantly large
.This reflects the fact that, for a finite measurement error variance r < ∞, if the STEV
state goes to infinity, then the next TEV pt+1 will be pt+1 = ∞ if we do not measure
the target, or equal to the measurement error variance pt+1 = r if we do measure it.
Naturally, if r ↘ 0, then the TEV of target’s position can be practically reduced to 0
when measuring a target (even if its previous position was very uncertain). Thus, the
marginal return of measuring the target as its STEV grows to infinity, interpreted as the
marginal decrease in the total discounted precision cost, also grows to infinity.
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7.1.1 Numerical Convergence of the Whittle Index Evaluation

The convergence rate of the above implemented Whittle index approximate evalua-
tion provides meaningful information for the purpose of practical implementation of
the resulting target update scheduling policy. Particularly, determining the number of
discrete time slots necessary to achieve numerical convergence at some finite computa-
tional precision becomes relevant for achieving computational efficiency.

Hence, we have implemented a preliminary computational study in order to assess
the convergence behavior of the infinite series defining the proposed Whittle index.
Staring from a target instance with parameters as those in Section 7.1, we implemented a
script that computes the Whittle’ index λ∗(s) at the STEV level s = 1 truncating the infi-
nite series to time slot T with T = 1, 2, . . . , Tmax at each iteration for β = 0.1, 0.2, . . . , 0.9

respectively.
For β ≤ 0.9, the numerical convergence of such a series is achieved in practice at

some Tmax ≤ 102. Thus, since Whittle index verifies that λ∗(s) = limT→∞ λ∗T (s), we
approximate it using the resulting λ∗(s) computed truncating the infinite series up to
time slot Tmax, and we thus compute the approximation error e(T ) when considering
T terms of the series as λ∗T (s) − λ∗L(s). Next, we study the limiting behavior of the
following error rate e(T+1)

e(T ) .
Figure 7.2 shows the results. The Whittle index approximate evaluation appears to

converge linearly. Further, the convergence rate appears to be equal to the discount
factor β. In fact, we further propose an example, where we analytically derive such
a result for a concrete case of the marginal work measure w(s, s), for which a closed
form expression is available. Extending the proof for the approximate Whittle index
evaluation calls for further investigation.

Notice that, under such conditions, the limiting index for average-criterion problem
tends to converge sublinearly, as shown in Figure 7.3. Therefore, precise enough ap-
proximations for the case when β ↗ 1 will be more expensive computationally as β
approaches 1. Further work is required to derive accurate index approximations which
require a substantially lower computational effort for a given precision. Such approx-
imations could exploit the structural properties of the STEV asymptotical cycles of the
marginal measures under a threshold policy, as reviewed in the indexability analysis
of section Section 6.3 and its Appendix in Appendix C, to approximate more efficiently
their limiting values.
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Figure 7.2: The convergence rate of the Whittle index for different discount factors β.

Figure 7.3: The convergence rate of the Whittle index for discount factor β = 0.99.
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Example 7.1. From results in Section 4.3 and in Appendix C, fixing s = 1 in a target
instance such as the one described in Section 7.1, it can be shown that:

w(s, s) =



1 s ∈ [0, φ
(1)
∞ )

(1− β) s = φ
(1)
∞

1−β
1−β2 = 1

1+β , s ∈ (φ
(1)
∞ ,∞)

1, s =∞,

(7.1)

where for STEV states x ∈ [φ1
∞,∞) in the absorbing set of states of case II, the asymptotic

cycle of the work process at under a threshold policy is to alternate at into a passive
period followed by an active period. Recall that, from definition 6.12 that:

w(s, s) = 1 + β
(
g(φ

(1)
1 (s), s)− g(φ

(0)
1 (s), s)

)
(7.2)

It follows from result Lemma C.4 in Appendix C the fact that for s, z ∈ [φ(1)(s), φ(0)(s)]:
g(s, z) = 1

1−β2 for s > z and otherwise g(s, z) = β
1−β2 . Hence:

g(φ
(1)
1 (1), 1) =

∞∑
t=0

β2t+1 =
β

(1− β2)
g(φ

(1)
1 (1), 1) =

∞∑
t=0

β2t =
1

(1− β2)
,

since φ(1)(s) < s < φ(0)(s). Denote the marginal work in STEV s computed by truncat-
ing the infinite series up to time slot T as ŵT (s, s), and notice that:

ŵT (s, s) = 1 + β
[ T∑
t=0

βt
(
at(φ

(1)
1 (s), s)− at(φ(0)

1 (s), s)
)]

(7.3)

Proposition 7.1. For s = 1, θ = 0.5, d = r = 1, the following holds:

lim
T→∞

∣∣∣∣ ŵ(s, s)T+1 − w(s, s)

ŵ(s, s)T − w(s, s)

∣∣∣∣ = β (7.4)

Proof. From (7.3) it holds that

ŵ(s, s)T = 1− β(1− β)

[ T∑
t=0

β2t

]
for 0 ≤ β < 1
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while,

ŵ(s, s)T = 1−
[
(2T − 2)− (2T − 1)

]
= 0 for β = 1

Therefore,

lim
T→∞

∣∣∣∣ ŵ(s, s)T+1 − w(s, s)

ŵ(s, s)T − w(s, s)

∣∣∣∣ =
β2T+2

β2T+1
= β for 0 ≤ β < 1

lim
T→∞

∣∣∣∣ ŵ(s, s)T+1 − w(s, s)

ŵ(s, s)T − w(s, s)

∣∣∣∣ = 1 for β = 1

• • •

7.2 The Whittle Index and Other Index Policies

In this section we revise the definitions of the possible alternative heuristics for the
Multi-armed RB Kalman Filter multitarget tracking problem (6.6) as stated in subsec-
tion 6.2.1. In the following section we report on simulation studies that compare the
performance of Whittle index policy against these simpler alternatives.

7.2.1 The Myopic Index

The simplest case to consider is the myopic case, which corresponds to β = 0, under
which g(s, z) = a0(s, z), f(s, z) = d rφ1(s, z), w(s, z) = 1, c(s, z) = d r

[
φ(0)(s)− φ(1)(s)

]
,

and hence λ(s, z) = c(s, z) and λ∗(s) = d r
[
φ(0)(s) − φ(1)(s)

]
= d r(θ + s)2/(1 + θ + s).

Since (d/ds)λ∗(s) = d r(θ + s)(2 + θ + s)/((1 + θ + s)2 > 0, the myopic index λ∗(s)

is increasing for all s ∈ S and some θ > 0. Therefore, it is straightforward that both
conditions in Definition 3.2 hold and thus, by Theorem 3.1, the target’s optimal tracking
problem for β = 0 is indexable and λ∗(s) = λMyopic(s) is its Whittle index.

The optimality of such a myopic index policy in the multi-target model for β = 0,
can be also analyzed using the corresponding dynamic programming equations, as it
minimizes the total cost function, i.e. the sum of the targets’ tracking errors and energy
expended for the next time slot. Notice that, for β = 0, the optimal policy is such that
for target n we choose an,0 such that:

V ∗D(s0) , dn rn min
an,0∈{0,1}

{
φ
an,0=0
1 (sn,0) ; φ

an,0=1
1 (sn,0)

}
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Where we have assumed, without loss of generality, that h = 0. The above problem is
equivalent to the following one:

V ∗D(s0) , dn rn min
an,0∈{0,1}

{
0 ; φ

an,0=1
1 (sn,0)− φan,0=0

1 (sn,0)
}

and since φ(1)(s) < φ(0)(s)∀s ∈ S, we further have that:

V ∗D(s0) , dn rn max
an,0∈{0,1}

(
φ
an,0=0
1 (sn,0)− φan,0=1

1 (sn,0)
)

By the above reasoning it is equivalent to choosing an,0 such that:

dn rn min
an,0∈{0,1}

{
φ
an,0=0
1 (sn,0) ; φ

an,0=1
1 (sn,0)

}
⇐⇒ max

{
λMyopic(sn,0)

}
,

7.2.2 The STEV index policy

The STEV index policy, based on the index λSTEV(s) = d r s. This heuristic is based on
the TEV index policy proposed in Howard et al. (2004); La Scala and Moran (2006) and
is called the greedy policy there. Both in La Scala and Moran (2006) and Howard et al.
(2004) the authors claim that this policy optimizes the sum of the targets’ track error
variances over a finite horizon for β = 1, by deploying a scheduling TEV index policy
for the case of two symmetric targets.

Further, in the completely symmetric case in which all N targets have the same
state space model, measuring the M targets of highest λMyopic(sn), or measuring the M
targets with the highest initial STEV λSTEV(sn), results in an equivalent choice of targets
to measure, and therefore in an identical system performance for the next PRI. Such a
result holds because, under the identical targets assumption, for all targets and every
possible STEV, the myopic index is a monotone transformation of the STEV index. Thus,
in a completely symmetric scenario the Whittle index policy, the STEV index policy and
the myopic index policy yield an identical tracking performance which is also optimal
for β = 0. Yet, notice that for the general case of asymmetric targets such heuristics are
not optimal nor does the above mentioned index policy equivalence hold.

To make a visual comparison of the three index policies, in Figure 7.4, we display
the three index plot for β = 1. Notice that while the Myopic index and the STEV index
grow linearly on the STEV, the Whittle index grows more than linearly on it, leading us
to conclude that for targets with a large STEV state, priorities assigned by the simpler
policies will differ significantly from what the Whittle index policy does. Further, we
can thus expect that the performance improvements obtained by the Whittle index po-
licy to be larger when the ratio of sensors to targets is small (M/N → 0), since, in this
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(a) The Myopic index policy with λMyopic(s) (b) The STEV index policy with λSTEV(s) = s

(c) The Whittle MP index policy with λMP(s) = λ∗(s)
with β = 0.9999

Figure 7.4: The Myopic, STEV and Whittle index policy

case, all targets will tend to have large TEVs during the whole tracking horizon.

7.2.3 The Whittle Index and the Gittins index: case θ = 0

The motivation to study the case with θ = 0 is that the model becomes classic. When
the signal to noise ratio θ equals 0, under which active and passive dynamics reduce to:
φ

(1)
t (s) = s

s+1 while φ(0)
t (s) = s. Hence, the model is no longer restless. Following the
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previous section argument, it can easily be seen that the work measure:

g(s, z) =


1−βt∗1(s,z)

1−β =

t∗1(s,z)−1∑
t=0

βt, s > z

0, s ≤ z,
(7.5)

with t∗1(s, z) = d s−zs z e, whereas the cost measure f(s, z) is characterized by

f(s, z) =


d r
[ t∗1(s,z)−1∑

t=0

φ
(1)
t (s)βt +

βt
∗
1(s,z)

(1− β)
φ

(1)
t∗1(s,z)(s)

]
, s > z

d r
[

s
(1−β)

]
, s ≤ z.

(7.6)

Thus, it can be computed that, for s > z, it holds that w(s, z) = 1− βt∗1(s,z), whereas
w(s, z) = 1 when s ≤ z which further implies that w(s, s) = 1. In turn, the marginal cost
function cane be computed to be c(s, s) = d r

(1−β)

[
φ0(s) − φ1(s)

]
. Hence λ(s, z) = c(s, z)

and λ∗(s) = d r s2

(1+s)(1−β) .
Notice that (d/ds)λ∗(s) = d r

(1−β)s(2 + s)/((1 + s)2 > 0, then the index λ∗(s) is non
decreasing for s ∈ S (and strictly increasing for s ∈ S \ 0). Therefore, both conditions in
Definition 3.2 hold and, by Theorem 3.1, the target’s optimal tracking problem when θ =

0 is indexable and λ∗(s) is its Whittle index. Moreover in this case, λ∗(s) is also its Gittins
index, since the model formulation under θ = 0 becomes classic. Notice also that the
Gittins index in this case can be conveniently expressed as: λmyopic(s)

(1−β) . Thus, the Gittins
index representing the maximum rate of discounted reward per unit of discounted time
that can be achieved under stopping rules for each initial target state is just the total
discounted value over an infinite horizon of the Myopic index at s.

Notice that, since θ = q/r, the case θ = 0 occurs either in the case that the target’s
movement process is deterministic, i.e., q = 0 (in which the only source of error comes
from the measurement process), or when its measurement process is absolutely uncer-
tain, i.e., r = ∞. For the former case, notice that it is not necessary to assume that the
target is frozen at a site to result in a classic model, what we are assuming by letting
q = 0 is that target movement is completely known. In such a case, the TEV when not
measuring the target is simply its previous value pt−1, and continued measurement of
the target eventually makes the TEV go to 0, because the measurement error vanishes.
However, in the latter case r = ∞, measuring a target gives no relevant information.
Thus, its TEV is infinite regardless of the selected sensing action. In such a case its in-
dex λ∗(s) = ∞ for all s ∈ S, denoting the intuition that targets whose measurements



100 CHAPTER 7. COMPUTATIONAL EXPERIMENTS

processes are extremely unreliable would have absolute priority to access sensing re-
sources, if the total error in prediction is to be minimized.

Further, given that for θ = 0 the model is classic, in then the case of any N objective
targets and M = 1 sensor, such an index policy is optimal.

7.2.4 The Whittle Index: case θ →∞

The motivation to study this case it represents the case in which the evolution of the TEV
over its state space is the largest. As a complementary analysis to the one presented in
the previous subsection, in the case θ → ∞, under which active and passive dynamics
are reduced to: φ(1)

t (s) = φ
(1)
∞ = 1 while φ(0)

t (s) → ∞ for all s, z ∈ S. Hence, starting
from any initial STEV in S, the process st under a threshold policy infinitely alternates
between 1, the minimum STEV level φ(1)

∞ = 1, and∞, the maximum STEV level, for all
t = 1, 2, .... Following the previous section’s argument, it can easily be seen that, for all
s, z ∈ [1,∞),

g(s, z) =

 1
1−β2 , s > z

β
1−β2 , s ≤ z.

(7.7)

whereas the cost measure f(s, z) tends to infinity irrespective of the initial state and
threshold value. Thus, it can be shown that in this case for any s, z ∈ S it holds that
w(s, z) = w(s, s) = 1

1+β . Further, c(s, s) → ∞ for any s, z ∈ S .From where it follows
λ∗(s) is nondecreasing for s ∈ S, therefore the target’s optimal tracking problem is
indexable and λ∗(s) is its Whittle index.

