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Abstract

In this paper we consider a sieve bootstrap method for constructing nonparametric prediction intervals for
a general class of linear processes. We show that the sieve bootstrap provides consistent estimators of the
conditional distribution of future values given the observed data.
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1. Introduction

An important question in empirical time series analysis is how to predict the future values of
an observed time series on the basis of its recorded past, and more speci6cally how to calculate
prediction intervals. A traditional approach to these questions assumes that the series {Xt}t∈Z follows
a linear 6nite dimension model with a known errors distribution, e.g. a Gaussian autoregressive-
moving average ARMA(p; q) model as in Box and Jenkins (1976). In addition, some bootstrap
approaches have been proposed in order to avoid the use of a speci6ed errors distribution, see e.g.
Stine (1987) and Thombs and Schucany (1990) for AR(p) models, and Pascual et al. (1998) for
ARMA(p; q) models.
In Alonso et al. (2002) we propose an AR(∞)-sieve bootstrap procedure to construct prediction

intervals for a general class of linear models that includes stationary and invertible ARMA processes.
We illustrate with an extensive Monte Carlo study showing that sieve bootstrap prediction intervals
provide better coverage results than some previous methods in general cases (see also Alonso et al.
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(2000) for additional simulations and real data examples). Our approach uses the sieve bootstrap of
Kreiss (1992) and BEuhlmann (1997) based on residual resampling from a sequence of approximating
autoregressions for {Xt}t∈Z with order p = p(n) that increases as a function of the sample size n.
The proposed bootstrap prediction intervals could be applied to a more general class of linear models
without specifying a 6nite dimensional model as have done previous bootstrap proposals.
The paper is organized as follows. Section 2 presents the sieve bootstrap for estimating fore-

cast intervals. Section 3 establishes that the sieve bootstrap provides consistent estimators of the
conditional distribution of future values XT+h.

2. Sieve bootstrap forecast intervals

Let {Xt}t∈Z be a real valued stationary process with expectation E[Xt]=�X , that admits an AR(∞)
representation. The method proceeds as follows:
1. Given a sample {X1; : : : ; Xn}, select the order p=p(n) of the autoregressive approximation by

AICC criterion (cf. Section 9.3 of Brockwell and Davis, 1991).
2. Obtain the Yule–Walker estimators of the autoregressive coeLcients: (̂1; ̂2; : : : ; ̂p)t.
3. Compute the residuals: �̂t =

∑p
j=0 ̂j(Xt−j − NX ), where ̂0 = 1, and t ∈ (p+ 1; : : : ; n).

4. Compute the empirical distribution function of the centered residuals: F̂ �̃(x) = (n − p)−1∑n
t=p+1 1{�̃t6x}, where �̃t = �̂t − �̂(·) and �̂(·) = (n− p)−1

∑n
t=p+1 �̂t .

5. Draw a resample �∗t of i.i.d. observations from F̂ �̃.
6. De6ne X ∗

t by the recursion:
p∑

j=0

̂j(X ∗
t−j − NX ) = �∗t ; (2.1)

where the starting p observations are equals to NX .
Up to this step, the resampling plan coincides with the sieve bootstrap, and is valid for bootstrap-

ping some statistics de6ned as a functional of an m-dimensional distribution function. However, it
is not ePective for bootstrap prediction, because it does not replicate the conditional distribution of
XT+h given the observed data. But, if we proceed by 6xing the last p observations as done in Cao
et al. (1997) we can obtain resamples of the future values X ∗

T+h given X ∗
T−p+1=XT−p+1; : : : ; X ∗

T =XT .

7. Compute the estimation of (̂∗
1 ; : : : ; ̂

∗
p)
t, as in Step 2.

8. Compute future bootstrap observations by the recursion:

X ∗
T+h − NX =−

p∑
j=1

̂∗
j (X

∗
T+h−j − NX ) + �∗t ; (2.2)

where h¿ 0, and X ∗
t = Xt , for t6 T .

Finally, F∗
X ∗
T+h
the bootstrap distribution of X ∗

T+h is used to approximate the unknown distribution
of XT+h given the observed sample. The (1− �)% prediction interval for XT+h is given by

[Q∗(�=2); Q∗(1− �=2)]; (2.3)

where Q∗(·) are the quantiles of the estimated bootstrap distribution.
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3. Asymptotic results

The asymptotic validity of the proposed intervals (2.3) depends on the limiting behavior of the
distribution F∗

X ∗
T+h
, and it is suLcient to establish convergence in the conditional distribution of

the bootstrap version X ∗
T+h to XT+h. Notice that the proposed bootstrap procedure has two main

parts: (i) obtaining the estimates ̂∗
p in order to have information about the distribution of ̂p, and

(ii) computing the future values X ∗
T+h. First, in Proposition 1, we prove the convergence in probability

of ̂∗
p to ̂p, and in Theorem 1 we prove the large-sample validity of a conditional sieve approach.
We now consider the precise assumptions about the stationary process {Xt}t∈Z required to prove

our results.

