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a b s t r a c t

In the evolutionary Prisoner’s dilemma (PD) game, agents play with each other and update their

strategies in every generation according to some microscopic dynamical rule. In its spatial version,

agents do not play with every other but, instead, interact only with their neighbours, thus mimicking

the existing of a social or contact network that defines who interacts with whom. In this work, we

explore evolutionary, spatial PD systems consisting of two types of agents, each with a certain update

(reproduction, learning) rule. We investigate two different scenarios: in the first case, update rules

remain fixed for the entire evolution of the system; in the second case, agents update both strategy and

update rule in every generation. We show that in a well mixed population the evolutionary outcome is

always full defection. We subsequently focus on two strategy competition with nearest neighbour

interactions on the contact network and synchronised update of strategies. Our results show that, for an

important range of the parameters of the game, the final state of the system is largely different from

that arising from the usual setup of a single, fixed dynamical rule. Furthermore, the results are also very

different if update rules are fixed or evolve with the strategies. In these respect, we have studied

representative update rules, finding that some of them may become extinct while others prevail. We

describe the new and rich variety of final outcomes that arise from this co evolutionary dynamics. We

include examples of other neighbourhoods and asynchronous updating that confirm the robustness of

our conclusions. Our results pave the way to an evolutionary rationale for modelling social interactions

through game theory with a preferred set of update rules.
1. Introduction

The quest for the origins of the cooperative behaviour observed
in nature, in many different species or at different biological
levels, from molecules to individuals, is an exciting project that
has received much attention in the last decades (Darwin, 1871;
Axelrod and Hamilton, 1981; Maynard Smith and Szathmáry,
1995; Hammerstein, 2003). Evolutionary game theory has been
one of the most successful frameworks to address this issue in a
quantitative manner (Gintis, 2000; Nowak, 2006b; Pennisi, 2005)
and by allowing a stylisation of the main strategic interactions
and social dilemmas, has provided many insights into the reasons
of the emergence of cooperation.

A particularly fruitful line of research has focused on the
interactions between two individuals, trying to explain cooperative
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behaviours in a population with a bottom up approach. In this
context, interactions are modelled by means of 2� 2 games, such
as the Prisoner’s dilemma (PD) (Rapoport and Chammah, 1965) or
the Hawk Dove game (Maynard Smith, 1982). These games have
proven themselves relevant in situations arising in biochemistry
(Frick and Schuster, 2003), cooperation between bacteria (Crespi,
2001), mutualistic interactions (Kiers et al., 2003), fish (Dugatkin
and Mesterton Gibbons, 1996) and, of course, human societies
(Kollock, 1998).

Within the framework of evolutionary game theory, a number
of explanations have been proposed to understand the origin of
cooperation (Nowak, 2006a). In this work, we focus on one of
them, namely the existence of a spatial structure, as such or as a
representation of a social network. Indeed, many studies have
pointed out that certain types of spatial structure foster coopera
tion in simple two player symmetric games, beginning with the
pioneering work by Nowak and May (1992). Subsequent papers
(Nowak and May, 1993; Hauert, 2002, 2006; Santos et al., 2006a,
2006b; Jiménez et al., 2008; Lozano et al., 2008; Gardeñes et al.,
2008; Langer et al., 2008) analysed different aspects of the
1
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emergence of cooperation in spatial games and as a conclusion of
this work the general idea that spatial structures supported
cooperative behaviours began to shape up. For a comprehensive
summary of all the recent work on evolutionary game theory on
graphs, see the review by Szabó and Fáth (2007).

Recently, some authors have questioned the generality of the
above assertion, at least as far as other games are concerned. Thus,
Hauert and Doebeli (2004) and Sysi Aho et al. (2005) have shown
that spatial structure may decrease the cooperation level attained
in the Hawk Dove game as compared to that observed in a well
mixed population. Following this result, some researchers have
looked in detail into the different reports and found that the
phenomenon of the emergence of cooperation, when truly
existing, turns out to be dependent on the microscopic update
rules used in the simulation. In other words, it is possible that
within the same game, played in the same spatial structure,
cooperation arises or not depending on the way the players
change their strategy during evolution. This is the case, for
instance, when playing PD on a square lattice: whereas uncondi
tional imitation (UI) (see below for a description of this and the
rest of update rules studied in this paper) gives rise to cooperation
(Nowak and May, 1992), replicator dynamics leads to full
defection (Roca et al., 2009). Similar dependences of the results
for other update dynamics have been reported by Ohtsuki and
Nowak (2006) for death birth, birth death and imitation.

In view of this situation, in this paper we aim to going beyond
the approach that has been traditionally used in the study of
spatial games. Specifically, we intend to provide an evolutionary
rationale for choosing a particular update rule in the implementa
tion of spatial models of cooperation. To this end, we will allow
agents to update not only their strategies but also the update rule
itself. The outcome of these simulations will show whether or not
all update rules are equally likely to appear in a structured
population and, if not, which ones are evolutionarily selected. One
can then compare this conclusion to the scenarios of emergence of
cooperation on networks and discuss the applicability of the
different results already known. Indeed, the fact that rules
favoring cooperation were evolutionarily favored would support
the mechanism of network reciprocity as one of the most
important ones for the emergence of cooperation. On the contrary,
if the competition among update rules leads to the survival only of
those that do not support cooperation, it would be difficult to
argue that networks promote cooperation.

