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Resumen

En esta tesis un nuevo método para encontrar sistemas dinámicamente equivalentes es propuesto.

El objetivo es el de crear una herramienta para el análisis de robots b́ıpedos. La herramienta

consiste en modelos simplificados obtenidos del principio de equivalencia dinámica, que dice que

si dos sistemas poseen la misma masa, el mismo centro de masa y el mismo momento de inercia

entonces son dinámicamente equivalentes. Este concepto no es nuevo y es comúnmente utilizado

en el diseño de máquinas alternativas, o para encontrar el sweet spot de objetos esbeltos tales

como bates o espadas. Con la aplicación del principio de equivalencia dinámica se encuentra el

centro de percusión. La aportación en esta tesis es la aplicación de este concepto al análisis de

robots b́ıpedos, y la extensión del centro de percusión a cadenas cinemáticas.

La herramienta fundamental para la obtención de resultados de investigación en esta tesis

hace uso del lenguaje de simulación Modelica®. Las simulaciones son altamente detalladas

gracias a la libreŕıa estándar Multibody incluida en las especificaciones del mismo. Como conse-

cuencia de los trabajos desarrollados se crearon nuevas clases para extender la capacidad de la

libreŕıa y aplicarla a máquinas caminantes.

El desarrollo de esta tesis está centrado en el desarrollo de dos modelos. El primero es un

péndulo invertido equivalente, con la caracteŕıstica que posee las mismas propiedades dinámicas

del robot que modela. Dichas propiedades son la masas total, el centro de masa y el momento de

inercia. Este modelo es luego utilizado para generar el caminar de un b́ıpedo simple. El b́ıpedo

es simulado con un volante de inercia como cuerpo, y pies de contacto puntual. Posee rodillas y

está totalmente actuado. Los eslabones del robot poseen propiedades de sólido ŕıgido y ninguna

simplificación ha sido considerada.

El segundo modelo tiene el objetivo de imitar la topoloǵıa del b́ıpedo que representa, por lo

tanto tiene un grado mayor de complejidad que el anterior. Este modelo es construido al dividir al

robot en tres grupos: Las dos piernas, y otro grupo compuesto por la cabeza, los brazos y el torso

(Denominado HAT por sus siglas en inglés). Este modelo es denominado modelo de cuatro masas

puntuales. Este modelo es posteriormente validado utilizandolo para desacoplar la dinámica del

sistema, la única información utilizada para llevar a cabo esta tarea es proporcionada por dicho

modelo.





Abstract

In this thesis a method to find dynamically equivalent systems is proposed. The objective is

to provide a tool to analyze biped robots by simplifying their dynamics to simpler models. The

equivalent models are obtained with the concept of dynamic equivalence that states that if two

systems share the same total mass, the same center of mass, and the same moment of inertia then

they are considered to be dynamically equivalent. This concept is not new and it is used in the

design of alternative machines, or to find the sweet spot of long object like swords or bats. The

result of the application of the dynamic equivalence principle is the point known as the center

of percussion. The novelty in this thesis is to apply this concept to the analysis of biped robots,

and the extension of the center of percussion to kinematic chains.

The work in this thesis developed with the help of the simulation language Modelica®. The

simulations are very detailed by implementing elaborated rigid body dynamics provided by the

multibody standard library included in the language specifications. New classes were created in

order to be able to simulate walking machines. Those classes introduce contact objects at ground

foot interactions and mechanical stops for knee joints.

The development of this thesis is centered around the proposal of two models. The first

model is an equivalent inverted pendulum with the characteristic that it has the same dynamic

properties, i.e., total mass, center of mass and moment of inertia, of the biped that models. This

model is later used to synthesize gait in a simple, but realistic biped. The biped is simulated

with a flywheel body, and point feet. It has knees and it is fully actuated. Also all the links have

complete rigid body properties and no simplifications were done.

The second model has the objective to resemble the topology of the biped it represents,

therefore it is slightly more complex than the equivalent inverted pendulum. This model is

constructed by grouping the components of the robot in three groups: Two legs and the HAT

group (HAT stands for head, arms and trunk). This model is denominated four point masses

model. The model is later validated by decoupling the dynamics of the system only with the

information provided by the four point masses model.
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1
Motivation and objectives

The wheel is considered as one of the most relevant inventions in the whole mankind,

almost every mobile system that moves on the ground will require at least one. But

nature has chosen to avoid this great invention, and yet, successfully develop the most

impressive mechanisms of locomotion. Legs have an unmatchable versatility to adapt to

a great variety of terrains, and particularly human gait displays a graceful symphony of

movements to perform this task. Despite the presence of impacts, alternative cycles, an

other undesirable effects, the efficiency is surprisingly high.

How human gait works is still an active research field. Countless algorithms are

proposed in order to perform bipedal walking, but a great amount of work still should

be done in order to be comparable against nature’s work. Improved analysis tools,

methods to develop simplified systems that could help a better understanding of the

dynamics behind this fascinating phenomenon should be discovered. All this facts are

the perfect ingredients to keep the curiosity alive.

In this section the motivation to start this research is exposed, this includes a brief

discussion about limitations of the current techniques,it should be noticed that a detailed

exposition will be done in Chapter 2 where the state of the art is discussed. After this

discussion has been done, the objectives will be presented.

1.1 Motivation

In most control courses the stabilization of an inverted pendulum is used as the perfect

introduction to new students into the field. The simplicity and transparency of the

equations is a very interesting tool that provides an intuitive point of view to the abstract

mathematics behind this science. Humans, being systems having a high center of mass
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are perfect candidates to be modeled with inverted pendulums. As mentioned before,

with the early experience in pendulum systems the possibilities become intuitive from the

mathematical point of view, simple models and ingenious solutions can now be proposed

to generate gait to a wide range of walking machines.

But pendulums are not the only option to simplify a biped. Other approaches include

rimless wheels, replacing links or group of links by point masses, etc. The simplifications

are done depending on particular necessities, depending on how the problem is focused

as for example passive dynamics, limit cycle walking, zero moment point control, among

others. This simplifications are often extended to simulations where the solution nor-

mally works perfectly because only the assumptions are taken into account when the

model implemented. The simplifications during simulations can be go even further by

introducing changes in the topology of the original system.

Although the just mentioned simplifications have proved effectiveness in different

applications, in general there is no criteria to apply them. Most of them are based on

the hypothesis that the mass is concentrated at the center of mass of the system or

subsystem being studied, but no further analysis is done whether or not this assumption

is valid. From this short discussion we can conclude that justified simplifications will be

welcomed to improve the present state of the art.

1.2 Objectives

In general, the intuitive simplifications applied when analyzing biped robots have been

successfully used in countless applications. Despite the achievements reported in presti-

gious journals of the field, part of the credit of the attainments belongs to the controllers.

Carefully tunned algorithms are implemented in order to compensate the non-modeled

dynamics and the result is walking machines that work. The problems faced to perform

this accomplishments are the proof that more research is necessary in order to provide

better analysis tools.

The general objective of this thesis is to provide a justified method to obtain simplified

models that can be used to analyze biped robots. The idea is that the proposed method

can be used not only to create new models, but to improve the existing ones. In this

way the essence of the original ideas is maintained.

A particular objective is the improvement of the inverted pendulum based models, by

considering the rotational dynamics of the original model. This improvement is based

on the concept of dynamic equivalence. Once the equivalence have been proved, the
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improved pendulum is used to demonstrate the possibilities of gait generation with a

simplified, but not idealized biped1.

Another problem that is the objective of this thesis is the design of biped robots.

The design of the links and joints composing the robot is easily solved with classical

mechanical design. Resistance, fatigue or other criteria are well suited tools to produce

the required parts. But joints and links are not enough to produce a robot. Actuators

are very important elements that should match the existing mechanics. Besides, once the

actuators are selected the previous design steps should be reviewed in order to optimize

the system.

The methodology proposed in this thesis has the objective to provide alternative

models to decouple the dynamics of the controllers in each joint. Once each joint can be

treated independently, the frequency response can be analyzed under different conditions.

With this information the solicitations of the actuators and the different mechanical parts

can be adjusted.

As final words the objectives can be itemized as follows:

• To develop a methodology to provide justified simplifications to model biped robots.

• To demonstrate the usage of the obtained models to generate gait.

• Generate alternative models with the proposed methodology to be used as analysis

tools.

• Decoupling of the dynamics of the system in order to perform a guided mechanical

design.

1This difference is done to specify that the models used in this thesis can be constructed in reality,
because all the elements have finite mechanical properties. That means that no massless links, point
masses or other idealizations are allowed without formal validation.
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In this chapter different mathematical models used in biped robots will be exposed.

The objective of most of these models is to design control strategies. The strategies

are focused in different problems that range from reject disturbances until gait design.

Their simplicity is the most attractive quality. They successfully reproduce most of the

dynamics, and they have probed usefulness in their respective applications.

The idea behind of the majority of the proposed models is to simplify the properties

of the biped systems in few parameters that can be handled in a more friendly way.

Although there are models of high complexity their objective is to construct simulators

to probe other ideas, or to be used in a simplified way to be included in on-line algorithms.

In the following lines some of the most popular models will be exposed.

2.1 Basic inverted pendulum based models

The inverted pendulum has been a source of inspiration from the beginning of formal

locomotion research. The simplicity of its dynamic equations allows full analytical so-

lutions. The major drawback of these models is how they are made. The mass of the

pendulum corresponds to the mass of the robot itself, and its location is the same of

the center of mass of the robot. The rod of the pendulum is supported over the center

of pressure of the system. Such a simplification has the trade off that not all dynamic

effects are modeled. A common improvement is to consider the moment of inertia in

order to include additional dynamics, but still simplicity is kept in mind. Despite the

simplifications, many experiments have demonstrated that it is a powerful tool. In this

section some of the most popular models are exposed.
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2.1.1 Inverted pendulum model

A pendulum system is a widely popular model, its study is part of the introduction of

any physics course as a simple model of vibrational systems. In order to be used with

bipedal system small modifications need to be taken into account, and the result is the

inverted pendulum model.

The derivation of the equations of motion starts by writing the angular momentum

of the point mass around O shown in Figure 2.1 as follows:

Lo = mr2θ̇ (2.1)

The derivative of the angular momentum is:

L̇0 = mr2θ̈ (2.2)

If other accelerations are dismissed, Newton’s second law can be written as:

L̇0 = mgr sin θ (2.3)

Replacing 2.2 and 2.3 in order to eliminate L̇0:

θ̈ = g
r

sin θ (2.4)

m

g

r

o

q

x

y

Figure 2.1: Schematic of an inverted pendulum.

By intuition the pendulum has two equilibrium points, when θ equals 0 (unstable

equilibrium) and when θ equals π/2 (stable equilibrium), these equilibrium points ex-

tends to Equation 2.4. The application of this model to study locomotion comes by the

fact that humans lie on a single leg during most of the walking cycle. In order to apply
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this model to a biped system the concept of Center of Pressure is introduced, although

it is discussed in detail in section 2.2.1.

F

Figure 2.2: Example of the location of the center of pressure on a human foot. A
very popular concept in aerodynamics and hydrostatics.

Center of pressure is defined as the point where the pressure field acting over the feet

produces no moment and a force, this can be better seen in Figure 2.2. The inverted

pendulum of a biped is constructed when the pivot is located over the center of pressure,

the point mass has the same value of the total mass of the system and its location has

the same position of the center of mass of the biped as shown in Figure 2.3.

The problem of stability of a biped is now reduced to the balancing of an inverted

pendulum. This has been widely exploited to design gait algorithms or to study bipedal

gait [49, 63, 73, 76, 95, 84, 102, 112]. Their simplicity and the available analytic solutions

are some of the reasons of its popularity. Although different equations of motion can

be obtained according to the necessities, for example a 3D extension in [21], the ones

described in this section give a general view of how this model works.

2.1.2 Linear inverted pendulum model

The linear inverted pendulum model is obtained by restricting the point mass to travel

into a straight path. The pendulum used to derive the equations of motion of this section

is shown in Figure 2.4. The pendulum is borne over the point O by an extensible support

without mass and it can only exert forces on the direction of it, therefore no torque can

be applied over its base. Finally, in this derivation the pendulum is restricted to move

parallel to the ground.

First, the balance of vertical forces is performed, according to Figure 2.4 it is written

as follows:
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o

r

m

CM

-q

x

y

Figure 2.3: Inverted pendulum of a biped system. The location of the point mass
of the pendulum and the center of mass of the biped is the same. The same happens
with the value of the point mass.

Fy = −mg (2.5)

Fx can be obtained by the geometric constrains imposed on the movement of the

pendulum:

Fx
Fy

= x
yh

(2.6)

Replacing 2.5 into 2.6 to eliminate Fy and solving for Fx:

Fx = −mg x
yh

(2.7)

The dynamics in x direction is summarized as:

Fx = mẍ (2.8)

Finally, Fx is eliminated with equations 2.7 and 2.8:

ẍ+ x x
yh

= 0 (2.9)

The previous equations are a simplification of the work developed in [54, 53, 55].

The simplification is required because this equations will be used in further sections,
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Figure 2.4: Linear inverted pendulum model (LIPM) restricted to move parallel
to the ground. A massless and extensible leg is required to perform the restricted
motion.

besides in the present form they allow to better understand the method. In the papers

previously cited, detailed simulations of gait synthesis and a more general model can be

found. The strong assumption of massless legs in both models (the ones in the original

papers and the ones developed in this thesis) is an important simplification that should

be considered in future improvements. The body dynamics is considered in the original

model, although some simplifications are performed.

The form of equation 2.9 has the same form of a linearized simple pendulum, with the

difference that the last one can be applied to the whole space state and is not restricted

to small values of x. Besides it is important to note that the movement is restricted to

be linear but not necessarily parallel to the ground, again more details can be found in

the original publications.

2.1.3 Reaction mass and reaction wheel pendulums

The previous pendulum based models have the particularity that they cannot apply

torque over its support. This is against the common sense, because humans rely on ankle

torques to compensate small perturbations. This can be probed easily by standing still

over one foot and feel how the reaction forces of the floor changes when the equilibrium

is restored. Important rotational body dynamics is lost in the previous models; as was

mentioned, for the sake of simplicity some sacrifices are required.

One of the most attractive qualities in the previous models is the ability to simplify

the complex contact forces in one point (the center of pressure). In order to keep the

original one point contact, and at the same time, add the capacity to apply torque over

its support, in [59, 65, 95, 84] the point mass is replaced by a mass with a moment of
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inertia. The mass can turn around its center of mass and it is supported by a massless

leg. Depending on the context of work, two models arise, the one used on 2D cases called

the reaction wheel pendulum and the 3D case called the reaction mass pendulum.

r

m,I

-t

-q

x

y

(a)

t

r

m,I

-q

x

y

(b)

Figure 2.5: Reaction wheel pendulum equivalence: (a) an inverted pendulum is
attached to the floor and it moves by applying a torque against the floor, and (b)
if the torque applied to the flywheel is able to accelerate it, then both models are
dynamically equivalent.

In Figure 2.5 two different pendulums are represented. In Figure 2.5(a) there is a

simple inverted pendulum attached to the floor by a rotational joint, the joint is able to

apply torque in order to move the pendulum as desired. The system is described by:

(I +mr2)θ̈ + τ −mgl sin θ = 0 (2.10)

The other pendulum, shown in Figure 2.5(b), cannot apply a torque directly to the

floor, instead it can accelerate a flywheel, its mathematical description is:

(I +mr2)θ̈ + τ −mgl sin θ = 0 (2.11)

Iθ̈fly = τ (2.12)

Where I is the inertia of the mass and θfly is the absolute angle of the flywheel, the

other variables are described in Figure 2.5. It should be noticed that equations 2.10 and

2.11. The interesting fact here is: If the position of the flywheel is dismissed, both models

are equivalent, as long as the flywheel can be accelerated1. Therefore, it is possible to

1If friction is present and the flywheel reaches its maximum speed the equivalence is no longer true.
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adjust the position of the pendulum with a flywheel despite the fact that no motor exist

between the floor and the support. These models improve some limitations present in

the inverted pendulum model, the fact that attitude of the pendulum is now available

to control, helps to describe the reality in biped systems.

The moment of inertia in 2D is a real number, but in the case of 3D motion a tensor1

should be used. This tensor is calculated around the center of mass of the biped, and it

is composed by all the rigid links that are part of it. The tensor of inertia can also be

associated with its equinomental ellipsoid to construct the inverted pendulum.

x

y

z

Figure 2.6: Reaction mass pendulum. The ellipsoid of the pendulum has the same
mass and inertia tensor, the support is considered without mass.

In Figure 2.6 a representation of the reaction mass pendulum can be seen. In the

case of a rigid body the ellipsoid of inertia is fixed. When the same ellipsoid is calcu-

lated for a multi body system2 the centroidal moment of inertia of the complete system

changes its value depending on the configuration; therefore, changing its reaction mass

pendulum according to the state of the system. The last, opens the possibility to find

new control strategies by shaping the inertia according to the requirements [65], this is

better illustrated in Figure 2.7. The model discussed in the present section adds impor-

tant improvements in order to keep complex dynamics of the system, but at the same

time it is quite simple.

1The tensor of inertia is 3× 3 matrix.
2This is the case for a biped composed by multiple links.
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Figure 2.7: Inertia shaping method [65]. The ellipsoid of inertia changes its form
and orientation according to the relative positions of the links of the robot.

2.1.4 Parametric pendulum

The parametric pendulum is a kind of driven pendulum that adds energy to the system

by means of varying one of its parameters, this mechanism of adding energy is called

parametric excitation. A simple pendulum is defined by two parameters, the length

and the value of its point mass, because mass is normally considered as fixed, the only

parameter left is length. The simplest way to control, although not a realistic one, and

to maximize the energy pumped into the system is the one shown in Figure 2.8. The

pendulum starts at 1, then when it is located in the lowest part of the cycle 2 it is

elevated to 3. When the pendulum reaches 4 it has a wider swinging amplitude, after

that it is taken to 5.

There are several applications for biped robots, the most obvious is to control the

swinging of the free leg during the single stance phase [64]. This has been probed as

an alternative to recover energy on passive dynamic walking [8, 6, 41]. They use an

under-actuated robot with no motors at the hip, the robot has a piston that lift the leg

when swinging. The robot and its gait cycle are shown in Figure 2.9.

Another well known phenomenon is the driven pendulum [16, 94]. When a pendulum

is excited under certain frequency it has an stable upward position as shown in Figure

2.10(a). As was seen previously in this chapter, the biped stability problem can be

summarized to the stability of an inverted pendulum, this fact is used in [50] to design

the gait of a compass biped robot with extensible legs. A schematic of this robot and

its gait cycle can be seen in Figure 2.10(b). The cycle is very similar to the one shown
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q

Figure 2.8: Parametric pendulum. In the figure an optimal control cycle is shown.
In this case the energy into the system after one cycle is maximized.

(a) (b)

Figure 2.9: Parametric excited robot [8, 6] at the Bio-mimetic Research Center,
RIKEN, Japan. (a) a robot that uses the parametric excitation principle (b) stick
diagram describing the gait of the robot. In this case the parametric excitation is
used on the swinging leg.

in Figure 2.8, but in this case it is applied to the stance leg instead of the swinging one.

Although on simulations the system works well, there are not reports of a successful

working biped. The possible reason for this problem rely on the transition from point

4 to point 5. In order to achieve the transition the robot would need to pull the floor,

but in reality the constraints of the stance leg can only push against it. Despite the

problems, the mathematical background is interesting and it will be derived.
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Figure 2.10: Driven pendulum model. (a) a schematic figure of the driven pendulum
phenomenon (b) optimal trajectory of parametric excitation of a biped robot [50].

Let us focus on the pendulum in Figure 2.11. The angular and linear dynamics are

given by:

mr2θ̈ = mgr sin θ − 2mrṙθ̇ (2.13)

mr̈ = Fr −mg cos θ +mrθ̇2 (2.14)

Examining term by term it is noted that the reaction force Fr does not modify the

angular momentum of the pendulum, at least not directly. The reaction force can change

the position of the point mass radially, therefore changing the length of the leg r. This

last quantity is included in the rotational dynamics equations only when there is angular

velocity. Because of that the linear actuator cannot stabilize the pendulum in the upright

position. Intuitively it is possible to get more conclusions. The leg will accelerate the

system when pulling the mass, because a minor length means a minor moment of inertia

of the system, similar to the effect obtained by a figure ice skater, while the opposite

will decelerate it.

Finally, it should be noted that there are extensive solutions for the parametric forced

pendulum. The equations examined in this section only study what is happening in a

single step. The reason for this decision is that a purely parametric phenomenon is not

possible to achieve on a biped robot because of the low frequencies1 present in normal

gait.

1The frequencies are considered low when compared against the ones required to obtain an upright
equilibrium, more details can be found in [16].
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Figure 2.11: Extensible pendulum. The rotational dynamics of this pendulum cannot
be affected by the leg. The change in length, instead, do have an effect on the
rotational dynamics.

2.2 Ground reference points for biped robots

A biped system, because of its construction has a narrow support polygon, this par-

ticularity combined with a high center of mass produces a naturally unstable system.

The interaction with the ground is not a static phenomenon as could happen with multi

legged systems with low center of mass [38]. For this reason several ground reference

points have been defined in order to study dynamic stability. Another motivation to

define such points is the conservation of momentum principle; according to this the only

way to change the momentum of a system is by external interactions. Considering the

ground as the main source of those interactions, the study of these points enforce the

understanding of biped dynamics.

