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The shapes and general morphological properties of aggregates grown following the 'T/ rule 
(Vsurface ex IEI") [L. Niemeyer, L. Pietronero, and H. J. Wiessmann, Phys. Rev. Lett. 52, 1033 
(1984)] have been investigated. Vsurface is the velocity at the interface and E the electric field. The 
fractal dimension decreases monotonically from its diffusion-limited aggregation value ('T/ = 1) to 
a number indistinguishable from 1 at 'T/ ~ 4. Simultaneously, the multifractal properties become 
independent of'T/. An alternative method to generate large clusters, and gain insight into the growth 
process, is also presented. Various analytical approximations are discussed. 

PACS number(s): 82.20.Wt, 75.10.Jm, 75.10.Lp, 75.30.Ds 

I. INTRODUCTION 

Growth out of equilibrium is a fascinating, although 
poorly understood, topic. Extensive numerical work has 
revealed many features of some of the most widespread 
growth phenomena in nature. 

A good understanding exists, at the phenomenological 
level, of diffusion-limited aggregation (DLA) [1], which in 
turn describes many other pattern-formation situations. 
Moreover, it is deeply connected to solidification. It is 
known that the rich, fractal structure of DLA aggregates 
arises from the tip-splitting instability which is inferred 
from numerical and analytical calculations. Phenomeno­
logical schemes reproduce some of the most conspicuous 
global features, like the fractal dimension [2,3]. 

A comprehensive theoretical understanding is, how­
ever, lacking. The difficulty of the problem has lead us 
to analyze, in a systematic way, related growth processes 
where the complexity of the resulting patterns is much 
smaller. We focus on the TJ model, which follows the same 
growth rules as DLA [5], except for the fact that the ve­
locity at the interface depends on the field in a different 
way, v ex IEI'7. As such, this model is a reasonable ap­
proximation to the phenomenon of dielectric breakdown. 
The resulting aggregates for large values of TJ are simpler 
than DLA patterns (which corresponds to TJ = 1) [4]. An 
even simpler approximation, the Laplacian random walk 
(LRW), has been introduced [6, 7]. It is worth noting 
that even this simple model shows a nontrivial fractal 
structure [8]. 

1063-651 X/93/48(2)11296(9)1$06.oo 48 

In Sec. 11 we present our method of generation of ag­
gregates, and show typical examples. Section III dis­
cusses the multifractal spectra of the growth-site proba­
bility density (GSPD) of these aggregates [9]. In Sec. IV 
we present an alternative method of generating aggre­
gates, which allows for the formation of larger sys­
tems, and gives some additional insight into the na­
ture of the growth. A discussion of the main results is 
given in Sec. V. Finally, conclusions, open questions and 
prospects for the future are given in Sec. VI. 

In a previous work [10] the intriguing possibility that 
the TJ model effectively reduced to Laplacian walks above 
a critical TJ was suggested and preliminary tests were 
performed. This idea was motivated by recent analyt­
ical findings [11] on simplified growth models. In the 
present work, we further investigate this possibility. Pre­
vious studies of this model have been reported on in 
[5, 12] for the range TJ ::; 2, in [4] for TJ ::; 5 and very 
many small clusters, and very recently in [13] for TJ ::; 1. 
Interestingly, this last work provides evidence for another 
transition in the morphology of the aggregates. 

11. METHOD 

The main obstacle in the study of the TJ growth model 
has always been the generation of large aggregates. The 
difficulty arises from the fact that, although the model 
can be (at least for integer TJ) formulated in terms of ran­
dom walks [12], much in the same way as DLA, simula-
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tions become prohibitively time consuming for 1] ~ 2. On 
the other hand, as the value of E depends on a Laplacian 
field defined throughout the space between the growing 
aggregate and some external boundary, a time-consuming 
calculation is required after each growth event. More­
over, for high values of 1], the resulting patterns are very 
dilute, and soon reach the boundary. 

In the present work, we solve Laplace's equation in 
hexagonal lattices of different sizes (outer hexagon sides 
128,250, and 500, or, equivalently lattice sizes 256 x 256, 
500 x 500, and 1000 x 1000) to exclude possible finite-size 
effects. The choice of the hexagonal lattice was made to 
minimize anisotropy effects. Unlike the square lattice, 
the continuum limit of the discrete Laplace equation is 
isotropic up to sixth derivative terms. Typical aggregates 
for high 1]'S contain 300-400 particles for outer hexagon 
side 250, and 600-700 for outer hexagon side 500. For 
1] = 1 we can generate patterns with up to 20000 particles 
(for this value we did not study the largest lattice). An 
alternative method, which can be used to obtain even 
larger aggregates, is discussed in Sec. IV. 