For the present study, we will be concerned only with the
problem of one shot or memoryless PD, as has been generally
studied in the context of evolutionary game theory on graphs;
rules for deciding the action to be taken next on the basis of
previous ones, such as tit for tat, Pavlovian strategies, stochastic
reactive strategies, etc. Although it is possible to think of these
strategies as C or D strategists with a learning rule, their use of
memory place them in a different class that and will not be
considered here. On the other hand, we here focus on a typical set
of local rules, as considered, for instance in Hauert (2002); it is
clear that this kind of evolutionary competition may extend to
many other update dynamics but an exhaustive analysis of every
possible rule is beyond the scope of the present research, that
intends only to assess the relevance of such an evolutionary
process.

In this paper, we address the co evolution of strategies and
update rules in a three step process. As a preliminary result, we
discuss the case of well mixed populations and show by an
example that in this situation including evolving update rules
does not change the well known outcome, namely that defection
prevails. Then we move to the case in which the population
interaction is governed by a lattice, as a specific example of social
network in which it is easier to interpret the results. In order to
have a reference, a first step in our approach is the comparison of
mixed systems, consisting of agents with different (but fixed
during evolution) update rules, with the emergence of coopera
tion in pure single dynamics systems. Already at this stage we
find differences between the two scenarios which are worth
describing; on the other hand, this is a necessary reference frame
to understand the subsequent results of co evolution. Indeed,
after this first step, we proceed to let update rules evolve along
with strategies. In this situation, we find new results that differ
both from the single rule case and from the mixed rule case. We
will describe the results of our simulations and in the conclusions
we summarise our findings and discuss their implications for the
emergence of cooperation.
2. Model

Our model is based on the well known Prisoner’s dilemma
(PD) game (Rapoport and Chammah, 1965). An archetype in game
theory, the PD game belongs to a general class of symmetric
games that consist of two players or agents that confront, each
with a definite strategy: either to cooperate or to defect with the
opposite player. Each combination of strategies between the
players has an associated payoff, and hence there are four possible
outcomes: if the player cooperates, the associated payoff she gets
is S if the other player chooses to defect, or R4S, if the other player
reciprocates the cooperation. On the other hand, if the first agent
defects, her payoff is P, if the other also defects, or T4P, if the
other cooperates. The PD corresponds to any choice of payoffs
ordered according to T4R4P4S. It is customary to assume that
2R4T þ S to avoid that players take turns at defecting and win a
larger payoff than the one they would have just cooperating. We
will stick to this constraint although in our case we deal with one
shot, non repeated games because strategies and payoffs are
updated after every single game, and hence strictly speaking we
need not impose this condition. In the rest of this work, we will
adopt the commonly used rescaled payoff T ¼ b, R ¼ 1, and P ¼

S ¼ 0 (Nowak and May, 1992). This does not affect the general
essence of the game, and reduces the study to just one free
parameter, usually called the temptation parameter. Nevertheless,
we checked the robustness of our simulations by comparing some
cases with the choice S ¼ 0:2, finding very approximately the
same results.

In the evolutionary version of the PD game, N agents play
between them, and after every instance of the game they decide
whether to change strategies or not according to some micro
scopic update rule. In a well mixed situation, each player plays
every other once and afterwards they proceed to the update stage.
In our case, as we are interested in the rules that can promote
cooperation in a spatially structured population, the players are
located at the nodes of a square lattice, where each agent is
connected with her four closest neighbours and plays the game
only with those neighbours. The reason we have chosen a square
lattice is that it is a well studied model (Nowak and May, 1992;
Hauert, 2002; Roca et al., 2009; Langer et al., 2008) in the single
update rule framework, and therefore we can compare our results
to those previous works. The sequence of steps for the simulation
is as follows: each player is assigned, randomly and with equal
probability, an initial strategy of cooperation (C) or defection (D),
and a payoff, initially set to zero. In each generation, all agents
play PD once with each neighbour, with an associated payoff for
each game, collecting a total final payoff for each player. After each
generation, all agents update their strategies simultaneously,
according to a certain update rule (defined separately), that may
depend on the agent’s payoff and her neighbour’s, and that defines
the dynamics of the game. Once defined, for all players, what the
2



strategy for the next generation will be, all payoffs are reset to
zero and the cycle starts over.

As we have said, the new ingredient of our model is twofold:
two different update rules and the possibility that the update rules
themselves evolve. Therefore, in our model players may be set to
have rule A or rule B, where A and B stand for specific dynamical
rules that will be explained below. In this way, each player has its
own individual dynamical rule. Within this framework, we devised
two possible alternatives. In the first case, agents are assigned their
dynamical rule, that remains fixed for the rest of the simulation. In
the second case, agents may change their dynamical rule during the
game according to a simple criterion: an agent copies the
dynamical rule from its neighbour whenever it copies its strategy.
This can be interpreted as a complete replacement of one agent for
another agent’s offspring, which may be convenient or useful in
certain descriptions. This interpretation is suitable for both
biological and sociological situations, in this last case in terms of
culture transmission and learning. Furthermore, the possibility of
variable update rules implies an evolution (and therefore a
competition) of the rules themselves. If as a consequence of this
evolution one rule, or a restricted set of rules, are selected, the
results on the emergence of cooperation on lattices will have to be
revisited again in the light of our findings.