2.2.1 Zero moment point and center of pressure

The interface between feet and ground is not over a point, but over a finite surface, this

is called a pressure field. The integral of pressure with respect to the area gives the total

force applied to the system by the pressure field, and the place where this force should

be applied it is determined by the distance weighted of the total force:

rCP =
∫

(A) r⃗p(r⃗)dA
Fp(r⃗)

(2.15)

Where rCP is called the center of pressure, p(r⃗)dA is the position dependent pressure

function, Fp(r⃗) is the force applied and A is the area of the pressure field. The last

equation is used to determine forces over a dam, a plane wing or a sail boat where
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complex pressure patterns are produced by water or air. The application in walking

systems comes as an effort to summarize the complex contact forces between the floor

and the feet, Figure 2.12 illustrates the last.

rCP

Figure 2.12: Center of pressure during the double stance phase. The center of
pressure is not necessarily contained in the pressure field, but it is inside the polygon
of support.

The center of pressure is often confused with the zero moment point (often abbre-

viated as ZMP), the last is due to the fact that both are in the same location during

dynamic or static equilibrium states. But differences arise when looking into the defini-

tion of ZMP [103]:

ZMP is defined as that point on the ground at which the net moment

of the inertial forces and the gravity forces has no component along the

horizontal axes.

Imaging a biped supported over one foot. The last definition can only exist if the

whole sole is making contact with the floor, because this implies that no moment will

cause rotation over an axis lying on the horizontal plane. In other words, if the body of

the robot is perturbed by an external force no rotation occurs. This happens because

the ZMP moves until the equilibrium is reached and the reaction forces equilibrates the

horizontal moments. In Figure 2.13(a) a robotic foot is shown in equilibrium with the

floor reaction R and the ankle reactions MR and FR. In this case the ZMP coincides

with the center of pressure. If the center of pressure is located on one side of the support

polygon; for example, the position of the foot in figure 2.13(b), no ZMP can be defined

but instead a fictitious ZMP is found as the possible location of the ground reaction
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force that equilibrates the system. The fictitious ZMP has been already proposed in [39]

and it has been named as foot rotation indicator.

-M

F
R

R

-R

ZMP CP≡

R

(a)

-M

F
R

R

Fictitious

ZMP

CP
-R

R

(b)

Figure 2.13: Zero moment point and center of pressure differences: (a) the whole
surface of the foot makes contact, therefore the ZMP and the center of pressure are
in the same position; and (b) the center of pressure is not enough to balance the
biped, then a fictitious zero moment point is defined.

The previous discussion was done assuming flat surface, additional differences arise

when considering the walking device over uneven surfaces. A detailed discussion can

be found in [90] with a redefinition of the ZMP for the situation previously mentioned.

Despite its limitations, the ZMP technique has been successfully applied to multi-legged

systems [38, 81] and also applied in Asimo and HRP robots [46, 56] (All of them among

the most advanced biped machines of their class). Other robots, as for example the one

shown in [84], use the center of pressure concept, exploiting the dynamics of the robot

beyond the restriction of the ZMP.

2.2.2 Centroidal moment pivot

The centroidal moment pivot is defined as the point where a line parallel to the ground

reaction force, passing through the center of mass, intersects with the external contact

surface [82], as shown in Figure 2.14. Mathematically this can be written as:

(r⃗CMP − r⃗CM )× FR = 0 (2.16)

Where r⃗CM and r⃗CMP are the position vectors of the center of mass and the centroidal

moment pivot. This point has been studied by different observations about the spin

angular momentum during the gait cycle, the observations noted a highly regulated
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angular momentum [83]. Therefore this point has been used to measure stability. Under

certain conditions it also coincides with the zero moment point. Besides, it has also been

used to study human gait and to compare it against artificial generated gait [83, 1].

ZMPCMP

mg

ma
CM

F
r

Figure 2.14: Centroidal moment pivot is the projection of the center of mass to the
ground with a line parallel to the ground reaction forces. This point represent where
the ground reaction forces should be applied in order to keep constant the angular
momentum of the body.

2.2.3 Capture points

Ground reference points previously defined in this section are closely related, and careful

interpretation of the definitions is required in order to identify them in particular situ-

ations. They are used to measure dynamic stability and as a tool to compare natural

with artificial gait. But non of them can be used to predict the best position for the

next step. Observations about how humans recover from large perturbations conclude

that foot placement is the preferred strategy to recover balance [24]. The work in this

section describes how to decide where to step in order to keep equilibrium.

A capture point is a point on the ground where the robot can step to in order to bring

itself to a complete stop [85, 88]. To compute such a point in a complex robot is very

difficult, besides a complex robot will have a collection of capture points. The collection

of these points is called a capture region. This observation reinforce the conception that
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during bipedal walking, trajectories in space do not need to be precise [87]. In this

section only capture points will be discussed.

In order to simplify the estimation of capture points simple models of inverted pen-

dulums have been used [86]. By definition a capture point is a point where all the kinetic

energy is dissipated or converted into another kind of energy1, for example converted

into potential energy.

The analysis begins by computing the capture point of an inverted pendulum. In this

analysis the pendulum performs a ballistic walking like gait without impacts2, and it just

stepped with speed v over a capture point that is measured from the ground projection

of the center of mass by rc, as shown in Figure 2.15. The distance rc can be calculated

by estimating the change of kinetic energy into potential energy, the total energy of the

system can be written as:

1
2
mv2 +mgh = mgr (2.17)

In Figure 2.15 it can be notice that rc =
√

(r2 − h2). Solving rc in equation 2.17:

rc = v
√(
h

g
+ v

2

4g2
)

(2.18)
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Figure 2.15: Capture point of an inverted pendulum. The distance rc shows where
to step in order to reach a full stop without any external force but the own weight.

Equation 2.18 predicts where to step respect to the ground projection of the center

of mass. This is a different approach because the step length is not defined by the gait

itself but by the state of the robot, therefore capture points can be used to reject large

1When impacts are included, it can also be a combination of both situations.
2An explanation of ballistic walking will be provided in section 2.3.1. More details can also be found

in [33, 35, 71, 106].
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perturbations. Now, the analysis will be centered around the linear inverted pendulum

model.

In Figure 2.16 a biped with a point mass moving in straight line is shown. This biped

obeys the following equation of motion, as was demonstrated in section 2.1.2:

ẍ+ x x
yh

= 0 (2.19)

But equation 2.19 can also be interpreted as a mass-spring system with a negative-

rate spring constant of g/h0. Because of this a conserved quantity called orbital energy

ELIP of the pendulum is derived and is equal to [54, 85]:

ELIP = 1
2
ẋ2 − g

2h
x2 (2.20)

This last quantity measures the amount of energy present in the linear inverted

pendulum. In order to come to a complete stop the ELIP should be equal to zero,

therefore the two eigenvectors of the system are:

ẋ = ±x
√
g

h
(2.21)

If the stable eigenvector is chosen, then the position of x found in equation 2.21 is

the capture point for the given velocity:

xcap = ẋ
√
h

g
(2.22)
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Figure 2.16: Capture point of a linear inverted pendulum. Just as happened with
the inverted pendulum rc is used as a step indicator.

In this section capture points for two systems have been found. The systems used

for the derivations are under-actuated an rely on gravity and some idealizations to walk.
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A complex system with more degrees of freedom is able to control every step, and

therefore it is able to produce more than one capture point for a given state. This

leads for a capture region, unfortunately capture points and hence capture region for

such systems are really hard to compute, by the meanwhile simple models are used on

different experiments on this field.

2.3 Other models

Biped systems are very complex, and as such they need different models in order to

describe the phenomena present in their dynamics. The models already discussed are

based in a strong simplification of the mass properties of the original robots. Although

in this section the tendency to simplify is also present.

This section is dedicated to expose models that cannot be classified in the previous

categories. The more complex models are preferred to be used as simulators, normally

they are based on rigid body dynamics. Also simpler models can be found, as for example

the rimless wheel, widely applied in the field of passive dynamics.

2.3.1 Rimless wheel

This model was originally proposed by Tad McGeer [69] to study passive dynamics

walking, detailed studies are also developed in [7, 19, 18, 35, 106]. This model is based

on the idea that walking is similar to rolling, considering that in both cases there is

one point that serves as support and remains static during the motion. As its name

suggest, a rimless wheel is a wheel without its rim, therefore the spokes serve as the only

support1. This system does not behave like a normal wheel, instead, it looses energy

after each impact, reaching zero velocity if the energy is not restored in some way. In

Figure 2.17(a) a rimless wheel is lying over an inclined plane, the angular momentum

just before the impact of the next spoke is:

H− = (cos 2α0 + r2gyr)mr2Ω− (2.23)

Where rgyr is the radius of gyration of the wheel, normalized with r, and Ω− is the

angular speed. The same can be done just after the impact:

H+ = (cos 2α0 + r2gyr)mr2Ω+ (2.24)

1In fact, if infinite number of spokes are added a perfect wheel can be obtained.
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Dividing equations 2.23 and 2.24 implies:

Ω+

Ω−
=

cos 2α0 + r2gyr
1 + r2gyr

≡ η (2.25)

It follows from 2.25 that over a series of k steps:

Ωk = ηk (2.26)

On a level surface equation 2.26 shows that the wheel will decelerate exponentially.

But, the analysis is performed according to Figure 2.17, then it is expected that the

wheel will reach an stationary speed of Ω0, then the period is:

τ0 = 2α0
Ω0

(2.27)

This leads to the linear speed v of the wheel:

v = 2rα0
τ0

(2.28)
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Figure 2.17: The rimless wheel: (a) a rimless wheel rolling on a inclined plane, (b)
if all the spokes but two consecutive ones are removed, the result is the so called
compass gait.

Finally, there is an important similarity with the inverted pendulum model. After

the impact, if the moment of inertia is dismissed, both models are exactly the same. The

difference is the ability of the rimless wheel to handle impacts, although intermediate

dynamics can be found, the objective of the rimless wheel is to find the steady state

period τ0. In order to find such quantity, the dimensionless pendulum frequency [69]:
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σ2 = 1
1 + r2gyr

(2.29)

The analysis is developed in dimensionless units with the mass m, leg length l, and

time
√
l/g as base units. Writing the equilibrium equation around the stance spoke, and

taking the small angle approximation:

θ̈ − σ2θ ≈ σ2γ (2.30)

θ is the angle between the stance leg and the surface normal. The rolling cycle starts

when θ = −α0 and Ω = Ω0, and it finishes with θ = α0 and Ω = Ω0/η. When these

boundary conditions are evaluated into 2.29, Ω0 and τ0 can be found, and the results

are:

Ω0 =
√

4γα0σ2η2

1− η2
(2.31)

eστ0 = γ + α0 + Ω0/ση

γ − α0 + Ω0/σ
(2.32)

The previous analysis shows the behavior of a rimless wheel over an inclined plane, if

all the spokes but two are removed the result is some sort of biped machine, in fact this

is the base to the analysis of passive walkers [35, 106]. But it also serves as a model to

develop gait in actuated machines [7, 30, 33, 106]. These machines exploit the limit cycle

generated by this kind of motion, and recover the energy by the means of actuators in

order to walk on level ground. The control strategies to achieve the former are endless,

ranging from relatively simple state machines [47], until novel techniques that simulates

the leaning plane on level ground by defining a virtual gravity vector [9, 96].

As can be seen in Figure 2.17(b) the resulting biped is similar to a geometric compass,

this gives the origin of the term compass gait. Several studies have been develop around

this, as for example 3D passive walkers [97], stability analysis focused on efficiency [66],

rough terrain gait design [51], 2D and 3D stability margins [17, 18], etc. The versatility

of the model allows amazing results, but unfortunately the stability of these machines

depends on how fast the limit cycle can recover from disturbances, leading to a narrow

stability margin. Finally, their control is very limited, because they have to stick to the

dynamics of the rimless wheel, and therefore its limit cycle.
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2.3.2 Complete models

Simplified models are very useful to inspire intuition, they clearly isolate complex phe-

nomena and help to develop control strategies based on fast calculation of their reduced

math. They also serve as design tool, loads can be estimated without complex calcula-

tions, and large quantities of mass properties are summarized in a few parameters. The

price of all this advantages, as was mentioned above, is unmodeled dynamics that pro-

duces diverging results respect to reality. This is not always desirable, in order to probe

how the real system will behave when a particular algorithm is applied more precise

tools are required.

Fortunately, robots are composed by rigid links1, in this way classical mechanics

can be applied directly. The result is a detailed description of the dynamics of the

system. The options to derive these equations are endless, among the most popular

ones: Newton-Euler formulation, Hamiltonian mechanics, Lagrangian mechanics, bond

graph approach, etc. Although any formulation can be used to derive the equations of

motion, it should be notice that it is a variable topology system [31]. This is caused by

the variable physical constraints that occurs during the gait cycle (i.e., ground reaction

forces).

Derivation of the equations of motion

Let q1, q2, . . . , qn be the generalized coordinates that completely locate our system. Let

T and U be the total kinetic energy and potential energy stored in the dynamic system.

The Lagrangian is defined as [5]:

L(qi, q̇i) = T − U (2.33)

Since the kinetic and potential energy are functions of the generalized coordinates,

the same applies to the Lagrangian. The time derivative of the Lagrangian is equal to

the generalize force Qi corresponding to the generalized coordinate qi:

d

dt

∂L
∂qi
− ∂L
∂qi

= Qi (2.34)

The generalized force can be identified by considering the virtual work done by non-

conservative forces acting on the system. In other words the generalized forces are the

1Human beings can also be considered in this way, the difference is that human joints are not purely
rotational, but encompass complex kinematics. Most of the time these effects can be dismissed, and
simple approximations are more than enough [105].
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Figure 2.18: Linear and angular velocity of the center of mass of link i.

control torques and forces, friction forces, etc. According to picture 2.18, the total kinetic

energy of a link is1:

Ti = 1
2
mivTcivci +

1
2
ωTi Iiωi (2.35)

Considering the scalar nature of the energy, the total kinetic energy of the system is:

T =
n∑
i=1
Ti (2.36)

Because of the constraints of each link, vci and ωi are not independent, consequently
the linear and angular velocities are:

vci = J(i)
L q̇

ωi = JA
(i)q̇

(2.37)

Where J(i)
L and J(i)

A are the Jacobian matrices for linear and angular velocities of link

i, respectively2. Now, equation 2.36 is expanded:

1The total kinetic energy is the sum of the energy resulting from the translational and the rotational
motion.

2Each element in the Jacobian is the derivative of a corresponding kinematic equation with respect
to one of the variables [77].
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T = 1
2

n∑
i=1

(miq̇TJ(i)T
L J(i)

L q̇ + q̇TJ(i)T
A IiJ(i)

A q̇)

T = 1
2

q̇THq̇ (2.38)

H is equal to:

H =
n∑
i=1

(miJ(i)T
L J(i)

L + J(i)T
A IiJ(i)

A ) (2.39)

Where H is the n× n matrix that incorporates all the mass properties of the whole

robot, and is called the inertia tensor matrix of the system. This matrix is based on the

individual inertia tensor of each link1. Because the Jacobian of the system is involved,

this matrix is configuration dependent. In order to continue, let us write equation 2.38

in scalar form:

T = 1
2

n∑
i=1

n∑
j=1
Hij q̇iq̇j (2.40)

Where Hij is the [i, j] component of the inertia tensor H. To continue the analysis,

the first term of equation 2.34 is written as:

d

dt

(
∂T

∂q̇i

)
= d
dt

 n∑
j=1
Hij q̇j


=
n∑
j=1
Hij q̇j +

n∑
j=1

dHij
dt
q̇j (2.41)

The time derivative of Hij is:

dHij
dt

=
n∑
j=1

dHij
∂qk
q̇k (2.42)

The second term of equation 2.34 is computed as follows:

1In fact, the inertia tensor matrix represents the instantaneous composite mass properties of the whole
robot.
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∂T

∂qi
= ∂

∂qi

1
2

n∑
j=1

n∑
k=1
Hjkq̇j q̇k


= 1

2

n∑
j=1

n∑
k=1

Hjk
∂qi
q̇j q̇k (2.43)

Now the potential energy part of the Lagrangian is computed. Defining as g as the

3× 1 gravity vector with reference to the base coordinate frame1. The potential energy

of the link is given by:

U =
n∑
i=1
migT r0,ci (2.44)

Because the potential energy does not depends on q̇i the first term of equation 2.34

is zero. But, it does depends on qi therefore the second term for the potential energy is:

∂U

∂qi
=
n∑
j=1
migT

∂r0,ci
∂qi

=
n∑
j=1
migTJ(j)

L i (2.45)

Where J(j)
L i is the i−th column vector of the Jacobian matrix J(j)

Li Finally the equa-

tions of motion of the robot are found by substituting each term in 2.34. After reordering

terms the result is:

n∑
j=1
Hij q̈j+

n∑
j=1

n∑
k=1

(
Hij
∂qk
− 1

2
Hjk
∂qi

)
+
n∑
j=1
migTJ(j)

L i = Qi (2.46)

Short discussion about the equations of motion

Equation 2.46 is a detailed description of a multi-body system. The first term corre-

sponds to the inertial torques, as seen between joints. The second term corresponds to

Coriolis and centrifugal accelerations, and the last term represents gravitational torques.

Such detailed description produces a complex solution, rarely found analytically. In-

1The base coordinate frame is an inertial reference frame, this is required to apply Lagrangian me-
chanics.
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stead, it is often used to develop simulators of the original systems, some examples are

found in [36, 76, 93, 109].

Despite the complexity of the solution such a model can also be used to design gait.

The flexibility of a virtual model allows the implementation of trial and error algorithms

without damaging of the actual robot, as for example a neural network implemented in

[104]. Also optimal solutions can be developed, the major challenge is how to solve topol-

ogy changes. A possible solution is to define piecewise boundary constraints, separating

the gait cycle in well defined phases [99].

The precision of the model is limited by what is implemented in it. Backlash, friction

and other phenomena can be added, at the cost of adding complexity to the model.

Compliance of the links, instead, are more difficult to implement because the analysis

has been done assuming rigid ones. Other source of errors is the determination of the

parameters of the robot. Measuring the inertia tensor of the links and location of its

center of mass is not a simple task, leading to differences between the reality and the

simulations; although, the results are quite accurate.

2.3.3 Reduced models

In the previous section a highly detailed and scalable model was shown. Its objective is

to provide a faithful description of the system it represent. Depending of the objective,

some effects can be dismissed and a simplified model can be constructed. For example, if

rotational displacements are expected to be low, the inertia tensor matrix does not need

close attention. In other situations the simplification is convenient in order to reduce the

number of present equations. Whatever it is the case, the simplification it is required to

keep most of the properties to validate the experiments.

The most common simplification is to consider rigid bodies as point masses located in

its own center of mass. This is a common approach when modeling passive dynamic sys-

tems, or robots based on their limit cycles. Usually, these machines have light structures

with low radius of gyration, dismissing some rotational dynamics does not compromise

the results obtained by the model. Some examples of the former can be found in [51, 91].

Considering that this kind of walkers rely strongly on the natural frequency of the sys-

tem, such simplification could seem excessive. In fact in [32] a pretty detail model is

proposed for a passive like system. But depending on the robot other effects as actuation,

friction, impact, etc. seem to be more important and override possible problems.

The simplifications also include variations of the topology of the system depending

on the gait phase. An example is shown in Figure 2.19 where the system changes from
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(a)

(b)

Figure 2.19: A variable topology system [9]. (a) the model changes its structure
according to the gait phase, from two to three links when the knee lock is not active.

two to three links depending on the phase of the gate. The change occurs when the knee

lock is active, then the two links of the leg behave like one. The difference between a

real knee lock and the implementation in Figure 2.19 is that in the case of a knee lock

implemented inside a model, the reaction force of the lock is computed. In the Figure

the equations of motion are modified by modeling the leg as one link with one point mass

instead of two. The new leg will not longer have the same moment of inertia, although

it will share the same center of mass.

The torso is also added as a point mass, considering that its rotation is very limited

when walking in normal conditions [65], only the center of mass plays a major role during

e, 

Active knee-Iock off 3-link phase P;:¡ssive knee-Iock 2-link phase He. 
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(a) (b)

Figure 2.20: A three mass model of a robot [26]. (a) the real system where the
model was applied. (b) the model used to design the control algorithms.

gait cycles. Several authors have follow this way to produce their models, some examples

includes [58, 91, 104]. An interesting application is done in [26] where an algorithm is

developed based on the linear inverted pendulum, and then applied to a real robot with

satisfactory results, according to the authors. The robot and the model are shown in

Figure 2.20. Actually the point mass corresponding to the trunk summarizes the so

called HAT (Head, arms and trunk). Such a harsh simplification invites to think that

the model is dismissing important dynamical effects. Later in this thesis this aspect will

be studied in detail when showing alternative dynamic equivalences.

The models proposed in this section are not mathematically different from the one

already proposed in section 2.3.2. Their formulation has the same basis, the difference

is the assignation of the parameters. While in section 2.3.2 all the mass parameters

are considered, in this section arbitrary mass properties were selected, leading to sim-

plified equations of motion, and therefore not all the dynamic effects are reflected. Yet,

important similarities to the original system are maintained.



3
Theoretical Framework and

Methods

In Chapter 2 a pretty clever group of mathematical models for bipeds was exposed. Those

models have been the base of bipedal research during many years. In general, they have

been able to probe usefulness in different conditions, as shown in the references cited in

this document. Despite all the research done around the previous models, they clearly

dismiss part of the dynamics by assuming the mass concentrated at the center of mass1.

In this chapter the concept of dynamic equivalence is introduced as an alternative to

improve the point mass simplification widely used in biped literature. The objective is to

keep the point mass approach, but at the same time conserve rotational dynamics. This

is done by means of the center of percussion, a concept widely used to study impacts

of long and thin elements and also in the balancing of engines and other alternative

machines.