Notice that the case θ → ∞ occurs either when the target’s movement process is
completely uncertain, i.e., q = ∞, or when its measurement process is exact, i.e. r = 0.
In the former case, it is natural that regardless of how much precision we may have in
the measurement at t, the TEV pt grows to∞ if the target remains unmeasured. Thus,
the marginal return of measuring the target at any state goes to infinity.

The case in which r = 0 is more interesting, since in this case it follows from (6.3)
that, when the target is measured its TEV goes to 0 immediately after, and further, when
not measured its next TEV only increases in the measurement error q. Thus, such a
target is measured once every two slots of the time, its TEV alternates between 0 and q,
yielding a total discounted variance of q

(1−β2)
.
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7.3 Bechmarking the Whittle Index Tracking Policy

7.3.1 Instances with Asymmetric Targets

We have performed some small-scale preliminary computational studies to assess the
relative performance of the Whittle index proposed in Chapter 6 against the alternative
reviewed policies: the STEV index policy, and the Myopic index policy.

First, we consider a base instance with a single radar and N = 4 symmetric targets
with qn ≡ 0.5, rn ≡ 1, dn ≡ 1, and zero measurement costs hn ≡ 0. This base instance
with identical targets of low position to measurement noise variance ratio θ was modified
by varying q(1), the position noise’s variance for target 1, while keeping constant rn,
the measurement noise’s variance for all n targets. That is, for a given radar measur-
ing precision and while the other target’s movement processes remain invariant, the
movement process for target 1 becomes more volatile. In particular, each instance, q(1)

assumes values over the range q(1) ∈ {0.5, 1, 2, . . . , 10}. The discount factor is β = 0.99.

The Whittle index was computed on-line for each target, truncating the correspond-
ing infinite series to 103 terms using expressions (6.18) and (6.22). For each instance and
policy, the system was left to evolve over a horizon of T = 104 time slots. The initial
state for each target n was taken to be s(n)

0 = 0, which corresponds to exact knowledge
of the targets’ initial positions.

Table 7.1 reports the resulting TEV performance objective value achieved under each
policy for each value of parameter q(1) along with the lower bound obtained from the
relaxation. The results show that the Whittle index policy outperforms both the myopic
and the TEV index policy. As for the Whittle index policy’s suboptimality gap, we can
bound it using the relaxation’s lower bound. Moreover, we observe that the Whittle
index suboptimality gap is between 2 % and 5 %. The Whittle index policy’s perfor-
mance improvement over the myopic policy increases as q(1) gets larger. Note that such
a performance gain is 5.42 % for the case in which q(1) = 3/2, which is a quite significant
amount. For the maximum value of the position noise’s variance for target 1 considered,
q(1) = 10, such a gain is of 61.3 %.

Despite the fact that Whittle index policy also outperforms the TEV index policy,
in this case the performance gain is not as significant as with respect to the Myopic
index policy. In fact, the TEV policy is almost as good as the Whittle index policy for
all cases. We note that, with the system starting from such a base instance, the TEV
index policy will tend to give greater priority to target 1 as its movement becomes more
uncertain, just as the Whittle index policy does. However, the Whittle index policy and
the TEV index policy may prioritize targets differently if the base instance is such that
identical targets share a high position variability, and thus a high position to measurement
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Table 7.1: Benchmarking results (1): qn ≡ 0.5 for all n 6= 1

q(1) TEV Myopic MP LB

1/2 5.837 5.829 5.829 5.715
1 6.601 6.750 6.595 6.434

3/2 7.195 7.530 7.143 6.985
2 7.814 7.866 7.618 7.455

5/2 8.091 8.177 8.030 7.845
3 8.361 8.997 8.358 8.144
4 8.889 10.548 8.881 8.675
5 9.409 11.880 9.411 9.187
6 9.923 13.337 9.881 9.699
7 10.435 14.800 10.392 10.205
8 10.944 16.249 10.872 10.710
9 11.452 17.691 11.351 11.192

10 11.959 19.117 11.852 11.670

noise variance ratio, and we vary that instance by allowing a given target to become less
volatile in its movement.

To illustrate such a fact, consider a base instance with a single radar and N = 4

symmetric targets with qn ≡ 10, rn ≡ 1, dn ≡ 1, and zero measurement costs hn ≡ 0. We
next modify this base instance with identical targets of high position to measurement noise
variance ratio by varying q(1), the position noise’s variance for target 1, while keeping
constant rn, the measurement noise’s variance for all n targets. That is, for a given
radar measuring precision and while the other targets’ movement processes remain
invariant, the movement process for target 1 becomes less volatile. In particular, at each
new instance, q(1) assumes values over the range q(1) ∈ {0.5, 1, 2, . . . , 10}. The discount
factor is again β = 0.99.

Table 7.2 reports the resulting TEV performance objective achieved under each po-
licy for each value of parameter q(1). The results show that also in this case the Whittle
index policy outperforms both the myopic and the STEV index policies, yet in this case
the performance improvement now decreases as q(1) gets larger. For the minimum value
of the position noise’s variance for target 1 considered, q(1) = 0.5, the performance gain
of the Whittle index policy over the STEV index policy is 8.58 %, which is a significant
amount. Among the STEV and myopic policies, the former performs better for smaller
values of q(1), while the latter performs better for larger q(1). In fact, the myopic policy
is as good as the Whittle index policy in the symmetric-target case q(1) = 10 (and also
in the cases q(1) = 8 and q(1) = 9). As for the Whittle index policy’s suboptimality gap,
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Table 7.2: Benchmarking results (2): qn ≡ 10 for all n 6= 1

q(1) myopic TEV MP LB

1/2 47.584 44.492 40.676 39.839
1 49.193 46.452 43.707 42.856

3/2 50.267 47.902 45.959 45.097
2 51.302 49.475 47.815 46.943

5/2 52.246 56.777 49.409 48.531
3 53.094 51.584 50.855 49.838
4 54.804 54.181 53.367 52.325
5 55.394 56.906 56.140 54.351
6 56.908 56.142 55.396 54.491
7 59.403 59.210 58.924 56.478
8 60.431 60.740 60.431 58.013
9 61.936 62.270 61.936 59.504

10 63.441 63.799 63.441 62.529

Myopic
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Figure 7.5: The Whittle MP index Benchmarking results (1): qn ≡ 1/2 for all n 6= 1 .

bounding it above by means of the relaxation’s lower bound, we note that the Whittle
MP index suboptimality gap is between 2.31 % and 11.68 %.
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Figure 7.6: The Whittle MP index Benchmarking results (2): qn ≡ 10 for all n 6= 1 .

7.3.2 Asymptotic Optimality

Together with the RB indexability property introduced in Whittle (1988), Whittle conjec-
tured that for a population with N projects, the policy of being active in the M projects
of greatest Whittle index is asymptotically optimal as M and N tend to∞ in constant
ratio R with R = M/N .

Such a conjecture can be formulated in terms of the problem under study as follows.
Denote as pj the proportion of targets of type j in the total number of targets, which is
characterized by the parameter specification rj , dj , qj , hj .

Conjecture 7.1. For population of fixed composition in the sense that pj → p asN →∞,
with all N targets being indexable, Whittle conjectured that

V ∗D(s;λ)→ V L(s;λ) as M,N →∞ and R = M/N

In Weber and Weiss (1990) the authors provided some counterexamples which elu-
cidated that in general asymptotic optimality of such index policy need not be the case.
Further, they established a sufficient condition for such conjecture to hold. Unfortu-
nately, evaluating such a condition for the model at hand is not an easy task, calling for
further research.
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We have performed a small-scale preliminary computational study to assess the con-
ditions under which we can expect such a conjecture to hold for the present model. We
consider a base instance with one beam per 4 objective targets (i.e. R = 1/4) for track-
ing a population of N = 4 different targets (i.e. p = 1/N ), with qn ≡ n, rn ≡ 1,
dn ≡ 1, a discount factor of β = 0.99 and zero measurement costs hn ≡ 0. This base
instance was modified by letting the total population of targets N vary over the range
N ∈ 4 ∗ {1, 2, . . . , 40}. For each instance the Whittle index policy was computed on-line
for each target, truncating the corresponding infinite series to 103 terms and the system
was left to evolve over a horizon of T = 104 time slots. The initial state for each target n
was taken to be sn,0 = 0.

Based on the resulting TEV performance objective achieved under the Whittle in-
dex policy, and on the lower bound provided by the Lagrangian relaxation approach
discussed above, an upper bound for the Whittle index policy the suboptimality gap is
computed for each population size N . The results, illustrated in Figure 7.6, show that
the upper bound of the Whittle index policy suboptimality gap initially decreases fast
as N gets larger, tending to stabilize around 2 % for the largest values of N conside-
red. Such a result seems to suggest that we can expect the proposed Whittle policy to
be nearly optimal for cases in which, given a constant radar per target ratio M/N , tar-
get heterogeneity grows as the total number of objective targets N grows. Regarding
the other policies, we observe that the STEV index policy suboptimality gap is approx-
imately around 4.5 % for all N whereas the myopic index policy’s suboptimality gap
initially increases fast as N gets larger, tending to stabilize around 13.5 % for the largest
values of N considered.
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(a) The Index Policies suboptimality gaps as m,n→ ∞ with M = RN

(b) The Whittle MP index suboptimality gap as m,n→ ∞ with M = RN

Figure 7.7: The Index Policies suboptimality gap and the asymptotical optimality of the Whittle
index hypothesis
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Aim above morality.
Be not simply good; be good for something.
Henry David Thoreau.

Chapter 8

Summary of Contributions

This thesis has addressed two concrete applications of the MARBP with a real-state vari-
able. The applied problems: (i) hunting multiple elusive hiding targets, and (ii) tracking
multiple moving targets, are relevant to the performance optimization of modern sensor
systems.

The goal in each of them is to obtain a near-optimal resource allocation policy, which
performs well (both in relative and absolute terms). The approach deployed to achieve
such a goal, is to design the index policy based on the lagrangian relaxation and decom-
position indexation approach introduced by Whittle (1988) and in recent developments
by Niño-Mora. This approach allows to design an index rule based on a structural pro-
perty of the optimal solution to the decomposed parametric-optimization subproblems.

The resulting index policy assigns a value to each possible resource use as a func-
tion of its state, and that value prioritizes alternative uses in the following sense: those
resource allocation options that have the largest index value (as long as they exceed the
investment cost) are selected to be engaged, given the resource endowment constraint.

Given a stochastic resource allocation problem formulated as a MARBP, the appli-
cation of such an indexation approach poses two severe challenges:

(i) The existence of a priority index policy, based on a structural property of the indi-
vidual arm’s optimal policy, is not ensured in the restless case.

(ii) Even if existence of the index is established, computing it in a tractable fashion,
may require significant effort.

These two challenges have been addressed by work revised in Niño-Mora (2007a)
for the discrete state case. Niño-Mora provided the first tractable Sufficient Indexability
Conditions (SIC) for discrete-state MARBP, along with an index algorithm. The resul-
ting approach has proven to be fruitful both in theoretical and algorithmic aspects, as

109



110 CHAPTER 8. SUMMARY OF CONTRIBUTIONS

well as in terms of the wide scope of successfully addressed applications.

The application of the indexation approach to real-state variant of the MARBP shares
the above mentioned challenges, which have been addressed by the applications re-
searched in this thesis by means of the recent extension of the sufficient indexability
conditions introduced by work done in Niño-Mora (2008). In the model analyzed in
Niño-Mora (2008), direct verification of the SIC and obtaining a closed-form index for-
mula are possible.

Yet, the real-state MARBPs analyzed in this dissertation posit extra challenges given
the technical difficulties introduced by its uncountable state space. Further, the evolu-
tion over that uncountable state space is determined by non-linear dynamics, of the type
known as Möbiuos transformations or LFT. Specifically, these two facts cause that the
state variable and action processes for these models follow infinite possible sequences
of values, even if operated under special families of policies (as the threshold policies).
All these difficulties result in the lack of a closed form expression for performance mea-
sures defining the Whittle index, which complicates significantly the required indexa-
bility analysis.

Despite all the above obstacles, we accomplish the main goal of deriving a index-
based scheduling policy by exploiting properties of the non-linear dynamics as Möbius
transformations, which allow us to reduce and describe the possible structure of state
and action trajectories in terms of periodical cycles. This particular achievement is a
core contribution of this dissertation shared by the applications studied in Part II and
Part III.

Besides the practical contribution of proposing tractable index rules for these two
intractable problems, which as shown by Chapter 5 and Chapter 7 exhibit a nearly opti-
mal performance, a main contribution for both applications is to analyze the conditions
of the PCL-indexability of the two MARBPs of concern.

Regarding the search problem studied in Chapter 4, of hunting a set of elusive tar-
gets by a sensor network of at most as many sensors as targets, the application of the
indexation approach yields the following results. Among the main theoretical contribu-
tions, we highlight the following: we provide a tractable condition on the the discount
factor that ensures the PCL-indexability of the total expected discounted problem, and
we propose a tractable index rule for an intractable Partially Observed Markov Decision
Process (POMDP). We further provide computational evidence that suggests the opti-
mality of the resulting policy in several scenarios, in which we simultaneously observe
that other heuristic perform significantly badly.

In the second problem presented in Chapter 6, of tracking a set of moving targets by
a sensor network of at most as many sensors as targets, the application of the indexation
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approach establishes the PCL-indexability of the ETD subproblem. We further provide
computational evidence that suggests that resulting index policy is in general scenarios
nearly optimal, outperforming simpler heuristics in the case where targets differ in their
motion or measurement parameters. Further, we find results that suggest that its sub-
optimality gap is bounded and small when the system’s size goes to infinity keeping
constant the ratio of sensors to targets.

Finally, Chapter 5 and Chapter 7 of thesis contribute to the growing body of com-
putational evidence indicating that Marginal Productivity (MP) Whittle index policies
typically achieve a near-optimal performance and in some cases substantially outper-
form benchmark policies derived from conventional approaches. Traditional myopic
heuristics, have been generally found in the literature to be optimal in symmetric sce-
narios (i.e., where all targets are identical), yet in this dissertation we provide significant
evidence which suggests that in asymmetric scenarios they can exhibit a poor perfor-
mance, both in comparison with the Whittle policy and in absolute terms.

Further, the application of this approach produces insightful interpretations and in-
tuitions regarding the concrete applications. For instance, as pointed out in Chapter 5,
when searching an elusive target that reacts to actions by hiding, to hunt it as fast as
possible it is of key importance to allow for idling periods so that the target exposes it-
self. In the tracking model, as pointed out in Chapter 7, as target motion becomes more
volatile than its measurment process (i.e., as θ ↗ ∞), the resulting MP Whittle index
significantly differs from the other simpler heuristics, by growing exponentially in the
target’s STEV rather than linearly.