We implement three of the most representative, and most
commonly considered, dynamical rules: the UI (a.k.a. as imitate
the best) rule, the Moran (MOR) rule and the replicator (REP) rule.
Unconditional imitation is a completely deterministic rule: at the
end of each generation, an agent simply adopts the strategy of her
neighbour with the highest payoff (i.e., the most successful one),
given that this neighbour has a greater payoff. Note also that this
rule checks the payoff of all the neighbours of the agent whose
strategy is to be updated. In this sense we will refer to this
strategy as global (not to be confused with global in terms of the
whole lattice). In the REP dynamics, an agent randomly chooses
another agent (in our case, one of its four neighbours) and, if the
chosen agent has a higher payoff, the original one adopts that
neighbour’s strategy with a probability proportional to the
difference of payoffs between the two. In this case, we are faced
with a local update rule, that does not look at all the updating
agent’s neighbourhood. Another important remark is that, in our
model, an agent having an imitation or replicator rule will never
adopt another strategy (or rule) that performed worse. Finally, in a
Moran process, the agent, at the end of each generation, evaluates
a set of probabilities, one for each neighbour and proportional to
that neighbour’s payoff. Then the agent randomly selects a
neighbour’s strategy according to that set of probabilities. In this
case, there is a possibility that an agent adopts a strategy that
performed worse in a previous round. On the other hand, this is
again a global rule, in the same sense as we referred above to the
imitation one.
3. Well-mixed populations

Before proceeding with the study of the evolutionary competi
tion of learning rules on lattices, it is important to analyse the case
in which every player plays against every other one, i.e., a well
mixed population. The reason for the need of such a study is
twofold: on one hand, knowing the behaviour of a well mixed
population is necessary in order to assess whether or not changing
the scenario to a lattice has any new effect; on the other hand, the
well mixed population can be used to understand at least the
initial stages of the evolution on a lattice, when correlations
arising because of evolution are not yet important and the
assumption that agents meet an ‘‘average’’ agent can be made. We
note that this assumption is very common in the statistical
physics literature where it is referred to as the mean field
approach (see, e.g., Szabó and Fáth, 2007 and references therein).

For the sake of simplicity, in what follows we will consider the
case in which an initial fraction x of imitator agents, i.e., agents
that learn through UI, compete with an initial fraction 1 x of
replicator agents, agents using REP. The other possible competi
tions can be treated in much the same way with similar results,
therefore we use this particular choice as an illustration. If initially
a fraction y of agents are cooperators (equally distributed among
UI and REP players), the four types of agents present in the
population at time t ¼ 0 are given by

f 0
Ci ¼ xy, (1)

f 0
Di ¼ xð1 yÞ, (2)

f 0
Cr ¼ ð1 xÞy, (3)

f 0
Dr ¼ ð1 xÞð1 yÞ, (4)

where the subindices C or D represent cooperators and defectors,
respectively, and i and r refer to imitators and replicators, also
respectively.

Evolution begins by all agents playing the game with all the
population. With our choice of payoffs, cooperators receive a payoff
wC ¼ x and defectors receive a payoff wD ¼ bx. Let us now examine
the evolutionary process at the first step, beginning with cooperators:

Imitator agents: As b41, we have wD4wC and therefore all
imitator agents switch to defection at time t ¼ 1, and hence
f 1

Ci ¼ 0; the newly created defector will be an imitator with
probability x and a replicator with probability ð1 xÞ.

REP agents: The fate of replicator agents is more complicated
and in particular the evolution of their number in time depends
on the form chosen for the probability to copy the other agent’s
strategy. If p is the probability of a cooperator replicator to switch
to defection (the value of p depends on the payoff difference,
which is bð1 xÞ, and on the normalisation), we have the
following scenario: the probability that a replicator chooses a
cooperator to compare her strategy is y (the fraction of
cooperators at t ¼ 0); in that case, the payoffs are the same and
she will not change her strategy and update rule. On the contrary,
with probability 1 y she will compare with a defector, and will
turn into a defector herself with probability p. However, this
defector will be an imitator with probability x and a replicator
with probability 1 x.

Finally, in view of the payoffs before, defectors never change,
irrespective of their update rule. Collecting all the different
contributions, we have at t ¼ 1

f 1
Ci ¼ 0, (5)

f 1
Di ¼ f 0

Di þ xf 0
Ci þ pxð1 yÞf 0

Cr , (6)

f 1
Cr ¼ ½yþ ð1 pÞð1 yÞ�f 0

Cr ¼ ½1 pð1 yÞ�f 0
Cr , (7)

f 1
Dr ¼ f 0

Dr þ ð1 xÞf 0
Ci þ pð1 xÞð1 yÞf 0

Cr . (8)

From Eq. (7) it is clear that the fraction of cooperator agents will
steadily decrease; imitators disappear at the first step and
replicators will decrease exponentially (note that the coefficient
in Eq. (7) is smaller than 1). As a consequence, asymptotically the
population will evolve to full defection. On the other hand, when
all cooperator replicators disappear, it can be shown straightfor
wardly that they would have contributed to the two types of
defectors simply proportionally to their initial fraction, i.e.,

f1Di ¼ f 0
Di þ xðf 0

Ci þ f 0
CrÞ ¼ xð1 yÞ þ xy ¼ x, (9)
3



f1Dr ¼ f 0
Dr þ ð1 xÞðf 0

Ci þ f 0
CrÞ

¼ ð1 xÞð1 yÞ þ ð1 xÞy ¼ ð1 xÞ. (10)