After the growth process has finished, aggregates are 
characterized by means of several parameters, most re­
markably two: the fractal dimension and the multifrac­
tal spectrum of the GSPD. As for the first one, two dif­
ferent definitions of fractal dimension have been used, 
namely, standard mass-radius scaling and box counting. 
As the former turned out to be much less precise than the 
latter, we eventually chose box counting as our fractal­
dimension-measurement algorithm. Our second indicator 
is the multifractal spectrum of the GSPD, which we de­
fine, following [9], as the probability that a perimeter site 
becomes part of the cluster in the next growth step. We 
again calculate this characteristic function, f (a), in two 
ways: by Legendre transforming the box-counting gener­
alized dimensions Dq [14], and by the direct procedure 
proposed by Chhabra and Jensen [15]. The reason for us­
ing both methods is the great inaccuracy of the Legendre­
transform algorithm in the negative-q (right-a side) re­
gion of the spectrum. The so-obtained results showed 
an extremely good agreement, which gives us confidence 
in our spectrum calculations. Satisfactory comparison to 
previous results [4,16] further supports our conclusions. 
Other auxiliary parameters we considered are the ratio 
of the number of particles in the aggregate to the diame­
ter of the lattice (two times the outer hexagon side), and 
the ratio of the number of particles in the aggregate to 
the number of particles in its perimeter. Finally, it is 
important to realize that the singularities of the patterns 
are also related to the noise which is generated during 
the growth process, which some of us have also studied 
[17]. The present results are consistent, and improve the 
results reported in [17]. 

To conclude this section, some comments are in order 
on how we obtain our results and what is the subsequent 
error. The values of TJ studied range from 0 to 10, in in­
crements of 1 (we took 0.5 when analyzing the most in­
teresting regions). The results are averaged over at least 
three aggregates for each 1] value and each size. For TJ = 
4,6, and 8 we checked our results taking averages over 15 
aggregates. The error bars in the results are calculated 

from the square root of the sum of squares of the statis­
tical spread between different realizations, the inherent 
limitations of the box-counting method, and the errors 
of the linear regressions required in all the computations. 
Even with all these limitations, we get accuracies better 
than a few percent. It seems very difficult to us to get 
much better results, which are needed in order to find a 
possible sharp transition and to characterize it, without 
using an exceedingly greater amount of computer time. 

Ill. NUMERICAL RESULTS 

In Fig. 1 we present typical aggregates for 1] = 
1,2,4,6,8, and 10. From the general shape of these ag­
gregates, we can distinguish two different regimes: pat­
terns which show a proliferation of tip splittings (1] ;S 4), 
and patterns which show no tip splitting, and which look 
like a thin ribbon (TJ i2: 4). The latter are almost indistin­
guishable from LRW's [6,7]. The main difference comes 
from the presence, in our systems, of a small number of 
short side branches scattered along the aggregate. 

The corresponding singularity spectra are shown in 
Fig. 2. These 1(0.) curves show various characteristic 
behaviors: 

(i) For 1] = 1, there is a broad tail for large values of 
a. It means a large number of very weak singularities, 
which arise from regions of the aggregate where screening 
is important. 

(ii) This tail disappears for a i2: 2. 
(iii) Finally, when we reach the region 1] i2: 4, the func­

tion 1(0.) changes little, if at all. Its shape is much nar­
rower than in the previous regimes, meaning that the 
shapes are well described by a few parameters. However, 
it retains a finite width, signalling that some multifractal 
character remains. This width is significantly larger than 
our numerical accuracy. 

Figure 3 shows the fractal dimension of the aggregates, 
as function of TJ. The curve becomes indistinguishable 
from 1 for 1] ~ 6. Our results do not exclude the pos­
sibility of a sharp transition at a finite value of 1]. This 
possibility is supported by the ratio of the number of 
particles to hexagon size (see Fig. 4) which becomes less 
than 1 for 1] ;S 4, indicating that the cluster fits inside 
the lattice without deviating from a straight line, and 
by the ratio of the number of particles to perimeter size, 
that reaches the value 2 in the same 1] region, a behavior 
again typical of a branchless structure (see Fig. 5). It is 
worth noting that an aggregate may have branches of a 
finite size above the transition to D f = 1. The fact that 
the ratio plotted in Fig. 5 goes smoothly to 2 possibly 
indicates that small branches survive at high values of 1]. 

The average size tends continously to zero as 1] -+ 00. 