The methods used in this thesis to perform the simulations of the following chap-

ters are also exposed. The selected tool is the language simulation Modelica® using

Dymola® implementation. Modelica® allows object oriented modeling to avoid prob-

lems like computational causality assignation. In this way completely non-causal models

are generated guarantying the validity of the results for future developments.

The complexity of a biped robot has been the source of inspiration of very ingenious

models described in chapter 2. Except for the model described in section 2.3.2, sim-

plification is a common quality among all of them. The most practical approach is to

only consider the effects of the center of mass. In fact, in a quasi-static situation this

approach is almost an exact solution, this is a very useful concept in civil engineering.

But, when studying dynamic walking it would of interest to have better tools to define

alternative models.

1The models shown in section 2.3.2 are an exception for this statement.
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In this chapter an alternative method of simplification of rigid bodies and kinematic

chains is developed. As was said before, the foundation of it is the center of percussion.

In summary, the idea is to keep replacing the original system by point masses. In this

way, the original approaches developed in the literature of this thesis could be applied

with minor modifications. The simplicity of the dynamics of a point mass is a very

attractive motivation in order to find alternative ways to propose such models.

3.1 Dynamic equivalence

By definition, equivalent means that under the same conditions the result will be the

same between two systems, in other words it does express an state of equality. The

concept can be extended to classical mechanics. In this context it is necessary that

the systems under comparison will behave in the same way under the same boundary

conditions and forces, that means both systems will share the same equations of motion.

The previous paragraph can be summarized under three statements as follows:

1. The total mass of the systems is the same.

2. Both systems share the same first moment of mass.

3. And, the second moment of mass it is also the same.

The meaning of the first statement is explained by itself. The second statement

means that the systems will have the same center of mass, and the final statement

speaks about the equality between the moment of inertias. Clearly, if those quantities

are the same, the equations of motion will be also the same, under dynamic and static

conditions. When the static case is considered only the first and second statement need

to be considered.

3.1.1 Center of percussion

There are countless ways to define equivalent systems, but one of the simplest is to define

it in terms of point masses. A rigid body can be reduced to a minimum of two point

masses1. In order to find the position and the value of those masses it will be necessary

1A system equivalence with one mass would be impossible, this comes out when thinking that every
body has a finite place in space, a point by itself is infinitely small, but a system with two points
could be considered that posses finite parameters, and therefore could represent a real system. Another
observation is done when considering a point mass rotating around itself: The moment of inertia is zero.
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to use the conditions mentioned in section 3.1. Considering the rigid body in the Figure

3.1, where the rigid body is represented by two point masses m1 and m2, those three

conditions can be written mathematically as follows:

m1 +m2 = m (3.1)

m1r1 = m2r2 (3.2)

m1r
2
1 +m2r

2
2 = I (3.3)

x

y

m

m

m,I

r

r

1

2

2

1

Figure 3.1: Rigid body with its equivalent point masses. A rigid body can be reduced
to two point masses, both systems are dynamically equivalent.

In order to reduce the dimensionality of the system to three, instead of four, the

position of m1 is arbitrarily fixed. Now equations 3.1, 3.2 and 3.3 form a system of tree

equations with three unknowns m1, m2 and r2. A detailed solution of the nonlinear

system is developed in Appendix A. Once the system is solved the result is:

Therefore a rigid body cannot be represented by a single mass because its moment of inertia is always
greater than zero.
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Figure 3.2: Center of percussion of a baseball bat. (a) a baseball bat, (b) equivalent
model hit at the center of mass and (c) the same model hit at m2 . Remember that
all models are pivoted around m1.

m1 = mr2
r1 + r2

(3.4)

m2 = mr1
r1 + r2

(3.5)

r2 = I

mr1
(3.6)

Equation 3.6 represents the center of percussion of the rigid body when the system is

rotated around m1. When the system has been reduced to two point masses it becomes

more obvious the meaning of this quantity. Consider the baseball bat in Figure 3.2(a)

pivoted aroundm1 being struck by a ball. The behavior of the bat will change depending

on the location of the hit, it is well known that the reactions becomes zero when the

impact happens at the center of percussion and not the center of mass as many people

tends to think. The reason for this is the one just explained in this section: A rigid body

can be reduced to a minimum of two point masses. To understand this phenomenon the

equivalent system depicted in Figure 3.2(b) and 3.2(c) will be used. It is composed by

two point masses connected by a massless rigid rod.
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When the ball hits at any point different from m2, the reaction forces produce a

moment in order to be balanced1. Because the system is pivoted around m1, it is not

affected by the impact. But, if the ball is pointed directly over m2 the momentum is

entirely transmitted to this mass and no reaction moment is produced. Therefore the

reaction forces are minimized.

When considered the bat as a rigid body, the point where to hit in order to minimize

reaction forces was not clearly defined. The solution can be found by angular momentum

equilibrium [100], although correct, it is not intuitive. But, in the second case, when

the equivalent system composed by only point masses is considered, the point where

to hit becomes more obvious. Everybody will agree that working with point masses is

far simpler than working with rigid bodies. From this analysis arise the question: Is

it possible to use the center of percussion instead of the center of mass to simplify the

system?. For a rigid body this question is clearly true, but in a more complex situation it

needs a little more work to be answered, and it will developed in the following sections.

3.1.2 What is missing?

If only one rigid body is considered, its equations of motion are quite simple. Thus, it

is possible to establish comparison using different simplifications in order to provide an

objective measure of what is missing when doing such operations. Consider the rigid

body in Figure 3.3(a), the body is pivoted around its base.

Now, consider the model in Figure 3.3(b). This is equivalent to what is normally

done when dealing with complex kinematic chains such as a biped robot: The system is

assumed to be concentrated at the center of mass. The value and location of the point

mass are equal to the total mass of the original system, and there the similarities are

finished. The angular momentum around the pivot of the simplified system is written

as:

LCM = rCM ×mvCM (3.7)

Where LCM is the angular momentum, rCM is the position vector of the point mass,

m is the mass of the original system and vCM is the velocity vector of the point mass.

Remember that angular velocity is defined by ωCM = (rCM × vCM )/ |rCM |2, replacing
this quantity in equation 3.7 leads to:

1Remember that the system is pivoted around m1.
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Figure 3.3: Comparison of different simplifications of a rigid body. (a) the original
model, (b) a model using the center of mass approach and (c) a model using the
center of percussion approach.

LCM = m |rCM |2ω (3.8)

LCM = mr2CMω (3.9)

Here, rCM is the norm of rCM . Next, the same analysis will be performed to the

system shown in Figure 3.3(c). Analogously, the angular momentum is written as:

LCoP = (rCM + rCoP )×m2vCoP (3.10)

LCoP = m2(rCM + rCoP )2ω (3.11)

from section 3.1.1 the value m2 and rCoP are equal to:

~ ....... . 
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m2 = mrCM
rCM + rCoP

(3.12)

rCoP = I

mrCM
(3.13)

replacing equations 3.12 and 3.13 into equation 3.11:

LCoP = Iω +mr2CMω (3.14)

Now compare equations 3.9 and 3.14. The conclusion is that equation 3.14 has an

additional term representing the rotation around the center of mass. In the first case

the system was assumed to be composed by only one point mass, therefore no such a

rotation could be modeled. In the second case, despite the fact of still being a system

with only one moving mass1 it is able to take into account the effects of the moment

of inertia. Actually, equation 3.14 represents the exact dynamics of the original system,

it is quite remarkable how a point mass with a smaller value, but located farther from

the pivot can gather all the original dynamics of the rigid body. In the next section this

concept will be extended to a kinematic chain.

3.1.3 Center of percussion of a system of particles

Section 3.1.1 depicts how to obtain the minimum number of point masses at which a rigid

body can be reduced. The same methodology can be applied to a system of particles.

This can be done by selecting proper reference frames when finding the couple of point

masses. The result is a system of particles as depicted in Figure 3.4, here a system of

particles equivalent to the kinematic chain drawn in dotted lines is illustrated. Applying

the equations of motion the ith particle produces the following equations:

Fi + fi = miai (3.15)

where Fi is the resultant external force acting over the ith particle, fi represents the
internal force, mi is the ith mass and ai is the corresponding acceleration. Adding the

equations of each particle:

∑
Fi +

∑
fi =

∑
miai (3.16)

1Although the system is composed by two point masses, only one of them is moving. The other mass
is located at the pivot.
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Figure 3.4: Kinematical chain represented by a system of particles. The figure shows
a kinematic chain represented by an arbitrary number of particles.

The summation of the internal forces will equal zero, since internal forces between

any two particles occur in equal but opposite pairs. Consequently, only the external

forces are considered. Equation 3.16 is reduced to:

∑
Fi =

∑
miai (3.17)

In Figure 3.4 rG indicates the center of mass of the system of particles. Remember

that the definition of the center of mass is mrG =
∑
miri. Differentiating this equation

twice with respect to time and assuming that the mass change in the system is zero,

yields:

maG =
∑
miai (3.18)

replacing this result into equation 3.17:

∑
Fi = maG (3.19)

From Section 3.1 a dynamically equivalent system must satisfy1:

mrG = mara +mCP rCP (3.20)

1The subscripts 1 and 2 of Section 3.1 have been replaced by a and CP to avoid misunderstandings.
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Also remember that one reference is selected arbitrarily in order to calculate the other

point that becomes the center of percussion. Fixing ma at the origin of coordinates and

differentiating equation 3.20 twice with respect to time, the result is:

maG = m̈CP rCP + 2ṁCPvCP +mCPaCP (3.21)

If the derivatives of ṁCP are assumed to be small, and therefore not considered,

equation 3.21 is replaced into equation 3.19 to obtain:

∑
Fi ≈ mCPaCP (3.22)

Equation 3.22 states that a system of particles can be represented by a single point

mass. What is not represented in the equation are the restrictions applied to that mass in

order to faithfully represent the original system, in fact the restrictions are what defines

the topology of the system.

As final words it should be noticed that the moment of inertia of the system of

particles equals the total moment of inertia of the kinematic chain. This is consequence

of how the point masses are found, they are required to maintain equality with the

second moment of mass as defined in equation 3.3. The previous demonstration pretends

to explain how a system can be reduced to a system of point masses, to complete the

explanation in the next section the methodology will be applied to a mechanism.

Center of percussion of a kinematic chain: An application

When a rigid body is replaced by its equivalent two point mass system, we assume that

all the interactions with other dynamic systems will be the same as if the original rigid

body would be used. In fact this is quite easy to demonstrate and it was done partially

in section 3.1.2, this is concluded after comparing the equation of motion of the original

system and the equivalent one. In the case of a kinematic chain is hard to compare

them. The problem arises when the equivalence is found, it happens that the topology

of both systems is too different to make a direct comparison. To avoid this problem,

the comparison will be done with the reaction forces produced by both systems. In fact

the reaction forces could be considered as a set of generalized forces describing a system,

when suitable generalized coordinates are considered.

Consider the mechanism in Figure 3.5(a), the only force acting over the mechanism is

the force of gravity. The system is considered frictionless and the bars have distributed

mass. In Figure 3.5(b) the equivalent system is shown, it is composed by two point
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Figure 3.5: Center of percussion of a mechanism. (a) real mechanism composed by
thin bars, (b) idealized equivalent mechanism.

masses calculated out of the original system drawn in gray. One of the point masses is

fixed at the pivot of the mechanism, and the other is located at the center of percussion.

They are calculated with the techniques already discussed in this chapter with some

modifications.

The center of percussion of a rigid body is defined in equation 3.6, here the inertia of

the body and the center of mass vector is required. In the case of a kinematic chain the

same quantities are required, and the same formula is applied, the difference is that the

center of percussion is not constant and it is configuration dependent. This is because

all the quantities: Moment of inertia, mass, and center of mass vector are considered for

the whole mechanism, and except for the mass they need to be calculated according to

the configuration of the system.
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Figure 3.6: Free body diagram of the equivalent mechanism. The original mecha-
nism is shown in gray to illustrate where the reaction forces are applied.

The point mass in Figure 3.5(b) is restricted to move according to the location of

the center of percussion of the original chain, depicted in Figure 3.5(a), the point mass

moves according to the parametric path described in the Appendix B.2. The equations

of the path express the position of the center of percussion of the mechanism using the

angle β shown in Figure 3.6 as independent variable.

Once the point mass is restricted the reaction forces can be calculated, using the free

body diagram of Figure 3.6 the forces are:

Fx0 = −2mbarl(β̇2 cosβ + β̈ sin β) (3.23)

Fy0 = mbarg −mbarlβ̈2 sin β +mbarlβ̈
(

cosβ − 2
3 cosβ

)
(3.24)

Fy3 = mbarg + 2mbarlβ̈
3 cosβ

(3.25)

In Appendix B the details of the calculation of the reaction forces for both systems

are exposed. Those forces are exactly the same for both mechanisms, therefore we can

conclude that both systems are dynamically equivalent, and that a kinematic chain can

be expressed with a point mass restricted to the center of percussion of the original

system.

It should be noticed that in this application the result is exact, this happens because

the value of me is not dependent of β as calculated in Appendix B, therefore equation

3.22 becomes exact. Although this is not the common situation, when small movements

of the system are considered the results are satisfactory as experienced at the end of this

thesis.



42 3 Theoretical Framework and Methods

3.2 Object oriented modeling

Throughout this thesis, simulation will be extensively used. In order to provide good

simulation results object oriented modeling techniques will be used. This allows faithful

reproduction of the original system with low effort. Besides scalability is also possible

while reusing most of the model. The idea is to provide a tool that can produce under-

standable results as close as possible to the reality. General purpose simulation tools

have the drawback that they are based in ordinary differential equations, therefore their

causality is fixed. In object oriented modeling the causality is defined by the system,

plus more properties explained in detail in the following lines.

Object oriented modeling is a method in computer science to analyze a system as a

group of objects that interact between each other. The method is based in the following

concepts:

• Abstraction: Every object can be used without knowledge of its internal structure1.

• Encapsulation: All the knowledge of the model is encapsulated, and only the ele-

ments of its interface can be accessed from outside.

• Modularity : The objects can be described independently, the description of the

system the object belongs is not required. This helps re-usability of the models.

When a model is constructed following this method a hierarchical structure is gener-

ated. This structure has proved as an appropriate mean to cope with large-scale systems,

the independence of the objects stated in the three concepts previously mentioned fa-

cilitate error detection and maintenance of the model. Abstraction and encapsulation

also help when dealing with large systems, because the complexity is down to the object

itself.

The fact that the objects interact trough their interfaces introduces the graph theory

to analyze the systems, therefore the representation can be seen as networks, block

diagrams, bond graphs, etc. Actually bond graphs are a special case of object oriented

modeling [13].

Modularity means that objects can be replaced by others according to different re-

quirements. This characteristic is called polymorphism and happens when objects share

the same interface. Therefore they can be used in the same context and interchanged

without altering the rest of the system. Frequently, polymorphic objects belongs to the

1The objects require an interface, here parameters, inputs and outputs are defined.
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same superclass. Detailed explanation of the concepts exposed in this section can be

found in [11, 12].

3.2.1 Differential algebraic equations and computational
causality

As mentioned before, simulation is often performed by means of ordinary differential

equations. This is an obstacle to object oriented modeling because models cannot be

composed by objects and therefore modularity is compromised. Object oriented mod-

eling avoid this problem because the result is a differential algebraic equation without

fixed causality.

For a given system with its constitutive equation provided, there is a problem to

define which are the known and unknown variables1. Consider the electric resistance in

Figure 3.7, its causality is defined by the power source of the circuit. In Figure 3.7(a)

the voltage is provided as input and in Figure 3.7(b) the current is the input. From

this example we can conclude that the causality is defined by how the elements are

interconnected, therefore it is a global property of the system.

I V R= /

(a)

V IR=

(b)

Figure 3.7: Causality of a simple circuit. Depending on the power source the
causality of the this system changes.

When connecting objects of a model the result is a set of differential algebraic equa-

tions. To introduce these equations in an standard solver they can be converted into an

ordinary differential equation, once the conversion is done the causality is defined. Un-

fortunately the conversion is not trivial and special techniques are required to perform

1Usually, when dealing with simple systems this is not a problem.
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the conversion [101], this reduction involves a problem of index reduction of the system

and it is classified as follows:

• Problems of index 0 : When the causality has unique solution.

• Problems of index 1 : When the problem is non singular but it contains algebraic

loops1.

• Problems of higher index : There is no solution of the causality that keeps all the

variables that have derivatives as state variables.

Once the index reduction has been performed, the causality has been defined ac-

cording to the system’s structure. This is a big advantage when modeling a system

because the equations are introduced without requiring a defined causality. This is the

reason why object oriented modeling is often referred as non-causal modeling. Thanks

to this property it is possible to achieve the properties of abstraction, encapsulation and

modularity, mentioned in the beginning of this section.

3.2.2 Modelica

The main problem when selecting the appropriate tool to develop the present thesis

was to have a fully modular simulator that captures all the phenomena related with

this research, traditional simulation techniques lack of the advantages mentioned in

the previous section. Most of the simulation tools (ACSL, Simulink, etc.) force to

provide explicit description of the causality, as consequence part of the structure of the

physical process is missing when simulated. By the other hand Modelica® is free of these

limitations because the causality is automatically assigned according to the structure of

the model.

According to [10] the definition of Modelica® is:

Modelica is a language for modeling of physical systems, designed to sup-

port effective library development and model exchange. It is a modern lan-

guage built on non-causal modeling with mathematical equations and object-

oriented constructs to facilitate reuse of modeling knowledge.

One of the most important differences of Modelica® when comparing against tra-

ditional programming languages is how the sign “=” is used. Usually in traditional

1In this case the algebraic loops should be solved either numerically or by symbolic manipulation.
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programming languages “=” is used to denote assignation of a value to a variable, there-

fore equations have to be introduced explicitly. In Modelica® the sign “=” is used to

express equality, therefore equations can be introduced in the form of “<expression1>

= <expression1>”.

Modelica® allows fully object oriented modeling by providing special classes to de-

fine interfaces between objects and also power-port like connections [15]. This allows

straightforward mapping of other object oriented modeling techniques, like for example

bond graph theory [14].

Finally, Modelica® standard library provides a complete set of classes that fill the

requirements of the research presented in this thesis. The only drawback found was the

impossibility to simulate contact and mechanical locks, therefore simulating a walking

robot was not possible without adding or modifying some objects. In the following

sections those additions are explained.

3.2.3 Ground-foot interactions

The multibody library implemented in Modelica® does not support contact interaction

[80]. Although, a collision handling solution is reported in [79], it was not included in the

standard library version used in this work1. Besides, only viscous friction is implemented

in the tangential direction of the contact, this last is a major drawback because a walking

robot will always slip in order to balance tangential forces.

Impulse-based contact is one of the simplest ways of collision handling. The results

can be very realistic when very stiff surfaces are simulated. In exchange of the simplic-

ity of the method the problem of chattering appears [74]. This happens because this

method is based on reinitialization of the states of the colliding objects. Despite the

improvements of the technique, as for example the ones shown in [61], it was found not

suitable for the purposes of this work.

Gait in normal conditions requires continuous contact similar to the one found in

haptics. Implementations in Modelica® are reported in [29], and similar formulations

are also found in [52]. The solution adopted in the just mentioned publications is a soft

contact approach. In this thesis the following solution was implemented to calculate the

normal reactions between a point of the foot and the floor:

Fy = 1
1 + e5000y (e−ky − 1 + Fv) (3.26)

1The version 2.2 of Modelica is used in this thesis.
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where y is the position of the point, k is the stiffness of the interface foot-floor, Fy is

the normal reaction force and Fv is the friction force modeled with:

Fv =


−νẏ for ẏ < 0

0 for ẏ ≥ 0
0 otherwise

(3.27)

here ν is the damping constant of the interaction between the foot and the floor.

The term 1/1 + e5000y is used as a continuous form of the step function. The selection

was done to improve computational efficiency. According to equation 3.26 there will be

interpenetration between the floor and the foot when contact happens, therefore, when

the point in contact is moving away from the floor the damping should be zero, for this

reason equation 3.27 was formulated with conditional statements to avoid a sticky1 effect

when high values of ν are used.

The tangential forces are simulated assuming that there is not slippage between the

points in contact. In order to achieve this effect the point where the contact occurs is

registered in the vector x_td by the following code:

when frame_b.r_0[2]<0 then

x_td=frame_b.r_0;

end when;

frame_b.r_0 refers to the position of the contact point and frame_b.r_0[2] to its

vertical component. Once x_td has been set the tangential forces are calculated with

the following equation:

Fx =

k(x− xtd)− νẋ for y < 0,
0 otherwise

(3.28)

x is the horizontal position of the contact point, and k and ν are the stiffness and

damping constants respectively. The code implemented in Modelica® can be found in

Appendix C.3, other variants of the model using more traditional approaches are also

found in Appendix C.

1This is not the same of the sticky friction used to calculate tangential forces, tangential forces are
calculated assuming that slippage does not occurs. When high values of ν are used it could happen that
the viscous force is larger than the elastic force, in this case the contact point feels a sticky effect in the
normal direction.
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3.2.4 Joint simulation

Joints in human beings cannot rotate 360°, instead they have stops that vary in con-

struction according to each joint. During gait the knee lock plays an important role1,

for this reason some elements of the Modelica® standard library were modified.

Modelica® standard library provides a complete set of joints that allows most of

the constructions required in general problems of rigid body dynamics. The limitation

found during the development of this thesis was the impossibility to model knee locks,

therefore a modification of the rotational joint was implemented.

Similar to the model in Section 3.2.3 the stops are implemented avoiding event gen-

eration by using the logistic function as a mean to activate or deactivate the contact.

