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Abstract

In this paper we propose a new bootstrap test for unit roots in �rst-order autoregressive models
based on least absolute deviation (LAD) estimators. It is well known that the behaviour of this
estimator when the distribution is heavy tailed is very good compared with least-squares esti-
mation. The innovations distribution dependence of the LAD asymptotic law is overcome using
bootstrap, which automatically approaches the target distribution. Our strategy avoids the usual
problem of estimating the variance matrix and the density at zero, and makes also unnecessary
the construction of distribution free statistics through linear combinations with the least-squares
estimator. We provide the bootstrap functional limit theory necessary to prove the asymptotic
validity of the procedure. Moreover, a large simulation study shows that our test has very good
power behaviour compared with others proposed in the literature.
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1. Introduction

Let {Xt}; t = 1; 2; : : : be a �rst-order autoregressive process de�ned by
Xt = �Xt−1 + ut ; X0 = 0;

where {ut} is a sequence of independent and identically distributed random variables
with E(ut)= 0 and Var(ut)= �21¡∞. We are interested in testing the null hypothesis

H0: � = 1
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The best-known unit root test was proposed by Dickey and Fuller (1979) and is based
on the least-squares estimator of the parameter of the autoregressive process. Basawa
et al. (1991a, b) showed that the naive bootstrap fails in this context and presented a
modi�ed sequential bootstrap which correctly approaches the limit distribution of the
least-squares estimator. Ferretti and Romo (1996) considered a new approach resam-
pling from the estimated residuals and proved its validity. Our main interest in this
paper is to propose and study an alternative test based on a di�erent estimator, the
least absolute deviation estimator (LAD)

�̂LAD = argmin
�∈R

[
n−1

n∑
t=1

|Xt − �Xt−1|
]
: (1)

The literature about LAD-estimation is quite extensive. Basset and Koenker (1978)
found the asymptotic distribution of the least absolute deviation estimator of the re-
gression parameter with �xed regressors and stated that it is more e�cient than the
least-squares estimator for any error distribution for which the median is more e�cient
than the mean. Also in regression parameter estimation, Pollard (1991) proved that
the LAD estimator is asymptotically normal both for �xed and stochastic regressors.
As a particular case, he obtained the asymptotic distribution of the LAD estimator
of the parameter of a stationary �rst-order autoregressive process with �nite variance
errors, and he showed that, in the case of Cauchy errors, the rate of convergence is of
order n.
Knight (1989, 1991) studied the LAD estimator asymptotic distribution in an in-

tegrated �rst order autoregressive process for independent innovations with in�nite
variance. He compared it with the least-squares estimator and found that, in the case
of in�nite variance, the LAD estimator has a faster rate of convergence.
The problem of robust estimation of the parameters in autoregressive models is con-

sidered by Koul (1991) in the context of generalized M-estimators. The asymptotic
normality of the LAD estimator follows as a consequence of a more general result
contained in the paper. Also, Phillips (1991) considered the problem of LAD estima-
tion but from a di�erent point of view. His main interest was in adapting the classical
approach to this kind of non-regular problems using generalized functions. In an heuris-
tic way he established Knight’s (1989) results using this approach. For a complete and
deep treatment of this subject see Bloom�eld and Steiger (1983).
Herce (1996) considers the case of �nite variance even with non-independent er-

rors. In particular, when the errors are independent he establishes that, under certain
assumptions, when � = 1,

n(�̂LAD − 1) w→
∫ 1
0 B1 dB2

2f(0)
∫ 1
0 B

2
1

;

where B(s)=(B1(s); B2(s))′ is a bivariate Brownian motion that satis�es B(s)=�1=2W (s),
where W (s)=(W1(s); W2(s))′ is a standard Wiener process with sample paths in C[0; 1]2
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and independent components, and � is the covariance matrix of (ut ; sign(ut)); i.e.

�=
[
�21 �12
�12 �22

]
; (2)

where �21 = E[u
2
t ]; �12 = E[ut sign(ut)] = E[|ut |] and �22 = E[(sign(ut))2] = 1.

In this paper we will show that the bootstrap version of �̂LAD converges to the same
limit under adequate modi�cations to the general bootstrap framework. The aim is to
�nd a unit root test appropriate for series where the errors have �nite variance but
heavy tails. This is particularly interesting in �nancial series where the assumption of
normal distribution of the innovations is sometimes too strong. The simulations at the
end of the paper show that the test we propose has a very good behaviour in the
cases studied. Several distributions are considered and our robust unit root test seem to
behave very well compared with others proposed in the literature in all the cases; as
expected, it works specially well when the distribution is heavy tailed and symmetric.
In Section 2 the main results of this paper are presented: a bootstrap invariance

principle is proved and the main theorem shows that the procedure correctly replicates
the behaviour of the LAD-estimator. Section 3 shows how to use these results to test
the existence of a unit root and presents simulation work to analize its behaviour in
�nite samples. Finally, Section 4 concludes the paper.