This means that the effect of introducing a lattice as support of the
game has indeed non trivial consequences because, as will be
shown below, there is cooperation in a wide range of parameters,
and the level of cooperation and the fractions of the different
types of strategists and update rules can not be predicted from the
initial fractions in such an straightforward manner.
4. Results on lattices

To study our model, we performed a series of numerical
experiments for both cases, namely with fixed and with variable
update rules, for the same set of game parameters. Each
experiment consists in a population of N ¼ 104 agents, spatially
arranged in a square lattice. Generally speaking, each agent is
endowed initially with one of two available dynamical rules, A or
B (where A and B stand for UI, MOR or REP), and one of two
possible strategies, C or D. To monitor the evolution of the system
we will observe the frequency or density of a certain type of
player, for example those that are cooperators or those with a
certain update rule. Thus, we define f A to be the number of agents
with rule A divided by N, and f C the number of cooperator agents
divided by N. Every experiment is characterised by an initial
density of cooperators f C

ðt ¼ 0Þ (or in a simpler notation, f C
ð0Þ)

and by an initial fraction of agents with rule A, f Að0Þ. In this way, f C

will generally change. The homogeneous case (all agents with the
same update rule) is recovered by choosing f Að0Þ ¼ 1: To simplify
the parameter space of our simulations, we only considered initial
strategies assigned randomly and with equal probability, i.e.
f C
ð0Þ ¼ 0:5 in all experiments, independent of the update rule

considered. All numerical simulations run for T ¼ 104 generations
or time steps, for a given value of b. Within this duration
equilibration was achieved (often much earlier), i.e., the densities
reached their asymptotic values and remain there within small
fluctuations.
4.1. Fixed update rules

We begin by looking at the simplest case of agents that can have
two different update rules but they cannot change them during
evolution. In this case, f A ¼ f Að0Þ and remains constant for all times.
It is useful to analyse the normalised fraction of cooperators of, say,
rule A, which we will refer to as mA ¼ f C

A=f A, where 0pmAp1, so we
can better compare systems with different values if f Að0Þ.
0 0.2 0.4 0.6 0.8 1
f
UI

(0)

0.3

0.4

0.5

0.6

0.7
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μΤ

μT
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μT

REP

Fig. 1. Left: value of mT
UI (solid) and mT

REP (dashed) at T 104 as a function of the initial fr

time evolution of the normalised cooperator frequency mUI f C
UI=f UI in the UI vs REP g
A first finding arising from our experiments is that the initial
fraction of the populations, f Að0Þ may affect greatly the final
cooperator outcome. Consider for instance the left panel of Fig. 1,
where we show an example of a system with fixed rules, plotting,
for a population of UI and REP, the final (equilibrium) value of the
relative cooperator density mT

UI and mT
REP as a function of f UIð0Þ. We

indeed observe that the initial ratio of agent types has a
significant effect on the final outcome of the simulations,
although this is not so in the case of UI (solid line): up to a value
f UIð0Þ�0:75 of the total initial fraction f UIð0Þ the ratio mT

UI of UI
cooperators is more or less constant, increasing slightly for larger
values of f UIð0Þ�0:75. In the case of REP agents (dashed line), we
get another interesting result: the initial fraction of replicator
agents f REPð0Þ ¼ 1 f UIð0Þ is approximately proportional to the
amount of REP cooperators within the replicator population, mREP

being smaller (larger) than 0.5 whenever f REPð0Þ is smaller (larger)
than 0.5. While this may look intuitive, it must be recalled that
when the population consists only of REP agents, the cooperators
die out for any value of the temptation parameter b. Regarding the
time evolution of the experiment, the right panel of Fig. 1 shows
two examples of the evolution of the normalised fraction mUI for
different values of the initial fraction of imitators f UIð0Þ. There is
always an initial drop of mUI and a final relaxation to a value mT

that, as stated before, depends on f UIð0Þ.
Having considered the effect of different populations of update

rules, let us now discuss the dependence on the temptation
parameter b, and let us compare the results for the homogeneous
case (all agents equal) with the case where two different rules are
present. As a specific example, in Fig. 2 we plot, for the same game
as before, the dependence of the total cooperator density as a
function of the parameter b for the homogeneous case f UIð0Þ ¼ 1
and for a mixed case with fixed f UIð0Þ ¼ 0:75. For the homo
geneous case, using the fact that unconditional limitation is a
deterministic rule, one can show that f UI depends on b in a step
like fashion, changing when b is 4

4 ;
4
3 and 3

2, in perfect agreement
with the results of our simulations. As we may see from the plot,
this functional dependence changes when there are replicators
among the imitators. We find that the effect of the replicators is to
lower the amount of total cooperators for a the whole range of
values of b corresponding to the PD, e.g. bX1. In this respect, it is
interesting to look at how the fraction of cooperators changes
relative to the population with the same rule. This is also plotted
in Fig. 2, by showing both mUI and mREP as a function of b. We see
that, for 1obo 3