To conclude, the tractable MP Whittle index sensing policies can be used to solve
nearly optimally the underlying (multiple) sequential estimation problems. Both in
Chapter 4 and in Chapter 6, the problems can be interpreted as minimum variance
estimation problems, in which an unobservable vector of variables (i.e., presence of ex-
posed targets, or target’s positions) must be estimated through a noisy measurement
vector. Yet, instead of simply using the corresponding filter equations after the realiza-
tion of the observational data, the observer may control, at each period, the composition
of the measurement vector so as to achieve the best overall precision for all the predic-
tive horizon.
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Appendix A

Appendix: A Review of Möbius
Transformations

Here we review some auxiliary material useful for the indexability analysis done in of
Chapter 4 and Chapter 6.

In both chapters we have considered two distinct iterated mappings of the form
x 7→ φa(x) where x denotes the belief state and a = 0, 1 stands for passive and active
actions respectively. Letting φa0(x) , x and φat (x) , φa(φat−1(x)) for t ≥ 1, where the
functions φa(x) are respectively defined for a = 0, 1 by (4.7).
For the sake of establishing PCL indexability, we must study the behavior of the t-th
iterate of both mappings in order to derive some required properties of φat (x). To prove
all these properties, it is convenient to visualize these mappings, especially φ1

t (x) which
is the most complex of the two recursions, as Möbius Transformations.

Definition A.1. As in Anderson (2005).
A Möbius transformation is a function m: C → C of the form

m(x) =
ax+ b

cx+ d

where a,b,c,d ∈ C and ad− cb 6= 0

Proposition A.1. Given two Möbius Transformations m(x) and n(x), defined by: m(x) =
ax+b
cx+d and n(x) = αx+β

γx+δ , the composition of m(x) and n(x) is a Möbius Transformation with:

n o m(x) =
(α a+ β c)x+ (α b+ β d)

(γ a+ δ c)x+ (γ b+ δ d)

Corollary A.1. If we define a 2 × 2 matrix with its entries as the pairs of coefficients of the a
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given Möbius transformation m(x) and n(x), we get:

M =

(
a b

c d

)
N =

(
α β

γ δ

)

Then, the entries of the matrix representation associated to the composition nom(x) correspond
to the entries of the product matrix N ×M .

It follows from Proposition A.1 and Corollary A.1 that the closed-form representation
of the tth composition of any Möbius transformation m(x):

m om . . . o m︸ ︷︷ ︸
t

(x),

denoted as mt(x), has an associated matrix representation of M t.

Hence, the associated matrixM t is obtained as the tth power of the matrixM . We denote
λ1, λ2 to the eigenvalues of the M matrix, then it holds that:

M t = C

(
λt1 0

0 λt2

)
C−1 (A.1)

Where C is a matrix in which the ith column is an eigenvector corresponding to the ith

eigenvalue of M , and where the eigenvalues of the matrix M and can be computed to
be equal to:

λ1,2 =
1

2

(
a+ d∓

√
(a− d)2 + 4 b c

)
(A.2)

Notice that for the case c 6= 0 (i.e. in the case we have a non linear function of x), the
matrix C is computed to be:

C =

(
γ1 γ2

1 1

)
,

with

γ1,2 =
(a− d)∓

√
(a− d)2 + 4 b c

2 c

notice that in this case it holds that γi = (λi − d)/c.

Thus, from (A.1) it follows that the tth iterate of a Möbius transformation has the fo-
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llowing associated matrix representation:

M t(γ1, γ2, k) =

(
γ1− ktγ2 (kt − 1)γ1γ2

1− kt ktγ1 − γ2

)

where k , λ2
λ1

.
Finally, the above expression for M t allows us to conclude the following results:

Proposition A.2.

mt(x) =
γ1(x− γ2) + kt γ2 (γ1 − x)

x− γ2 + kt(γ1 − x)
,

Proposition A.3.

lim
t→∞

mt(x) =


γ1(x−γ2)
x−γ2 = γ1 if |k| < 1

γ2(γ1−x)
γ1−x = γ2 if |k| > 1

Proposition A.4.

∂ mt(x)

∂t
=
kt(x− γ1)(x− γ2)(γ1 − γ2) log(k)

[(γ2 − x) + kt (x− γ1)]2

Proposition A.5.
∂ mt(x)

∂x
=

kt(γ1 − γ2)2

[(γ2 − x) + kt(x− γ1)]2

Whereas for the case c = 0 and a 6= d (i.e. in the case we have a linear function of x), the
matrix C in (A.1) is computed to be:

C =

(
1 γ

0 1

)
,

with γ = − b
a−d . Thus, from (A.1) it follows that the tth iterate of a such a Möbius

transformation has the following associated matrix representation:

M t(γ, k) =

(
1 −γ (1− kt)
0 kt

)

Finally, the above expression for M t allows us to conclude the following results:

Proposition A.6.
mt(x) = γ − k−t (γ − x)
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Proposition A.7.

lim
t→∞

mt(x) =


∞ if |k| < 1

γ if |k| > 1

Proposition A.8.
∂ mt(x)

∂t
= −kt (γ − x) log(k)

Proposition A.9.
∂ mt(x)

∂x
= k−t

Straightforward application of the previously revised results allows us to conclude that:
(i) the φa(x) functions in (4.7) define two Möbius transformations (where 0/1 stands for
the passive/active dynamics respectively) with associated matrix representations given
by:

Φ0 =

(
ρ0 p0

0 1

)
Φ1 =

(
ρ1 α− (1− α) p1 p1

−(1− α) 1

)
(ii) Thus, results A.2-A.5 and A.6-A.9 apply to the functions in (4.7). We then compute
the eigenvalues of both matrices to respectively be:

λ0
1 = ρ0, λ0

2 = 1 λ1
1,2 =

A∓
√
A2 − 4 (1− α) p1

2
+ 1 (A.3)

with A , (1− ρ1) + (1− α)(ρ1 + p1). Further, we have that:

k0 = 1/ρ0 k1 =
A+

√
A2 − 4 (1− α) p1 + 2

A−
√
A2 − 4 (1− α) p1 + 2

(A.4)

γ =
po

1− ρ0
γ1

1,2 =
A±

√
A2 − 4 (1− α) p1

2 (1− α)
(A.5)

We have defined φa∞ , limt→∞ φat (x). Notice that, from results A.3 and A.7 it follows
that

φ0
∞ = γ =

po

1− ρ0
, φ1

∞ = γ2 =
A−

√
A2 − 4 (1− α) p1

2 (1− α)
.

By application of A.2 and A.6 we solve for the passive and active recursions in closed-
form. Thus, the expression for the tth passive/active iteration on some belief state x are
respectively computed as follows:

φ0
t (x) = φ0

∞ − (ρ0)
t
(φ0
∞ − x) (A.6)

φ1
t (x) =

γ1(x− φ1
∞) + (k1)tφ1

∞(γ1 − x)

x− φ1∞ + (k1)t(γ1 − x)
, (A.7)
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Notice that from (A.6) and (A.7) it follows that for a = 0, 1:

x < φa∞ −→ φat (x) < φa∞ ∀t ≥ 0 (A.8)

To show (A.8) we apply results A.2 and A.3 and the results A.6 and A.7 to conclude
that:

For x < φ1
∞, φ1

t (x) < φ1
∞ since γ1 > φ1

∞ (A.9)

If x < φ0
∞, φ0

t (x) < φ0
∞ (A.10)

Next, by results A.4 and A.8 it follows that:

∂ φ0
t (x)

∂t
= −(ρ0)

t
(φ0
∞ − x) log(ρ0) (A.11)

∂ φ1
t (x)

∂t
= =

(k1)t(x− γ1)(x− φ1
∞)(γ1 − φ1

∞) log(k1)

[(φ1∞ − x) + kt (x− γ1)]2
(A.12)

Hence,

sgn
∂ φ0

t (x)

∂t
= sgn(φ0

∞ − x) (A.13)

sgn
∂ φ1

t (x)

∂t
= sgn(φ1

∞ − x) (A.14)

Finally, by results A.5 and A.9 we have that:

∂ φ0
t (x)

∂x
= ρt (A.15)

∂ φ1
t (x)

∂x
=

(k1)t(γ1 − φ1
∞)2

[(φ1∞ − x) + (k1)t(x− γ1)]2
(A.16)

Therefore,

sgn
∂ φ0

t (x)

∂x
= sgn

(
ρt
)
> 0 (A.17)

sgn
∂ φ1

t (x)

∂x
= sgn

(
k1
)t
> 0 (A.18)
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Finally, also notice that:

∂2 φ0
t (x)

∂x2
= 0 (A.19)

∂2 φ1
t (x)

∂x2
= −2

(k1)t(γ1 − φ1
∞)2

[(φ1∞ − x) + (k1)t(x− γ1)]3
(
1− (k1)t

)
(A.20)



Appendix B

Appendix to Chapter 4

B.1 Work-Reward Measures Analysis

In order to prove Proposition Proposition 4.1 in Chapter 4, we invoked Lemmas provid-
ing lower bounds on the marginal work measures w(x, z). In this Appendix we shall
derive those bounds in detail.

In the elusive target hunt model model presented in Chapter 4 we have considered
two iterated mappings of the form x 7→ φ(a)(x) where x denotes the initial information
state and a = 0, 1 stands for passive and active actions respectively. Letting φ(a)

0 (x) , x

and φ(a)
t (x) , φ(a)(φ

(a)
t−1(x)) for t ≥ 1, and defining:

φ(0)(x) = p(0) + ρ(0)x (B.1)

φ(1)(x) = p(1) + ρ(1) αx

1− (1− α)x
(B.2)

For the sake of establishing PCL-indexability, we are interested in studying the behavior
of the t-th iterate of both mappings. In order to do we visualize both dynamics as
Möbius Transformations or Linear Fractional Transformations (LFTs), with associated
matrix representations given by:

Φ0 =

(
ρ(0) p(0)

0 1

)
Φ1 =

(
p(1) − α(1− q(1)) p(1)

−(1− α) 1

)

Note that for equation (B.1), the corresponding LFT is a combination of a translation
and a rotation (since in this case c = 0 and a = d) and thus, one of its fixed points is at
infinity. The attractive fixed points for these recursions are:

φ(0)
∞ ,

p(0)

1− ρ(0)
φ(1)
∞ ,

γ −
√
γ2 − 4p(1)(1− α)

2(1− α)

125



126 APPENDIX B. APPENDIX TO CHAPTER 4

with γ , 1− ρ(1) + (p(1) + ρ(1))(1− α).

For proving Lemma 4.1 we deploy results and properties of the Möbius transforma-
tions, which are listed as lemmas after the the proof of Lemma 4.1.

Proof of Lemma 4.1
For all z < φ

(1)
∞ , consider first the case with 0 < x ≤ z, which is the first part of

Lemma 4.1.

(i) w(x, z) > min{1− β (1− α) x

(1− β) + β (1− α) z
, 1− β} ≥ 0 for any x ∈ (0, z], 0 ≤ β ≤ 1.

To compute a lower bound on w(x, z) we must first compute g(φ1(x), z) and g(φ0(x), z)

according to (4.14), for which we need to establish whether φ(1)(x) and φ(0)(x) are ini-
tially active or passive states. From Lemma B.1 it follows that both φ(1)(x) > x and
φ(0)(x) > x, yet the total work measure is computed differently depending on the rela-
tion of φ(1)(x), φ(0)(x) and z. Hence,
1) If z < φ(1)(x):
When φ(1)(x) > z it also holds that φ(0)(x) > z. Thus, it holds that z < φ(1)(x) < φ(0)(x).

w(x, z) = 1 + β [1− (1− α) x ] g(φ(1)(x), z)− β g(φ(0)(x), z)

> 1 + β [1− (1− α) x ] g(φ(1)(x), z)− β g(φ(1)(x), z)

(By Lemma B.1 and Lemma B.3)

> 1− β (1− α) x g(φ(1)(x), z) (φ(1)(x) > z)

> 1− β (1− α) x

(1− β) + β (1− α) z
≥ 0 (By Lemma B.4 and (x ≤ z)) �(B.3)

2) If φ(1)(x) ≤ z, we have two possible cases:
a) φ(0)(x) ≤ z and t∗0(φ(1)(x), z) = t∗0(φ(0)(x), z),
We write by y1

1 , φ
(0)

t∗0(φ(1)(x),z)

(
φ(1)(x), z)

)
and y1

0 , φ(0)t∗0(φ(0)(x),z)

(
φ(0)(x), z)

)
. No-

tice that y1
1, y

1
0 stand for the first belief state to reach the active set by having been

active/passive in its initial state and then following a z-threshold policy. Further, by
Lemma B.5 it may be the case that t∗0(φ(1)(x), z) = t∗0(φ(0)(x), z).
Thus, if φ(1)(x) ≤ z, φ(0)(x) ≤ z, and t∗0(φ(1)(x), z) − t∗0(φ(0)(x), z) = 0 we have that
y1

1 < y1
0 , by Lemma B.1 and Lemma B.7. Thus, by the same reasoning deployed in i) we
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can invoke Lemma B.3 to conclude that the lower bound on w(x, z) for this case is:

w(x, z) = 1 + βt
∗
0(φ(1)(x),z)+1 [1− (1− α) x ] g(y1

1, z)− βt
∗
0(φ(0)(x),z)+1 g(y1

0, z)

> 1 + βt
∗
0(φ(1)(x),z)+1 [1− (1− α) x ] g(y1

1, z)− βt
∗
0(φ(1)(x),z)+1 g(y1

1, z)

(By Lemma B.1, Lemma B.7 and Lemma B.3)

> 1− βt∗0(φ(1)(x),z)+1 (1− α) x g(y1
1, z) (y1

1 > z)

> 1− βt∗0(φ(1)(x),z) β (1− α) x

(1− β) + β (1− α) z
≥ 0 (By Lemma B.4 and (x ≤ z))

> 1− β (1− α) x

(1− β) + β (1− α) z
,

> 1− βt∗0(φ(1)(x),z) ≥ 1− β (t∗0(φ(1)(x), z) ≥ 1)

> min{1− β (1− α) x

(1− β) + β (1− α) z
, 1− β, } ≥ 0 � (B.4)

b) φ(0)(x) ≤ z and t∗0(φ(1)(x), z)− t∗0(φ(0)(x), z) = 1,

For any x > z, we will further define t∗0(x, z) = 0, so the case t∗0(φ(1)(x), z)−t∗0(φ(0)(x), z) =

1 includes both that φ(1)(x) ≤ z, φ(0)(x) > z or φ(1)(x) ≤ z, φ(0)(x) ≤ z. Hence, we write
g(x, z) for both of these cases as follows:

g(φ(1)(x), z) = βt
∗
0(φ(1)(x),z)g(y1

1, z), and g(φ(0)(x), z) = βt
∗
0(φ(1)(x),z)−1g(y1

0, z).