Assumption A1. Xt − �X =
∑+∞

j=0  j�t−j,  0 = 1 (t ∈Z) with {�t}t∈Z i.i.d. and E[�t|Ft−1] ≡ 0,
E[�2t |Ft−1] ≡ �2¡∞, E[|�t|s]¡∞ for some s¿ 4, and Ft−1 is the �-6eld generated by {�s}t−1

s=−∞.

Assumption A2. �(z) is bounded away from zero for |z|6 1, and ∑+∞
j=0 jr| j|¡∞ for some r ∈N.

Additionally, we impose the following assumption about the autoregressive approximation:

Assumption B. p = p(n) → ∞, p(n) = o(n) (n → ∞), and the ̂p = (̂1; n; : : : ̂p;n)t satisfy the
empirical Yule–Walker equations

�̂p̂p =−�̂p; (3.1)

where �̂p = [R̂(i − j)]pi; j=1, �̂p = (R̂(1); : : : ; R̂(p))
t, and R̂(j) = n−1

∑n−|j|
t=1 (Xt − NX )(Xt+|j| − NX ).

Our 6rst result is analogous to Theorem 3.1 (a) of Thombs and Schucany (1990) about a 6nite
autoregression. It also generalizes (for these particular statistics) Theorem 3.3 of BEuhlmann (1997),
since we are considering an increasing-size vector of statistics.

Proposition 1. Suppose that assumptions A1 with s=4, A2 with r ¿ 2 and B with p=
o(n=log(n))1=(2r+2) hold. Then

max
16j6p(n)

|̂∗
j − ̂j| P

∗→0; in probability: (3.2)

Proof. The vector ̂∗
p is de6ned by the bootstrap empirical Yule–Walker equations

�̂∗
p̂

∗
p =−�̂∗p; (3.3)

where �̂∗
p=[R̂

∗(i− j)]pi; j=1, �̂
∗
p=(R̂

∗(1); : : : ; R̂∗(p))t, and R̂∗(j)=n−1
∑n−|j|

t=1 (X
∗
t − NX ∗)(X ∗

t+|j|− NX ∗).
Then

‖̂∗
p − ̂p‖∞ = ‖(�̂−1

p − �̂∗−1
p )�̂∗p + �̂−1

p (�̂p − �̂∗p)‖∞
6 ‖�̂∗−1

p − �̂−1
p ‖row‖�̂∗p‖∞ + ‖�̂−1

p ‖row‖�̂∗p − �̂p‖∞; (3.4)

where ‖x‖∞ = max16i6p |xi|, and ‖X ‖row = max16i6p
∑p

j=1 |Xi;j|.
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From the proof of Theorem 2.1 of Hannan and Kavalieris (1986), we have that ‖�̂p‖row
and ‖�̂−1

p ‖row are uniformly bounded in p. Since �̂−1
p − �̂∗−1

p = �̂−1
p (�̂

∗
p − �̂p)�̂∗−1

p , and
‖�̂∗

p − �̂p‖row6 |�̂∗0 − �̂0|+ 2‖�̂∗p − �̂p‖1, we can concentrate our attention on this last term
‖�̂∗p − �̂p‖16 ‖�̂∗p − �p‖1 + ‖�p − �̂p‖1: (3.5)

From Theorem 3 of An et al. (1982), the second term is Oa:s:((n=log(n))−r=(2r+2)).
Since

‖�̂∗p − �p‖∞6 ‖�̂∗p − �p‖16p1=2‖�̂∗p − �p‖2; (3.6)

to get convergence to zero in (3.4), it is enough to consider the last term in (3.6).