2, even though the total cooperator density is
lower than in the pure UI case, the cooperative imitators are a
fraction larger than the total average, whereas the replicators are
less than the average. On the other hand, for b4 3

2, defectors take
over the entire population, so mUI ¼ mREP ¼ 0. This means that the
μΤ

100 101 102 103

t

0

0.2

0.4

0.6

0.8

1

1.00
0.75

equency of imitators agents f UIð0Þ. Rules are fixed throughout the simulation. Right:

ame, for b 1:05 and two values of the initial frequency of imitators f UIð0Þ.
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Fig. 2. Density of cooperators for the UI vs REP game with fixed dynamical rules. In

thick solid lines, we present the case of a pure imitator population. In thick dashed

lines, same settings but with f UIð0Þ 0:75. In thin solid (dashed) line we show the

normalised density of cooperator imitators (replicators) m. All quantities are

averages of over 30 realisations.
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Fig. 3. Top panel: the UI vs MOR game with fixed rules for f UIð0Þ 0:12 and

b 1:20. In solid line, the total cooperator density f C. In thin solid (dashed) line the

imitator (Moran) cooperator density. Bottom panel: same simulation as in top

panel with update rule changing permitted. Lines have the same meaning as in top

panel.
level of cooperation attained for a pure UI population in the PD
suffers a considerable decrease or are totally suppressed by the
presence of a minority of REP agents (we have checked with
populations as small as f REP ¼ 0:01 obtaining similar results). We
will come back to this issue when considering different neigh
bourhoods below.

4.2. Variable dynamical rule

In the previous subsection, we have reported that the presence
of two different update rules in the population may considerably
change the behaviour of the PD on a lattice, the general conclusion
being that the level of cooperation is lower than for the pure UI
population. This result must be kept in mind when analysing the
outcome of allowing the update rules themselves to evolve, the
issue which we focus upon in the following. When agents are
allowed to switch their update rule when updating their
strategies, then the fraction of agents of rules A and B, f A, f B,
will generally change. Indeed, in this case, we will see that, for
certain values of the game parameters, a rule can completely
overtake the system as the other one disappears, yielding different
outcomes than the ones obtained with fixed update rules, or with
just one update rule.

To begin with, let us present and discuss a specific example. In
Fig. 3 we collect the results for the competition between UI agents
vs MOR agents. On the top panel we show the cooperator
frequency evolution with fixed update rules, i.e., when agents
cannot change their update rules. We clearly observe that the total
cooperator fraction f C disappears at about t�300. Note that both
UI and MOR cooperators disappear at about the same time as
defectors take over the entire population, in agreement with our
conclusion of the previous subsection that inhomogeneous agents
lead to lower levels of cooperation. Subsequently, let us consider
the bottom panel of Fig. 3, where we show a simulation under the
same conditions with the only difference that in this case agents
also copy their neighbour’s update rule if they copy their (C or D)
strategy. Opposite to the situations with fixed update rules, not
only the total fraction of cooperators does not disappear, but also
we find that cooperators end up forming about three quarters of
the total population. Interestingly, there is an initial decrease in
the cooperation fraction, in agreement with the predictions of the
well mixed/mean field calculation summarised in Section 3 (here
REP is replaced by MOR, but the argument is very similar and
applies as well). It’s only at a later stage when the effect of spatial
correlations, namely the formation of clusters of cooperators,
enters into play and leads to an increase of cooperation (Hauert,
2002; Nowak and May, 1992; Roca et al., 2009). Analysing the
individual rules, we see that MOR cooperators disappear roughly
at the same pace (actually, a little faster than in the fixed rule
case), so all cooperators remaining are of the UI type. Remarkably,
UI agents completely replace MOR agents in spite of the fact that
the initial fraction of imitators in this simulation is f UIð0Þ ¼ 0:12.

We could continue our discussion of specific examples but, to
avoid a very lengthy description, let us only mention that other
interesting outcomes may appear depending on the game
parameters and update rule combinations. For instance, it is
possible to see a coexistence of cooperators of one rule with
defectors of the other rule, as occurs for imitators vs Moran agents
with f UIðt ¼ 0Þo0:5 and b ¼ 1:05. However, as we are more
interested in general conclusions than on a detailed classification
of all the possible outcomes, we will switch to a more general
viewpoint in what follows.

We will now discuss the dependence of the results on the
temptation parameter b. In fact, as agents are now allowed to
change the dynamical rules, both the fraction of cooperators, f C ,
and the fraction of agents with rule A, f A, may change, so it is
relevant to ask what is the dependence on the temptation
parameter b for both of these quantities. In Fig. 4 we show, as
an example, our results for the case of UI and MOR agents as a
function of b. We see that depending on the value of b, the
interaction affects the final fraction of cooperators to different
5
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extents. Comparing with the homogeneous UI case, we observe
that there is a lower fraction of cooperators for the mixed case
when 1obo1:25 (the second bound is approximate) and for b4 3

2.
On the other hand, the mixed case shows more cooperation when
bo1 and in the interval 1:25obo 4

3. Finally, the two curves
coincide for 4

3obo 3
2. The plot also depicts the final fraction of

imitator agents f UI (cf. right axis) for the mixed case. Indeed, for
most values of b, i.e. bo 3