Next, by Lemma Lemma B.7 it holds that y1
1 > y1

0 , which therefore by Lemma B.3 im-
plies that g(y1

0, z) > g(y1
1, z) . Thus,

w(x, z) = 1 + βt
∗
0(φ(1)(x),z)+1 [1− (1− α) x ] g(y1

1, z)− βt
∗
0(φ(1)(x),z) g(y1

0, z)

= 1− βt∗0(φ(1)(x),z)
[
g(y1

0, z)− β [1− (1− α) x ] g(y1
1, z)

]
> 1− βt∗0(φ(1)(x),z) ≥ 1− β ≥ 0

(
By Lemma B.9 and (t∗0(φ(1)(x), z) ≥ 1)

)
> 1− β � (B.5)

Thus, we conclude that, for case ii), φ(1)(x) ≤ z b) t∗0(φ(1)(x), z)− t∗0(φ(0)(x), z) = 1:

w(x, z) > 1− β � (B.6)

Next, we address the final case in Lemma 4.1, part (ii) with z < x ≤ φ(0)
∞ ).

(ii)w(x, z) >
(1− β)

(1− β) + β (1− α) z
≥ 0 for any x ∈ (z, φ0

∞], 0 ≤ β ≤ 1.
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w(x, z) = g(x, z)− β g(φ(0)(x), z) (x > z) (B.7)

w(x, z) ≥ g(x, z) (1− β) (By Lemma B.8 and Lemma B.3)

w(x, z) >
(1− β)

(1− β) + β (1− α) x
> (1− β) > 0 (By Lemma B.4) � (B.8)

Notice that (B.7) follows from the marginal work definition given in (4.10) for any x > z,
since in this case it holds that g(x, z) = 1 + β [1 − (1 − α)x]g(φ(1)(x), z). Next, by
Lemma B.8 we have that, for any x ∈ (z, φ

(0)
∞ ], it holds that: x ≤ φ(0)(x) and then, by

Lemma B.3 we have that g(x, z) ≥ g(φ(0)(x), z).

Next, we address the final case in Lemma 4.1, part (iii) with φ(0)
∞ ) < x ≤ 1.

The lower bound on w(x, z) in this case coincides with (B.3). By Lemma B.1, for any
x ∈ [φ

(0)
∞ , 1] it holds that: z < φ(1)(x) < φ(0)(x). Then, by Lemma B.3 and Lemma B.4 we

conclude that:
w(x, z) > 1− β (1− α) x

(1− β) + β (1− α) z
(x > z)

Actually, it follows from Lemma B.14 that a tighter bound can be applied in this case.

w(x, z) > 1− β (1− α) x

(1− β) + β (1− α) φ
(1)
∞

(x > z ≥ φ(0)
∞ ),

>
(1− β) + β (1− α) (φ

(1)
∞ − x)

(1− β) + β (1− α) φ
(1)
∞

(x > z ≥ φ(0)
∞ )

Notice that, for β = 1, such a lower bound is negative for all x > φ
(0)
∞ , since by

Lemma B.1 it holds that φ(1)
∞ < φ

(0)
∞ . Thus, the strategy of establishing the positivity

of the lower bound on w(x, z) is not useful in this case.
Furthermore, not only the lower bound on w(x, z) but also the marginal work measure
w(x, z) for β = 1 can be shown to be negative in this case.

w(x, z) = 1 + β [1− (1− α) x ] g(φ(1)(x), z)− β g(φ(0)(x), z)

= 1 + β [1− (1− α) x ]

[ ∞∑
t=0

βt θ(φ(1)(x), z, t)

]
− β

[ ∞∑
t=0

βt θ(φ(0)(x), z, t)

]

= (1− β) +

[ ∞∑
t=1

βt θ(x, z, t)− β
∞∑
t=1

βt θ(φ(0)(x), z, t)

]
(B.9)

Notice that, by Lemma B.2 for x > φ
(0)
∞ it holds that x > φ(0)(x) and then by Lemma

Lemma B.7 it holds that φ(1)
t (x) > φ

(1)
t

(
φ(0)(x)

)
for any t ≥ 0. Thus, it also holds that:

θ(x, z, t) < θ
(
φ(0)(x), z, t

)
t ≥ 0 (B.10)
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Thus, if
∞∑
t=1

θ(x, z, t) − β
∞∑
t=1

βtθ(φ(0)(x), z, t) < 0, then from (B.9) we conclude that

w(x, z) > 0 if

1− β >
∞∑
t=1

θ(x, z, t)− β
∞∑
t=1

βtθ(φ(0)(x), z, t) (B.11)

From (B.10), it is straightforward to see that for β = 1, the above condition (B.11) never
holds, thus w(x, z) < 0 for any x ∈ [φ

(0)
∞ , 1] and z ∈ [0, φ1

∞] if β = 1.
Also, note that, if x − βφ(0)(x) < 0 a sufficient condition for w(x, z) to be negative for
β < 1 is

(1− β) < β (1− α)
(
x− βφ(0)(x)

)

Hence, there exists a β∗ for all possible p0, p1, q0, q1, α such that w(x, z) > 0 for all
0 ≤ β < β∗. Such a β∗ is the lowest discount factor β for which (B.11) does not hold.
Since the infinite sum in (B.11) does not admit a closed form expression, β∗ cannot be
computed exactly, yet a lower bound on β∗ can be obtained in closed form by, for in-
stance, imposing that the lowest bound on w(x, z) is strictly positive. Hence,

w(x, z) > 1− β (1− α) x g(φ(1)(x), z)

> 1− β (1− α)

1− β(1− (1− α)φ
(1)
∞ )

>
1− β

[
1− (1− α)(φ

(1)
∞ − 1)

]
1− β(1− (1− α)φ

(1)
∞ )

(B.12)

Thus, by (B.12) we conclude that:

β∗ >
1

1 +
[
1− (1− α)(1− φ(1)

∞ )
] , β(1) (B.13)

Notice that β(1) is the lowest value of the maximum discount factor derived following
this procedure of imposing that the minimum w(x, z) is strictly positive. Tighter low-
est bounds on β∗ can be obtained by sequentially approximating g(φ1(1), z) with more
terms (instead of using its upper bound). For instance, instead of using g(φ1(1), z) <

1

1−β(1−(1−α)φ
(1)
∞ )

we could consider:

g(φ1(1), z) < 1 + β
[
1− (1− α)(p1 + ρ1)

]( 1

1− β(1− (1− α)φ
(1)
∞ )

)
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Thus, we would obtain a discount factor β(2) for which (B.14) holds.

w(x, z) > 1− β (1− α) x g(φ(1)(x), z)

> 1− β (1− α)

[
1 +

(
β
[
1− (1− α)(p(1) + ρ(1))

]
1− β(1− (1− α)φ

(1)
∞ )

)]
(B.14)

Where β∗ > β(2) > β(1). By approximating g(φ(1)(x), z) using n terms of the infinite
sum assuming the largest value of the n+1 remaining terms we can obtain further lower
bounds on β∗ which we denote by βn, such that β∗ > · · · > β(n) > · · · > β(2) > β(1).

Thus, we conclude that w(x, z) > 0 when x ∈ [φ
(0)
∞ , 1] and z ∈ [0, φ

(1)
∞ ] only for β < β∗

where β∗ is the lowest discount factor for which (B.9) is strictly positive. �

For proving Lemma 4.1 we have deployed the following results and properties of the
Möbius transformations, listed as lemmas. Further, they shall be invoked for proving
the rest of results shown in this Appendix.

Lemma B.1. For any p(0) > p(1), q(0) < q(1) and ρ(1) > 0:

φ
(1)
t (x) < φ

(0)
t (x) for all t ≥ 1,

From which it follows that: a) φ(1)(x) < φ(0)(x) and b) φ(1)
∞ < φ

(0)
∞

Proof. We shall prove it by induction.
For t = 1 we have that:

φ(1)(x) = (p(1) + ρ(1)x)− ρ(1)x
(1− α)

1− (1− α)x
. (B.15)

Thus, for any ρ(1) ≥ 0, φ(1)(x) ≤ (p(1) + ρ(1)x) while φ(0)(x) = (p(0) + ρ(1)x). Then,
φ(0)(x)− φ(1)(x) ≥ (p(0) − p(1)) (1− x) + (q(1) − q(0)) x > 0,

for any p(0) > p(1) and q(0) < q(1), as it occurs in this model. Then, for t = 1 it holds that
φ(1)(x) < φ(0)(x).

Next, we assume it true for t, i.e. φ(1)
t (x) < φ

(0)
t (x) and consider the case for t+1. Notice

that: φ(a)
t+1 = φ(a)(φ

(a)
t (x)) for a = 0, 1, then by (B.15):

φ
(1)
t+1(x) ≤ p(1) + ρ(1)φ

(1)
t (x).



B.1. WORK-REWARD MEASURES ANALYSIS 131

Finally, since φ(1)
t (x) < φ

(0)
t (x) we conclude that:

φ
(0)
t+1(x)− φ(1)

t+1(x) ≥ (p(0) − p(1)) (1− φ(0)
t (x)) + (q(1) − q(0)) φ

(0)
t (x) > 0.

Lemma B.2. For a = 0, 1 and any x < φ
(a)
∞ , 0 ≤ t < ∞, φ(a)

t (x) < φ
(a)
∞ , whereas, for any

x > φ
(a)
∞ , φ(a)

t (x) > φ
(a)
∞ .

Proof. It follows straightforwardly from the result (A.8) in the appendix on Möbius
transformations implying that φ(a)

t (x) is a deceasing function in t to the right of its fixed
point φ(a)

∞ and a increasing function in t to the left of its fixed point.

Lemma B.3. For any x, y such that z < x < y ≤ 1 with z ∈ [0, φ
(1)
∞ ],

g(x, z) > g(y, z)

Proof. By results (A.18) and (A.14) it holds that:

φ
(1)
t (y) > φ

(1)
t (x) > φ(1)

∞ if y > x > z ≥ φ(1)
∞ , for 0 ≤ t <∞.

Therefore, for any x, y ∈ (z, 1] : x < y with z ∈ [0, φ
(1)
∞ ] it holds that

1− (1− α) φ
(1)
t (y) < 1− (1− α) φ

(1)
t (x) < 1− (1− α) φ(1)

∞ , for 0 ≤ t <∞.

Hence, θ(y, z, t) < θ(x, z, t) for all t <∞while θ(y, z,∞) = θ(x, z,∞). Thus, from (4.14)
it follows that: g(x, z) > g(y, z).

Lemma B.4. For any x ∈ (z, 1] with z ∈ [0, φ
(1)
∞ ],

1

1− β (1− (1− α) x)
< g(x, z) <

1

1− β (1− (1− α) z)
, z ≤ φ(1)

∞ < x

1

1− β (1− (1− α) φ
(1)
∞ )

< g(x, z) <
1

1− β (1− (1− α) z)
, z < x ≤ φ(1)

∞

Proof. By result (A.18) it holds that:

(a) x > φ
(1)
t (x) > φ(1)

∞ ≥ z if x > φ(1)
∞ ≥ z, for 1 ≤ t <∞, and

(b) φ(1)
∞ > φ

(1)
t (x) > x > z if φ(1)

∞ ≥ x > z, for 1 ≤ t <∞.
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Therefore, for (a) and (b) respectively it holds that

1− (1− α) x < 1− (1− α) φ
(1)
t (x) < 1− (1− α) z, for 1 ≤ t <∞.

1− (1− α) φ(1)
∞ < 1− (1− α) φ

(1)
t (x) < 1− (1− α) z, for 1 ≤ t <∞.

Hence, [1− (1− α) x]t < θ(x, z, t) < [1− (1− α) z]t for all 0 < t <∞ and[
1− (1− α) φ

(1)
∞
]t
< θ(x, z, t) < [1− (1− α) z]t for all 0 < t < ∞. Thus, from (4.14) it

follows that:

∞∑
t=0

βt [1− (1− α) x]t < g(x, z) <

∞∑
t=0

βt [1− (1− α) z]t

∞∑
t=0

βt
[
1− (1− α) φ(1)

∞
]t
< g(x, z) <

∞∑
t=0

βt [1− (1− α) z]t

Lemma B.5. For any x ∈ (0, z],

t∗0(φ(1)(x), z)− t∗0(φ(0)(x), z) ∈ {0, 1}

Proof. From the definition of t∗0(x, z) provided in Chapter 4 it follows that such a func-
tion will be a floor function since, for x ≤ z, t∗0(x, z) satisfies:

φ
(0)
t∗0(x,z)−1(x) ≤ z < φ

(0)
t∗0(x,z)(x).

Thus, using the property below:

bxc − byc ≤ bx− yc,

it can be shown that the maximum value for t∗0(φ(1)(x), z) − t∗0(φ(0)(x), z) is 1 since the
function t∗0(x, z) is decreasing in x for a given z and φ(1)(x) < φ(0)(x).

Lemma B.6. For any x ∈ (z, 1],

t∗1(φ(0)(x), z)− t∗1(φ(1)(x), z) ∈ {0, 1}

Proof. From the definition of t∗1(x, z) provided in Chapter 4 it follows that such function
will be a ceiling function since for x > z, t∗1(x, z) satisfies:

φ
(1)
t∗1(x,z)(x) < z ≤ φ(1)

t∗1(x,z)−1(x).
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Thus, using the property below:

dxe − dye ≤ dx− ye+ 1,

it can be shown that the maximum value for t∗1(φ(0)(x), z) − t∗1(φ(1)(x), z) is 1 since the
function t∗1(x, z) is increasing in x for a given z and φ(1)(x) < φ(0)(x).

Lemma B.7. For a = 0, 1 and any x < y < φ
(a)
∞ , 0 ≤ t <∞, it holds that:

φ
(a)
t (x) < φ

(a)
t (y) < φ

(a)
∞ whereas for any x > y > φ

(a)
∞ , φ(a)

t (x) > φ
(a)
t (y) > φ

(a)
∞ .