IV . .,., AGGREGATES AS CHARGED SYSTEMS 

The 1] aggregates can be thought of as charged metallic 
systems at constant potential. Their inner charge distri­
bution, plus additional charges at the external boundary, 
give rise to fields which, in turn, determine the growth. 
For a given shape, represented by a discrete set of sites, 
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FIG. 1. Typical aggregates obtained for different values of 1/. (a) 1/=1, (b) 1/=2, (c) 1/=4, (d) 1/=6, (e) 1/=8, (f) 1/=10. 
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FIG. 2. Function f(a.) for different values of.". (a) .,,=1, (b) .,,=2, (c) .,,=4, (d) .,,=6, (e) .,,=8, (f) .,,=10. 
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FIG. 3. Fractal dimension D as a function of.,.,. 

the calculation of the charge distribution can be reduced 
to the inversion of a matrix, with as many entries as 
sites. This scheme, also referred to as the Green's func­
tion method, has been used to determine the charges, 
fields, and growth probabilities in the "1 and related mod­
els. Its main limitation is the impossibility of manipulat­
ing large matrices. The maximum sizes achieved in this 
fashion contain around 500 particles [4]. 

On the other hand, the charges within the aggregate 
vary little in regions where screening is important, or far 
away from tips and wedges. This property has lead us to 
simplify the problem by assuming that the charge distri­
bution, within the aggregate, is constant within blocks 
of different sizes. These sizes are adjusted so that the 
total charge within each block changes little from block 
to block. Assuming this stepwise constant distribution 
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FIG. 4. Mean number of particles in the aggregates as 
a function of.,.,. The dashed line shows the diameter of the 
cell used in the calculations. The lattice diameter is twice the 
outer hexagon side and is equal to the square lattice side used 
to parametrize the hexagonal lattice and also to the maximum 
straight length which fits inside the outer hexagon. 
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FIG. 5. Mean ratio between the particles at the perimeter 
of an aggregate and those within it. 

of charges, the number of independent variables to be 
adjusted is equal to the number of blocks. The ques­
tion of finding the charge distribution which gives rise 
to a constant potential throughout the aggregate can be 
formulated as the determination of the charge distribu­
tion which minimizes the electrostatic energy, with the 
total charge fixed. Cast in this way, the problem to be 
solved is easily constrained to stepwise constant-charge 
distributions. Once the charges are known, the growth 
probability can be computed, and new sites added to the 
aggregate. 

The formulation of the growth process in terms of 
charges internal to the aggregate has the advantage of 
getting rid of the external electrode, and its associated 
boundary effects. The limitations of the method can be 
checked by changing the number of blocks in which the 
aggregate is divided each time. In our calculations we 
find good convergence for "1 ?: 3 and 300-500 blocks. 
While this method gives good examples of small DLA 
clusters ("1 = 1), a high numerical accuracy is required 
to generate large systems with small values of "1. For 
simplicity, the growth process is defined so that a grow­
ing site within the aggregate is chosen, with probability 
proportional to the charge at that site to the "1 power. 
Then, all nonoccupied neighboring sites are added to the 
aggregate. As there is a direct correspondence between 
the charges at the boundary of the aggregate and the 
electric field outside it, we think that this is not a serious 
alteration of the model. 

Typical results for aggregates are shown in Fig. 6. The 
positions and sizes ofthe blocks used are shown in Fig. 7. 
In Fig. 8 we show the charge distribution near one of the 
tips of the growing aggregate. Our simulations do not 
change the results discussed in the preceding section. The 
same regimes and shapes, as functions of "1, are recovered. 
This implies that the outer electrode, used within the 
standard method, does not influence the results. On the 
other hand, the change in the way the growth process 
is implemented also seems to leave the global properties 
unchanged. 
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V. DISCUSSION 

All the results presented previously show that there 
is a trend towards simpler patterns as the value of.,., is 
increased. The tip-splitting instability disappears, lead­
ing to ribbonlike aggregates. Then, the shapes of these 
patterns lose structure, becoming more and more similar 
to the Laplacian random path already discussed. This 
analogy can be pursued further, by looking at the to­
tal growth far from the tip as a function of.,.,. We can 
assume that near the tip, the electric field decays as 
rv 1/ JIRtip - RI. This is the distribution of charge at 
the tip of a sharp needle. If the tip is moving, as a first 
approximation, in a straight line and at constant velocity, 
the amount of material deposited at a given site is 

M(R,t) = ktiP=R IRtip(t) - RI-~dt, 
(1) 

Rtip{t) = Ro + Vtipt. 
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FIG. 6. Typical aggregate obtained using 
the method described in Sec. IV (71 = 8) . 