2. Bootstrap least absolute deviation estimator

In this section we study the asymptotic behaviour of the bootstrap least absolute
deviation estimator when the innovations are independent and identically distributed
and they have both zero mean and median. We will propose a bootstrap scheme
that provides a valid procedure in this framework. The assumptions needed are the
following:

Assumption 1. {ut} is a sequence of independent and identically distributed random
variables with E(ut) = 0; E(sign(ut)) = 0; var(ut) = �21¡∞ (this could be considered
an almost symmetry condition).

Assumption 2. The density f of the errors {ut} is continuous and positive at 0.

These assumptions are those in Herce (1996) for independent errors. We present now
the resampling method we propose. A complete and general review of the bootstrap
literature can be found in Efron and Tibshirani (1993). The bootstrap for regression
and autoregression models is also considered in Gonz�alez Manteiga et al. (1994). Our
scheme is the following:

(i) Estimate �̂LAD as in (1) and obtain the sequence of residuals �t=Xt−�̂LADXt−1;
t = 1; : : : ; n.
(ii) Denote by F̂n the empirical distribution function based on {�t : t = 1; : : : ; n}

⋃
{−�t : t = 1; : : : ; n} and take a random sample {�∗n; t : t = 1; : : : ; n} from F̂n; so that, the
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random variables {�∗n; t : t = 1; : : : ; n} are independent and identically distributed with
distribution F̂n, conditionally on (X1; : : : ; Xn).
(iii) The bootstrap sample {X ∗

n; t : t = 1; : : : ; n} is then recursively obtained from the
model under H0 as X ∗

n; t = X
∗
n; t−1 + �

∗
n; t for t = 1; : : : ; n and X

∗
n;0 = 0.

Let F s be the symmetrized distribution function F s(x)= 1
2 [1+F(x)−F(−x)], where

F(·) is the distribution function of the errors. Note that in step (ii) we are resampling
from a distribution that mimics the behaviour of F s instead of F ; the reason to do this
is that it is a usual condition in this kind of problems to consider innovations with
mean and median equal to zero. We will see in the proof of the main theorem that this
fact does not a�ect the asymptotic distribution of the statistic even if the distribution
F is not symmetric.
The bootstrap LAD estimator is then de�ned as

�̂
∗
LAD = argmin

�∈R

[
n−1

n∑
t=1

|X ∗
n; t − �X ∗

n; t−1|
]
: (3)

The goal is to show that in this case the asymptotic distribution of n(�̂
∗
LAD − 1) is the

same as that obtained by Herce (1996) for the LAD estimators. To do this we need a
bootstrap invariance principle. We will start by proving the lemmas needed to establish
this invariance principle in Proposition 2.1.
We will use the following notation. Let a∗n; t = sign(�

∗
n; t) and

�̂=

[
Var∗(�∗n; t) Cov∗(�∗n; t ; a

∗
n; t)

Cov∗(�∗n; t ; a
∗
n; t) Var∗(a∗n; t)

]
=

[
�̂∗21 �̂∗12
�̂∗12 1

]
;

where �̂∗21 = var
∗(�∗n; t) = (2n)

−1∑ (�2t + (−�t)2) = n−1
∑
�2t ; and �̂

∗
12 = E

∗(�∗n; ta
∗
n; t) =

E∗(|�∗n; t |)=(2n)−1
∑
(|�t |+|−�t |)=n−1

∑ |�t | (note that �̂∗22 =var∗(a∗n; t)=1). Hereafter,
P∗; E∗;Var∗ and Cov∗ will denote, respectively, the bootstrap probability, expectation,
variance and covariance conditionally on the sample (X1; : : : ; Xn).
If we de�ne

�̂
1=2
=
[
S11 S12
S12 S22

]
(4)

so that

S211 + S
2
12 = �̂

∗2
1 ;

S11S12 + S22S12 = �̂
∗
12;

S212 + S
2
22 = 1;

we have that

�̂
−1=2

=
1
�

[
S22 −S12

−S12 S11

]
;
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where �= S11S22 − S212. Now,

�̂
−1=2

n−1=2
[ns]∑
t=1
(�∗n; t ; a

∗
n; t)

′ =


 n−1=2�−1∑[ns]

t=1 (S22�
∗
n; t − S12a∗n; t)

n−1=2�−1∑[ns]
t=1 (−S12�∗n; t + S11a∗n; t)


:

Finally, let us call

!∗(1)
n; t = S22�

∗
n; t − S12a∗n; t ;

!∗(2)
n; t =−S12�∗n; t + S11a∗n; t

(5)

and de�ne

S∗(i)n; k =
k∑
t=1
!∗(i)
n; t for i = 1; 2:

From this, we construct continuous-time processes by linear interpolation:

W ∗(i)
n (s) =�−1n−1=2S∗(i)n;[ns] + (ns− [ns])�−1n−1=2!∗(i)

n;[ns]+1

for s ∈ [0; 1] and i = 1; 2:

The �rst step is to prove the weak convergence of the �nite-dimensional distributions
for almost all samples (X1; : : : ; Xn).