Proof. We begin the proof by invoking results (A.17) and (A.18) from the appendix on
Möbius transformations, from which it follows that:

∂φ
(a)
t (x)

∂x
> 0 for a = 0, 1 for all t <∞ (B.16)

Lemma B.8. For a = 0, 1 and any x < φ
(a)
∞ , 0 ≤ t <∞, it holds that:

φ
(a)
t (x) < φ

(a)
t+1(x) < φ

(a)
∞ whereas, for any x > φ

(a)
∞ , φ(a)

t (x) > φ
(a)
t+1(x) > φ

(a)
∞ .

Proof. This proof is completed by invoking results (A.13) and (A.14) from the appendix
on Möbius transformations, from which it follows that:

∂φ
(a)
t (x)

∂t
= sgn

(
φ(a)
∞ − x

)
for a = 0, 1.

Thus, for x < φ
(a)
∞ , ∂φ

(a)
t (x)
∂t > 0, and hence from result (A.8) it holds that φ(a)

t (x) < φ
(a)
∞

for all t < ∞, whereas, for x > φ
(a)
∞ , ∂φ

(a)
t (x)
∂t < 0, and hence it holds that φ(a)

t (x) > φ
(a)
∞

for all t <∞.

Lemma B.9.
g(y1

0, z)− β [1− (1− α) x ] g(y1
1, z < 1.

Sketch of Proof:
The total work measure g(y1

0, z) < g(y1
1, z), yet |g(y1

0, z) − β [1− (1− α) x ] g(y1
1, z)| ≤

1. To see this, first bound the maximum difference in the to work processes by the
first difference by |d| < 1, then it follows that |g(y1

0, z) − [1− (1− α) x ] g(y1
1, z)| <

d1−β [1−(1−α) x ]
1−β [1−(1−α) z ] ≤ 1 �

Next, we continue with the proof of Lemma 4.3 invoked in Chapter 4 to show Propo-
sition 4.3.
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Proof of Lemma 4.3

For any threshold z ∈ [φ
(1)
∞ , φ

(0)
∞ ), we summarize the main results regarding infor-

mation state cycles under a z-threshold policy in results Lemma B.10, Lemma B.11 and
Lemma B.12.

Lemma B.10. For z ∈ [φ
(1)
∞ , φ

(0)
∞ ) and x ∈ (0, 1], as long as xt 6= 0, (i.e, as long as the target

remains unhunted), the hitting time for the belief state process to the interval (φ(1)(z), φ(0)(z)]

is finite, and once the belief state reaches this set of states, the probability of abandoning it is zero.
The subset (φ(1)(z), φ(0)(z)], as long as xt 6= 0, is “absorbing” (i.e., it is never abandoned until
the target is hunted).

Proof. If x ≤ z after t∗0(x, z) slots under deterministic dynamics, we reach the set (z, φ(0)(z)].
While if x > z and if after t∗1(x, z) active slots the target has not been found, then after
t∗1(x, z) + t∗0(φ

(1)
t∗1(x,z)(x), z) periods the set (z, φ(0)(z)] is reached. Notice that, the maxi-

mum value of xt to reach the active setB(z) coming from the passive setB(z)c is φ(0)(z);
then the minimum value of the information state to reach the passive set B(z)c coming
from (z, φ(0)(z)] is limx→z+ φ

(1)(x) = φ(1)(z). Thus, once xt is in (z, φ(0)(z)] we know that
the interval (φ(1)(z), φ(0)(z)] is never abandoned, alternating infinitely within it between
the interval (φ(1)(z), z] ⊂ B(z)c (passive slots), and the interval (z, φ(0)(z)] ⊂ B(z) (ac-
tive slots), until the target is found.

Furthermore, as stated in result Lemma B.11, within that “absorbing” set of states the
possible composition of cycles (in terms of the concrete sequence of active/passive time slots) is
reduced to three cases: case 1: 1 passive slot & A active slots, with A ≥ 2; case 2: 1 passive slot
& 1 active slot; case 3: P passive slots & 1 active slot1, with P ≥ 2.

Lemma B.11. (a) For z ∈ (φ
(1)
∞ , φ0(φ

(1)
∞ )): if x ∈ (φ(1)(z), z], then t∗0(x, z) = 1; If x ∈

(z, φ(0)(z)], t∗1(x, z) > 1.

(b) For z ∈ (φ1(φ
(0)
∞ ), φ0(φ

(1)
∞ )): if x ∈ (φ(1)(z), z] then t∗0(x, z) = 1. If x ∈ (z, φ(0)(z)],

then t∗1(x, z) = 1.

(c) For z ∈ (φ0(φ
(1)
∞ ), φ

(0)
∞ ),: if x ∈ (φ(1)(z), z], then t∗0(x, z) > 1. If x ∈ (z, φ(0)(z)], then

t∗1(x, z) = 1.
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Proof. For case (i) and (ii) notice that, if x, z ∈ (φ
(1)
∞ , φ(0)(φ

(1)
∞ )), it is easy to see that

t∗0(x, z) = 1; and by the same reasoning, if x, z ∈ (φ(1)(φ
(0)
∞ ), φ

(0)
∞ ) then t∗1(x, z) = 1.

Thus, for z ∈ (φ
(1)
∞ , φ(1)(φ

(1)
∞ )) the process xt will jump above (φ(1)(z), z] only after 1

passive time slot, while for z ∈ (φ(1)(φ
(0)
∞ ), φ

(0)
∞ ) the process xt will leave the interval

(z, φ
(0)
∞ ) just after 1 active time slot.

Finally, since φ(1)(φ
(0)
∞ ) < φ(0)(φ

(1)
∞ ) for z ∈ (φ(1)(φ

(0)
∞ ), φ(0)(φ

(1)
∞ )) the process xt will

evolve in such a way that there will be 1 active and 1 passive period when searching the
sites under a threshold policy. Since, if x, z ∈ (φ(1)(φ

(0)
∞ , φ(0)(φ

(1)
∞ )) then t∗0(x, z) = 1 and

t∗1(x, z) = 1. An analogous reasoning follows for case (iii).

Notice from Lemma B.11 the existence of belief state cycles under a z-threshold po-
licy different from the ones described above is ruled out.

Lemma B.12. Furthermore, for cases (i) and (iii) it may also occur that the active slots or the
passive slots respectively composing the cycle generate regular cycles or irregular cycles as
described by the lemma below.

(a) For z ∈ (φ(1)
∞ , φ0(φ(1)

∞ )) :, a.1) ∀x ∈ (z, φ(0)(z)] then t∗1(x, z) = A ≥ 2

a.2) ∀x ∈ (z, x∗] then t∗1(x, z) = A ≥ 2 , and

a.3)x ∈ (x∗φ(0)(z)] then t∗1(x, z) = A+ 1

Further in cases a.2) and a.3) it holds that φ(0)(φ
(1)
A (x)) ∈ (x∗φ(0)(z)] and φ(0)(φ

(1)
A+1(x)) ∈ (z, x∗]

(b) For z ∈ (φ(0)(φ(1)
∞ ), φ(0)

∞ ) :, b.1) ∀x ∈ (φ(1)(z), z], then t∗0(x, z) = P ≥ 2

b.2) ∀x ∈ (x∗, z], t∗0(x, z) = P ≥ 2 , and

b.3)∀x ∈ (φ(1)(z), x∗] : then t∗0(x, z) = P + 1

Further in cases b.2) and b.3) it holds that φ(1)(φ
(0)
P (x)) ∈ (φ(1)(z), x∗] and φ(1)(φ

(0)
P+1(x)) ∈ (x∗, z]

Sketch of Proof:

The above result follows from properties of the floor and ceiling function defining
t∗0(x, z) and t∗1(x, z). For some threshold within each case, the absorbing set of states will
have t∗0(x, z) or t∗1(x, z) yielding two possible results (whose difference is 1). The pro-
perties of the active and passive dynamics will next guarantee that these two possible
values (either for the active or the passive slots) occur alternating.

Next, with the above Lemmas we shall prove Lemma 4.3.
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For x ∈ (0, z], with z in [φ
(1)
∞ , φ

(0)
∞ ) such that:

(ii) z ∈ (φ(1)(φ
(0)
∞ ), φ(0)(φ

(1)
∞ )) as in Lemma B.11 holds; or z as in (i) a) of Lemma B.12; or

z as in (iii) a) of Lemma B.12 with t∗0(φ(1)(x), z) = t∗0(φ(0)(x), z);

it holds that:

w(x, z) = 1 + β [1− (1− α) x ] g(φ(1)(x), z)− β g(φ(0)(x), z)

> 1 + β [1− (1− α) x ] g(φ(1)(x), z)− β g(φ(1)(x), z) (By Lemma B.13 )

> 1− βt∗0φ(1)(x),z) β(1− α) x g(y1
1, z) (y1

1 > z)

> 1− βt∗0φ(1)(x),z) β (1− α) x

(1− β) + β (1− α) φ
(1)
∞
≥ 0

(
By Lemma B.14 and (x ≤ φ(1)

∞ )
)

> 1− β (1− α) x

(1− β) + β (1− α) φ
(1)
∞

� (B.17)

For the remaining threshold values z in (φ
(1)
∞ , φ

(0)
∞ ):

z as in (i) b) of Lemma B.12; or z is as in (iii) a) of Lemma B.12 with t∗0(φ(0)(x), z) + 1 =

t∗0(φ(1)(x), z) or z as in (iii) b) of Lemma B.12 It holds that:

w(x, z) = 1 + βt
∗
0(φ(1)(x),z)+1 [1− (1− α) x ] g(y1

1, z)− βt
∗
0(φ(1)(x),z) g(y1

0, z)

= 1− βt∗0(φ(1)(x),z)
[
g(y1

0, z)− β [1− (1− α) x ] g(y1
1, z)

]
> 1− βt∗0(φ(1)(x),z) ≥ 1− β ≥ 0

(
By Lemma B.15 and (t∗0(φ(1)(x), z) ≥ 1)

)
> 1− β � (B.18)

Lemma B.13. For any x, y ∈ (z, φ
(0)
∞ ]: x < y, and (ii) z ∈ (φ(1)(φ

(0)
∞ ), φ(0)φ

(1)
∞ )); or z as in (i)

a) of Result Lemma B.12; or z as in (iii) a) of Result Lemma B.12

g(x, z) > g(y, z)

Proof. For (ii) z ∈ (φ(1)(φ
(0)
∞ ), φ(0)(φ

(1)
∞ )), the process at (starting at either x or y and as

long as the target remains unhunted) will be:

at =

1, for t = 2 n, n = 0, 1, 2, . . . ,

0, for t = 2 n+ 1, n = 0, 1, 2, . . . .
(B.19)

Given that x < y, from proposition Lemma B.7 in t = 1 it follows that φ(1)(x) < φ1(y).
This fact ensures that the belief state starting in y will always be above the process x,
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and this in turn implies that g(x, z) > g(y, z).
Let us show it by induction, if we know that for t = 0 it holds that: x < y thus
φ(1)(x) < φ1(y) in t = 1, hence in t = 2: φ(0)(φ(1)(x)) < φ(0)(φ1(y)). Let us assume
it true for some t, so that for t = 2 n the belief state process is such that xt < yt, hence
it holds that φ(1)(xt) < φ(1)(yt) in t + 1 = 2 n + 1 and φ(0)(φ(1)(xt)) < φ(0)(φ(1)(yt)) in
t + 2 = 2 n + 2. Then, if true in t it is also true in t + 1 since it holds that xt+1 < yt+1,
and this in turn implies that xt+2 < yt+2 by proposition Lemma B.7 (both for t odd and
even).

For (i) a) as in Lemma B.12, it will hold that t∗1(x, z) = t∗1(y, z) = A (with A ∈ {1, 2, . . . })
and the process at (starting at either x or y and as long as the target remains unhunted)
will be:

at =

1, for t = n (A+ 1) . . . t = n (A+ 1) + (A− 1), n = 0, 1, 2, . . . ,

0, for t = n (A+ 1) +A, n = 0, 1, 2, . . . .
(B.20)

Given that x < y, from proposition Lemma B.7 in t = 1 it follows that φ(1)
A (x) < φ

(1)
A (y)

and also φ(0)(φ
(1)
A (x) < φ(0)(φ

(1)
A (y). These facts ensure that the belief state starting in y

will always be above the process x, and this in turn implies that g(x, z) > g(y, z).

For (iii) a) as in Lemma B.12, it will hold that t∗0(x, z) = t∗0(y, z) = P , thus the process at
(starting at either x or y) will be:

at =

1, for t = n (P + 1), n = 0, 1, 2, . . . ,

0, for t = n (P + 1) + 1 . . . t = n (P + 1) + P, n = 0, 1, 2, . . . .
(B.21)

Given that x < y, from proposition Lemma B.7 in t = 1 it follows that φ(1)(x) < φ(1)(y)

and φ(0)
P (φ(1)(x)) < φ

(0)
P (φ1(y)) . These facts ensure that the belief state starting in y will

always be above the process x, and this in turn implies that g(x, z) > g(y, z).

Lemma B.14. For any x ∈ (z, 1], with z ∈ [φ
(1)
∞ , φ

(0)
∞ ),

1 < g(x, z) <
1

1− β(1− (1− α)φ
(1)
∞ )

Sketch of Proof:
This follows from the fact that as z ↘ φ

(1)
∞ , the cycle tends to be composed of a larger

number of active periods A → ∞ (as in Case I of the possible thresholds). As when
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z ↗ φ
(0)
∞ the cycle tends to be composed of a larger number of passive periods P → ∞

(as in Case III of the possible thresholds). These arguments explain the above bounds
on the work measure for the case II of the possible thresholds.