The total mass M{R) deposited at all sites between the 
seed and R, between t = 0 and t -t 00, can be calculated 
by integration over Rand t. Its value is finite for.,., 2:: 4. 
Thus, we can conclude that a thin ribbon can be the 
stable shape for high values of.,.,. Note that the same 
argument, for.,., = 1, gives that a point separated by a 
distance D from the tip, accumulates a mass proportional 
to\fi5. This result can be seen as a simple approximation 
to the parabolic shape of a deterministic finger in DLA 
and dendritic growth. 

The analysis in the preceding paragraph suggests that 
the random walk is a good approximation to the.,., aggre­
gates for.,., 2:: 4. Thus, we need only to keep track of the 
propagating tip, whose growth is determined by the elec­
tric field generated by the charges distributed throughout 
the aggregate. Let us assume that the walk, at a given 
instant, is parametrized by an intrinsic coordinate, the 
total length T, and the angle of its motion with respect 
to a fixed coordinate system, fJ{ T). Then, the coordinates 
X, Y of the tip at a given instant are such that 

400 

FIG. 7. Blocks generated when dividing 
an aggregate, for 1'/ = 8. The number of 
points withi:q the aggregate is 6100. Only the 
region nellr on~ of the tips is shown. 
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FIG. 8. Charges near the tip of the ag­
gregate shown in Fig. 7 . 
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8r = cos[O(r)], 

(2) 

~~ = sin[O(T)]. 

The field at the growing tip, assuming that the path 
starts at T = 0 and ends at r = ra, will be 

E fTo d () X(To)-X(T) 
., = Jo Tp T [X(TO) X(T)]"+[Y(TO) Y(T)]2' 

(3) 
E fTO d () Y(TO)-Y(T) 

Y = Jo rp r [X(TO) X(T)]2+[Y(TO) Y(T)]2 

with the values of X (r) and Y (r) given by the integral of 
Eq. (1). The function per) gives the charge distribution 
along the path. 

A straight needle is given by OCr) = const. Modifica­
tions of this shape will arise when the electric field at the 
tip will deviate from the direction of growth, defined by 
O. If these the deviations are small, we can write 

:! = k[-E., sin(O) + Ey cos(O)] (4) 

where the constant k depends on 'T}, and tends to a finite 
value for 'T} -+ 00. This value, as well as the general 
dependence of k on 'T}, is not universal, and will depend 
on the short-distance cutoff used to define the charges 
and fields. 

For a straight needle we can analytically compute p( r). 
We will assume that the corrections to that value will 
depend on the local radius of curvature, which is prop or" 
tional to (80/ 8r ) -1. Then, for a path of length TO, we 
have 

per) = +0 - . A (80) 
y'T(TO - T) 8r 

(5) 

This set of equations should contain the most relevant 
physics of a Laplacian random walk, except for the noise. 
It is easy to see that they always describe a straight nee­
dle at large scales. The reason is schematically shown 
in Fig. 9. The field at the tip of the growing aggregate 

comes mostly from the region near the tip itself, plus 
contributions from the rest of the system, most notably 
the other end and the regions of high curvature. Then, 
the field will tend to heal any deviation, over long scales, 
from a straight line between the starting and the final 
points. The same effect should take place if the two ends 
are growing simultaneously. 

It is interesting to note that, in polar coordinates, and 
taking the initial point as the origin, the angular coordi­
nate at the tip changes in a monotonic fashion. The an­
gular component of the field has a sign determined by the 
initial conditions (see Fig. 9), which is conserved during 
the growth process. Thus, the system, before reaching its 
steady state, has a tendency to develop spiral patterns. 
The pitch of the spiral increases with time, so that the 
shape becomes more straight as the system grows. This 
effect is clearly distinguishible in many simulations (see 
Fig. 10), although difficult to characterize quantitatively. 

From previous analysis, we infer that the noise plays a 
crucial part in determining the global shape of the aggre­
gate. We will analyze it using, as in the previous case, 
the high 'T} limit as a starting point. 

We assume that, in this limit, the shape of the aggre-

Field due to the tip 

Field due to the 
other end 

Propagating tip 

Seed 

FIG. 9. Schematic view of the forces which determine the 
growth of an aggregate at high values of 1/. See text for details. 