2, UI agents have increased their
frequency from the initial value f UIð0Þ ¼ 0:12), even becoming
the only rule (f UI ¼ 1) for certain regions (bo1 and 1:25obo 3

2).
Note that, for the cases bo1 and 1:25obo 4

3, the presence of
Moran agents at early stages of the evolution makes the
equilibrium state to have more cooperation than the homoge
neous UI case, even though Moran agents finally disappear
completely. This contrasts with the case 4

3obo 3
2, where the

cooperator frequency is the same as in the homogeneous case.
5. Extensions

5.1. Moore neighbourhood

The results in Section 4.1 are an indication that conclusions
such as the promotion of cooperation on the PD on lattices found
by Nowak and May (1992) may not be robust against the presence
of other types of update strategists, and therefore that their
applicability must be studied depending on the way individual
agents behave. However, those results have been obtained under
the restriction that players interact only with their nearest
neighbours (von Neumann neighbourhood), whereas Nowak and
May included next nearest neighbour interactions (Moore neigh
bourhood). To check that the size of the neighbourhood does not
change our conclusions, we have carried out simulations with the
Moore neighbourhood, the results being depicted in Fig. 5. In fact,
we have reproduced the simulations reported by Nowak and May
(1992), which do not correspond exactly to a Moore neighbour
hood in so far as every player plays also with herself, i.e., it is an
8þ 1 neighbourhood. As we may see from the example in the
figure, we again find much lower levels of cooperation than in the
pure imitator case, irrespective of whether the learning rules
themselves evolve (right panels) or not (left panels). We note that
this is not a general feature, as striking differences have been
found between the presence and the absence of next nearest
neighbour interactions, which makes our conclusion even more
relevant as it is not trivial. We thus see that indeed the existence
of different update rules in the population hinders cooperation on
the square lattice.

5.2. Asynchronous updating

Although it is beyond our purposes to go into an exhaustive
study of asynchronicity, we think that providing at least some
examples of that case will increase the value and relevance of our
results. To this end, we have run some simulations in which every
time step a single agent is chosen at random and updates her
strategy according to her current learning rule. Our results are
summarised in Fig. 6 for fixed update rules (left) and changing
update rules (right). We see from the plot that although there are
a few quantitative differences, particularly relevant for the
competition between UI and MOR with fixed update rules, the
behaviour is qualitatively the same in the synchronous and
the asynchronous updating schemes. It is thus clear that our
conclusions regarding the replacement of one rule by other are
not an artifact of the synchronous update.
6. Discussion

As we have already said, our goal in this work is to extract
general conclusions, and therefore we will now proceed to
summarise the main results of our experiments. We simulated
three possible competitions, namely UI vs MOR, UI vs REP, and REP
vs MOR, for both fixed and variable update rules, exploring the
whole interval of temptation values as well as initial conditions
with different composition for each case. Our results are
summarised in Fig. 7, where we can see that, generally speaking,
the dominant update rule is REP, in the sense that in most
situations it dominates over the other rules even if its initial
population is small. This is particularly so in the case of REP vs
MOR, for which the presence of MOR agents in the final
population is almost negligible even if the initial population
contains only a 25% of REP agents (see Fig. 7). The REP rule also
dominates over the UI rule, although in this case UI does not go
fully extinct except for very small ranges of parameters, and, in
turn UI prevails over MOR, again without driving it to extinction.
This is also shown in the asymptotic cooperation levels (Fig. 7, left
panels): when the population is a mixture of REP with either UI or
MOR, the dependence of the cooperation level on b is similar to
that of a full REP population, with some influence of the other rule
(e.g., the abrupt drops in cooperation at certain values of b when
the mixed population consists of REP and UI agents). A remarkable
feature is that, when the population is a combination of UI and
MOR agents, there is a range of values of b, between 1.25 and 1.5
(and up to 2, depending on the initial concentration of imitators),
for which the cooperation level is larger than for imitators, but for
parameter values and populations other than this case, the
cooperation level is smaller than that reached in a full UI
population. This result suggests that the good behaviour observed
on lattices and other networks homogeneous in degree when the
agents are of the UI type may not be very robust to perturbations
arising from agents learning with other rules. In any event, it is
clear that the lattices with mixed populations do support
cooperative states, which is a most important difference with
the well mixed population case discussed in Section 3.

Regarding the prevalence of REP, we believe that it is a
consequence of its own dynamic mechanism, that has a built in
tendency to avoid changing its rule relative to the other dynamics
tested in this work. Indeed, if we compare the definitions of the
three dynamics, we notice that UI agents always updates its
strategy (and consequently its update rule), excepting when the
6
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Fig. 5. Mixed games with Moore neighbourhood and self-interaction (8þ 1 neighbours), for fixed and variable rules and f C
ð0Þ 0:50. Initial rule composition is half and

half for all cases.
other agent has less or equal payoff; MOR agents have a set of
probabilities that will always trigger the rule updating, unless all
probabilities are zero, as in the very particular case of zero payoff
for all neighbours (for example, in a defector only population).
Otherwise also the MOR agents update their rule with large
probability, even adopting another rule with less payoff, leading to
the preservation of a rule that performed poorer; and, finally, a
REP agent randomly chooses a neighbour, and then assigns a
probability to adopt its rule proportional to the payoff difference
between both agents. For this rule there is only one possibility for
having certainty of the rule update, and this is the case where all
neighbours are defectors fully surrounded by cooperators, and the
updating agent is a cooperator, in turn fully surrounded by
defectors (in a chessboard like fashion). In this case we have
certainty because of our normalisation factor for the probability,
but it could even be the case that larger normalisation factors
were used, which would lead to a large but smaller than 1
probability to change.