The lock is modeled as a reactive torque with the following equation:

τr1 = 1
1 + e−b(θ−θs)

(−kr(θ − θs) + τν1) (3.29)

τν1 =

 0 for θ̇ < 0
−θ̇ν otherwise

(3.30)

were θs is the position of the lock, kr and νr are the stiffness and damping respectively

and τν1 is the damping force of the lock. Similar to Section 3.2.3 τν1 is conditionally

activated to avoid sticky effects when high values of ν are used.

The implementation is done by using the modularity of Modelica®. The object

oriented characteristic allows to extend the original rotational joint, provided in the

standard library, and modify it by adding additional inputs and outputs. The details of

the implementation and the entire code of the joint is explained in Appendix D.2.

1In fact, passive walkers rely on this biological adaptation to work [69].





4
Center of percussion and gait

design of biped robots

In Section 3.1.1 the concept of the center of percussion was introduced and later, in the

same chapter, extended to a kinematic chain. One of the most important characteristics

of this point is that it is not unique, it depends on the reference used to calculated

it. In consequence, different references can be used depending on the necessities. Gait

generation requires a smart selection of such references, in order to calculate a center of

percussion that can be used for such task.

In this chapter a method to generate gait using the center of percussion is exposed,

also the references used to calculate the center of percussion of a simplified biped are

explained. The biped uses a flywheel as a body and point feet to simplify the calculation

of the center of pressure. The flywheel body is used to dismiss the orientation thereof,

and therefore avoid the problem of an under-actuated system. Besides it allows other

dynamic equivalences to exert torque against the floor. The work developed in this

chapter can be found in [3].

4.1 Finding the equivalent inverted pendulum of

a biped robot

The following analysis has been developed assuming the floor is flat and even. This is

required because under these conditions zero moment point has the same location of the

center of pressure [90]. In this context, center of pressure refers to the distance-weighted

average location of the individual pressures on the foot. More details are described in

[84]. However, in simple terms, the center of pressure is the point where the distributed

force on the sole of the foot can be replaced by a point force of the same magnitude.
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Figure 4.1: Biped with its equivalent inverted pendulum; l is the distance from the
center of pressure to the center of percussion, r is the distance from the pivot to the
center of mass CM . Notice that the position of the pivot and the center of pressure
are the same. Also remember that the pendulum is composed by two point masses,
the other mass is located at the center of pressure and it is not drawn in this figure.

Figure 4.1 shows a biped with its equivalent simple pendulum. The pendulum has

length l and a point mass me, which is aligned with the line formed by the center of

pressure and the center of mass (CM ). me is calculated to maintain the equivalence of

mass and inertial properties between the pendulum and the whole biped, just as shown

in equation 3.5. Rewriting the equation with the parameters of Figure 4.1:

me = mrobotr
l

(4.1)

The distance l corresponds to the location of me, and also to the center of percussion

as explained in section 3.1.1. As was mentioned before, this point is pivot dependent; it

varies according to the position of the selected center of oscillation. Its use in walking

robots results from the fact that the center of percussion is the length of the equivalent

simple pendulum, the one having the same period as the original system. The center

of percussion can be calculated using the moment of inertia IZMP around the ZMP,

the mass mrobot of the system, and the distance r from the pivot to the center of mass;

repeating equation 3.6 with robot parameters:

l = Irobot +mrobotr
2

rmrobot
(4.2)
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The equivalent pendulum of the robot is composed by two point masses, but in Figure

4.1 only one is depicted 1.This approximation is possible if the system rotates around the

location of the second mass. Therefore, in order to make equation 4.2 valid, the center

of pressure should be in a fixed position during the stance phase. Imagining the biped of

Figure 4.1 hung upside down from its center of pressure, the period of oscillation of this

system is the same as the simple pendulum with length l, according to the definition of

center of percussion. Then the equation of motion of the biped at this exact instant can

be expressed as:

mel
2θ̈ +meg sin θ = 0 (4.3)

Equation 4.3 does not describe the biped in Figure 4.1. In order to do so, two terms

are included, the torque τ due to the actuation of the motors, and the torque τd due to

the dynamic effects of the moving links. The resulting equation is:

mel
2θ̈ +megl sin θ + τ + τd = 0 (4.4)

τ is the input control of the system. Although it seems difficult to apply torque to

this point, the fact is that any torque applied to the robot is reflected in its center of

percussion. To illustrate this fact, Figure 4.2 shows the dynamic equivalence between

an inverted pendulum with torque applied to its pivot, and an inverted pendulum with

a free pivot but with a flywheel instead. The details of this deduction can be found in

[84].

1The mass that is not drawn corresponds to m1 in section 3.1.1.
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Figure 4.2: (a) Inverted pendulum (b) Inverted pendulum with a flywheel. Both
models have the same dynamics.

4.2 Description of the model

The equations of the previous section can be applied to any biped, but at this point

several simplifications will be made. The model can be seen in Figure 4.3, where the

body has been replaced by a flywheel. It then becomes a source of torque by changing its

angular momentum in such a way that the body orientation is not a variable to control.

Each leg is connected independently but concentrically to the flywheel, providing the

model with a bisecting hip. Knees have been added to allow correct foot clearance,

providing two degrees of freedom to each leg (hip and knee), so the whole model has a

total of four degrees of freedom of movement.

The feet are modeled as one contact point, allowing an exact location of the center

of pressure when the robot is being supported by one foot. The location of this point

on a foot with distributed contact (for example, a planar one) is easily computed, but

for the sake of simplicity and for transparency of the algorithms, the one point solution

was chosen. Besides point feet fix the position of the center of pressure as required in

section 4.1.

Ankle torques contribute to the equilibrium of a biped [19], but ankles are fragile

elements. Changing the equilibrium strategy will contribute to relief the stress in this

articulation. Point feet cannot exert torque directly onto the floor, but instead they rely

heavily on the dynamic equivalence shown in Figure 4.2. This is coherent with the fact
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Figure 4.3: Flywheel biped. Each motor of the legs can apply torque to the flywheel
independently. The knees have been added to perform foot clearance.

that the human body has its most powerful muscles in the upper part of the legs. In

fact, dance and creative movement instructors teach their pupils how to balance with

their hips and not with their ankles.
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Figure 4.4: Angles of the flywheel biped: θ angle between legs, α angle of the
knee joint, γ angle between the stance leg and the normal vector of the floor. τh is
the torque between the stance leg and the flywheel, and τf then one between the
swinging leg and the flywheel.

Figure 4.4 shows variables and control inputs. γ is the angle between the shin and

the normal vector to the floor. θ is the angle between legs and is measured from the
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stance leg, which means that its sign changes after each step. α is the angle of the knee

and is different from zero only when the leg is swinging for foot clearance.

τf , τh and τk are the control inputs. τf is the torque necessary to actuate the swinging

leg, while τh is the input control for body attitude and is produced by the stance leg

over the flywheel. Just as with the angles, their definition depends on which leg is the

stance one at that time. Finally τk is the knee actuation.

4.3 Gait generation

Gait can be divided into two stages. The first one is when only one leg is in contact

with the floor, and the other is when the robot is in double stance phase. However,

several restrictions will be applied to produce gait in order to simplify double stance

phase. The first restriction is that the stance leg has to be in a straight position all the

time. Consequently, the swinging leg will be straight before touching the floor, and then

become the new stance leg. That will put the robot in the position shown in Figure 4.5,

making the double stance phase take place within in an infinitesimal space of time. This

situation is similar to the synthetic wheel described in [69]. Another advantage of this

approach is that only one algorithm is required, the one for the single stance phase.

l

l

le
g

stride

q
s

Figure 4.5: Some parameters of the gait: lleg is the length of the leg, θs is the angle
of the legs at the double stance phase, and lstride is the length of the stride. The
robot is in the double stance position.
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This algorithm will be divided into two tasks: One to control body attitude and

another for the swinging leg. The idea is to compensate the major sources of nonlinear-

ities in order to apply linear controllers for both cases. A state machine switches the

controller when the swinging leg becomes the new stance leg.

4.3.1 Gait parameters

Walking is not a regular task. In fact, complex limit cycles are described in the study

of passive dynamics. However, despite its complexity, the periodicity quality makes it

susceptible to parameterizing, thereby simplifying the description of the gait.

Figure 4.5 shows the robot during double stance phase. This position is repeated

at the beginning of every cycle. Thus, the angle θs defines aperture between the legs

before the double stance phase. This can define the stride length with simple trigonom-

etry. The period ts of each step is also of interest. In combination with θs the gait is

completely described for regular terrain. Because the double stance phase is assumed to

be infinitesimal, then ts accounts for the total time of a single step. With this in mind,

more intuitive quantities can be estimated such as the average walking velocity.

vavg = lstride
ts

(4.5)

4.3.2 Swinging leg control

In order to generate gait correctly, the robot is supported by one leg, while the other

leg reaches its position to become the new stance leg. During this time the swinging leg

performs two tasks: The first is to position the thigh in front of the body, i.e. to reach

angle θs shown in Figure 4.5; the second is to bend the knee to avoid foot scuffing.

The swinging leg has to reach its position in a time less than or equal to the period

ts of the gait. To ensure that the leg is ready to support the robot a shorter time is

chosen. A fixed fraction of the period is defined for the time required to swing the leg:

tf = cts (4.6)

where 0 ≤ c ≤ 1 is a constant selected to leave enough safety time gap. If the leg

gets hung at a fixed point it will behave like a pendulum. Because it is actuated, it is

possible to design a PD controller once the appropriate objectives have been selected.

The control law for this controller is:
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τf = kp(θ − θs) + kdθ̇ −mleg |r⃗leg × g⃗| (4.7)
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Figure 4.6: Swinging leg. τf is the torque at the hip, τk is the torque at the knee,
and rleg is the distance from the hip to the CM.

The first and second terms of equation 4.7 are the proportional and derivative part of

the controller. The third term is a gravity compensation term to get rid of nonlinearities

introduced by the large angle between the legs. To avoid foot scuffing the knee needs to

be bent just at a small angle, and therefore the dynamic effects of knee movements are

neglected.

kp and kd are selected to produce critical damped movement on the leg. Thus the

solution for the equation of movement is θ(t) = (A+Bt)e−ω0t; ω0 is the natural frequency

of the system when kd is equal to zero. The inverse of ω0 is the time constant τ of the

system, an important quantity to measure the stabilization of linear systems. A common

criterion is to use 7 times τ as the stabilization time [78], thus this is the time required

to swing the leg:

tf = 7τ (4.8)

tf = 7
ω0

(4.9)

ω0 is defined as:

ω0 =
√
kp
Ileg

(4.10)
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Where Ileg is the moment of inertia of the leg around the hip. Equations 4.9 and

4.10 are combined to find kp:

kp = Ileg
( 7
cts

)2
(4.11)

Now kd can be defined in terms of kp and the damping ratio ζ. The last one is defined

as:

ζ = kd
2
√
kpIleg

(4.12)

As was mentioned previously in this section, the system is designed to have critical

damping, which is interpreted as ζ having a value of 1. From equation 4.12, kd is

calculated:

kd = 2
√
kpIleg (4.13)

Because knees were added to prevent foot scuffing, their control is carried out by

coupling the movements with angle γ. The equation can then be written:

τk = kkp(α− f(γ)) + kkdα̇−mshin |r⃗shin × g⃗|

where kkp is a stiffness value, and kkd is a viscous friction term. f(·) bends the knee

most of the time, and then blocks it near the end of the swinging of the leg. Many

functions satisfy these conditions. The function chosen was Axe−bx where A and b are

constants conveniently selected for the system. Better f(·) can be designed considering

the whole kinematics of the robot. A good criterion could be constant foot clearance in

a region of interest, however this is beyond the scope of the analysis developed in this

chapter, and the selected function worked fine in the simulations.

Equation 4.7 is valid if the knee is blocked; because the movement of the shin is

small, their dynamic effects have not been considered. However, the actuation of the

knee is an easy term to compensate. Therefore, equation 4.7 is modified as follows:

τf = kp(θ − θs) + kdθ̇ −mleg |r⃗leg × g⃗| − τk (4.14)

4.3.3 Stance leg control

The swinging leg was controlled using an adaptive PD controller. The values of the

proportional and derivative gain are recalculated in real time according to the changes
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in mass and inertia properties. These changes are produced by the reconfiguration of

the leg when swinging, because of knee bending. The actuation to control the swinging

leg is applied directly to the hip, which is the center of the arc, to measure the controlled

variable θ.

The stance leg is the one responsible for body attitude, i.e the angle γ between the

stance leg and the floor, as described by Figure 4.4. However, direct actuation on the

support point is not possible. Even for robots with extended feet this is a major problem

because the torque required to control the body only with the ankle joint, is too large.

That is the reason for the dynamic equivalence mentioned in Section 4.1 and illustrated

in Figure 4.2.

The stance leg only applies torque over the flywheel and this torque is reflected on

the support point, also defined as the center of pressure, as an opposite reaction. The

objective is to reach the double stance phase; as shown in Figure 4.5, in this position γ

has a value of θs/2.
Controlling body attitude is quite similar to controlling the equivalent inverted pen-

dulum of the system, i.e using equation 4.4. But some changes are necessary. First, the

variable to measure is not the angle of the equivalent pendulum, but angle γ, and only

reactions τf and τk, due to the movement of the swinging leg, are considered. Thus, the

torque at the hip joint applied by the stance leg is:

τh = kpo(γ − θs/2) + kdoγ̇ −mrobot |r⃗robot × g⃗| − τf − τk (4.15)

The equation of motion of the system according to equation 4.4 is rewritten to match

the parameters of the robot. mel
2 is the inertia of the robot Irobot with respect to the

center of pressure, megl sin θ is the torque of the gravitational force applied to the center

of mass, τ is the summation of joint torques τh, τf and τk, τd are the torques produced

by centrifugal and Coriolis accelerations, and θ is replaced by γ. The terms kpo and

kdo are the gains of the controller. After applying all the changes the expression is as

follows:

Irobotγ̈ +mrobot |r⃗robot × g⃗|+ τh + τf + τk + τd = 0 (4.16)

In order to find the equations of movement of the system, equation 4.15 is replaced

in equation 4.16. The gravitational term is cancelled, and only τd remains. The final

equation is:
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Irobotγ̈ +mrobot |r⃗robot × g⃗|+ kpo(γ − θs/2) + kdoγ̇ −m |r⃗robot × g⃗|+ τd = 0 (4.17)

Analyzing this last expression we can conclude that except for τd, this equation

describes a damped harmonic oscillator. If the term τd is small enough to be neglected,

a similar method to the one used for the swinging leg controller is used to calculate the

gains kpo and kdo. Analogous to equation 4.11, but with the difference that the criteria

is taken based on the whole period of the walking cycle ts instead of the fraction cts, kpo

is expressed as:

kpo = Irobot
( 7
ts

)2
(4.18)

In the same way kd is calculated, and its expression is:

kdo = 2
√
kpoIrobot (4.19)

4.3.4 Putting it all together

As described previously, the walking algorithm requires only one controller for the single

stance phase because the double stance happens in an infinitesimal time period. Control

was divided into two tasks: one for body attitude and another to swing the leg. The

swinging leg was set up to perform its task, in a shorter time than that required for the

stance leg to reach its position. The final position of the stance leg, just before becoming

the swinging one, is such that the robot has to end up as shown in Figure 4.4, i.e. the

angle γ reaches θs/2.
In order to walk, once the swinging leg is in front of the robot, it becomes the new

stance leg, and the former stance leg starts to swing. To do so, the controllers have to

switch in order to perform the required task according to the situation. Then, a state

machine is used. When the swinging leg touches down on the floor, the controllers are

switched, and the cycle repeats itself to produce gait. There is significant amount of

work on these systems and details about such machines can be found in [48] and [87].



60 4 Center of percussion and gait design of biped robots

4.4 Simulation results

The algorithms were tested with Modelica® using Dymola® implementation. Their

elements are object oriented. Hence, highly detailed models can be made with minor

assumptions. Implementation of such models is done in a bond graph fashion, and new

models or extensions thereof can be made using Modelica® language.

The models are made mostly with the rigid body dynamics library developed in [80].

This library is not designed to simulate walking robots, but new elements were created

to do so. In addition, the actuated joints have limited usability for the purposes of

this article, and thus, modifications of these elements were developed. The details of

the programming of the model are not provided here, but they are not necessary for

interpretation of the data.

The chosen mass of the different parts was 1kg, and the length of the shin and thigh

were 0.35m and 0.37m respectively, the last selection was approximated to a human leg

using the data provided in [105]. The mass of the shin and thigh are assumed as a point

mass located at the center of each member. The flywheel has an inertia of 0.01kg.m2.

Table 4.1 shows this information.

Table 4.1: Parameters of the robot used in the simulation.

Mass of each part 1.00 kg

Inertia of the flywheel 0.01 kg.m2

Length of the shin 0.35 m

Length of the thigh 0.37 m

Total mass of the robot 5.00 kg

The multibody dynamics library cannot handle contact. In order to simulate linkages

or similar situations, an anchor point should be defined first. This is not the case

for walking robots. They rely on the interaction between feet and floor because the

contact point changes in every step. To solve this problem a new element was created.

This element simulates point contact using a damped mass-spring model. It works by

determining the coordinates xtd and ztd for the contact point when the y coordinate goes

below 0. Then tangential and normal forces are calculated. This can be written as:

fry =

 if yft ≤ 0 then kryft + brẏft
else 0

(4.20)

For the tangential reaction force:
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frx =

 if yft ≤ 0 then kr(xft − xtd) + brẋft
else 0

(4.21)

In other words, what this model of contact does is determine the plane y = 0 as

the surface of the floor, and then it calculates the reactions with an elastic model with

damping. ztd is not described here because the simulation is restricted to the plane. The

knee lock is simulated in a similar way. A reactive torque is triggered when the angle of

the knee goes below a certain value:

τlock =

 if α ≤ 0 then kkrα+ bkrα̇
else 0

(4.22)

This approach of elastic contact solves the problem of chattering, commonly found

when impact-based contact models are implemented. Furthermore, it provides a softer

and more realistic behavior.

The walking parameters were chosen as θs=0.3rad and tf=1.5s. The walking al-

gorithm was designed to have critical damping, and works with a state machine. The

state machine makes the controllers work as an on-off system. It is therefore expected to

behave as these controllers. Figure 4.7 shows the plot of angle θ, and shows its behavior,

which is similar to the differential gap found in on-off systems.

Figure 4.7: Plot of the hip joint angle. θ follows the assigned value of 0.3rad quite
closely, although the period of 1.5s is less precise.
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Analyzing the walking parameters, it can be found that angle θs is followed with

remarkable precision. The period ts has a discrepancy showing an average of 1.09s. This

discrepancy is the consequence of non-modeled phenomena, principally the dynamic

effects due to the swinging leg. Variation of gait parameters showed similar results, i.e.

it closely followed θs with an appreciable variation of ts. Carrying out a deeper analysis,

the swinging leg controller which is less prone to dynamic perturbations, is responsible

for the value of θs is. However, ts is regulated by the stance leg controller, and withstands

the dynamic effects of the whole robot.

Knee impacts due to locking of the knees cause no visible deviation of the expected

performance, as can be observed in Figure 4.8. The controllers act as variable springs as

can be seen in equations 4.7 and 4.11; then they can naturally reject perturbations. Other

researchers have experimented with springs to obtain a more robust gait as for example

[48, 84]. They have softened and improved the original McGeer models by adding springs

and elastic actuation, but the adaptive nature of the controllers developed in this section

provides a better disturbance rejection than those developed in previous works.

Figure 4.8: Plot of the angles of the knees plus θ, after the first step lock impacts
cause no effects on the system.
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The plot of angle α also shows a smooth behavior. Figure 4.9 shows this plot. The

flat part at zero degrees is when the leg is swinging. Once it makes contact, it goes up

to approximately 0.15rad, which is the value of θs/2, and the lift-off occurs at about

the same angle, but with a negative value. This plot shows how precisely the stance

leg controller reaches the commanded angle θs/2, as described by equation 4.15. The

perturbation due to non modeled dynamics only affects the period, but not the precision

of the set point of the controller.
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Figure 4.9: Plot of angle α for the right leg, the flat part of the plot means the leg
is swinging.

The design of the system has been made attempting to follow the natural dynamics of

a system, in which control is carried out around the torque of each joint. This produces

a very natural and smooth gait, with a highly anthropomorphic appearance. Figure 4.10

is a stroboscopic picture of the animation. Another observation is that there are jerks

at the beginning of each step. These jerks are small and are not visible in the plots, and

were only observed in videos of the simulations. This can be explained by the fact that

the double stance phase is almost a singularity so that the inverted pendulum changes its

center of rotation (i.e ZMP) almost instantaneously. This also accounts for the variation

of the simulated ts. For a better appreciation of the foregoing a video can be found in

http://maqlab.uc3m.es/proyectos/pasibot/flywheelbiped.avi.
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Figure 4.10: Stroboscopic picture of the animated simulation.

4.5 Conclusions of the chapter

In this chapter, a linearization of a bipedal system is developed. The tools to do so

are taken from among the most popular ones such as the ZMP or the linear inverted

pendulum model. The novelty is the introduction of the center of percussion of the robot

in order to find the equivalent inverted pendulum of the system. With this information,

the system is rewritten as shown in equation 4.16. With the linear model, adaptive

PD controllers were designed. To prove the validity of the algorithms, the system was

simulated using Dymola®.

Gait is characterized by two parameters: ts that is used as the period of the walking

cycle; and the length of the stride, defined indirectly with θs for even terrains as shown in

Figure 4.5. Simulations provided good results, as shown in Figures 4.7, 4.8 and 4.9. The

parameter θs was closely followed by the system, and the period ts had deviations. The

deviations of ts were produced by the dynamics of the links not modeled in the control

laws, described in equations 4.14 and 4.15, and the jerks observed in the animations.