‖�̂∗p − �p‖22 =
p∑

k=1

(R̂∗(k)− R(k))2

6 2
p∑

k=1

(R̂∗(k)− E∗[R̂∗(k)])2 + 2
p∑

k=1

(E∗[R̂∗(k)]− R(k))2

= 2(S1 + S2): (3.7)

But S2 = OP((n=log(n))−(2r−3)=(2r+2)), since

S2 =
p∑

k=1


E∗[�∗ 21 ]

+∞∑
i=0

+∞∑
j=0

 ̂ i; n ̂ j;n*i+k; j − E[�21]
+∞∑
i=0

+∞∑
j=0

 i j*i+k; j



2

; (3.8)

where *i; j = 1 if i = j, and 0 otherwise, and �̂(z) =
∑+∞

i=0  ̂ i; nzi = +̂(z)−1 which is well de6ned
because +̂(z) is always causal (cf. Brockwell and Davis, 1991). Now,

S2 =
p∑

k=1


E∗[�∗ 21 ]

+∞∑
i=0

+∞∑
j=0

( ̂ i; n ̂ j;n −  i j)*i+k; j

+(E∗[�∗ 21 ]− E[�21])
+∞∑
i=0

+∞∑
j=0

 i j*i+k; j



2

6 2
p∑

k=1


E∗[�∗ 21 ]

+∞∑
i=0

+∞∑
j=0

( ̂ i; n ̂ j;n −  i j)*i+k; j



2

+ 2
p∑

k=1


(E∗[�∗ 21 ]− E[�21])

+∞∑
i=0

+∞∑
j=0

 i j*i+k; j



2

= I1 + I2: (3.9)

Theorem 3.1 and 3.2 of BEuhlmann (1995) establishes the following results:

sup
i∈N

| ̂ i; n −  i|=Oa:s:((log(n)=n)1=2) + Oa:s:(p−r) (3.10)
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and

sup
n¿n1

+∞∑
i=0

ir| ̂ i; n|=Oa:s:(1); (3.11)

where n1 is a random variable.
Using the above results, we have that I1 = OP((n=log(n))−(2r−3)=(2r+2)), since

I16 2E∗[�∗ 21 ]
2p



+∞∑
i=0

+∞∑
j=0

| ̂ i; n ̂ j;n −  i j|


2

6 2E∗[�∗ 21 ]
2p



+∞∑
i=0

+∞∑
j=0

| ̂ i; n j −  i j|+
+∞∑
i=0

+∞∑
j=0

| ̂ i; n ̂ j;n −  ̂ i; n j|


2

= OP(p)(Oa:s:((log(n)=n)1=2p) + Oa:s:(p−r+1) + oa:s:(p−r))2

= OP((n=log(n))−(2r−3)=(2r+2)): (3.12)

Under Assumptions A1 and B of this proposition, we can establish a stronger conclusion that in
Lemma 5.3 of BEuhlmann (1997), in fact

E∗[�∗2t ]− E[�2t ] = oP((log(n)=n)
1=2p): (3.13)

Therefore,

I2 = oP((log(n)=n)p3) = oP((n=log(n))−(2r−1)=(2r+2)): (3.14)

For the other term in (3.7), we have S1 = OP(n−1(n=log(n))1=(2r+2)), since

S1 =
p∑

k=1


n−1

n−k∑
t=1

+∞∑
i=0

+∞∑
j=0

 ̂ i; n ̂ j;n�∗t−i�
∗
t+k−j −

+∞∑
i=0

+∞∑
j=0

 ̂ i; n ̂ j;nE∗[�∗ 21 ]*i+k; j



2

=
p∑

k=1

n−2
n−k∑
t; s=1

+∞∑
i; j=0

+∞∑
h;l=0

 ̂ i; n ̂ j;n ̂ h;n ̂ l;n (�∗t−i�
∗
t+k−j − E∗[�∗ 21 ]*i+k; j)

× (�∗s−h�
∗
s+k−l − E∗[�∗ 21 ]*h+k; l): (3.15)

Taking E∗ in the above expression, we have

E∗[S1] =
p∑

k=1

n−2
n−k∑
t; s=1

+∞∑
i; j=0

+∞∑
h;l=0

 ̂ i; n ̂ j;n ̂ h;n ̂ l;n(E∗[�∗t−i�
∗
t+k−j�

∗
s−h�

∗
s+k−l]

−E∗[�∗ 21 ]
2*i+k; j*h+k; l): (3.16)
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Notice that

E∗[�∗t−i�
∗
t+k−j�

∗
s−h�

∗
s+k−l] =




E∗[�∗ 41 ] if t − i = t + k − j = s− h= s+ k − l;

E∗[�∗ 21 ]
2 if two pairs diPerent indices;

0 otherwise

: (3.17)

and

E∗[�∗t−i�
∗
t+k−j�

∗
s−h�

∗
s+k−l]− E∗[�∗ 21 ]

2*i+k; j*h+k; l

=




E∗[�∗ 41 ]− E∗[�∗ 21 ]
2 if t − i = t + k − j = s− h= s+ k − l;

0 if t − i = t + k − j = s− h= s+ k − l;