With this in mind, we monitored the fraction of agents of rule
A (B) that update their rule relative to the total population having
rule A (B), in each generation, called xA (xB). As an illustration of
the observed behaviours, in Fig. 8 we plot this quantity for the
7
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same case as Fig. 3 (bottom panel), i.e., UI vs MOR agents. The fraction
of changing Moran agents rapidly becomes higher than that of
imitators, and before 100 time steps is (and remains) much higher.
We repeated this observation for many other cases as well and, in
general, our results confirm that, in most cases, REP agents change
their strategy and update rule much less frequently in comparison to
the other dynamics. In some cases, this difference may be an order of
magnitude smaller for the replicator rule. On the other hand the rule
that updates the most is the Moran dynamics. Once again, this is
consistent with our results: Most times, MOR agents disappear
completely when confronting REP agents, and they survive in a
restricted interval 1obo1:1 against UI, never being more than half of
the final population (see Fig. 4, thin solid line), whereas for 4

3obo 3
2

their presence is solely due to finite size effects. For UI vs REP,
imitators change their rule more frequently, and replicators appear to
be systematically the major part of the population.

In order to further investigate the hypothesis that the fraction
of changing agents determine their prevalence, we deviced the
following experiment. We performed simulations with a similar
setup as before, but in this case one of the populations updates
their strategies and rules only at times t ¼ nt, with n ¼ 0;1;2 . . . ;
being t fixed (these would be ‘‘slow’’ agents). In this respect, it is
8
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interesting to recall that a few recent works have proposed that
the existence of two types of agents, one of them with a smaller
capability to transfer its strategy, may promote cooperation
(Szolnoki et al., 2007, 2008). Results of applying this two time
scale setup to our simulation are collected in Fig. 9, where we see
an example for normal REP agents against slow MOR agents.
These results confirm our hypothesis: with t ¼ 101, replicators
prevail as usual (top panel), whereas for a sufficiently high update
time, t ¼ 102, MOR agents prosper, and replicators tend to
become extinct (bottom panel).

However, while this is an appealing mechanism, it cannot be
the only responsible for the prevalence of strategies. To show it,
we considered the situation where agents of the same kind are put
together, the inhomogeneity being only that they can be ‘‘normal’’
or ‘‘slow’’, i.e., that there is one fraction with a different t. In Fig. 10
we show the result of normal UI vs slow UI (see parameters in
caption), where we observe that for all values of the temptation
parameter b, there is still a fraction of normal agents. If our
hypothesis above were the only reason for the survival of one
strategy, the result should be that slow UI would always take over
the entire population, but this is clearly not the case. Indeed,
normal agents do not disappear, and they only decrease in
frequency noticeably (to f UI � 0:2) in the interval 4

3obo 3
2. We

obtained similar results for a wide range of t, up to t ¼ 103. This
indicates that, at least for agents of the same type, the overall rule
selection mechanism is not straightforward and should be further
studied, and we believe that the conclusions would also carry over
to the two update rule case. In addition, this makes clear that the
9
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two learning rule model is a scenario that goes beyond that
proposed by Szolnoki et al. (2007, 2008) and therefore deserves
further attention to be completely understood.

A last point we want to remark from a general viewpoint is the
following. Within our simulation procedure, a population com
posed only by defectors do not interact. Indeed, in this case the
only available payoff is P ¼ 0 independent of the agent’s update
rule. REP or UI will not update their rule (they do so only with
more successful neighbours), and MOR agents build a set of zero
probabilities, thus keeping their rule as well. Thus, irrespective of
the rules, the system remains in a ‘‘frozen’’ state, with no further
evolution. A similar situation is found with a population
composed only by cooperative imitators and replicators. In this
case, all agents receive R ¼ 1 and thus have the same payoff.
Therefore, there is no rule update, and the system is, too, in a
frozen state. On the other hand, this is not the case when any of
these rules are set against the Moran rule, where evolution does
occur, and in most cases Moran players disappear. While all these
are direct consequences of the design of our simulation, we have
also found an interesting result regarding these locked situations,
where no evolution is possible, namely that the presence of a
small amount of a third type of agent may lead to evolution and,
moreover, to a completely different state. Indeed, when these few
agents can interact with at least one of the other type of
(otherwise frozen) players, the system as a whole may evolve,
even with the possibility of the extinction of one or more species,
that otherwise would be present. We have not studied in detail
this three update rule scenarios, but we envisage that the
dynamics will be much richer and therefore deserves an in depth
analysis which is beyond the scope of the present paper.
7. Conclusions