Only gravitational compensation was included in these equations. Given these results,

including the dynamic effects in future controllers, is a priority.

Optimization of the gait has not been carried out due to the jerks that were observed

in the animations. The simplification of shortening the double stance phase to negligible

time takes its toll by introducing undesirable perturbations. Gait optimization requires

a better double stance solution. Despite these problems, equations 4.16, 4.18 and 4.19

show the connection between the mass properties of the robot and its gait parameters.
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4.5.1 Some words about stability

The stability of the controller can be evaluated with equation 4.4, because it is a linear

system its poles can be always placed with a negative real part. Although in simulations

the controller was stable, there are several issues that should be taken into account for

a practical implementation.

Unfortunately in a real implementation the controller is expected to work in a narrow

band, this is basically due to saturation problems. Because the control action relies on

the acceleration of the flywheel, its action will disappear when the flywheel has reached

its maximum velocity. In order to achieve a successful implementation of the controller

in a real system, the gait parameters have to be carefully selected to avoid the mentioned

saturation.

Other issues to be taken into account are related with friction. Just as happen with

humans if one of the legs slips, the robot will fall. Because friction is not modeled in the

controller, the gait parameters that produce a successful gait are limited to those that

do not overcome the static friction of the system.

4.5.2 Mass distribution of the biped

Just as the classic inverted pendulum models, the pendulum obtained with the center

of percussion is sensible to configuration of the biped. This issue was solved in the

controller by fixing the natural frequency of the system (equation 4.18) and calculating

the necessary proportional gain kp according to the changes of I.

At first sight, the center of percussion method seems to share the same limitations

of the classic inverted pendulum. The advantage over the last one is that pendulums

modeled after the center of mass only consider the static properties of the system. When

constructing the equivalent pendulum in this article, two point masses were added, one

at the center of percussion and another one at the ZMP. The mass at the ZMP has not

been considered for the analysis because it remains static, just as explained in section

4.1. Because the pendulum is constructed with two masses, it shares the same moment

of inertia with the robot, therefore rotational dynamics of the system has been added to

the model.

Another characteristic of the model is that the magnitude of the equivalent mass of

the pendulum is configuration dependent. The time derivative of this equivalent mass

can provide information about the inertial forces acting over the biped, but a more

detailed study is required. The variation of the equivalent mass is interpreted as the
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variation of the inertia of the robot, giving more information to design better controllers

in the future.

4.6 Improvements of the technique

The methods proposed in this chapter need to prove its possibilities with robots having

true body and feet, also the energy optimization is a point of interest. Future develop-

ments are expected to cover these improvements as described in the following lines.

4.6.1 Adding a torso and feet

In this chapter the torso was replaced by a flywheel, but in order to extend this work to

other bipeds a true torso need to be added. Although the proposed control law cannot be

directly applied to such bipeds, it is possible to construct a pendulum using the center

of percussion. Because center of percussion based pendulums and the linear inverted

pendulums are quite similar, it will be of great interest to adapt control algorithms like

the one shown in [76].

Other important generalization is adding feet to the model. Again the control law

will need important changes, but just as before a pendulum constructed out of the center

of percussion can be obtained. But feet will introduce an interesting change: The fact

that the second equivalent mass needs to be introduced in the model. In section 4.1 a

coarse assumption was done by fixing the position of the ZMP. But variations of the

position of ZMP will change the position of the second mass, and therefore introducing

new dynamics to the system. Using both masses to model a biped introduce more

significance to ZMP displacement during gait and therefore more information to design

better controllers.

4.6.2 Energy optimization

Although energy efficiency was one of the motivations of this work, optimization was

not performed. It is expected that the developments proposed will behave energetically

acceptable by the fact that the gait is generated using the dynamics of the system

similarly to [84].

For example, a first attempt of optimization can be made by selecting the period

of the gait close to the average period of the equivalent inverted pendulum, during the

single stance phase. This should minimize the required actuation because gravity should
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do most of the work and motors will be actuated only for compensation. These are part

of future developments to exploit the center of percussion applied in bipedal walking.

In addition, mass distribution could be studied with the equivalent inverted pendu-

lum. The center of mass of the different parts could be designed to match a desired

natural frequency. Even springs could be added to relieve the load of actuators. These

springs could be arranged in parallel distribution, instead of a serial one similar to the

ones presented in [84]. Again, the springs would be selected based on the desired natural

frequency, or even the average of the kinetic energy of the system, where methods like

the one proposed in [31] could provide important information.

Another future development is to use different design criteria to set the gains of the

controllers. In this work, critical damping was used because of the simplicity of the

analytical solutions. But under-damped oscillations or even free oscillations seem to be

a better solution from the energetic point of view. The problem with them is that the

phase of the movements has to be carefully studied to avoid destabilization. However

their foreseeable advantages put them into the list of future improvements.

Finally, to simplify gait generation, straight leg during the whole stance phase was

required. This is not efficient because heel strike will dissipate part of the kinetic energy.

Therefore future control algorithms will take this into account to design better strategies

to avoid such problems.





5
Four point masses equivalent

model of a biped robot

In Chapter 2 different methods to simplify the complex topology of a biped robot was

exposed. The most common approach was to replace rigid bodies by point masses. The

simple analysis required when dealing with such simplifications is what it seems to inspire

most researchers to follow this path. But, the decisions to construct the equivalent point

mass system look arbitrary, due to the fact that no formal analysis is performed at the

time of selecting the values and positions of the point masses.

In this chapter a methodology to simplify a biped into 4 point masses is developed.

The central idea is the concept of dynamic equivalence developed in Chapter 3. Although

in Chapter 4 the same approach was used, the difference here is that a different reference

point is used, and as a result several centers of percussion are obtained. The system is

a four point mass system.

The equivalent system is used to compensate reaction torques produced by the rel-

ative movement between the links of the robot. Several experiments are conducted and

compared against a reference model, the reference model is constructed by replacing

several links by point masses located at their center of mass, in a similar way as done in

[26]. This comparison confirms the advantage of the center of percussion over the center

of mass. These compensation experiments lead to the decoupling of the dynamics using

information of the point masses of the equivalent system.

5.1 Modeling a biped with four point masses

In section 3.1 the conditions to find dynamic equivalence were determined. The result

was that the original system was replaced by two point masses, but the position of one

of them was dependent on the position of the other, concluding that one mass was the
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center of percussion with respect to the other and vice versa. Because there were more

unknowns than equations, one of the masses was fixed in a random position in order to

solve the set of equations. Considering this fact a system can be replaced by an infinite

number of equivalent systems according to the selected reference.

In Chapter 4 the equivalent model was done by selecting a better approximation

of the inverted pendulum model. Because the topology was smartly simplified, only

linear controllers were required. One important effect partially solved, was related to

the internal dynamics. Not all the reaction torques were compensated, and the leg was

modeled with its own center of percussion in order to find a swinging algorithm having

some criterion.

Another limitation of the inverted pendulum of Chapter 4 is that the selected refer-

ence is the center of pressure, therefore at least one foot should be all the time on the

floor, if that condition is broken it will cause a singularity. Considering this limitation

the model cannot be used to synthesize running gait, or similar gait where a flying phase

is required. Although the impossibility of the previous model of dealing with a flying

phase is an important issue, to have a system that resembles the dynamics of the original

biped in a more straightforward way is also desirable, and the main motivation of this

chapter.

5.1.1 Selection of a suitable reference

A biped robot can be divided in several group of links according to the function of those

groups. Following the common segmentations done in other publications [84, 26], where

the objective is to study gait, we can conclude that bipeds are often divided in three

parts: two legs and the trunk. The trunk includes the arms and the head1. By the other

hand, for the sake of simplicity it is desirable that the minimum amount of point masses

will represent the equivalent system.

Considering that the just mentioned groups intersect at the hip, and the hip is used as

a permanent reference when running, hopping, walking, etc.; we should expect that the

result is a system with several point masses. The hip is an excellent candidate because it

belongs to the biped, and its existence is not conditioned to the foot-ground interactions

like the center of pressure.

Now everything is ready to calculate the center of percussion of each group. Remem-

ber that we have decided to divide the biped into three groups, the equivalent system

of each group will be composed by two masses, therefore a set of six point masses is ob-

1This group is often called HAT, that stands for head, arms and trunk.
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Figure 5.1: Four mass equivalent system. The biped system is reduced to four point
masses. One mass in each center of percussion, and a combined mass at the hip.
The combined mass is obtained out of the three masses that share the position.

tained. But, the centers of percussion were calculated with the same reference, therefore

three masses share the same position and can be considered as one. To illustrate what

has been explained in this paragraph, a biped and its equivalent four point system is

shown in Figure 5.1.

The result is a four point mass system connected by massless links at the hip, notice

that the sign of approximately equal has been used. This is done because there are

effects produced by nonconservative forces, as for example the knee locks, that produce

negligible non modeled effects. Details about this variations will be discussed later in

this chapter.

5.1.2 Calculating the equivalent model

Once we have a suitable reference, it is possible to calculate the parameters of the

equivalent model. Because there are several groups with similar parameters the author

has selected the following notation for the sake of comprehensiveness. The point masses

will have a subscript and a superscript mxn, where the subindex x refers to the part it

belongs as it could be l1 or l2 for the legs, and b for the HAT group. By the other hand,

n can take the value of 1 or 2; 1 is used if the mass is at the reference point, in this

case it is the hip, and 2 is used when the mass is at the center of percussion. The scalar

distances have the following format rxb , where b could be CM for the center of mass and
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CP for the center of percussion. Finally the inertia and mass of each group is noted

as Ix and mx respectively, with the exception of the total mass and inertia where no

subscripts are used

r C
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Figure 5.2: Equivalent system of the HAT group. The equivalent system is drawn
on top of the HAT group. It is composed by two point masses and the reference is
the hip joint.

First, the equivalent system of the HAT group will be calculated. A diagram is shown

in Figure 5.2. Using the equations found in Chapter 3 the parameters of the equivalent

model of the HAT group are calculated as follows:

rbCP = Ib
mbr

b
CM

(5.1)

mb1 = mb
rbCM

rbCM + rbCP
(5.2)

mb2 = mb
rbCM

rbCM + rbCP
(5.3)

Following the same approach taken when calculating the equivalent model of the

HAT group, the leg shown in Figure 5.3 has the following parameters for its equivalent

model:

rl1CP = Il1
ml1r

l1
CM

(5.4)

ml11 = ml1
rl1CM

rl1CM + rl1CP
(5.5)

ml12 = ml1
rl1CM

rl1CM + rl1CP
(5.6)
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Figure 5.3: Equivalent system of the leg referred as l1. In a similar way as was done
previously the parameters of the equivalent system for the leg are shown.

Finally the equations of the equivalent system of the leg l2 as shown in Figure 5.4

are:

rl2CP = Il2
ml2r

l2
CM

(5.7)

ml21 = ml2
rl2CM

rl2CM + rl2CP
(5.8)

ml22 = ml2
rl2CM

rl2CM + rl2CP
(5.9)

Equations of legs l1 and l2 are quite similar, in fact only the subscripts change. At

first sight one could be driven to make the calculations regarding any of the legs, and

use the same results for the other. But it should be addressed that this will lead to false

results. The reason is that each leg has its own configuration during gait, therefore their

moment of inertia is not the same most of the time. Checking equations from 5.4 to 5.9

the conclusion is that all the quantities are dependent on the moment of inertia of the

system, therefore each leg will have its own equivalent model with different parameters.

Figure 5.5 shows the final model with all its parameters, all the quantities have been

analytically exposed except for mh. As was mentioned before, the models of each system

share the same reference at the hip; therefore mh is the combination of ml11 , m
l2
1 and

mb1. Finally, the last quantity of the model is:

mh = ml11 +ml21 +mb1 (5.10)
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Figure 5.4: Equivalent system of the leg referred as l2. Although the calculations
and therefore the parameters are equal to the case of leg l1, it has been redrawn to
emphasize that the quantities are not equal. The last happens because each leg has
its own configuration during the different gait stages.
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Figure 5.5: Schematic of the equivalent model with its parameters. In the figure
the parameters of the model are shown, mh is the combination of ml11 , ml21 and mb1.
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5.2 Some words about impedance control

Originally walking robots were developed using trajectory tracking and similar tech-

niques used to control manipulators. The major drawback was that the stiffness of the

controllers did not contribute in the equilibrium of the robot. Despite this limitation

the technique was refined and today impressive robots mostly Japanese [110] have been

developed using high budgets. But, in mid 80’s a different breed of robots also appeared,

these robots depend heavily on their natural dynamics [87, 84]; therefore, softer control

algorithms were required. Although the algorithms may vary according to the require-

ments, robots with dynamic gait generally use impedance control to calculate the joint

torques τ with the following law [5]:

τ = ĝ(q)− JT (q)[KP x̃ + KD ˙̃x] (5.11)

where ĝ(q) is the estimated gravitational torque, J(q) is the Jacobian, x̃ the dis-

placement vector, and ˙̃x is its derivative. Matrices KP and KD can be interpreted as

the desired apparent stiffness and damping of, for example, one of the legs. Notice that

equation 5.11 can be seen as the linear mapping between task space force and joint torque

vector, with gravity compensation. Finally, the displacement vector x̃ can be interpreted

as a measure of the error with respect to the desired value xd and the position of the

reference x used in the Jacobian, therefore x̃ := x− xd.
Equation 5.11 is the general form of a one degree of freedom PD controller, an

equivalent physical system would be a spring-damper-mass system. Let us imagine that

each leg is controlled by a similar controller, the main issue is that depending on the

stiffness of the controller, the legs can be more or less sensitive to external perturbations,

and such perturbations come as reactions torques of the relative movement of the links

of the robot itself. For example, moving one leg forward causes the stance leg to move

out of its equilibrium point.

The control law in equation 5.11 is also present in assistive robotics in the form of

hybrid controllers [44, 25]. Kuo [63] models human muscles as elastic elements, while

Pratt [84], Collins [20] and Daemen [23] use actuators with a spring connected in series

to reduce the stiffness of their systems1. With this in mind, the common element of the

previous examples is that all of them are thought to be used in human environments

where low stiffness it is always desirable to reduce security issues.

1This configuration has been named series elastic actuator by its inventor Jerry Pratt.
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Although the control law in equation 5.11 is stable, it is very sensible to external

perturbations. This characteristic will be exploited to validate the model proposed in

Section 5.1.2. The idea is to compensate the reaction torques only with the information

provided by the equivalent model. It should be noticed that the reaction torques can be

estimated by several methods, including solving the equations of motion described the

in Section 2.3.2. But, the objective is to provide simpler models to work with.

5.3 Fast swinging of one leg

Gait in steady state can be considered as dynamically balanced, internal dynamics have

been carefully tunned in order to generate locomotion. Usually, gait is generated at

relatively low speeds, therefore most dynamic effects including inertial forces can be

dismissed. Another way to dismiss these effects is to design robots with light links, this

solution can be normally found in passive walkers and similar machines [20, 69, 106].

But thinking in walking machines as more flexible and reliable mobile robots will lead

to heavier and faster designs, and the previously mentioned workarounds will no longer

be valid.

In this section experiments of a biped robot standing over one leg, while the other

is swung at a relative fast speed, are performed. The parameters and the speed of

the movements are selected to produce no negligible reaction torques. The performed

movement is like kicking a soccer ball, although no soccer ball is present. The experiment

is repeated using the same controller gains compensating the reaction torques with two

different techniques and comparing them against the uncompensated system.

5.3.1 Selection of the parameters

The parameters of other walking machines are difficult to find, although general param-

eters can be found, details about center of mass or moment of inertia of each link are

not usually available. Besides, the parameters of other walking robots are the product of

the wiser design available according to the selected mechanical components, though it is

not their objective to reproduce human dynamics. Albeit, nondimensionalization of the

equations will generalize the results, the presence of nonlinearities can restrict this tech-

nique. Despite this limitation the technique has been used to study robots [35, 24, 102]

and human beings [63].
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Table 5.1: Parameters of the robot calculated based on human standards.

Thigh Shin

Dimensionless
parameters

Robot
parameters

Dimensionless
parameters

Robot
Parameters

Mass 0.1 M 6.3 kg 0.0465 M 2.0925 kg
R. Gyration 0.323 S 0.1392 m 0.0302 S 0.1114 m
Inertia − 0.1222 kg ·m2 − 0.0260 kg ·m2

S. Length(S) 0.245 H 0.4312 m 0.246 H 0.3690m
rCM 0.567 S 0.2445 m 0.567 S 0.2092m

HAT group Foot

Dimensionless
parameters

Robot
parameters

Dimensionless
parameters

Robot
parameters

Mass 0.678 M 30.51 kg 0.0145 M 0.6525 kg
R. Gyration 0.496 S 0.2530 m 0.475 S 0.0278 m
Inertia − 1.9522 kg ·m2 − 0.0005 kg ·m2

S. Length(S) 0.34 H 0.51 m 0.039 H 0.0585m
rCM 0.626 S 0.3193 m 0.5 S 0.02925m
Foot length − − 0.152 H 0.228m
Note: The dimensionless parameter are used to calculate each robot parameter with M, H
and S constants. M and H are the mass and the height, 45kg and 1.5m respectively, and S
is the link segment length. Finally, rCM is the distal distance of the center of mass.

Taking advantage of the possibilities of simulation, in this work properties will be

selected closer to human standards in order to avoid possible errors produced by a bad

selection of parameters; therefore, they will be selected based on anthropometric data.

Plenty of sources, principally from the department of defense, are available; but, the

information provided in Winter [105] was preferred instead. The reason is that this

book has been used by the robotics community during several years. Based on the

information provided in the previously mentioned reference, the parameters shown in

Table 5.1 were defined, besides Figure 5.6 shows a graphic description of them. The

parameters provided in [105] are nondimensionalized1 in terms of the height and weight

1Nondimensionalization is used to describe the parameters in terms of measurable quantities of a
human being. In other words, it is used in the sense of parameterization, and it is not used to describe
dimensional analysis. Therefore, should not be confused with the scaling done by other authors to
generalize their results.
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Figure 5.6: Parameters of the model. Graphic description of the parameters shown
in Table 5.1. It should be noticed that the positions of centers of mass are distal
distances, except for HAT group that is proximal.

of the subject. The author selected a height of 1.50m and a weight of 45kg, these

parameters correspond to the height of other humanoid robots, and the weight matches

the weight of healthy colleagues with that height. Albeit, the selection is not based in

any scientific criterion, the requirement was to find some parameters that will describe

a real human being, and the assumption was enough in order to produce realistic mass

and geometric properties1.

5.3.2 “Kicking” experiments

Once the parameters have been selected, some experiments in order to evaluate the

precision of the equivalent model will be performed. In this section the robot will be

standing over one leg, while the other swings similar to a kicking action, as described

in Figure 5.7. Each joint will be controlled with an independent PD controller using a

position control strategy. Gravitational effects will be compensated in order to study only

the perturbations produced by the reaction torques. These torques will be compensated

using information from different models as explained in the following lines.

1The properties found with the selected parameters are considered to be realistic, because a healthy
human being having approximately the same weight and height can be easily found.
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Figure 5.7: Stroboscopic animation of the “kicking” experiment. This experiment
will compensate the torques produced by the inertia of the swinging leg. The objective
is to demonstrate how precise is the four point model proposed in this chapter.

The main idea is to use only the information of point masses to compensate the

reaction torques. Depending on how accurate those models are, the compensation will

be more or less successful. The compensation will be done by modeling each group

(legs and HAT group) by point masses, as shown in Figure 5.2, in one case the center

of percussion will be used1, the next experiment will be performed using the center of

mass2 and finally no compensation at all. The compensation takes into account only the

inertial forces produced by the point masses; therefore, a compensation torque τ ci with

opposite sign to the reaction torque produced by the acceleration of the point mass mj

will be generated at each joint with the following value:

τ ci = −
∑
j

mjrij × aij (5.12)

where τ ci is the compensation torque applied at the ith joint, mj is the point mass

of the group being compensated3, rij is the position vector from the ith joint to the jth

point mass, and aij is the acceleration of the jth point mass relative to the ith joint, in

other words i and j are never the same. The joint and the point mass should not belong

to the same group, because the point mass models the group itself. Figure 5.8 shows

1i.e., the black marks in Figure 5.2.
2i.e., the gray marks in Figure 5.2.
3The groups are the HAT group, and the swing leg.
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Figure 5.8: Compensation of the reaction torques. mj is the point mass that models
the group, it could refer either to the center of mass or to the center of percussion.

the meaning of equation 5.12 graphically. The compensation is done twice in each joint,

because it should compensate the movements of the HAT group, and the swinging leg.

5.3.3 Results of the “kicking” experiments

As it was mentioned before, the robot is controlled using PD controllers in each joint. The

controllers are set in a position control scheme, producing a steady state configuration

similar to the final position shown in Figure 5.7. The stance leg has a proportional

gain of 10N · m/rad and the derivative gain has a value of 3kg · m/s · rad, the gains

are the same for each joint controller of the stance leg. These gains were selected to

be sensible to external perturbations, therefore gravity compensation was required to

avoid large steady state errors. Besides, the sensibility is a desired quality to asses the

compensation techniques being evaluated in this chapter. The swinging leg has stiffer

gains at the knee and the ankle joint having 40N · m/rad and 20kg · m/s · rad for the

proportional and derivative gain respectively. The reason is, as mentioned in the Section

5.3.2, there is not internal compensation in the groups, and only the effects of external

groups are compensated in each joint1. Finally, the hip joint of the swinging leg has

high gains, the values are 80N ·m/rad and 10kg ·m/s · rad. Table 5.2 shows the gains

1i.e. compensation of the inertial forces of the point mass modeling the group considered external
from the point of view of each joint.
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of each controller. The high gain used on the hip joint of the swinging leg produces a

swing with a duration of approximately 1 second.