Lemma 2.1. Conditionally on (X1; : : : ; Xn) and for almost all sample paths (X1; X2; : : :);
it holds that (W ∗(i)

n (s1); : : : ; W
∗(i)
n (sd))

w→ (Wi(s1); : : : ; Wi(sd)) as n tends to in�nity; for
all s1; : : : ; sd ∈ [0; 1]d and for i = 1; 2.

Proof. It is enough to show that, for all r; s ∈ [0; 1] and for i=1; 2, (W ∗(i)
n (r); W ∗(i)

n (s))
w→ (Wi(r); Wi(s)) almost surely. Now, conditionally on (X1; : : : ; Xn), it is easy to show

that ∣∣∣∣
∣∣∣∣(W ∗(i)

n (r); W ∗(i)
n (s))− �−1n−1=2

(
[nr]∑
t=1
!∗(i)
n; t ;

[ns]∑
t=1
!∗(i)
n; t

)∣∣∣∣
∣∣∣∣
∞

P∗
→ 0 a:s:

and it su�ces to prove that

�−1n−1=2
(
[nr]∑
t=1
!∗(i)
n; t ;

[ns]∑
t=1
!∗(i)
n; t

)
w→ (Wi(r); Wi(s)) a:s:

This is equivalent to show that, if r ¡ s, �−1n−1=2(
∑[nr]

t=1 !
∗(i)
n; t ;

∑[ns]
t=[nr]+1 !

∗(i)
n; t ) con-

verges weakly to (Wi(r); Wi(s) − Wi(r)) almost surely. But the components in the
left-hand side are conditionally independent random variables with zero mean and vari-
ance one and the result follows by the bootstrap central limit theorem for triangular
arrays obtained using Lindeberg’s condition.

Once we have weak convergence of �nite-dimensional distributions, we need to
prove the tightness of the sequence; to establish it, it is enough to prove the conditions
included in the next lemma (see, e.g., Karatzas and Shreve, 1991, pp. 68–71).
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Lemma 2.2. For i = 1; 2 it holds that:
(i) For all �¿ 0;

lim
�↓0

lim sup
n→∞

�−1P∗
{

max
16j6[n�]+1

|S∗(i)n; k |¿��n1=2
}
= 0

conditionally on (X1; : : : ; Xn) and for almost all sample paths (X1; X2; : : :).
(ii) For all �¿ 0 and T ¿ 0;

lim
�↓0

lim sup
n→∞

P∗


 max

16j6[n�]+1
06k6[nT ]+1

|S∗(i)n; j+k − S∗(i)n; k |¿��n1=2


= 0

conditionally on (X1; : : : ; Xn) and for almost all sample paths (X1; X2; : : :).

Proof. The proof of this lemma is similar to that in Karatzas and Shreve (1991) and
will not be included here.

Now, we are ready to establish the bootstrap invariance principle in probability; this
means that the distance between the law of the bootstrap statistic and the asymptotic
distribution tends to zero in probability for any distance metrizing weak convergence.

Proposition 2.1. For the sequences {�∗n; t : t = 1; : : : ; n} and {a∗n; t : t = 1; : : : ; n} de�ned
above; we have that

n−1=2
[ns]∑
t=1
(�∗n; t ; a

∗
n; t)

′ w→ B(s) in probability;

where B(s) = (B1(s); B2(s))′ = �1=2(W1(s); W2(s))′; W1(s) and W2(s) are independent
standard Wiener process and � is the covariance matrix in (2).

Proof. We have established in the previous lemmas that, for i = 1; 2,

�−1n−1=2S∗(i)n;[ns]
w→ Wi(s);

the joint weak convergence

�−1n−1=2
(
S∗(1)n;[ns]

S∗(2)n;[ns]

)
→
(
W1(s)
W2(s)

)

is obtained from Cov∗(S∗(1)n;[ns]; S
∗(2)
n;[ns])=0 and from the independence of the errors. Now,

given that the limit processes are Gaussian we have that they are independent and the
joint convergence follows.
Now, using a bootstrap version of Slutzky’s theorem, we get that

n−1=2
[ns]∑
t=1
(�∗n; t ; a

∗
n; t)

′ w→ �1=2(W1(s); W2(s))′ = B(s) in probability:

The next proposition contains the remaining results that will be needed for the proof
of the main theorem in this section.
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Proposition 2.2. The following results hold:
(i) n−3=2

∑n
t=1 X

∗
n; t−1

w→ ∫ 1
0 B1(s) ds in probability.