Lemma B.15. For any x ∈ (0, 1], let y1
a be the first value of the belief state process to reach

the set (z, φ
(0)
∞ ]having selected the action a = 0, 1 at the initial state x and following a z-

threshold policy thereafter, if z is as in (i) b) of Lemma B.12; or as in (i) a) of Result B.12 with
t∗1(φ(0)(x), z) + 1 = t∗1(φ(1)(x), z) for x > z; or z as in (iii) b) of Result B.12; or z is as in (iii)
a) of Result B.12 with t∗0(φ(0)(x), z) + 1 = t∗0(φ(1)(x), z) for x ≤ z.

g(y1
0, z)− g(y1

1, z) < 1 =⇒ g(y1
0, z)− β(1− (1− α)x)g(y1

1, z) < 1

Sketch of Proof:
In all these cases it holds that y1

0 < y1
1 , and this fact ensures that either the belief state

starting in x and active will always be above the process starting in x and passive, or
that both processes will be intertwined (as in (i) b) or (iii) b) where cycles are alternating
in their composition). Yet, in all cases it holds that:

Next, we continue to prove part (ii) of Lemma 4.3.
If x ∈ (z, φ

(0)
∞ ], with z in [φ

(1)
∞ , φ

(0)
∞ ) such that (ii) z ∈ (φ(1)(φ

(0)
∞ ), φ(0)(φ

(1)
∞ )) as in Lemma B.11;

or z as in (i) a) of Lemma B.12 with t∗1(x, z) = t∗1(φ(0)(x), z); or z as in (iii) a) of Lemma B.12;
It holds that x < φ(0)(x) and hence:

w(x, z) = g(x, z)− β g(φ(0)(x), z) (x > z) (B.22)

≥ g(x, z) (1− β) (By Lemma B.8 and B.13)

> (1− β) > 0 (By Lemma B.14) � (B.23)

For the remaining threshold values z in (φ
(1)
∞ , φ

(0)
∞ ):

z as in (i) a) of Lemma B.12 with t∗1(x, z)+1 = t∗1(φ(0)(x), z); z or as in (i) b) of Lemma B.12;
or z is as in (iii) b) of Lemma B.12, it holds that:

w(x, z) = 1 + β[1− (1− α) x] g(φ(1)(x), z)− β g(φ(0)(x), z)

= 1 + β[1− (1− α) x] g(y1
1, z)− β g(y1

0, z)

> 1− β
(
g(y1

0, z)− [1− (1− α) x] g(y1
1, z)

)
> (1− β) (By Lemma B.15) �

Next, we prove part (iii) of Lemma 4.3.

Let t∗1(x, φ
(0)
∞ ) be the number of active slots until we reach the “absorbing” set of states
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(φ(1)(z), φ(0)(z)) for any z ∈ [φ
(1)
∞ , φ

(0)
∞ ) starting from some x > φ

(0)
∞ . Let the value of the

first belief state to reach the “recurrent” set after being active/passive in the first slot be

denoted as y0
1 ,

(
φ1

t∗1(φ(1)(x),φ
(0)
∞ )

(φ(1)(x))

)
and y0

0 ,

(
φ1

t∗1(φ(0)(x),φ
(0)
∞ )

(φ(0)(x))

)
. Then, it

holds that:

w(x, z) = 1 + β[1− (1− α) x]

t∗1(φ(1)(x),φ
(0)
∞ )−1∑

t=0

βt θ(φ(1)(x), φ(0)
∞ , t)

+

βt
∗
1(φ(1)(x),φ

(0)
∞ )) θ

(
φ(1)(x), φ(0)

∞ ,
[
t∗1(φ(1)(x), φ(0)

∞ )− 1
])

g(y1
0, z) . . .

−β

t∗1(φ(0)(x),φ
(0)
∞ )−1∑

t=0

βt θ(φ(0)(x), φ(0)
∞ , t)

−
βt
∗
1(φ(0)(x),φ

(0)
∞ )) θ(φ(0)(x), φ(0)

∞ ,
[
t∗1(φ(0)(x), φ(0)

∞ )− 1
]
)g(y0

0, z)

= (1− β) +
t∗1(φ(1)(x),φ

(0)
∞ )∑

t=1

βt θ(x, φ(0)
∞ , t)

− β
t∗1(φ(0)(x),φ

(0)
∞ )−1∑

t=1

βt θ(φ(0)(x), φ(0)
∞ , t)− 1


+

βt
∗
1(φ(1)(x),φ

(0)
∞ ) θ

(
x, φ(0)

∞ ,
[
t∗1(φ(1)(x), φ(0)

∞ )
])

g(y1
0, z)

−βt∗1(φ(0)(x),φ
(0)
∞ z)) θ(φ(0)(x), φ(0)

∞ ,
[
t∗1(φ(0)(x), φ(0)

∞ )− 1
]
)g(y0

0, z)

(B.24)

Define further,

w(3)(x, z) = (1− β) +


t∗1(φ(1)(x),φ

(0)
∞ )∑

t=1

βt θ(x, φ(0)
∞ , t)

− β
t∗1(φ(0)(x),φ

(0)
∞ )−1∑

t=1

βt θ(φ(0)(x), φ(0)
∞ , t)




By proposition Lemma B.6, we have that:

w(3)(x, z) > (1− β) +

t∗1(φ(1)(x),φ
(0)
∞ )∑

t=1

βt
(
θ(x, φ(0)

∞ , t)− β
[
θ(φ(0)(x), φ(0)

∞ , t)
]) , w(3)

min(x, φ(0)
∞ )
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Then, it holds that

w(x, z) > w(3)(x, z) + βt
∗
1(φ(1)(x),φ

(0)
∞ ) θ

(
x, φ(0)

∞ ,
[
t∗1(φ(1)(x), φ(0)

∞ )− 1
])
×(

βd d
[
1− (1− α)

(
φ1
t∗1(φ(1)(x),z)−1

(φ(1)(x))
)]

g(y1
0, z)− g(y0

0, z)
)

Where d ∈ {0, 1} according to Lemma B.6. For d = 0, y1
0 < y0

0 and from Lemma B.13
we conclude that g( y1

0, z) − g( y0
0, z) > 0. For d = 1, y1

0 > y0
0 and from Lemma B.15 we

conclude that g( y0
0, z)− g( y1

0, z) < 1.

It follows that w(x, z) will be positive as long as w(3)(x, z) > 0. But, w(3)(x, z) may be
negative. From Lemma B.2 and for any x > φ

(0)
∞ it follows that x > φ(0)(x), and then by

Lemma B.7 it holds that φ1
t (x) > φ1

t (φ
(0)(x)) for any 0 ≤ t <∞. Note that for β = 1, and

t∗1(φ(1)(x), φ
(0)
∞ ) ≥ 1, it holds that w(3)(x, z) < 0 since φ1

t (x) > φ1
t (φ

(0)(x)) implies that
θ(x, z, t) < θ(φ(0)(x), z, t). Notice that w(3)(x, z) > 0 when w(3)(x, z)− (1− β) < 0 iff

(1− β) >


t∗1(φ(1)(x),φ

(0)
∞ )∑

t=1

βt θ(x, φ(0)
∞ , t)

− β
t∗1(φ(0)(x),φ

(0)
∞ )−1∑

t=0

βt θ(φ(0)(x), φ(0)
∞ , t)




(B.25)

Denote by β∗2 the lowest discount factor β for which (B.25) does not hold. Then, it holds
that for x ∈ (φ

(0)
∞ , 1]: w(x, z) > 0 for β < β∗2 .

It is straightforward to see that β∗2 > β∗, given that for deriving β∗ we must consider an
infinite sum of terms, instead of a finite one, as in this case.
Thus, we conclude that, for x ∈ (φ

(0)
∞ , 1] when z ∈ [φ

(1)
∞ , φ

(0)
∞ ),w(x, z) > 0 for β < β∗. �

Next, we prove Lemma 4.5. We start by part (i) by which for any threshold z ≥ φ
(0)
∞ ,

w(x, z) = 1.

In this threshold case the marginal work measure can be computed in closed form. No-
tice that by proposition Lemma B.2 any x ≤ z is such that φ(0)(x) ≤ z and φ(1)(x) ≤ z,
which hence implies from (4.26) that g(φ(0)(x), z) = g(φ(1)(x), z) = 0. Thus, from (4.10)
we conclude that w(x, z) = 1.

Now, we prove part (ii) in Lemma 4.5 by which for any threshold z ≥ φ
(0)
∞ , w(x, z) >

0 for any x ∈ (z, 1] and β < β∗.

It follows from (4.26) and (4.10) that:
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w(x, z) = 1 + β[1− (1− α) x]

t∗1(φ(1)(x),z)−1∑
t=0

βt θ(φ(1)(x), z, t)


−β

t∗1(φ(0)(x),z)−1∑
t=0

βt θ(φ(0)(x), z, t)

 (B.26)

Define t∗1(x, z) = 0 for any x ≤ z. Then by Proposition Lemma B.6 we can bound (B.26)
as follows:

w(x, z) ≥ 1 + β[1− (1− α) x]

t∗1(φ(1)(x),z)−1∑
t=0

βt θ(φ(1)(x), z, t)


−β

t∗1(φ(1)(x),z)∑
t=0

βt θ(φ(0)(x), z, t)


≥ 1 +

t∗1(φ(1)(x),z)∑
t=1

βt θ(x, z, t)


−β

1 +

t∗1(φ(1)(x),z)∑
t=1

βt θ(φ(0)(x), z, t)


≥ (1− β) +

t∗1(φ(1)(x),z)∑
t=1

βt θ(x, z, t)− β
t∗1(φ(1)(x),z)∑

t=1

βt θ(φ(0)(x), z, t)


(B.27)

Once more it follows from the definition of β∗ detailed in the proof of Proposition 4.1
part c) that (B.27) will be strictly positive for all β < β∗. To see this it is enough to notice
that by Proposition Lemma B.2, for any x > φ

(0)
∞ it holds that x > φ(0)(x), and then by

Proposition Lemma B.7 it holds that φ1
t (x) > φ1

t (φ
(0)(x)) for any t ≥ 0, which implies

that θ(x, z, t) < θ(φ(0)(x), z, t). Thus, for w(x, z) to be strictly positive it should be the
case that

(1− β) > β

t∗1(φ(0)(x),z)∑
t=1

βt θ(φ(0)(x), z, t)−
t∗1(φ(1)(x),z)∑

t=1

βtθ(x, z, t); (B.28)

whenever β
∑t∗1(φ(0)(x),z)

t=1 βt θ(φ(0)(x), z, t)−∑t∗1(φ(1)(x),z)
t=1 βtθ(x, z, t) < 0. Denote by β∗(3)
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the lowest discount factor β for which (B.28) does not hold. Then, it holds that for
x ∈ (z, 1], w(x, z) > 0 for β < β∗3 .
It is straightforward to see that β∗3 > β∗, given that for deriving β∗ we must consider an
infinite sum of terms, instead of a finite one, as in this case.
Thus, we conclude that, for x ∈ (z, 1] when z ∈ [φ

(0)
∞ , 1], w(x, z) > 0 for β < β∗. �

These are the results obtained which prove that, provided the MP index is continu-
ous, a) ∂w(x,x)

∂x ≤ 0 and b) ∂r(x,x)
∂x ≥ 0.

These results are required to show Proposition 4.2, Proposition 4.4, and Proposition 4.4.
Next, we prove Lemma 6.1.
For z < φ

(1)
∞ , to show ∂w(x,x)

∂x ≤ 0 and b) ∂r(x,x)
∂x ≥ 0, we start by writing w(x, x) and

r(x, x) in closed form as follows:

w(x, x) = 1 + β [1− (1− α) x ] g(φ(1)(x), x)− βg(φ(0)(x), x)

= 1 + β [1− (1− α) x ]
∞∑
t=0

βt θ(φ(1)(x), x, t)− β
∞∑
t=0

βt θ(φ(0)(x), x, t)

= (1− β) +

∞∑
t=1

βt
[
θ(x, x−, t)− β θ(φ(0)(x), x, t)

]
=

∞∑
t=0

βt
[
θ(x, x−, t)− β θ(φ(0)(x), x, t)

]
, (B.29)

where to compute g(φ(1)(x), z) and g(φ(0)(x), z) we have used the fact that t∗0(φ(1)(x), x) =

t∗0(φ(0)(x), x) = 1 and with where x− stands for the sensing policy with active set equal
to B(x−) = [x, 1].

r(x, x) = R (1− α) x+ β [1− (1− α) x ] f(φ(1)(x), x)− βf(φ(0)(x), x)

= R (1− α)

[
x+ β [1− (1− α) x ]

∞∑
t=0

βt φ1
t (x) θ(φ(1)(x), x, t)−

β

∞∑
t=0

βt φ1
t (φ

(0)(x)) θ(φ(0)(x), x, t)

]

= R (1− α)

[(
x− βφ(0)(x)

)
+

∞∑
t=1

βt
[
φ1
t (x) θ(x, x−, t)− βφ1

t (φ
(0)(x)) θ(φ(0)(x), x, t)

]]
,

= R (1− α)

[ ∞∑
t=0

βt
[
φ1
t (x) θ(x, x−, t)− βφ1

t (φ
(0)(x)) θ(φ(0)(x), x, t)

]]
, (B.30)
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where we have again used the fact that t∗0(φ(1)(x), x) = t∗0(φ(0)(x), x) = 1.
Next, we take partial derivative with respect to x and we obtain:

∂w(x, x)

∂x
=

∞∑
t=1

βt

[
∂θ(x, x−, t)

∂x
− β ∂θ(φ

(0)(x), x, t)

∂x

]
. (B.31)

∂r(x, x)

∂x
= R (1− α)

∞∑
t=0

βt

[
∂φ1

t (x) θ(x, x−, t)
∂x

− β ∂φ
1
t (φ

(0)(x)) θ(φ(0)(x), x, t)

∂x

]
.