Table 5.2: Gains of the controllers used in the“kicking”experiments.

Stance leg Swinging leg

Proportional Derivative Proportional Derivative

gain gain gain gain

hip 10 3 80 10

knee 10 3 40 20

ankle 10 3 40 20

Figures 5.9, 5.10 and 5.11 show the results of the experiments of this section. There

are two graphics in each figure, one shows the angular position of each joint of the stance

leg and the other shows the angular position of the swinging leg. All the joints in the

stance leg are set to zero radians. Therefore the perturbations due to the swinging leg

are shown as a deviation from the zero position. Figure 5.9 depicts the experiments

with no compensation, as expected, all the joints of the stance leg were affected by the

swinging leg. The fact that all the joints of the stance leg are moving produce a non

linear behavior, and consequently the joint took a longer time to reach its steady state.

Figure 5.10 uses the center of mass of the swinging leg to compensate the inertia

effects. Using this approach one expects that only the linear momentum effects will be

compensated, therefore the graphs will show a reduction of the disturbances produced

by the swinging leg. In fact, Figure 5.10(a) shows a reduction of the amplitude of the

vertical scale of 50%. This is very encouraging toward the next experiment when the

center of percussion will be used. But, Figure 5.10(a) still shows non linearities, and

they seem even stronger than the ones depicted in Figure 5.9(b).

Finally, in Figure 5.11(a) there is a reduction of the perturbations approximately

of two orders of magnitude. This strong reduction of external effects gives as a result

that the swinging leg presents no deviations from its linear behavior as shown in Figure

5.11(b). Because the stance leg, successfully rejects the perturbations from the swinging

leg, its joints also reach their rest position much faster than the other cases. At this

point, we can conclude that the center of percussion successfully reflects most of the

dynamics involved in a complex system. But, in the next section a quantitative analysis

will be performed.
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Figure 5.9: Experiments using no compensated controllers. (a) Angular position of
the joints of the stance leg. (b) Angular position of the swinging leg. It can be seen
that the swinging leg acts as a perturbation, moving out from the rest position all
the joints. Also, the swinging leg does not behaves linearly, although it reaches its
steady state position after some time. The units of the horizontal axis are seconds.
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Figure 5.10: Experiments using center of mass compensation. (a) Angular position
of the joints of the stance leg. (b) Angular position of the swinging leg. This figure
shows that using the center of mass to compensate reaction torques does reduce the
perturbations produced by the swinging leg by approximately 50%. The swinging
leg still takes some time to reach its steady state position, and the nonlinearities are
clearly seen. The units of the horizontal axis are seconds.
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Figure 5.11: Experiments using center of percussion compensation. (a) Angular
position of the joints of the stance leg. (b)Angular position of the swinging leg. Using
the center of percussion to model the point masses attenuates the perturbations by
at least two orders of magnitude with respect to the non-compensated controllers,
also each joint reaches its steady state equilibrium almost immediately. The swinging
leg shows a remarkable linear behavior, reaching its steady state with no problems.
The units of the horizontal axis are seconds.
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5.4 Oscillation experiments

In Section 5.3.3 experiments rejecting perturbations produced by the swinging leg were

performed. The result was that the system modeled using the center of percussion was

far more stable than the system using the center of mass to model the system. The

results were analyzed in a qualitative way by comparing the amplitude of the perturba-

tions in each joint of the stance leg, and by looking for artifacts in the hip joint graph

of the swinging leg. But still remains the question how linear is the model, considering

that equation 5.12 shows only the effects of inertial forces, dismissing other accelera-

tions like centrifugal, or Coriolis ones. The strong attenuation shown in Figure 5.11(a)

provide information that the approximation using the center of percussion is quite close

to the reality, and that the effects not included can be dismissed without problems. To

prove these statements measurements of the natural frequency of the controllers will be

provided in this section.

The experiments take the robot in the configuration of Figure 5.13(b) and then, each

group (HAT group, stance leg and swinging leg) is excited at the same time by an step

function, producing undamped oscillations. The dynamics of each group is decoupled

thanks to the methods used in 5.3.2, more specifically the equation 5.12. After that, each

group behaves independently showing no coupling, and their controllers behave linearly.

5.4.1 Parameters used in the simulations

It is well known that the impulse response of a system determines the behavior to any

input, this is true to any linear time invariant system1. Therefore, if such a response

can be characterized, we can conclude if a system is linear or not. Also, in our case, it

will confirm that the compensation done using the center of percussion can decouple the

dynamics by letting each controller behave independently.

The experiments will be performed by measuring the period of the undamped con-

trollers. The gains are the ones shown in Table 5.2 except for the swinging leg propor-

tional gain, that is set to 80N·m/rad, and the derivative gains of the ankle of the stance

leg and the hip joints that are set to zero. The last is done because, as it was mentioned

before, we want to measure the undamped period. The parameters of the four point

masses equivalent model are gathered in Table 5.3 and explained in Figure 5.13(a).It

should be noticed that those values are configuration dependent, in Figure 5.13(b) the

1This concept is the basis to develop impulse response filters, those filters can be used to model
complex phenomena in different domains.
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Figure 5.12: Oscillation experiments. (a) Angle of ankle joint of the stance leg.
The period in this graph is approximately 6.032s.(b) Angle of the swinging leg. The
observed period is 1.94s. (c) Absolute angle of the HAT group. The period according
to this graph is 4.44s. The units of the horizontal axis are seconds.
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Table 5.3: Parameters of the equivalent model.

mass rj rk
(kg) (m) (m)

mhip 16.822 0.5197 −
mleg1 4.6033 0.5037 0.2328
mleg2 4.583 0.4540 −
mHAT 18.7393 0.5197 −

equilibrium angles of the controllers used in the experiments are shown. Besides, the

angles of the knee and ankle joints shown in the same picture plus the parameters of the

robot listed in Table 5.1 produce the values listed in Table 5.3.
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Figure 5.13: Parameters of the oscillation experiments. (a) Parameters of the
equivalent model.(b) Configuration of the robot used in the oscillation experiments.
It should be noticed that the angles of the knees and ankles plus the parameters of
the robot listed in Table 5.1 produce the values listed in Table 5.3.

5.4.2 Results of the oscillation experiments

It is well known that biped robots are systems with high levels of coupling, i.e. moving

any part of the robot will introduce perturbations and nonlinearities in the other joints.

The main conclusion of Section 5.3.2 is that compensating the reaction forces using

the center of percussion information could reduce such perturbations to very low levels.
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Therefore, a decoupling of the dynamics can be performed, and moving different groups

will not produce undesirable effects. By the other hand in Section 5.3.2 only one of

the groups was moving, that was the swinging leg. In this section all the groups are

moving, and the natural frequency of each group is calculated and compared against the

simulations of the whole model.

Figure 5.12 shows the undamped natural frequencies of each controller. The graphs

were obtained by giving starting values to the angles of the hip joints and the stance leg

ankle, different from the equilibrium in order to simulate a step to excite the system.

The gains, as it was mentioned in Section 5.4, for both hip joints and the ankle joint of

the stance leg have a value of 10N · m/rad for the proportional gain, and zero for the

derivative gain. The other values are not modified and taken from Table 5.2. At first

sight the graphs in Figure 5.12 are clearly the response of an undamped linear system,

except for 5.12(b) that has some damping but low enough to be dismissed1. But one

can conclude that no coupling is happening between the controllers. From those graphs

the periods of one cycle are taken and then compared against the theoretical values of

the equivalent four point masses model.

Now, we are ready to calculate the theoretical values of each controller. The HAT

group rotates around the hip joint, therefore its natural frequency:

ωHATn =
√
kp
IHAT

=
√

kp
mHAT r2j

(5.13)

ωHATn =
√

10
(18.793)(0.5197)2 = 1.4057 (5.14)

And the period is:

THAT = 2π
ωHATn

= 4.469s (5.15)

Because the swinging leg also swings around the hip joint it has similar equations,

then its natural frequency and period is:

1The damping ratio can be calculated from Figure 5.12(b), using δ = ln(x0/xn)/n and ζ =
1
/√

1 + (2π/δ)2, also called the logarithmic decrement method. The damping ratio is ζ=0.0012, there-

fore the natural frequency is approximately the damped natural frequency.
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ωleg2n =
√
kp

mleg2r
2
j

(5.16)

ωleg2n =
√

10
(4.583)(0.4540)2 = 3.2536 (5.17)

T leg2 = 2π
ωleg2n

= 1.9311s (5.18)

The ankle joint at the stance leg should compensate the mass at its center of per-

cussion called mleg1 and the point mass at the hip joint, this mass is composed by the

combination of the point masses of the other subsystems as explained in equation 5.10.

Therefore its natural frequency is:

ωleg1n =
√

kp
mhip(rj + rk)2 +mlegr2j

(5.19)

ωleg1n =
√

10
(16.822)(0.5037 + 0.2328)2 + (4.6033)(0.2328)2 = 3.2536 (5.20)

T leg1 = 2π
ωleg1n

= 6.0834s (5.21)

Comparing the theoretical periods of the controllers against the ones observed in the

simulations, the result is that they differ by less than 1%.

5.5 Conclusions of the chapter

In this chapter an equivalent model composed by four point masses was proposed, the

method to construct such a model were exposed and experiments to validate it were

performed. The first experiment, called the “kicking” experiment, measured the ability

to compensate the reaction torques by performing a fast swinging of one leg, similar to

a kicking action. First, the leg was swung and no compensation was used. Once this

was done, it was compared against a similar model, but using the center of mass to

obtain the values and location of the point masses. In this case, and improvement over

the non-compensated experiment was observed. A reduction of the amplitude of the

perturbations of around 50% was reported.
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Finally the point mases were modeled using the center of percussion. The result

was that the center of percussion model was far more accurate rejecting the reaction

torques produced by the swinging leg. The reduction was of two orders of magnitude

when compared against the non compensated controller. Although the same result could

be obtained by calculating the dynamics of each link, and then using those results to

compensate the reaction torques. The advantage of the method proposed in this work

is that everything is done by using the information provided by one point mass. Resolv-

ing the dynamics would imply monitoring several rigid bodies with several parameters,

adding great complexity to the final solution.

Another relevant point of the first experiment is how accurate the reaction torques

were rejected. Dismissing centrifugal or Coriolis accelerations can greatly simplify the

equations of motion, this practice has been commonly implemented by several authors to

make highly dynamic algorithms for walking machines [87], but there was not a formal

proof about what was missing when doing such simplifications. Because in this work the

concept of dynamic equivalence is extensively used, this means that using the equivalent

system is equivalent to use the original one. Therefore, we can conclude that those

accelerations are negligible when comparing them against the inertial forces, proving the

reason why it is possible to ignore other accelerations in this kind of systems.

The second part of this chapter was focused on the behavior of the controllers. Both

hip joints and the ankle joint of the stance leg were set only with proportional gains in

order to avoid damping effects. In that way the HAT group and the legs were able to

oscillate freely. Each group of the biped was excited and their oscillations were measured.

The results are shown in Figure 5.12, and they depict decoupled systems each of them

with their own natural frequency. The theoretical natural frequencies and periods were

calculated using the four point masses equivalent model, and finally experimental and

theoretical values were compared. The discrepancy of both values was less than 1%.

With such precise results the final conclusion is that the four point mass model proposed

in this work is a powerful tool to simplify the complex dynamics involved in biped robots.

Besides, despite other simplifications, the amount of non-modeled dynamics is reduced

to imperceptive levels as demonstrated by the experiments performed.
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Analysis of the models

In this work a novel approach to make simplified equivalent models of biped robots

has been proposed. The method is based on the dynamic equivalence criterion, this

works by keeping the same values of the main parameters between the original and the

equivalent system. Those parameters defines the dynamics of both systems and are

the mass, the moment of inertia and the center of mass. Intuitively, one can conclude

that on a rigid body those are the only parameters present in the equations of motions,

consequently those are the only numbers that affect the solution of those equations.

The simplification of a rigid body would not have any merit because excellent solutions

are available in classic mechanics; but, when dealing with complex systems alternative

analysis tools are welcomed in order to provide a better criteria.

The dynamic equivalence concept is later extended to multi-body systems, and ap-

plied to bipedal machines, producing two models: A modified inverted pendulum, and

a four point masses model. Gait has not been thoroughly studied in this thesis1 be-

cause this could distract from the main objective of this work, that is to provide a tool

of analysis of biped robots. Therefore, the efforts have been focused on the usage and

demonstration of the accuracy of the methods proposed in this thesis.

In this chapter additional analysis about the proposed models is described. The

torque actions used in the experiments of Section 5.3.2 are analyzed. The objective is to

assess where the power is used, and how much of the power is actually used to perform

the actions commanded by the inputs. The fact that there is a model with decoupled

dynamics, encourages to perform this kind of experiments. Besides, it is expected that

this could provide information about the forces being withstood by joints and links, this

could be used as input information for mechanical design for future prototypes.

1Gait generation is a very sensitive matter, different methods are proposed to generate it with a wide
range of advantages and disadvantages, making it a subject out of the scope of this work.
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Also in this chapter additional properties of the equivalent pendulum proposed in

Chapter 4 are studied. Originally when this pendulum was used, the center of pressure

was fixed by using point feet. In order to generalize its application this simplification is

to restrictive, all bipeds are expected to have real feet in order to walk in an anthropo-

morphic way. Although the analysis is not performed on a biped, but a pendulum with

a wide base measuring the center of pressure, the results are expected to be extensible

to other systems that are able to measure the center of pressure, as it could be a biped

robot or even a multi legged walking system. The analysis is done by relating the re-

action forces of the original system with the dynamic forces produced by the equivalent

pendulum.

6.1 Four point masses model and torque analysis

In Chapter 5 a simplified model of a biped was proposed, the difference when comparing

against other similar works, like for example the ones shown in [9] or [25], where models

with point masses are also used, is that in this case the masses are selected to match all

the important dynamic parameters of the robot1. The dynamic equivalence used in the

method allows that the model can be used to decoupling all the dynamics of the original

system. Now, each part of the control action can be examined independently, therefore

it is possible to asses what happens with the other joints when others are moving.

Depending on the applied gait design strategy, this analysis can be more or less

important, but from the point of view of design, it is of interest to know how much

of the power will be assigned to compensate or to provide actuation. In this section

the parts that form the total control action will be analyzed, they are: The gravity

compensation, the dynamic compensation and the control action itself. In Chapter 5

they were mentioned and their parameters exposed, but no graphs were shown, hence in

this section plots of the control actions are exposed.

6.1.1 Components of the control action

The control law in Chapter 5 used to move the joints is composed by three torques: The

torque produced by the PD controller, the gravity compensation torque and the dynamic

compensation torque. Therefore, the control action at the ith joint can be written as:

1i.e. the total mass, the center of mass, and the moment of inertia.
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Figure 6.1: Gravity compensation. The torque produced by each link over the joints
is compensated using the cross product between their relative distances and their
weight force vector.

τi = τPDi + τGi + τ ci (6.1)

The calculation of τ ci is shown in Section 5.3.2, τGi is the sum of the torques produced

by each link on the ith joint. Using Figure 6.1 the ith joint torque is written as:

τGi =
∑
j

mjrji × g (6.2)

The PD control action is nothing more than a spring-damper system, and it positions

the joint in the desired angle. In other words, it is the input to be controlled. Therefore

τPDi is written as:

τPDi = kip(θid − θi) + kidθ̇ (6.3)

6.1.2 Analysis of the torque components

Figure 6.2 shows plots of the torques calculated from equation 6.1, those plots are ob-

tained from the experiments described in Section 5.3.2. The parameters of the robot, as

well as the gains of the controllers are exposed in that section. When the experiments

were shown by the first time in this thesis, the objective was to prove the decoupling of

the dynamics in order to validate the four point masses model proposed in that chapter.
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That objective was accomplished using plots of the position of the joints, and comparing

the theoretical parameters of the system against the experimental ones obtained from

those plots. The torque plots of the joints were not required for the analysis, but they

still can provide additional information about the system, and that is what is pursuit in

this section: Expose the significance of each of the components of the control torques.

Torques can be used as a tool for designers, the control actions provide information

about the forces that will be supported by the links and joints of the robot. Examining

Figure 6.2 one can notice that the total torque has almost the same value for all the

joints, except for the case of the swinging leg (Figure 6.2(e)). The own weight of the

robot determines the size of the actuators as well as the required resistance of the links.

The other components of the torques are just a fraction of the total control action.

Despite they are relatively small when compared against the total torque, they are very

important because they are responsible to move the robot.

Figures 6.2(b),6.2(d) and 6.2(f) shows the torque produced by the PD controller,

and the dynamic compensation action. The ankle joint, as it can be expected, applies

a major compensation torque, because it stands all the moving links. In the case of

the hip joint of the stance leg (Figure 6.2(d)), the compensation action is reduced and

it has minor amplitude than the PD torque. Some jerks are present, but they are not

significant, because they are not big enough to modify the total control action, therefore

they are not taken into account. Finally Figure 6.2(f) shows the torques of the hip joint

responsible of the swinging leg. The compensation torque is the least important of the

previous ones. This happens because the swinging leg has the minor mass of the other

groups.

It should be noticed that most of the power goes to compensation actions, more

specifically to compensate gravitational forces. If this is not done, extremely high gains

would have to be used in order to maintain equilibrium, other option is to avoid linear

controllers. This analysis maximized the importance of wise designed structures with

the least weight, because the frequency response of the actuators it is determined by the

residual torque not used to compensate gravity effect. Other interesting phenomenon

can be seen in Figure 6.2(e), here the control action has a minor amplitude than the

gravity compensation torque. This happens because the PD torque and the compensa-

tion torque oscillates around zero N·m, while the others are offseted at approximately

-5N·m, therefore the total torque takes some of the energy from the gravitational field.
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Figure 6.2: Torques at joints using propotional gains of 10N·m/rad.(a) Total (solid
line) and gravitational torque (dashed line) applied at the ankle joint of the stance leg.
(b) PD torque (solid line) and Compensation torque (dashed line) at the ankle joint
of the stance leg. (c) Total (solid line) and gravitational torque (dashed line) applied
at the hip joint of the stance leg. (d) PD torque (solid line) and Compensation torque
(dashed line) at the hip joint of the stance leg.(e) Total (solid line) and gravitational
torque (dashed line) applied at the hip joint of the swinging leg. (f) PD torque (solid
line) and Compensation torque (dashed line) at the hip joint of the swinging leg. The
units of the horizontal axis are seconds.
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6.1.3 Varying the proportional gains

In this section the proportional gains will be incremented to observe how they affect

the compensation actions. The increments will be done in the ankle joint of the stance

leg, the hip joint moving the body, and the hip joint moving the swinging leg. The

increments will be done only on one of the previously mentioned joints at the time,

while the others keep their original gain values. Those values are listed in Table 6.1

that is a slightly modified version of table 5.2. The values listed in Table 6.1 are those

used in the experiments of Section 5.3.2 and therefore, the Figure 6.2. Gravitational

compensation torques as well as the total control actions are not analyzed in this section

because the first ones depends on the configuration of the robot, and that configuration

is not affected by the gains. In the case of the total control actions (i.e the total applied

torques), they are not analyzed because the contribution of the actions analyzed in this

section are not significant to the total torques.

Varying the gain of the hip joint of the stance leg

Figure 6.3 shows the plots obtained by varying the proportional gain of the hip joint of

the stance leg from 10N·m/rad to 40·m/rad. This joint moves the HAT group, therefore

it is expected changes on this group. Because it is the heavier group, a big increment

in the amplitude of the compensation torque it is observed in Figure 6.3(a). Also a

change on the frequency of the torque produced by the PD controller is observed in

Figure 6.3(b). This happens because the increment of the gain means a stiffer system

and therefore a higher natural frequency. The swinging leg does not show any change

in their behavior as can be seen on Figure 6.3(c). Also, it should be noticed that PD

torques of the not modified joints keep the original natural frequency. This confirms the

linearity of the model, and the successfully decoupling of the dynamics.

Table 6.1: Gains of the controllers used in the oscillation experiments.

Stance leg Swinging leg

Proportional Derivative Proportional Derivative

gain gain gain gain

hip 10 0 10 0

knee 10 3 40 20

ankle 10 0 40 20
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Figure 6.3: Experiments using 40N·m/rad gain at the hip joint of the stance leg.
(a) PD torque (solid line) and Compensation torque (dashed line) at the ankle joint
of the stance leg. (b) PD torque (solid line) and Compensation torque (dashed line)
at the hip joint of the stance leg. (c) PD torque (solid line) and Compensation
torque (dashed line) at the hip joint of the swinging leg. The horizontal axis units
are seconds.