E∗[�∗ 21 ]
2 if t − i = s− h = t + k − j = s+ k − l;

or t − i = s+ k − l = s− h= t + k − j;

0 otherwise:

(3.18)

Because of Theorem 3.2 of BEuhlmann (1995), we have for some random variable n1 that supn¿n1∑+∞
i; j; h; l=0  ̂ i; n ̂ j;n ̂ h;n ̂ l;n = Oa:s:(1). On the other hand, in (3.16) when we 6x the indices i, j, h

and l, the sum
∑n−k

t; s=1 (·) includes at most n− k nonzero summands. Then, E∗[S1] = OP(pn−1).
Finally, we have

p1=2‖�̂∗p − �p‖2 = OP((n=log(n))−(r−2)=(2r+2)) (3.19)

and the Assumption A2 with r ¿ 2 concludes the proof.

The following theorem, gives the consistency of the conditional sieve bootstrap, i.e., without
Step 7 in our proposed algorithm, as in Cao et al. (1997).

Theorem 1. Suppose that assumptions A1 with s=4, A2 with r=1 and B with p=o((n=log(n))1=4)
hold. Then

X ∗
T+h

d→XT+h; in probability: (3.20)

Proof. We can write XT+h and X ∗
T+h as

XT+h =−
+∞∑
j=1

jXT+h−j + �T+h; (3.21)

X ∗
T+h =−

+∞∑
j=1

̂j;nX ∗
T+h−j + �∗T+h; (3.22)

where ̂j;n denote the estimates of j with a sample of size n: (XT−n+1; : : : ; XT ), ̂j;n=0 for j¿p(n),
and X ∗

t = Xt for t6 T . For simplicity of notation we prove the theorem for h= 1:
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From Lemma 5.4 of BEuhlmann (1997), we have �∗T+1
d→ �T+1, in probability. Then, only rest to

prove that the diPerence of 6rst term in X ∗
T+1 and XT+1 goes to 0 in probability

−
+∞∑
j=1

(̂j;n − j)XT+1−j =−
p(n)∑
j=1

(̂j;n − j)XT+1−j +
+∞∑

j=p(n)+1

jXT+1−j

= S1;1 + S2;1: (3.23)

First, we have S2;1 = oP((n=log(n))−r=(2r+2)), since

E[|S2;1|]6E[|Xt|]
+∞∑

j=p(n)+1

|j|= o(p−r) (3.24)

and second, we establish that S1;1 = OP((n=log(n))−r=(2r+2)). We have that

|S1;1|6
∣∣∣∣∣∣
p(n)∑
j=1

(̂j;n − j;n)XT+1−j

∣∣∣∣∣∣
+

∣∣∣∣∣∣
p(n)∑
j=1

(j;n − j)XT+1−j

∣∣∣∣∣∣
= I1 + I2; (3.25)

where p = (1; n; : : : ; p;n)t are de6ned by the theoretical Yule–Walker equation �pp =−�p.
For I1 we use the result in Theorem 2.1 of Hannan and Kavalieris (1986)

max
16j6p

|̂j;n − j;n|=Oa:s:((log(n)=n)1=2): (3.26)

Therefore,

I16




p(n)∑
j=1

(̂j;n − j;n)2



1=2


p(n)∑
j=1

X 2T+1−j



1=2

6p(n)1=2 max
16j6p

|̂j;n − j;n|OP(p(n)1=2) = OP(p(n)(log(n)=n)1=2)

= OP((n=log(n))−r=(2r+2)): (3.27)

For I2 we use the extended Baxter inequality (cf. Hannan and Deistler, 1988):

p(n)∑
j=0

|j;n − j|6 c
+∞∑

j=p(n)+1

|j|; (3.28)

where c is a constant depending on the true structure. Therefore,

E[I2]6E[|Xt|]
p(n)∑
j=1

|j;n − j|= o(p−r): (3.29)
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Finally,

−
+∞∑
j=1

̂j;nXT+h−j =
+∞∑
j=1

jXT+1−j +OP((n=log(n))−r=(2r+2)): (3.30)

Then, X ∗
T+1

d→X ∗
T+1 in probability.

For general h, it is clear that we could write the diPerence of 6rst terms in XT+h and X ∗
T+h as a

sum of some function f(1; : : : ; h−1; ̂1; n; : : : ; ̂h−1; n) (S1;1, and a term similar to S2;1). The second
terms in XT+h and X ∗

T+h are a “linear” combination of the corresponding (and independent) errors
(�T+1; : : : ; �T+h; �∗T+1; : : : ; �∗T+h).
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