In this paper, we have presented a first attempt to provide an
evolutionary rationale for the update rules used in spatially
distributed models of emergence of cooperation. This is a key
aspect of these models in so far as the choice of update rule largely
influences the appearance and stabilisation of cooperation. In this
context, our work must be viewed as a proposal for a general
mechanism that would allow modellers to decide upon the rule of
application in specific contexts. The main ingredient of this
mechanism is the evolvability of update rules according to the
same scheme as the strategies themselves, i.e., when an agent
looks at her neighbourhood and decides to copy the strategy of
another agent, she also copies the agent’s update rule. In this
respect, we want to stress that a related approach was proposed
by Harley (1981) as a rationale to explain how populations can
learn the evolutionary stable strategy. His results, which involve
strategies with memory and referred to accumulated payoff, relate
the stability of learning rules to their ability to take the population
to the evolutionary stable strategy. Although our proposal here is
quite different, in particular because our focus is not reaching an
equilibrium but rather letting the system evolve at will, it is only
fair to acknowledge Harley’s pioneering work in proposing the
evolvability of strategies. On the other hand, our model, much as
Harley’s procedure, can be interpreted as learning in social
contexts, and hence it has in turn a much more biological
character than endogenous learning rules such as those intro
duced by Kirchkamp (1999), that, to our knowledge, is the only
other study where a evolutionary origin of learning rules has been
explored. Note, however, that Kirchkamp (1999) considered a
variety of games, while here we focus on the PD in view of its
applicability in a number of social, biological and even biochem
ical systems. Finally, it is worth mentioning recent work by
Szabó et al. (2008), where Darwinian selection is applied to a
10
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one parameter stochastic update rule (similar to those used by
Szolnoki et al., 2007, 2008), leading to the selection of a specific
value of the parameter. This work is not related to ours in the
update rule they use but the spirit is quite the same.

Beyond this general statement of the importance of the idea of
evolvability of learning rules and its role to decide which ones
should be used, we have reached several important conclusions of
our work, that to our knowledge have never been reported
elsewhere. In fact, their relevance arises not only for their own
sake but also because they affect to two of the most often
employed learning rules (UI and REP, see Szabó and Fáth, 2007)
and because among the three rules we consider we cover the
options local global and deterministic stochastic. Our main
findings can thus be summarised as follows:
�
 A well mixed population playing the PD evolves to full
defection when individuals have two learning strategies, even
if these learning strategies can in turn evolve. Section 3
provides an example for REPs vs imitators but other combina
tions can be worked out in a similar manner.

�
 When the population is placed on a square lattice, the

existence of individuals with two different, permanent learn
ing rules leads to dramatic changes with respect to the
separate cases of the two strategies. Using again the example
of replicators vs imitators (Section 4.1), a small proportion of
replicators may lead to the breakdown of cooperation
generically observed for imitators (Nowak and May, 1992).

�
 Evolvability of learning rules has crucial implications on the

outcome of evolutionary game dynamics. Thus, Section 4.2
shows that replicator displaces imitators leading to a rapid
decreasing of cooperation. In turn, imitators take over the
fraction of global but stochastic imitators (MOR) and lead to a
promotion of the cooperative behaviour. The phenomenon,
however, is not trivial, and regions where evolution leads to an
outcome opposite to what is expected in general are also
observed (e.g., Fig. 4, 1:25obo 4

3).

�
 This competition process takes place on lattices under different

environments. Section 5 shows that our results are robust
against changes on the neighbourhood considered (Moore
instead of von Neumann) and against asynchronous dynamics.
This indicates that our conclusions have a large degree of
generality.

�
 We have shown that, in general, rules that lead to less frequent

strategy changes (and consequently to their own update in our
model) tend to be selected, although our simulations also
prove that this is not the whole story (Section 6).

�
 Finally, as a general conclusion, our work makes it clear that

modelling the emergence of cooperation in the PD on networks
must go beyond the work done so far in terms of populations
with a single, constant in time learning strategy. While by no
means have we considered all possible rules or all possible
networks, our simulations provide well established evidence
that the presence of different learning rules and their own
evolution may lead to unexpected phenomena, sometimes
opposite to the observations available so far on unique
learning dynamics. Games with even more delicate equilibria
structure such as snowdrift or stag hunt are likely to be
affected in yet a stronger manner.

As a closing remark, we want to stress that, while we
acknowledge the limited scope of the present report, we believe
that our study opens the way to a much more complete analysis of
the evolution of the update rules. It is clear that the present work
asks for further research, regarding, e.g., the case in which three
different update rules are present simultaneously. As we have
advanced above, in this scenario much more complicated process
may appear as the third rule helps other resist invasion by a
dominant one. On the other hand, we have by no means
exhausted the possible update rules, and a more thorough
simulation program which would include more deterministic
local rules is needed, in order to determine whether or not local
rules invade global rules, or whether stochastic is better than
deterministic. A specific case of relevance in social networks is
that of reinforcement learning (Wang et al., 2008), which is much
more complex than the rules considered here and might provide
an interesting first step to extend our results to more realistic
situations. It would also be interesting to consider different time
scales for the update of strategies and the update of learning rules.
Thus, it is conceivable that an agent only changes her update rule
after copying the strategy of the same neighbour a certain number
of times. Mutations in the learning rule can also be included, and
even heterogeneity in the details of the rule (for instance, different
proportionality factors in the REP rule). These and other exten
sions of the present work should include in addition the
comparison of the results of different games beyond the PD. We
envisage that such a programme would be extremely useful for
clarifying the big picture of evolutionary game theory on graphs
and its applications.
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