Varying the gain of the hip joint of the swinging leg

Now, the proportional gain of the swinging leg is set back to the value listed in Table

6.1 and the hip joint of the swinging leg is set to 40·m/rad. Figure 6.4 shows the results

of this experiment. Because the swinging leg is the lightest group, a great increment

on its natural frequency happens as it can be seen in Figure 6.4(c). This movement

propagates to the other joints affecting their compensations torques as can be seen on

Figure 6.4(a) and Figure 6.4(b), those perturbations are later attenuated because the

swinging leg shows a small damping factor calculated in the previous chapter. Although

the controller has zero derivative gain, therefore no damping is present, this attenuation

happens because no compensation was applied at the knee and the ankle joint of the
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swinging leg. Because of their low mass when compared against the whole robot, they

were given higher gains to reject the perturbations produced by swinging action. Al-

though, this approach accomplishes its objective, it has the drawback that injects some

damping because of the relative movement between the links. The torques of the PD

controllers of the other joints shown in figures 6.4(a) and 6.4(b) show no change and

they keep their natural frequency as expected.
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Figure 6.4: Experiments using 40N·m/rad gain at the hip joint of the swinging
leg. (a) PD torque (solid line) and Compensation torque (dashed line) at the ankle
joint of the stance leg. (b) PD torque (solid line) and Compensation torque (dashed
line) at the hip joint of the stance leg. (c) PD torque (solid line) and Compensation
torque (dashed line) at the hip joint of the swinging leg. The horizontal axis units
are seconds.

Varying the gain of the ankle joint of stance leg

Finally, the gain of the ankle joint is set to 30·m/rad while the other gains are kept

to the values shown in Table 6.1. The ankle joint of the stance leg supports all the
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robot, therefore any change on the gains of its controller will affect all the system.

Figure 6.5 shows the plots of all the joints using the gains described here. Because

the dynamics is decoupled, the plots of torques of the PD controllers in figures 6.5(b)

and 6.5(c) do not show changes in their natural frequency. By the other hand, the

compensation torques of all figures are affected and incremented because the additional

compensation action required to reject the perturbations induced by the ankle joint.

Because of those perturbations the compensation torques also show glitches in their

plots, and nonlinearities are shown at the end of all of them. The nonlinearities are the

product of the impossibility of the stance leg to maintain contact against the floor. but,

despite this problem the robot is able to recover from those perturbations.
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Figure 6.5: Experiments with 40N·m/rad gain at the ankle joint of the stance leg.
(a) PD torque (solid line) and Compensation torque (dashed line) at the ankle joint
of the stance leg. (b) PD torque (solid line) and Compensation torque (dashed line)
at the hip joint of the stance leg. (c) PD torque (solid line) and Compensation
torque (dashed line) at the hip joint of the swinging leg. The horizontal axis units
are seconds.
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6.2 Analysis of the equivalent inverted pendulum

In this section the analysis of a system composed by an inverted pendulum connected

to a base that provides information about the center of pressure us performed. The idea

is to provide a simple system that can be analyzed to relate the reaction forces of the

original system with those of the equivalent inverted pendulum. It is a similar exercise to

that already presented in Section 3.1.3 and detailed in Appendix B with the difference

that both point masses of the equivalent pendulum are free to move. The objective

of this section is to extend the results of the method exposed in Chapter 4, studying

additional properties of the equivalent pendulum proposed in that section.

The experiments are performed by applying a step input to the pendulum system,

the data about the reaction forces and the applied torque are registered. Using the

information of the center of pressure and the center of percussion of the whole system

the equivalent pendulum is made and its states are measured. The states of the inverted

pendulum are used to calculate its reaction forces and then those forces are compared

against those of the original system.

Finally, the term “pendulum system” will be used to name the system composed

by the base, the revolute joint and the inverted pendulum; while the term “equivalent

pendulum”will be used when the system composed by the two equivalent masses of the

real system is being analyzed. Remember that there are two similar systems, one is the

system being analyzed, and the idealized system that is calculated from the original one.

6.2.1 The inverted pendulum system

The inverted pendulum system used in this section pretends to emulate the movement

of a group of links rotating around the hip joint, in this case can be considered as the

HAT group, although the results can be extended without problem. The pendulum can

be seen in Figure 6.6. The pendulum is supported by a base with a center of pressure

sensor, and it is connected by a revolute joint that can apply a torque input. The torque

input has two parts, a gravitational compensation part and a PD control part. Assuming

that the base and the floor are always in contact without slipping, the control law can

be written as:

τ = −kp(θd − θ)− kdθ̇ − l2m2g sin θ (6.4)
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τ is the input torque, kp and kd are the proportional and derivative gains respectively,

θd is the desired final position and θ is the position of the revolute joint. The first and

second term of equation 6.4 are the PD control action, while the last term is the gravity

compensation action, earlier mentioned in this section.
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Figure 6.6: Pendulum system used in the analysis. (a) Schematic figure of the
pendulum system. (b) Free-body diagram of the pendulum system.

Although the reaction forces will be obtained from the simulations, the reaction

moments cannot be computed in the same way because the base of the pendulum is not

attached to the floor but only a simple contact interaction, as described in Section 3.2.3

and Appendix C, where the model used for ground-foot interactions is explained. The

reaction moments will be calculated with reference to the point 0 shown in Figure 6.6(b),

using the free-body diagram of this figure the reaction moment τ0 is:

τ0 = −τ + F x2−1l1 (6.5)

F x2−1l1 is the internal reaction at the revolute joint. Following the same approach

taken on Chapter 5, where it was demonstrated that other forces different from inertial

ones can be dismissed, as for example centrifugal accelerations. Therefore F x2−1 is written

as:

F x2−1 = −m2a2l1 cos θ (6.6)
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a2 is the module of the acceleration and is found using the angular momentum of the

pendulum and the geometric constrictions as follows:

τ = (I2 +m2l
2
2)θ̈ (6.7)

l2θ̈ = −a2 (6.8)

replacing equations 6.6, 6.7 and 6.8 into equation 6.5, the result is:

τ0 = τ
(
m2l1l2
I2 +m2l22

cos θ − 1
)

(6.9)

6.2.2 Description of the experiments

In this section a description and an explanation of the relevant measurements of the

experiments are exposed. As was said before, the main idea is to compare the reaction

forces of both systems in order to find a link between the equations of motion of the

original system and the equivalent one. In simple words, the experiments were performed

as follows:

1. The system starts at θ = 0 from rest.

2. A step input, approximated with the logistic function1, is applied to set θ = 0.4.

3. The reaction forces at the base and the states of the inverted pendulum are

recorded.

Figure 6.7 shows an schematic of the information gathered in the simulations. The

reaction vector force between the base and the floor is calculated, the input torque is

used to calculate τ0 using equation 6.9. The equivalent pendulum is composed by two

point masses, one at the center of pressure and another one at the center of percussion.

The values of the masses and the location of the center of percussion is calculated with

the method exposed 3.1.1 using the center of pressure as reference. The accelerations of

the point masses multiplied by their mass values provide the forces to be compared to

the reaction forces, while the static moment of the equivalent pendulum respect to the

center of pressure2, marked as τpen on Figure 6.6(b), is compared against τ0. Because

1The logistic function is preferred over a perfect step, because the last can introduce singularities into
the simulation.

2i.e., the cross product of the weight of the point mass located at the center of percussion and its
position vector with respect to the center of pressure.
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Table 6.2: Parameters used in the experiments.

m I li kp kc
(kg) (kg·m2) (m) (N·m/rad) (N·m·s/rad)

Pendulum 16 0.7 0.4 - -

Base 9 0.1 0.5 - -

Controller - - - 20 7

of the reference to calculate the inverted pendulum is moving, the analysis cannot be

performed in an analytical way as it is done in Appendix B, but breaking the restriction

of only one point mass moving generalize the results of this model.
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Figure 6.7: Schematic of information gathered on the simulations. The reaction
forces of the pendulum system are registered, also the states of the equivalent pen-
dulum are calculated and its reaction forces are compared with the reactions of the
pendulum system.

6.2.3 Results of the experiments

The simulations were performed using the parameters shown in Table 6.2. They were

selected to be representative with human standards, therefore the proportions of the base

and the pendulum are similar to a leg and a HAT group of a human. The results of the

experiments are shown in Figure 6.8, the plots show components of the reaction forces,

and the torque τ0 applied at the base of the pendulum system. It should be noticed

that only the PD controller term of equation 6.4 is considered to calculate τ0. The
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equivalent pendulum calculates its static torque with respect to the center of pressure,

therefore in the absence of any PD action the estimated torque is zero. In other words,

when measuring the static moment of the equivalent pendulum the result is a direct

measurement of the control action.

Figures 6.8(a) and 6.8(b) show that the inertial forces of the equivalent inverted

pendulum are similar to the reaction forces at the base of the pendulum system. About

Figure 6.8(c) the similarity is established between τ0 and τpen. With the help of Figure

6.7 both conditions are written as:

Fr = m1a1 +m2a2 (6.10)

τ0 = τpen = m2glpen cos θpen (6.11)

The results, as they can be appreciated in Figure 6.8 show a closed relation to the

equation just written. The horizontal component of Fr and the reaction torque τ0 are

closely followed by their counterparts calculated out of the equivalent pendulum, as ap-

preciated on Figure 6.8(a) and Figure 6.8(c). By the other hand the vertical component

of Fr plotted in Figure 6.8(d) shows more difference with the one obtained from the

inverted pendulum system. But the overall observation is that the equivalent inverted

pendulum provide excellent approximations of the reaction forces of the original system.

The discrepancies between both system happen because there are some internal effects of

the equivalent pendulum that are not being considered. Those effects are the variation

of the equivalent masses, and the variation of the length of the equivalent pendulum.

Remember that those parameters are configuration dependent. Although they were cal-

culated in every step of the simulation, their derivatives were not considered, but the

results shown in this section demonstrate that their contribution to the total dynamics

of the system is not significant.
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Figure 6.8: Plots of the experiments. (a) Horizontal component of the reac-
tion force, the continuous line is the reaction force measured by the base. The
dashed line is calculated using the equivalent pendulum and the dot-dashed line is
the difference.(b) Vertical component of the reaction force. The continuous line is
the reaction force measured by the base, the dashed line is calculated using the equiv-
alent pendulum. (c) Comparison of τ0 shown with continuous line, and τpen plotted
with dashed line. (d) Step input applied to θd (continuous line), and output of the
system θ (dashed line).





7
Conclusions and future work

In Chapter 2 different mathematical models used in biped robots were exposed. They

range from very basic but intuitive models to very detailed mathematical models based

on rigid body dynamics. Although, the analysis of robots at first sight seems like a

solved problem because the required tools are mature, the involved complexity is often

the major obstacle when deeper analyses are required. The general solution adopted to

this problem is to simplify the system by dismissing effects considered less important

according to necessities. The objective of this thesis is to provide a method to apply

simplifications to a system and keep most of the dynamics of the original system in the

equivalent simplified one. The result of the analysis is the proposition of the center of

percussion to construct those simplified systems.

In this chapter the conclusions of the methods developed are exposed. Although

some conclusion were already provided at the end of some chapters, here they are put

together and summarized from the point of view of the objectives of this work. Also

suggestions about future developments are exposed in this chapter. Because most of the

efforts in this thesis have been focused on demonstrating the accuracy of the models,

refinements and additional applications are the majority of the suggestions proposed as

improvements.

7.1 Conclusions

In this thesis the concept of dynamic equivalence has been used to propose a methodology

to generate alternative models using idealizations of point masses with massless links.

The simplification is done to maintain all the rigid body properties with the same values,
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that is the total mass, the first moment of mass1 and the second moment of mass2 are

the same between both systems. The method is very flexible, because there are infinite

possibilities to define equivalent systems according to the point of reference used to

construct the equivalent system. In this thesis two references have been used, the first

one is the center of pressure and the second one is the hip of the robot. In the following

lines, additional details will be exposed.

7.1.1 Equivalent system of a kinematic chain

In Section 3.1.3 the reduction of a kinematic chain to two point masses was performed.

Because the reference to construct the system was selected as a fixed point of the kine-

matic chain, the equivalent system contained only one moving point mass. The reaction

forces of the kinematic chain and the equivalent system were calculated analytically, the

result was that both systems share exactly the same result. This first approach demon-

strated that the center of percussion can be extended to a kinematic chain, and that

exact results can be obtained if the right reference is selected. It should be noticed that

the geometry of the system produced equivalent point masses with values independent

of the geometry. Although, this is not the general case, the existence of a reference point

with such characteristics encourages further developments to characterize those points.

7.1.2 Equivalent inverted pendulum

Following the method exposed in Chapter 3 the reduction of a system to two point masses

was performed for a bipedal system with a flywheel as a body. This system was selected

because it reduces the state variables required to control the body of the robot. With

that simplification and using point feet the system was fully controllable. The point feet

allowed to fix the center of pressure without additional efforts. The equivalent inverted

pendulum was composed by two point masses, one at the center of percussion, and other

mass at the center of pressure of the robot. The pendulum was later used to design the

control algorithm. The control algorithm was done using a PD strategy, compensating

part of the dynamics and gravitational effects the gait was successfully synthesized.

In chapter 6 the results were extended to a system where the center of pressure was

not fixed at one point. Instead a continuous ground interaction was provided by means

of a base with a center of pressure sensor. Here the reaction forces of both system

were compared with excellent results. The conclusion was that the equivalent inverted

1i.e., the center of mass.
2Also known as the moment of inertia.
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pendulum was able to reproduce the dynamic behavior of the original system. Although

the result was not perfect, the small error is attributed to non modeled dynamics of the

equivalent system. It should be noticed that the derivatives of the parameters of the

equivalent system were not included1. As expected, the dismissed derivatives did not

affect the results in a significant way. The last happens because the variation of the

equivalent mass is small in the considered movements of the system.

Proposing an inverted pendulum composed by point masses allows to recycle the

knowledge gathered by other researches using inverted pendulums to propose their solu-

tions. The rimless wheel [7], capture points [86] or even Raibert [87] algorithms can be

benefited with this model. Because the proposed model is a pendulum it can be inserted

directly into the methodology proposed in those publications.

7.1.3 Four point masses model

The inverted pendulum model, although widely used because of its flexibility does not

reflect the topology of the system it represents. In some situations a simplification that

reflects the parts of the robot are required. Some examples are found in [9] and [26],

where links or group of links have been replaced by point masses at their center of mass.

A refinement of these simplifications is provided in this thesis with the proposed four

point masses model. This model divide the robot in three groups: Two legs and the

head-arms-torso group (referred as HAT group). Because all the groups intersect at the

hip joint, this point was selected as reference to obtain the centers of percussion of the

groups. The final model is composed by four point masses, three masses coming from

the centers of percussion and other mass at the hip composed by the combination of the

masses of the equivalent model of each group.

The model was validated by using the information of the local centers of percussion

to compensate the reaction torques. With this approach the dynamics of the robot was

decoupled and each joint was able to move independently. The undamped step response

of the controllers of the joints was performed to compare their real natural frequency

against the experimental one. The theoretical prediction of the natural frequency of the

controllers matched the values found experimentally in the simulations, confirming the

four point masses model.

Additionally, different gains of the controllers were tested in order to asses the torque

components of the control action of each controller. The result was that most of the power

is used to support the own weight of the robot because the major control action was

1Those parameters are the values of both point masses and the length of the inverted pendulum.
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used for gravity compensation as appreciated in Figure 6.2. Minor energy was required

to generate the compensation and the PD torques of each controller. With this in mind,

the mechanical design of the links and the joints, as well as the selection of the actuators

can be performed using the decoupling presented in Chapter 5 because each term of the

torque action can be studied independently.

7.1.4 Summary

The major contribution of this thesis is a methodology to generate dynamically equiva-

lent models. Those models are composed by two point masses that share all the dynamic

properties of the original system. The methodology produced two models to simplify

biped robots: The equivalent inverted pendulum, and the four point masses model. Both

models are not substitutes of the previously used approaches by other researchers, but

improvements that can be used in their algorithms without major modifications. To

summarize the accomplished objectives the following list is provided:

• The center of percussion, as proposed in this thesis, can successfully be used to

construct dynamically equivalent systems.

• Therefore, a technique to provide justified simplifications of models of biped robots

has been developed.

• Because the center of percussion is reference dependent there are an infinite number

of equivalent systems.

• The selection of the reference to construct the equivalent system, and therefore

determine the center, or centers of percussion, is what determines the usefulness

of an equivalent model.

• The angular momentum of a system can be included without adding complexity

to the equations of motion.

• Linear control strategies can be designed to generate gait, although their stability

margins need to be determined.

• The experiments performed in this thesis did not require to include the derivatives

of the parameters of the equivalent system.

• The subsystems can be grouped according to the requirements of the application

to produce equivalent systems with closer topologies, just as it was done with the

four point mass modeling, where local centers of percussion were used.
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• Total decoupling of a biped was performed successfully, although very useful to

study a system it can stress fragile articulations like the ankle.

• Because only the inertial forces were used to perform the decoupling, the conclu-

sion is that other acceleration like Coriolis or centrifugal acceleration have minor

importance to the dynamics of the whole system.

• Thanks to the decoupling of the dynamics, each term composing the total solicita-

tion of a joint or a link can be studied. The last can be used to perform a guided

mechanical design, and a wise gait design to reduce the demands of a particular

system, without sacrificing performance.

• Supporting the own weight of a biped uses most of the energy of the system, control

actions are only a fraction of the required power.

7.2 Observations and remarks

In this thesis particular cases of bipeds have been exposed and analyzed, in this way the

application of the technique developed in this work was explained by example. Applica-

tion to other cases can be done by following the steps provided, according to which model

is being implemented. Modifications of the technique can be also applied to propose new

alternatives as long as the concept of dynamic equivalence is used.

It should be noticed that the experiments performed in this thesis have been per-

formed using rigid body models. Therefore, in order to use this technique on real robots

it is very important that the mechanical construction will be stiff in order to comply the

rigid body assumption done when developing this work. In small robots the last will be

hard to achieve, but in medium to big walkers this should not be a problem.

Backlash has not been included in the analysis. This will produce impulsive forces

that will deviate the expected results, and therefore should be avoided when using the

models proposed in this work. Also, it should be noticed that a good control system, or

special hardware is good solution. Hence, the limitation introduced by this phenomenon

are not determinant when using the techniques proposed in this work.



112 7 Conclusions and future work

7.3 Future work

Biped locomotion is a research field with lots of unanswered questions, how humans

synthesize gait is an unsolved matter. Although impressive achievements have been

done in the field, new tools to design or to analyze these systems are always welcomed.

The concept of dynamic equivalence in this thesis has been restricted for the 2D case

only. Although valid for most of the cases, because walking can be always decoupled

as two tasks1, 3D improvements can be necessary when studying complex situations.

Naming some of them could be recovering from large perturbations, or a dancing robot

performing some pirouettes. But it should be noticed that even in complex situations

the legs can be still be modeled using 2D models because they are slender elements if

they are not completely folded.

Implementation of gait using the four point masses model is a task to be completed.

The possibility to have a very simple system to work with, opens the possibilities to

obtain full analytical solutions of the internal dynamics. In this way optimization of

every stage of the gait cycle can be performed. Also, the model can be combined with

the equivalent inverted pendulum proposed in this thesis. The study of foot ground

interactions, and the weight transfer from one foot to the other can be greatly simplified

by using the combination of those models.

Implementation of this work into other compatible robotic researches is also very en-

couraging. For example, the widely adaption of the inverted pendulum and its variations

opens the possibility to slightly modify the original algorithms and introduce a model

that shares the same dynamic properties of the original system. For example calculate

capture points out of the equivalent inverted pendulum can be an option to discover the

possibilities of this model. Also modification of the linear inverted pendulum is compati-

ble with the equivalent inverted pendulum developed here. In general, any system based

on the center of pressure and using an inverted pendulum to estimate its dynamics, it is

adaptable to this work.

Several efforts have been made to characterize human locomotion with dimensionless

parameters. One of the best known example is the Froude number that separates running

from walking in any locomotion system. Similar quantities can be designed by using

the fact that an equivalent model can be done to any locomotion system following the

guidelines presented in this thesis. Therefore, the possibility to characterize any walking

1One focused on walking on the sagittal plane, and the other on keeping lateral equilibrium on the
frontal plane
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machine with few parameters is open, therefore the similarity can be established by

comparing the dimensionless numbers obtained with the simplified equivalent models.

Finally, the study of human locomotion with the models proposed in this work is an

interesting subject to be developed. The complexity found in the human body produces

dynamics with a great degree of complexity. This quality makes this problem very hard

to manage with traditional techniques. The guided simplifications produced here, can

help to unveil information that in other ways will be hidden by the sophistication of its

own properties.
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A
Dynamic equivalence of a rigid

body in 2D

A rigid body can be represented by not less than two point masses, this is the simplest

dynamically equivalent system in 2D. Two system are said to be equivalent, when the

following conditions occur:

• Both systems share the same mass value.

• The center of mass of both systems have the same location.

• The mass moment of inertia is also the same.

Considering the rigid body in Figure A.1 the previous mentioned conditions produce

the following equations:

m1 +m2 = m (A.1)

m1(r2x1 + r2y1)
1
2 = m2(r2x2 + r2y2)

1
2 (A.2)

m1(r2x1 + r2y1) +m2(r2x2 + r2y2) = Izz (A.3)

The system of equations can be solved by arbitrarily fixing the position of m1, then

from A.2 the following equations are obtained:

m1 = m2
(r2x2 + r2y2)

1
2

(r2x1 + r2y1)
1
2

(A.4)

m2 = m1
(r2x1 + r2y1)

1
2

(r2x2 + r2y2)
1
2

(A.5)
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Figure A.1: Rigid body with two point masses. The value of the masses and its
location can be selected to maintain dynamic equivalence. The position of the second
mass is on the center of percussion respect to the other one.

Replacing A.1, A.4 and A.5 in A.3 and rearranging terms:

(r2x2 + r2y2)
1
2 = I

m(r2x1 + r2y1)
1
2

(A.6)

The terms (r2x1 + r2y1)
1
2 and (r2x2 + r2y2)

1
2 represent the magnitudes r1 and r2 respec-

tively. Theses magnitudes are used to find rx2 and ry2 , cross-multiplying the variables:

rx2 = r2rx1

r1
= Irx1

mr21
(A.7)

ry2 = r2ry1
r1

= Iry1
mr21

(A.8)

The magnitude r2 is found with Pythagoras theorem, and equations A.7 and A.8.