48 GROWTH AND FORMS OF LAPLACIAN AGGREGAmS 1303 

7)=8, 500 x 500 lattice, 684 particles 

I 
o 

I 
50 

I 
100 

I 
150 

lattice units 

I 
200 

I 
250 

FIG. 10. Spiral aggregate obtained for '1'/ = 8. 

gate resembles that of a straight needle. It implies that 
the probability for the tip to move forward is greater 
than the probability to move sideways or backward. 
In addition, a straight needle is generated only if the 
probabilities of moving to the right and to the left are 
equal. Otherwise, the tip of the needle will eventually 
deviate from its path, and assumed shape is unstable. 
From conformal-mapping or numerical arguments it can 
be shown that, indeed, the probability for the tip of a 
straight needle to move forward exceeds the probability 
for all other deviations. 

Within this picture, which so far is equivalent to a 
directed random walk, a small amount of noise will lead 
to a random distribution of kinks along the body of the 
needle. These kinks modify the spatial distribution of 
charges along the needle, and, hence, the electric field at 
the growing tip. A kink will enhance the probability that 
another kink of the same sign will be formed. That is so 
because it will increase the component of the field in the 
direction defined by the kink itself. 

We can formulate this picture more precisely by as­
suming that the directed walk that we are considering 
can be approximated by a needle, and, associated with 
it, there is a preferred direction, which we will take to be 
the X axis. The origin of the directed walk is at Y = o. 
Then, the Y coordinate of the growing tip is determined 
by the number of kinks along the needle: 

Y(X) = LX p(X')dX' (6) 

where p(X) is the kink density. Assuming that the charge 
of the kink located at X is q(X), the deviation of the tip 
from the X axis will be 

dY = k (x (X') (X') Y(X) - Y(X') 
dX lo p q (X - X')2 . (7) 

k is a constant which, as in Eq. (3), depends in a nonuni­
versal way on 7]. These two equations determine the 
shape of the walk. As have been derived under the as­
sumption that there is a preferred direction, they are only 
consistent if limx --'00. dY / dX = O. 

We have estimated numerically the function q(X), 
when there are few kinks present, in an otherwise straight 
needle. Our results, with a high degree of accuracy, are 
consistent with the expression q(X') ex 1/ y'X'(X - X'), 
which can be easily explained by assuming that the kinks 
only change the geometrical shape of the needle. We now 
can insert this result into Eq. (6), and check for possi­
ble shapes. The simplest assumption is a power law at 
large scales, Y ,...., XOl. Power counting shows that the 
only possible value of a is 2. Thus, our analysis does not 
support the hypothesis of a straight needle with a small 
density of kinks. The origin of this effect can be traced 
back to the strong influence that the kinks near the tip 
exert on the direction of the walk. They affect a large 
amount of charge, which has a maximum at the tip. Be­
sides, the geometrical factor which enters into Eq. (6) is 
also largest for a kink near the tip. 

VI. CONCLUSIONS 

We have analyzed the morphology of aggregates gen­
erated with the 7]-rule growth law. These systems show a 
variety of shapes of different complexity. From a detailed 
study of their multifractal spectra, we infer that at least 
three different regimes can be distinguished. 

(i) DLA patterns, with many branches at all scales, and 
tip splitting. They show a long tail in the high a side of 
their /(a) curves. They contain large regions with weak 
fields, where screening is important. They exist for low 
values of 7] ~ 2. 

(ii) Branched, but dilute patterns. The difference with 
the previous type is that tip splitting seems to be absent. 
They can be found for 2 ~ 7] ~ 5. 

(Hi) Thin, ribbonlike structures. They have no side 
branches. They are found for 7] ~ 5. Within our accu­
racy, they are indistinguishable from the Laplacian ran­
dom walks, discussed in the literature [6,7]. They show 
some multifractal features, clearly recognizable above our 
numerical accuracy. The / (a) curve, however, although 
nontrivial, does not show a strong dependence on the 
value of 7]. 

We support the equivalence of aggregates within class 
(Hi) and random walks with analytical arguments. We 
propose simple schemes for the study of these walks. 
Among other effects, our analysis suggests that the pat­
terns generated tend to have a definite chirality, deter­
mined by the initial conditions. This property, along 
with a characteristic spiral shape at the initial stages of 
growth, can be appreciated in many aggregates generated 
with high values of 7]. 
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We can also infer that noise is an essential ingredient 
in the pattern formation process. Moreover, the models 
considered include the parameter Tt in a nonuniversal way. 
That is so because, in a random walk, the most relevant 
feature is the difference between the forward and lateral 
motion of the growing tip. This quantity depends on 
details such as the type of lattice and the width of the 
tip. This is an intriguing result, which implies that the 
fractal dimension of the Laplacian random walk need not 
have a universal dependence on Tt. Further work in this 
direction, as well as on the possibility of 1/", expensions, 
is under way. 
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