(B.32)

To simplify notation for t ≥ 0 we let

ut ,

[
∂θ(x, x−, t)

∂x
− β ∂θ(φ

(0)(x), x, t)

∂x

]
, (B.33)

vt ,

[
∂φ1

t (x) θ(x, x−, t)
∂x

− β ∂φ
1
t (φ

(0)(x)) θ(φ(0)(x), x, t)

∂x

]
. (B.34)

Notice that u0 = 0 and v0 = (1− βρ(0)).
For some x > z with z < φ

(1)
∞ it holds that for all t ≥ 0

∂θ(x, z, t)

∂x
=

∂
[
(1− (1− α) φ1

t−1(x)) θ(x, z, (t− 1))
]

∂x

= −(1− α)
∂φ1

t−1(x)

∂x
θ(x, z, (t− 1)) +[

1− (1− α) φ1
t−1(x)

] ∂ [θ(x, z, (t− 1))]

∂x
(B.35)

∂φ1
t (x)θ(x, z, t)

∂x
=

∂φ1
t (x)

∂x
θ(x, z, t)− φ1

t (x)
∂θ(x, z, t)

∂x
. (B.36)

Then, using (B.35) we compute ut as follows:

ut = −(1− α)

[
∂φ1

t−1(x)

∂x
θ(x, x−, (t− 1))− β ∂φ

1
t−1(φ(0)(x))

∂x
θ(φ(0)(x), x, (t− 1))

]

+

([
1− (1− α) φ1

t−1(x)
] ∂ [θ(x, x−, (t− 1))]

∂x

−β
[
1− (1− α) φ1

t−1(φ(0)(x))
] ∂ [θ(φ(0)(x)x, x−, (t− 1))

]
∂x

)
(B.37)

Notice that rearranging terms of the above expression and using (B.36) we conclude
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that:
ut = ut−1 − (1− α)vt−1 (B.38)

Further, using the result below

φ1
t (x) θ(x, z, t) = φ1(φ1

t−1(x))
[
1− (1− α) φ1

t−1(x)
]
θ(x, z, (t− 1))

φ1
t (x) θ(x, z, t) =

[
p(1)(1− φ1

t−1(x)) + α φ1
t−1(x)(1− q(1))

]
θ (x, z, (t− 1)) ,

we conclude that:

∂φ1
t (x) θ(x, z, t)

∂x
=
[
(1− q(1))α− p(1)

] [∂φ1
t−1(x)

∂x
θ(x, z, (t− 1)) +

∂θ(x, z, (t− 1))

∂x
φ1
t−1(x)

]

+ p(1)∂θ(x, z, (t− 1))

∂x
,

From the above result and (B.36), we derive the following relation

vt =
[
(1− q(1))α− p(1)

]
vt−1 + p(1)ut−1 (B.39)

Now, we shall prove that ∂w(x,x)
∂x ≤ 0 and ∂r(x,x)

∂x ≥ 0 hold, by showing that

Lemma B.16.

(a)
∞∑
t=1

βtut ≤ 0 (B.40)

(b)

∞∑
t=0

βtvt ≥ 0, (B.41)

Proof. First, multiply both sides of equation (B.38) by βt and sum (from 1 to infinite) to
obtain:

∞∑
t=1

βtut =

∞∑
t=1

βt [ut−1 − (1− α)vt−1]

∞∑
t=1

βtut =

(
βu0 + β

∞∑
t=1

βtut

)
− (1− α)

(
βv0 + β

∞∑
t=1

βtvt

)
∞∑
t=1

βtut = −β (1− α)

(1− β)

∞∑
t=0

βtvt (B.42)
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We can now proceed analogously with (B.39) to conclude that:

∞∑
t=1

βtvt =
∞∑
t=1

βt
[[

(1− q(1))α− p(1)
]
vt−1 + p(1)ut−1

]
∞∑
t=1

βtvt =
[
(1− q(1))α− p(1)

](
βv0 + β

∞∑
t=1

βtvt

)
+ p(1)

(
βu0 + β

∞∑
t=1

βtut

)
∞∑
t=1

βtvt + v0 − v0 =
[
(1− q(1))α− p(1)

]
β

( ∞∑
t=0

βtvt

)
+ p(1)β

( ∞∑
t=1

βtut

)

∞∑
t=0

βtvt =

v0 + p(1)β

( ∞∑
t=1

βtut

)
(
1− β

[
(1− q(1))α− p(1)

]) (B.43)

Finally, we plug in result (B.42) in (B.43)[(
1− β

[
(1− q(1))α− p(1)

])
+ p(1)β2 (1− α)

(1− β)

] ∞∑
t=0

βtvt = v0 (B.44)

From (B.44) it follows that
∞∑
t=0

βtvt ≥ 0 which ensures that
∞∑
t=0

βtut ≤ 0.

Therefore, the MP index λMP (x) for the set of states x ∈ (0, φ
(1)
∞ ) is:

λMP (x) =

R (1− α)

[ ∞∑
t=0

βt
[
φ1
t (x) θ(x, x−, t)− βφ1

t (φ
(0)(x)) θ(φ(0)(x), x, t)

]]
∞∑
t=0

βt
[
θ(x, x−, t)− β θ(φ(0)(x), x, t)

] , x ∈ (0, φ(1)
∞ )

(B.45)
Which is an infinite sum of continuous functions of the information state x. It is further
nondecreasing in x since we have shown that r(x, x) is nondecreasing in x and w(x, x)

is nonincreasing in x.

Next, we continue to prove Lemma 6.3.
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w(x, x) = 1 + β [1− (1− α) x ] g(φ(1)(x), x)− βg(φ(0)(x), x)

= 1 + β [1− (1− α) x ]
∞∑
t=0

βt θ(φ(1)(x), x, t) at(φ
(1)(x), z)

= −β
∞∑
t=0

βt θ(φ(0)(x), x, t) at(φ
(0)(x), z)

= (1− βat(φ(0)(x), x)) +

∞∑
t=1

βt
[
θ(x, x−, t)at(x, x−)− β θ(φ(0)(x), x, t)at(φ

(0)(x), z)
]

=
∞∑
t=0

βt
[
θ(x, x−, t)at(x, x−)− β θ(φ(0)(x), x, t)at(φ

(0)(x), z)
]
, (B.46)

where where x− stands for the sensing policy with active set equal to B(x−) = [x, 1].

r(x, x) = R (1− α) x+ β [1− (1− α) x ] f(φ(1)(x), x)− βf(φ(0)(x), x)

= R (1− α)

[
x+ β [1− (1− α) x ]

∞∑
t=0

βt φ1
t (x, z) θ(φ

(1)(x), x, t)at(φ
(1)(x), z)−

β

∞∑
t=0

βt φ1
t (φ

(0)(x), z) θ(φ(0)(x), x, t)at(φ
(0)(x), z)

]

= R (1− α)

[(
x− βφ(0)(x)at(φ

(0)(x), x)
)

+
∞∑
t=1

βt
[
φ1
t (x) θ(x, x−, t)at(x, x−)

−βφ1
t (φ

(0)(x)) θ(φ(0)(x), x, t)at(φ
(0)(x), z)

]]
,

= R (1− α)

[ ∞∑
t=0

βt
[
φ1
t (x) θ(x, x−, t)at(x, x−)− βφ1

t (φ
(0)(x)) θ(φ(0)(x), x, t)at(φ

(0)(x), z)
]]
,

(B.47)

In this case, to show ∂w(x,x)
∂x ≤ 0 and b) ∂r(x,x)

∂x ≥ 0, we start by writing w(x, x) and
r(x, x) in closed form using the Lemma B.11 and Lemma B.12 to write at(x, x−) and
at(φ

(0)(x), x) in closed form. Next, notice that for all x ∈ [φ
(1)
∞ , φ

(0)
∞ ), given that φ(1)(x) <

x < φ(0)(x), it therefore holds that:

a0(x, x−) = 1 , a1(x, x−) = 0; a0(x, x) = 0 , a0(φ(0)(x), x) = 1 (B.48)

Next, consider for instance, cases (ii) in Lemma B.11 and (iii) a) in Lemma B.12. Using
results (B.19) and (B.20) we can write at(x, x−) and at(φ(0)(x), x) in closed form. Notice
that case (ii) in Lemma B.11 corresponds to P = 1 in case (iii) a) of Lemma B.12. Further,
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define θ̂(x, z, t) ,
t−1∏
s=0

1− (1− α)φP,1t (x), with φP,10 (x) , x, φP,1t (x) , φP,1
(
φP,1t−1(x)

)
and

φP,1(x) , φ0
P

(
φ(1)(x)

)
. Thus, (B.46) and (B.47) reduce to the expressions below:

w(x, x) =
∞∑
t=0

β(P+1)t
[
θ̂(x, x−, t)− β θ̂(φ(0)(x), x, t)

]
, (B.49)

r(x, x) = R (1− α)

[ ∞∑
t=0

β(P+1)t
[
φP,1t (x) θ(x, x−, t)− βφP,1t (x)(φ(0)(x)) θ(φ(0)(x), x, t)

]]
,

Next, we take partial derivative with respect to x and we obtain:

∂w(x, x)

∂x
=

∞∑
t=1

β(P+1)t

[
∂θ̂(x, x−, t)

∂x
− β ∂θ̂(φ

(0)(x), x, t)

∂x

]
(B.50)

∂r(x, x)

∂x
= R (1− α)

∞∑
t=0

β(P+1)t

[
∂φP,1t (x) θ̂(x, x−, t)

∂x
− β ∂φ

P,1
t ((φ(0)(x)) θ̂(φ(0)(x), x, t)

∂x

]
(B.51)

To simplify notation for t ≥ 0 we let

ût ,

[
∂θ̂(x, x−, t)

∂x
− β ∂θ̂(φ

(0)(x), x, t)

∂x

]
(B.52)

v̂t ,

[
∂φP,1t (x) θ̂(x, x−, t)

∂x
− β ∂φ

P,1
t ((φ(0)(x)) θ̂(φ(0)(x), x, t)

∂x

]
(B.53)

Now, as we did for showing monotonicity in the threshold values of case I, we shall
prove that ∂w(x,x)

∂x ≤ 0 and ∂r(x,x)
∂x ≥ 0 hold, by showing that

Lemma B.17.

(a)

∞∑
t=1

β(P+1)tût ≤ 0 (B.54)

(b)
∞∑
t=0

β(P+1)tv̂t ≥ 0, (B.55)

Proof. After algebraical manipulations analogous to the ones deployed in case I (i.e.
(B.36)), and rearranging terms of the resulting expressions, it follows that:

ût = ût−1 − (1− α)v̂t−1 (B.56)
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and
v̂t = Av̂t−1 +Bût−1 (B.57)

where A , α(ρ(0))pρ(1)− (1−α)B and B ,
[
φ

(0)
∞ (1− (ρ(0))P ) + (ρ(0))P p(1)

]
. Notice that

for the number of passive slots equal to 1, i.e., P = 1, we recover case in which the cycle
is to alternate one passive and one active slot.
Analogous results to (B.42) and (B.44) are derived in this case to be:

∞∑
t=1

β(P+1)tût = −β(P+1) (1− α)

(1− β(P+1)t)

∞∑
t=0

β(P+1)tv̂t, (B.58)

and [(
1− β(P+1)A

)
+Bβ2(P+1) (1− α)

(1− βP+1)

] ∞∑
t=0

βP+1v̂t = v0 (B.59)

From (B.59), and given that v0 = (1−βρ(0)) for all x in case II, it follows that
∞∑
t=0

βP+1v̂t ≥

0 which ensures that
∞∑
t=0

βP+1ût ≤ 0.

Therefore, the MP index λMP (x) in the set of states x ∈ (φ
(1)
∞ , φ

(0)
∞ ] for cases (ii) in result

B.11 and (iii) a) in B.12 is:

λMP (x) =

R (1− α)

[ ∞∑
t=0

β(P+1)t
[
φP,1t (x)(x) θ(x, x−, t)− βφP,1t (x)(φ(0)(x)) θ(φ(0)(x), x, t)

]]
∞∑
t=0

β(P+1)t
[
θ̂(x, x−, t)− β θ̂(φ(0)(x), x, t)

] ,

(B.60)
Which is nondecreasing in x since we have shown that r(x, x) is nondecreasing in x and
w(x, x) is nonincreasing in x.

Next, we consider the case (i) a) in Lemma B.12. Using result (B.20) we can write
at(x, x

−) and at(φ(0)(x), x) in closed form. Notice again that case (ii) in result Lemma B.11
corresponds to A = 1 in case (iii) a) of Lemma B.12. Further, define

θ̃(x, z, t) ,
t−1∏
r=0

(
A−1∏
s=0

1− (1− α)φ1,A
t (x)

)
=

t−1∏
r=0

θ(φ1,A
t (x), z, A),

with φ1,A
0 (x) , x, φ1,A

t (x) , φ1,A
(
φ1,A
t−1(x)

)
and φ1,A(x) , φ0

(
φ1
A(x)

)
. Thus, (B.46) and
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(B.47) reduce to the expressions below:

w(x, x) =

∞∑
t=0

A−1∑
s=0

β(A+1)t+s
[
θ(φ1,A

t (x), x−, s) θ̃(x, x−, t)

−βθ(φ1,A
t (φ(0)(x), x, s) θ̃(φ(0)(x), x, t)

]
, (B.61)

r(x, x) = R (1− α)

[ ∞∑
t=0

A−1∑
s=0

β(A+1)t+sφ1
s(φ

1,A
t (x)) θ(φ1,A

t (x), x−, s) θ̃(x, x−, t) −

β φ1
s(φ

1,A
t (φ(0)(x)) θ(φ1,A

t (φ(0)(x), x, s) θ̃(φ(0)(x), x, t)
]
,

Define further, θ̌(x, z, t, s) , θ(φ1,A
t (x), z, s) θ̃(x, z, t). Next, we take partial derivative

with respect to x and we obtain:

∂w(x, x)

∂x
=

∞∑
t=1

A−1∑
s=0

β(A+1)t+s

[
∂θ̌(x, x−, t, s)

∂x
− β ∂θ̌(φ

(0)(x), x, t, s)

∂x

]
(B.62)

∂r(x, x)

∂x
= R (1− α)

∞∑
t=0

A−1∑
s=0

β(A+1)t+s

[
∂φ1

s(φ
1,A
t (x) θ̌(x, x−, t)

∂x
− β ∂φ

1
s(φ

1,A
t (φ(0)(x)) θ̌(φ(0)(x), x, t)

∂x

]
(B.63)

To simplify notation for t ≥ 0 and s = 0, 1, . . . , A− 1 we let

ǔt,s ,

[
∂θ̌(x, x−, t, s)

∂x
− β ∂θ̌(φ

(0)(x), x, t, s)

∂x

]
(B.64)

v̌t,s ,

[
∂φ1

s(φ
1,A
t (x)) θ̌(x, x−, t, s)

∂x
− β ∂φ

1
s(φ

1,A
t (φ(0)(x))) θ̌(φ(0)(x), x, t, s)

∂x

]
(B.65)

Now, as we did for case I, we shall prove that ∂w(x,x)
∂x ≤ 0 and ∂r(x,x)

∂x ≥ 0 hold, by
showing that

Lemma B.18.