The result is:
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(r2x2 + r2y2)2 = I2

m2r41
(r2x1 + r2y2) (A.9)

r2 = I

mr1
(A.10)

Now that r2 is known, equations A.1 and A.2 are used to find m1 and m2:

m1 = mr2
r1 + r2

(A.11)

m2 = mr1
r1 + r2

(A.12)

It should be noted that equations A.7 and A.8 does not include the signs of the

components rx2 and ry2 . They are obtained considering that center of mass should be

always between m1 and m2. Finally the point where m2 is located corresponds to the

center of percussion when the body is rotating around m1. The opposite is also true.





B
Equations of motion of a

mechanism

In this appendix the equations of motion of a mechanism and its equivalent system,

depicted in Figure B.1, are calculated. The mechanism is composed by two thin bars

with distributed mass, and there is no friction in the joints. After both system have

their respective equations of motion, the reactions are compared. The result is that both

system have the same reactions, therefore both systems are dynamically equivalent.

thinbar links with

distributed mass

l

(a)

l
me

ms

(b)

Figure B.1: Center of percussion of a mechanism. (a) real mechanism composed
by thin bars, (b) idealized equivalent mechanism.
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B.1 Equations of motion of the mechanism

In order to compare the equivalence of the systems shown in Figure B.1, the equations of

motions of each system will be found. Because the topologies of the systems are different

direct comparison of generalized coordinates cannot be done, instead the reaction forces

will be calculated in each case and then compared to see the similarities.
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Figure B.2: Free body diagrams of the bars. (a) left bar of the mechanism, (b) right
bar of the mechanism. The origin of coordinates is located in the lower pin joint of
the left bar. (x1, y1) and (x2, y2) represent the centers of mass of each bar.

To derive the equations of motion consider the free body diagrams shown in Figure

B.2. The origin of coordinates (x0, y0) is located in the lower pin joint of the bar in

Figure B.2(a). The centers of mass are also marked and its coordinates are represented

by (x1, y1) and (x2, y2). Therefore the kinematic equation for the left bar are:

x1 = l
2

cosβ (B.1)

ẋ1 = −β̇ l
2

sin β (B.2)

ẍ1 = − l
2

(β̇2 cosβ + β̈ sin β) (B.3)

y1 = l
2

sin β (B.4)

ẏ1 = l
2
β̇ cosβ (B.5)

ÿ1 = l
2

(−β̇2 sin β + β̈ cosβ) (B.6)
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In the same way, similar results are found for the second bar:

x2 = 3
2
l cosβ (B.7)

ẋ2 = −3
2
lβ̇ sin β (B.8)

ẍ2 = −3
2
l(β̇2 cosβ + β̈ sin β) (B.9)

y2 = l
2

sin β (B.10)

ẏ2 = β̇ l
2

cosβ (B.11)

ÿ2 = l
2

(−β̇2 sin β + β̈ cosβ) (B.12)

Before applying Newton’s second law, the rotation of the bar in Figure B.2(b) is

considered respect to β2, the relation with the β angle is:

β2 = π
2
− β (B.13)

β̇2 = −β̇ (B.14)

β̈2 = −β̈ (B.15)

Finally, applying D’Alembert’s principle the following equations are obtained:

mbarẍ1 = Fx0 − Fn cosβ − Ft sin β (B.16)

mbarÿ1 = Fy0 − Fn sin β − Ft cosβ −mbarg (B.17)

Ibarβ̈ = Fx0
l

2
sin β − Fy0

l

2
cosβ + Ft

l

2
(B.18)

mbarẍ2 = Fn cosβ + FT sin β (B.19)

mbarÿ2 = Fn sin β − Ft cosβ −mbarg + Fy3 (B.20)

Ibarβ̈2 = − l
2
Fn sin 2β + Ft

l

2
cos 2β + l

2
Fy3 cosβ (B.21)

This 21 equations form a system used to find the values of the reaction forces. The

equations of the reaction forces are:
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Fx0 = −2mbarl(β̇2 cosβ + β̈ sin β) (B.22)

Fy0 = mbarg −mbarlβ̈2 sin β +mbarlβ̈
(

cosβ − 2
3 cosβ

)
(B.23)

Fy3 = mbarg + 2mlβ̈
3 cosβ

(B.24)

B.2 Equations of motion of the equivalent mech-

anism

As stated in Chapter 3 a kinematic chain can be reduced to two point masses. If one

of them is selected in a fixed position the analysis is reduced to the analysis of one

point mass. In Figure B.3 the equivalent system of the one shown in Figure B.1(a) is

detailed. The equivalent system is composed by the two point masses that are found

when the center of percussion of the whole mechanism is found with respect to the pivot

0. Therefore the masses are located one over the center of percussion called me and

other over point 0 marked as ms.

The modulus rCM is found in the next expression:

r2CM = l2 cos2 β + l
2

4
sin2 β (B.25)

and after some mathematics the result is:

r2CM = 1
4
l2(3 cos2 β + 1) (B.26)

The moment of inertia of the mechanism is the sum of the moment of inertia of both

thin bars calculated with respect to the center of mass of the system, therefore using the

Huynes-Steiner’s Theorem:

ICM = 2
(
Ibar +mbar

(
l cosβ

2

)2
)

(B.27)

ICM = 2ICM + mbar
2
l2 cos2 β (B.28)
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where ICM is the moment of inertia of the system around the center of mass, Ibar

and mbar are the moment of inertia and the mass of the thin bars respectively, and l and

β are described in figure B.3.

m
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e

e

l

b q
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2

l
b

cosl b

0
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Figure B.3: Schematic of the equivalent mechanism. The equivalent system is
composed by a point mass located at the center of percussion.

The center of percussion of the system is written as:

rCoP = ICM
2mbarrCM

(B.29)

rCoP =
2Ibar + mbar

2 l
2 cos2 β

2m
(

1
4 l

2(3 cos2 β + 1)
)1

2
(B.30)

after some simplifications, and considering that Ibar = ml2/12 the result is:

rCoP = l
6

√
3 cos2 β + 1 (B.31)

Now the only unknowns left are the point masses ms and me. The point mass at the

center of percussion is calculated with:

me = 2mbar
rCM

rCM + rCoP
(B.32)

me = 2mbar
(

1 + rCoP
rCM

)−1
(B.33)

me = 3
2
mbar (B.34)
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Although the same approach could be use to find the value of ms, it also can be

calculated by remembering that the original system and the equivalent one shares the

same mass, therefore:

2mbar = me +ms (B.35)

ms = 1
2
mbar (B.36)

At this point the system has been reduced to one moving point mass me with un-

known restrictions. Such restrictions will be found using the similar triangles formed by

the center of mass and center of percussion position vectors and its individual x and y

coordinates. Therefore, to find xe we can write:

xe
rCM + rCoP

= xCM
rCM

(B.37)

xe
2
3 l

2
√

3 cos2 β + 1
= l cosβ

1
2 l

2
√

3 cos2 β + 1
(B.38)

xe = 4
3
l cosβ (B.39)

The same process can be repeated to find ye:

ye
rCM + rCoP

= yCM
rCM

(B.40)

ye
2
3 l

2
√

3 cos2 β + 1
=

1
2 l sin β

1
2 l

2
√

3 cos2 β + 1
(B.41)

ye = 2
3
l sin β (B.42)

Now, all the conditions required to derive the equations of motions have been defined.

The velocity and acceleration is found with the derivatives of equation B.39 and equation

B.42:
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ẋe = −4
3
lβ̇ sin β (B.43)

ẍe = −4
3
l(β̇2 cosβ + β̈ sin β) (B.44)

ẏe = 2
3
lβ̇ cosβ (B.45)

ÿe = 2
3
l(−β̇2 sin β + cosβ) (B.46)
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Figure B.4: Free body diagram of the equivalent mechanism. The original mecha-
nism is shown in gray to illustrate where the reaction forces are applied.

Then only force acting over the system is the attraction of gravity in the point masses,

but only the force due tome the point mass can make work over the system. Considering

the reaction forces shown in figure B.4 and applying Newton’s laws of motion:

meẍe = Fx0 (B.47)

meÿe = Fy0 + Fy3 + (me +ms)g (B.48)

Ieθ̈e = −megxe + 2Fy3 l cosβ (B.49)

Equation B.39, equation B.42 and equations from B.43 until B.49 describe the motion

of the equivalent system. From this system of equations the reactions are found Fx0 ,Fy0

and Fx3 , once the system is solved the results are:
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Fx0 = −2mbarl(β̇2 cosβ + β̈ sin β) (B.50)

Fy0 = mbarg −mbarlβ̈2 sin β +mbarlβ̈
(

cosβ − 2
3 cosβ

)
(B.51)

Fy3 = mbarg + 2mbarlβ̈
3 cosβ

(B.52)

These equations are exactly the result already obtained in section B.1, this is the

probe that both systems are equivalent. In this particular case the values of the point

masses were constant, this is not always true. Fortunately the variations of such quan-

tities are low and their derivatives smooth, therefore the equivalence is still maintained

in other cases.



C
Modelica code for point contact

objects

In this appendix the code implemented in the simulations of contact used in this thesis

is shown. The implemented contact is “soft” contact instead of the impulsive methods

often used in other applications. The reason for this is to avoid chattering problems

encountered in momentum methods based on the reinitialization of the velocity vector.

C.1 Contact with viscous friction

The model simulates contact on the x-z plane. It has three parameters to control the

stiffness, damping and viscosity. The contact is defined by following equation:

Fy =

ky − νẏ for y < 0,
0 otherwise

(C.1)

The friction in x and z direction is defined by:

Fx =

−ηẋ for y < 0,
0 otherwise

(C.2)

Fz =

−ηż for y < 0,
0 otherwise

(C.3)

The stiffness is regulated by k and determines the resistance of the x-z plane to be

penetrated, in the same way the damping also in y direction is controlled by v. In x and

z direction the friction is velocity dependent and is controlled by the parameter eta.

The code implemented in Dymola® is detailed in the rest of the section.
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model one_point2

"One point contact over the x-z plane , viscous friction"

import SI = Modelica.SIunits;

parameter Real k(final unit="N/m", final min=0) =

1000000 "Spring constant";

parameter Real v(final unit="N.s/m", final min=0)=

120000 "Damping constant";

parameter Real eta = 1200 "Viscosity constant";

SI.Force f_n;

SI.Force f_r[3];

SI.Position x_td[3];

protected

SI.Velocity v_0[3];

public

Modelica.Mechanics.MultiBody.Interfaces.Frame_b frame_b

equation

//to record touch down event

when frame_b.r_0[2]<0 then

x_td=frame_b.r_0;

end when;

v_0=der(frame_b.r_0);

f_n=if frame_b.r_0[2]<0 then -k*(frame_b.r_0[2])-v*v_0[2] else 0;

f_r[1]= v_0[1]*eta;

f_r[2]=-f_n;

f_r[3]=v_0[3]*eta;

frame_b.f=Modelica.Mechanics.MultiBody.Frames.resolve2(

frame_b.R ,f_r);

frame_b.t = zeros(3);

end one_point2;
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C.2 Contact with sticky friction

The tangential forces in the previous model depends on the relative velocity of the contact

point with respect to the x− z plane, therefore slippage is always present in the contact

interface. To solve this problem the contact point is detected and store in x_td variable

by the following code:

when frame_b.r_0[2]<0 then

x_td=frame_b.r_0;

end when;

As long as the contact is happening x_td is used as reference to calculate the tan-

gential forces with the following expression:

Fx =

k(x− xtd)− νẋ for y < 0,
0 otherwise

(C.4)

In this model only two parameters are required k and v, they control stiffness and

damping respectively. The contact detection is done with event generation when y < 0
in the same way of the previous model. Finally, the detailed code is specified in the next

lines.

model one_point2

"One point contact over the x-z plane , viscous friction"

import SI = Modelica.SIunits;

parameter Real k(final unit="N/m", final min=0) =

1000000 "Spring constant";

parameter Real v(final unit="N.s/m", final min=0)=

120000 "Damping constant";

SI.Force f_n;

SI.Force f_r[3];

SI.Position x_td[3];

protected

SI.Velocity v_0[3];

public
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Modelica.Mechanics.MultiBody.Interfaces.Frame_b frame_b;

equation

//to record touch down event

when frame_b.r_0[2]<0 then

x_td=frame_b.r_0;

end when;

v_0=der(frame_b.r_0);

f_n=if frame_b.r_0[2]<0 then -k*(frame_b.r_0[2])-v*v_0[2] else 0;

f_r[1]=0;

f_r[2]=-f_n;

f_r[3]=0;

frame_b.f=Modelica.Mechanics.MultiBody.Frames.resolve2(

frame_b.R ,f_r);

frame_b.t = zeros(3);

end one_point2;

C.3 Contact with continuous functions

Contact based on event generation using conditional statements can compromise the

computational efficiency. To avoid this problem continuous approximations of the step

function can be used, as for example the logistic function 1/(1 + etx). In this case t

is used to control the gradient of the step, and x is the independent variable. Other

problem with soft contact is that in real life when the reaction forces become large they

do not behave linearly and a hardening effect can be observed. This two phenomena are

combined and the normal reaction of the contact is written as:

Fy = 1
1 + e5000y (e−ky − 1 + Fv) (C.5)

Here k is the stiffness constant and Fv is the damping force. This last formulation of

contact avoids deep penetration when high forces are present. Another problem present

in the previous model was how damping was modeled. When the condition of contact

y < 0 was active, the damping force in the form of a viscous force was acting over the
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system. This produces a sticky effect when pulling away from the x− z plane. To solve

this problem Fv is defined as follows:

Fv =


−νẏ for ẏ < 0

0 for ẏ ≥ 0
0 otherwise

(C.6)

The model was implemented using four parameters. k and v are used to control

stiffness and damping normal to x− z plane, while k_t and v_t are used to control the

same values but in tangent direction. The rest of this section is dedicated to show the

code implemented in this thesis.

model one_point3

"One point contact over the x-z plane , sticky friction. using

continous functions"

import SI = Modelica.SIunits;

parameter Real k(final unit="N/m", final min=0) =

1000 "Spring constant";

parameter Real v(final unit="N.s/m", final min=0) =

10000 "Damping constant";

parameter Real k_t(final unit="N/m", final min=0) =

30000 "Tangential constant";

parameter Real v_t(final unit="N/m", final min=0) =

10000 "Tangential dampting";

SI.Force f_n( min=0) "normal reaction force";

SI.Force f_v;

SI.Force f_r[3];

SI.Position x_td[3];

protected

SI.Velocity v_0[3];

public

Modelica.Mechanics.MultiBody.Interfaces.Frame_b frame_b

equation

//to record touch down event

when frame_b.r_0[2]<=0.001 then
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x_td=frame_b.r_0;

end when;

f_n = 1/(1+exp(5000*frame_b.r_0[2]))*(exp(-k*frame_b.r_0[2])-1+

f_v);

if noEvent( v_0[2]<0) then

f_v = -v*v_0[2];

elseif noEvent( v_0[2] >0) then

f_v = 0;

else

f_v = 0;

end if;

v_0=der(frame_b.r_0);

f_r[1]= 1/(1+exp(5000*frame_b.r_0[2]))*(k_t*(frame_b.r_0[1]-

x_td[1])+v_t*v_0[1]);

f_r[2]=-f_n;

f_r[3]= 1/(1+exp(5000*frame_b.r_0[2]))*(k_t*(frame_b.r_0[3]-

x_td[3])+v_t*v_0[3]);

frame_b.f=Modelica.Mechanics.MultiBody.Frames.

resolve2(frame_b.R ,f_r);

frame_b.t = zeros(3);

end one_point3;
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Modelica code for rotational joints

with mechanical stops

The rotational joints included in the standard library of Modelica® does not support

locks or similar stops. This is required to simulate knee or ankles joints, where the

movement is limited. In fact, one of the most important parts in the design of passive

walkers are the knee locks [69]. In this appendix the implementation of this elements is

explained, besides it is an excellent example of the power of object oriented modeling.

D.1 Rotational joint with mechanical stops based

on events

The model is implemented by extending the class Mechanics.MultiBody.Joints. Revo-

lute to inherit the properties of the standard rotational joint. Also a connector is added

to provide input and output controls. The code for the connector is:

connector connector_M

"Motor connector , carrying an input for control and an output

for the position"

output Real angle;

input Real torque;

output Real w;

end connector_M;

The mechanical stops are simulated with conditional statements. Therefore, events

are generated during the simulation in order to calculate the reaction forces of the stops.

Their mathematical formulation is as follows:
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τr =


0 for θ ≤ θs
0 for θ ≥ θi

krθ − νrθ̇ otherwise

(D.1)

The stiffness and damping are shown by kr and νr, and θs and θi are the position of

the stops. The model has four parameters to adjust the behavior of the joint. k_lock and

nu_lock control the stiffness and damping respectively, while phi_lock1 and phi_lock2

are used to determine the position of the locks. The rest of the section is dedicated to

show the implemented code.

model Revolute1 "Revolute joint with locks"

import Cv = Modelica.SIunits.Conversions;

import SI = Modelica.SIunits;

parameter Real k(final unit="N*m/rad", final min=0)=

0.01 "Spring constant";

parameter Real nu(final unit="N*m*s/rad")=

0 "Damping Coefficient";

parameter Cv.NonSIunits.Angle_deg delta_load=

0 "Spring preload";

parameter Cv.NonSIunits.Angle_deg phi_lock1=-90

"Position of the mechanical lock 1"

annotation(Dialog(group= "Knee lock parameters"));

parameter Cv.NonSIunits.Angle_deg phi_lock2=90

"Position of the mechanical lock 2"

annotation(Dialog(group = "Knee lock parameters"));

parameter Real k_lock = 500000 "Spring constant"

parameter Real nu_lock = 50000 "Damping constant"

SI.Torque tau_lock1; // Reaction at lock 1

SI.Torque tau_lock2; // Reaction at lock 2

SI.Torque tau_spring; // Spring reaction

SI.Torque tau_motor; // Motor torque

SI.Torque tau_damping; // Damping torque

extends Modelica.Mechanics.MultiBody.Joints.Revolute(final

tau=tau_spring+tau_lock1+tau_lock2+tau_motor+tau_damping);

Interfaces.connector_M conM
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equation

tau_lock1=if (phi >Cv.from_deg(phi_lock1)) then 0 else

-(phi-Cv.from_deg(phi_lock1))*k_lock - w*nu_lock;

tau_lock2=if (phi <Cv.from_deg(phi_lock2)) then 0 else

-(phi-Cv.from_deg(phi_lock2))*k_lock - w*nu_lock;

tau_spring=-k*(phi-Cv.from_deg(delta_load));

tau_motor=conM.torque;

tau_damping=-nu*w;

conM.angle=phi;

conM.w = w;

end Revolute1;

D.2 Joint with mechanical stops and no events

To improve computational efficiency the conditional statements are replaced by the lo-

gistic function in a similar way as done in Section C.3. Therefore the reactions for the

first lock are written as:

τr1 = 1
1 + e−b(θ−θs)

(−kr(θ − θs) + τν1) (D.2)

τν1 =

 0 for θ̇ < 0
−θ̇ν otherwise

(D.3)

In the case of the second lock the conditions are slightly modified as follows:

τr2 = 1
1 + e−b(θ−θi)

(−kr(θ − θi) + τν2) (D.4)

τν2 =

 0 for θ̇ > 0
−θ̇ν otherwise

(D.5)

In the same way as in Section C.3 a conditional viscous force is introduced in order to

avoid the sticky behavior observed in some of the one point contact models. The model

is controlled by the same parameters shown in Section D.1 with the same functions.

Finally the complete code of this model is listed down in this section.
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model Revolute4 "Revolute joint with locks , continous contact"

import Cv = Modelica.SIunits.Conversions;

import SI = Modelica.SIunits;

import Walking_robots2.Functions.*;

parameter Cv.NonSIunits.Angle_deg phi_lock1=-90

"Position of the mechanical lock 1"

parameter Cv.NonSIunits.Angle_deg phi_lock2=90

"Position of the mechanical lock 2";

parameter Real k_lock = 30000 "Spring constant";

parameter Real nu_lock = 5000 "Damping constant";

SI.Torque tau_lock1; // Reaction at lock 1

SI.Torque tau_lock2; // Reaction at lock 2

SI.Torque tau_motor; // Motor torque

extends Modelica.Mechanics.MultiBody.Joints.Revolute(final tau =

tau_motor+tau_lock1+tau_lock2);

Real tau_nu1 "Dummy to desactivate damping";

Real tau_nu2 "Dummy to desactivate damping";

Interfaces.connector_M conM

equation

if noEvent( w<0) then

tau_nu1 = w*nu_lock;

tau_nu2 = 0;

elseif noEvent( w>0) then

tau_nu1 = 0;

tau_nu2 = w*nu_lock;

else

tau_nu1 = 0;

tau_nu2 = 0;

end if;

tau_lock1 = logistic(-phi ,-Cv.from_deg(phi_lock1) ,12000)*

(-(phi-Cv.from_deg(phi_lock1))*k_lock - tau_nu1);

tau_lock2 = logistic( phi , Cv.from_deg(phi_lock2) ,12000)*

(-(phi-Cv.from_deg(phi_lock2))*k_lock - tau_nu2);

tau_motor=conM.torque;

conM.angle=phi;
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conM.w = w;

The function logistic() is defined as:

function logistic "Logistic function. (variable ,offset ,decay)"

input Real x;

input Real offset;

input Real decay;

output Real y;

algorithm

y :=1/(1 + exp(-decay*(x - offset)));

end logistic;