(a)
∞∑
t=1

A−1∑
s=0

β(A+1)t+sǔt,s ≤ 0 (B.66)

(b)
∞∑
t=0

A−1∑
s=0

β(A+1)t+sv̌t,s ≥ 0, (B.67)
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Proof. After algebraical manipulations analogous to the ones deployed in case I (i.e.
(B.36)), and rearranging terms of the resulting expressions, it follows that for all t ≥ 0

and s ∈ {0, . . . (A− 1)}:
ǔt,s = ǔt,s−1 − (1− α)v̌t,s−1 (B.68)

and
v̌t,s =

[
(1− q(1))α− p(1)

]
v̌t,s−1 + p(1)ǔt,s−1 (B.69)

Now it follows from (B.16) that for all t ≥ 0 it holds that:

(a)

A−1∑
s=0

βsǔt,s ≤ 0 (B.70)

(b)

A−1∑
s=0

βsv̌t,s ≥ 0, (B.71)

Finally, by (B.70) (a)-(b), we conclude that (B.70) holds.

Notice that for A = 1 we recover case I, in which the cycle is to alternate one passive
and one active slot.
Therefore, the MP index λMP (x) in the set of states x ∈ (φ

(1)
∞ , φ

(0)
∞ ] for cases (ii) in result

Lemma B.11 and (i) a) in Lemma B.12 is:

λ∗(x) =

R (1− α)

[ ∞∑
t=0

A−1∑
s=0

β(A+1)t+s
[
φ1
s(φ

1,A
t (x)) θ̌(x, x−, t)− βφ1

s(φ
1,A
t (φ(0)(x))) θ̌(φ(0)(x), x, t)

]]
∞∑
t=0

A−1∑
s=0

β(A+1)t+s
[
θ̌(x, x−, t)− β θ̌(φ(0)(x), x, t)

] ,

(B.72)
Which is nondecreasing in x since we have shown that r(x, x) is nondecreasing in x and
w(x, x) is nonincreasing in x.

It remains to prove that cases in result B.11 and (i) b) and (iii) b) (corresponding to the
irregular cycles) will also have a monotone index function in x. In both cases, the margi-
nal work and reward measures can be decomposed into two infinite sums (depending
on which part of the irregular cycle the period is) and the belief state process can be
expressed in terms of Möbiuos transformations (as it was done for this two cases). Fi-
nally, with these expressions it follows by an analogous argument to the one applied for
regular cycles that ∂w(x,x)

∂x ≤ 0 and ∂r(x,x)
∂x ≥ 0.



Appendix C

Appendix to Chapter 6

C.1 Work-Reward Measures Analysis

In order to prove Proposition Proposition 6.1 in Chapter 6, we invoked a Lemma pro-
viding a lower bound on the marginal work measures w(x, z). In this Appendix we
shall outline how to derive that bound in detail. Further, we outline the proof of the
lemmas required to ensure the monotonicity of the resulting index.

In the multi-target tracking model presented in Chapter 6 we have considered two
iterated mappings of the form s 7→ φ(a)(s) where s denotes the initial Scaled Tracking
Error Variance (STEV) and a = 0, 1 stands for passive and active actions respectively.
Letting φ(a)

0 (s) , s and φ(a)
t (s) , φ(a)(φ

(a)
t−1(s)) for t ≥ 1, and defining:

φ(0)(s) = s+ θ (C.1)

φ(1)(s) =
s+ θ

s+ θ + 1
(C.2)

where θ = q
r stands for the position to measurement noise variance ratio.

For the sake of establishing PCL-indexability, we are interested in studying the behavior
of the t-th iterate of both mappings. In order to do we visualize both dynamics as
Möbius Transformations or Linear Fractional Transformations (LFTs), with associated
matrix representations given by:

Φ0 =

(
1 θ

0 1

)
Φ1 =

(
1 θ

1 (1 + θ)

)

Note that for equation (C.1), the corresponding LFT is a pure translation (since in this
case c = 0 and a = d) and thus, both fixed points are at infinity.

Lemma C.1. For a = 0, 1 and any x < φ
(a)
∞ , 0 ≤ t < ∞, φ(a)

t (x) < φ
(a)
∞ whereas for any

151
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x > φ
(a)
∞ , φ(a)

t (x) > φ
(a)
∞ .

Proof. It follows straightforward from the result (A.8) in the appendix on Möbius trans-
formations.

Lemma C.2. For any s ∈ (0, z],

t∗0(φ(1)(s), z)− t∗0(φ(0)(s), z) ∈ {0, 1}

Proof. From the definition of t∗0(s, z) provided in Chapter 6 it follows that such function
will be a floor function since for s ≤ z, t∗0(s, z) satisfies:

φ
(0)
t∗0(s,z)−1(s) ≤ z < φ

(0)
t∗0(s,z)(s).

Thus, using the property below:

bxc − byc ≤ bx− yc,

it can be shown that the maximum value for t∗0(φ(1)(s), z)− t∗0(φ(0)(s), z) is 1.

〈〈 Notice that for any s ≤ z the critical iteration of the passive dynamics, denoted by t∗0(s, z), is
an integer such that:

z − s
θ

< t∗0(s, z) ≤
(
z − s
θ

)
+ 1,

which leads us to conclude that:

t∗0(s, z) =

⌊
z − s
θ

⌋
+ 1

Similarly, the critical iteration of the active recursion, denoted by t∗1(s, z), is an integer such
that:

1

log k
log

{[1− α
z−γ2

]
[
1− α

s−γ2

]} ≤ t∗1(s, z) <
1

log k
log

{[1− α
z−γ2

]
[
1− α

s−γ2

]}+ 1,

which again leads us to conclude that:

t∗1(s, z) =

⌈
1

log k
log

{[1− α
z−γ2

]
[
1− α

s−γ2

]}⌉

〉〉
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Below, we provide the proof of lemma Lemma 6.1.

Proof. For all s < φ
(1)
∞ , it holds that:

∞∑
t=0

βt

[
∂φ

(1)
t (φ(0)(s))

∂s
− ∂φ

(1)
t (φ(1)(s))

∂s

]
> 0 (C.3)

We start by realizing that: that:

sgn

[
∂φ

(1)
t (φ(0)(s))

∂s
− ∂φ

(1)
t (φ(1)(s))

∂s

]
,

which can be computed as follows

sgn

[
∂φ

(1)
t (φ(0)(s))

∂s

∂(φ(0)(s))

∂s
− ∂φ

(1)
t (φ(1)(s))

∂s

∂(φ(1)(s))

∂s

]
=

sgn

[
∂φ

(1)
t (φ(0)(s))

∂s
− ∂φ

(1)
t (φ(1)(s))

∂s

1

(s+ θ + 1)2

]
(C.4)

It follows from Proposition A.5 of the Appendix A, that

sgn

[
∂φ

(1)
t (φ(0)(s))

∂s
− ∂φ

(1)
t (φ(1)(s))

∂s

]
> 0 ∀s ∈ S,

since for k > 0 the sign of the derivative of the LFT with respect to its argument s
is non negative, thus it is increasing in its argument, and it holds that φ(0) > φ(1)and

1
(s+θ+1)2

< 1.

〈〈 To compute the values of Proposition A.5, it is useful to consider that

γ1,2 =
1

2

(
−θ ∓

√
θ(4 + θ)

)
(C.5)

and The eigenvalues of matrix Φ1 are the following:

λ1,2 =
(2 + θ)∓

√
θ(4 + θ)

2
(C.6)

(C.7)

Thus, k ≥ 0 since it is defined as the ratio of the eigenvalues. 〉〉
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For Case II in the single target tracking model, we shall deploy results which are anal-
ogous to the ones deployed in the single target hunt model. Below, we summarize
them. These results describe the STEV state cycles under a z-threshold policy in results
Lemma C.3, Lemma C.4 and Lemma C.5.

Lemma C.3. For z ∈ [φ
(1)
∞ , φ

(0)
∞ ) and s ∈ S, the hitting time of the STEV state process to the

interval (φ(1)(z), φ(0)(z)] is finite and once the belief state reaches this set of states, the proba-
bility of abandoning it is zero. The subset (φ(1)(z), φ(0)(z)] is “absorbing”.

Proof. If s ≤ z after t∗0(s, z) slots under deterministic dynamics, we reach the set (z, φ(0)(z)];
while if s > z and after t∗1(s, z) + t∗0(φ

(1)
t∗1(s,z)(s), z) periods the set (z, φ(0)(z)] is reached.

Notice that the maximum value of st to reach the active set B(z) coming from the pa-
ssive set B(z)c is φ(0)(z); then the minimum value of st to reach the passive set B(z)c

coming from (z, φ(0)(z)] is limx→z+ φ
(1)(s) = φ(1)(z). Thus, once st is in (z, φ(0)(z)] we

know that the interval (φ(1)(z), φ(0)(z)] is never abandoned, alternating infinitely within
it between the interval (φ(1)(z), z] ⊂ B(z)c (passive slots), and the interval (z, φ(0)(z)] ⊂
B(z) (active slots), until the target is found.

Furthermore, as stated in Lemma C.4, within that “absorbing” set of states the possible
composition of cycles (in terms of the concrete sequence of active/passive time slots) is reduced to
three cases: case 1: 1 passive slot & A active slots, with A ≥ 21; case 2: 1 passive slot & 1 active
slot; case 3: P passive slots & 1 active slot1, with P ≥ 2.

Lemma C.4. (a) For z ∈ (φ
(1)
∞ , φ0(φ

(1)
∞ )): if s ∈ (φ(1)(z), z], then t∗0(s, z) = 1; If s ∈

(z, φ(0)(z)], t∗1(s, z) > 1.

(b) For z ∈ (φ1(φ
(0)
∞ ), φ0(φ

(1)
∞ )): if s ∈ (φ(1)(z), z] then t∗0(s, z) = 1. If s ∈ (z, φ(0)(z)],

then t∗1(s, z) = 1.

(c) For z ∈ (φ0(φ
(1)
∞ ), φ

(0)
∞ ),: if s ∈ (φ(1)(z), z], then t∗0(s, z) > 1. If x ∈ (z, φ(0)(z)], then

t∗1(s, z) = 1.

Notice that the existence of belief state cycles under a z-threshold policy different from
the ones described above is ruled out.
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Lemma C.5. Furthermore, for cases (i) and (iii) it may also occur that:

(a) For z ∈ (φ(1)
∞ , φ0(φ(1)

∞ )) :, a.1) ∀s ∈ (z, φ(0)(z)] then t∗1(s, z) = A ≥ 2

a.2) ∀s ∈ (z, s∗] then t∗1(s, z) = A ≥ 2 , and

a.3)s ∈ (s∗φ(0)(z)] then t∗1(s, z) = A+ 1

Further in cases a.2) and a.3) it holds that φ(0)(φ
(1)
A (s)) ∈ (x∗φ(0)(z)] and φ(0)(φ

(1)
A+1(s)) ∈ (z, s∗]

(b) For z ∈ (φ(0)(φ(1)
∞ ), φ(0)

∞ ) :, b.1) ∀s ∈ (φ(1)(z), z], then t∗0(s, z) = P ≥ 2

b.2) ∀s ∈ (s∗, z], t∗0(s, z) = P ≥ 2 , and

b.3)∀s ∈ (φ(1)(z), s∗] : then t∗0(s, z) = P + 1

Further in cases b.2) and b.3) it holds that φ(1)(φ
(0)
P (s)) ∈ (φ(1)(z), s∗] and φ(1)(φ

(0)
P+1(s)) ∈ (s∗, z]

Proof. Using these results, it can be shown that for s ∈ S such that s > z and z ∈
(φ

(1)
∞ , φ

(0)
∞ ):

w(s, z) =
(
gc(s, z)− gc(φ0(s), z)

)
+
(
βT
∗
1 g(s1, z)− βT ∗0 g(s0, z)

)
≥

[(
1− βt∗1(s,z)

1− β

)
(1− β)− βt∗1(s,z)+1

]
+
[
βt
∗
1(s,z)(1− β2)g∗(s∗, z)

]
≥ 1− βt∗1(s,z)

≥ 1− β � (C.8)

where gc(., z) are cumulated work measure until the process st reaches the absorbing
set of states, and g∗(s∗, z) is the total work measure once the absorbing set of sates is
reached. Further, for z ∈ (φ

(1)
∞ ,∞), it holds that g∗(s∗, z) ≥ 1

1−β2 . It holds that, for s ≤ z

and z ∈ (φ
(1)
∞ , φ

(0)
∞ ):

Using these results, it can also be shown that for s ∈ S such that s ≤ z and z ∈
(φ

(1)
∞ , φ

(0)
∞ ):

w(s, z) = 1 + βg(φ(1)(s, z))− g(s, z)

= 1 + β(βt
∗
0(φ(1)(s),z)g(s∗, z)− βt∗0(s,z)g(s∗, z)

≥ 1− (1− β2)βt
∗
0(s,z)g(s∗, z)

≥ 1− βt∗0(s,z)

≥ 1− β � (C.9)
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Finally, to prove lemma Lemma 6.3 by which, for all s ≥ φ(1)
∞ , it holds that:

∞∑
t=1

βt

[
∂ at(φ

(1)(s), s)

∂s
− β∂at(φ

(0)(s), s)

∂s

]
≤ 0 (C.10)

∞∑
t=0

βt

[
∂(φa)t(φ

(0)(s), s)

∂s
− ∂(φa)t(φ

(1)(s), s)

∂s

]
> 0 (C.11)

Proof. Regarding the (C.10), such a result follows from the fact that the marginal work
measure w(s, s) can be shown to be equal to a constant value representing the dis-
counted fraction of time the tracking system will be active during the infinite horizon
under the s-threshold value. Specifically, it can be shown that for any s ∈ (φ

(1)
∞ , φ

(0)
∞ )

w(s, s) =
1− β

1− βC(s)
=

t=C(s)−1∑
t=0

βt

−1

,

where C(S) is the length of the period cycle (or orbit) that threshold s generates. Ac-
cording to results C.3, C.4 and C.5, C(s) = A+ P , A/P is the number of active/passive
periods. Hence, for A = P = 1 the w(s, s) = 1−β

1−β2 = 1
1+β . In general,

w(s, s) =

t=A−1∑
t=0

βt

t=A+P−1∑
t=0

βt

.

Further, C(s) is decreasing in s (as it varies between 1/C(s) = 1, when s ↘ φ
(1)
∞ and

1/C(s) = 1/2 as s↗∞). Thus,
∂w(s, s)

∂s
≤ 0

Regarding the (C.11), it follows from an analogous reasoning to the one deployed in
the proof of Lemma 6.1. Under all possible cycle compositions (i.e. in terms of active
and passive slots), the resulting (φa)t(s) processes are again LFT whose derivative with
respect to the argument is again positive. Using this fact, and knowing that φ(0) >

φ(1)and 1
(s+θ+1)2

< 1, (C.11) can be shown for every possible cycle in C.3, C.4 and C.5.
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