(ii) n−2
∑n

t=1 X
∗2
n; t−1

w→ ∫ 1
0 B

2
1(s) ds in probability.

(iii) n−1
∑n−1

t=1 a
∗
n; t+1X

∗
n; t

w→ ∫ 1
0 B2(s) dB2(s) in probability.

Proof. To make the notation simpler, let

U ∗
n (s) =

[ns]∑
j=1
�∗n; j and V ∗

n (s) =
[ns]∑
j=1
sign(�∗n; j) =

[ns]∑
j=1
a∗n; j :

(i) In Proposition 2.1 we proved that n−1=2U ∗
n (s)

w→ B1(s) in probability. Moreover,

U ∗
n (s) is a jump process such that∫ t=n

(t−1)=n
U ∗
n (s) ds= n

−1U ∗
n

(
t − 1
n

)
:

On the other hand,

n−3=2
n∑
t=1
X ∗
n; t−1 = n

−1=2 n∑
t=1
n−1U ∗

n

(
t − 1
n

)
= n−1=2

n∑
t=1

∫ t=n

(t−1)=n
U ∗
n (s) ds

=
∫ 1

0
n−1=2U ∗

n (s) ds

and
∫ 1
0 n

−1=2U ∗
n (s) ds converges weakly to

∫ 1
0 B1(s) ds in probability by the continuous

mapping theorem. This proves (i).
(ii) The proof of this part is similar to that of part (i) for the process U ∗2

n (s) =
(
∑[ns]

j=1 �
∗
n; j)

2.

(iii) Using the notation we have introduced we can rewrite n−1
∑n−1

t=1 a
∗
n; t+1X

∗
n; t as

G∗
n = n

−1n−1∑
t=1

(
V ∗
n

(
t + 1
n

)
− V ∗

n

( t
n

))
U ∗
n

( t
n

)

and we have to prove that G∗
n
w→ ∫ 1

0 B1(s) dB2(s) in probability.

Using the fact that B1 and B2 have continuous paths, and by the Skorokhod repre-
sentation theorem (see, e.g., Dudley, 1989, p. 324) there exist a probability space 

and random elements Un; V n in D[0; 1] such that

(Un; V n) =L n−1=2(U ∗
n ; V

∗
n );

that is, the distribution of (Un; V n) is the same as that of n−1=2(U ∗
n ; V

∗
n ) conditionally

on the sample (X1; : : : ; Xn), and

||(Un; V n)− (B1; B2)||∞ → 0 a:s: (6)
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Let

Gn =
n−1∑
t=1
Un
( t
n

)(
Vn

(
t + 1
n

)
− Vn

( t
n

))
:

Then Gn and G∗
n have the same distribution. In order to show the weak convergence of

G∗
n to

∫ 1
0 B1(s) dB2(s) in probability, it is su�cient to show that G

n P→ ∫ 1
0 B1(s) dB2(s).

By (6) and Egorov’s theorem, given �¿ 0, there is an event 
�⊂
 such that
P(
�)¿1− � and

sup{||(Un(!); V n(!))− (B1(!); B2(!))||∞: ! ∈ 
�}= �n→ 0: (7)

Note that �n is a sequence of constants. We can choose integers N (n) ↑ ∞ such that

N (n)�2n → 0 and N (n)=n→ 0:

For each n, we can further choose a partition {t0; : : : ; tN (n)} of [0; 1] such that
0 = t0¡t1(n) =

n1
n
¡ t2(n) =

n2
n
¡ · · ·¡tN (n) =

nN (n)
n

= 1

with

max{|ti+1 − ti|: 06i6N (n)− 1}= o(1):
We �rst claim that

Gn =
N (n)∑
k=1
Un(tk−1)(Vn(tk)− Vn(tk−1)) + oP(1): (8)

Let

Jn =Gn −
N (n)∑
k=1
Un(tk−1)(Vn(tk)− Vn(tk−1))

=
N (n)∑
k=1

[
nk−1∑
i=nk−1

(
Un
(
i
n

)
− Un(tk−1)

)(
Vn
(
i + 1
n

)
− Vn

(
i
n

))]
:

Now,

E(J 2n ) = E

[
N (n)∑
k=1

nk−1∑
i=nk−1

(
Un
(
i
n

)
− Un(tk−1)

)(
Vn
(
i + 1
n

)
− Vn

(
i
n

))]2

= n−2E∗
[
N (n)∑
k=1

nk−1∑
i=nk−1

(
U ∗
n

(
i
n

)
− U ∗

n (tk−1)
)(

V ∗
n

(
i + 1
n

)
− V ∗

n

(
i
n

))]2

= n−2E∗
[
N (n)∑
k=1
�∗
k

]2
;

where we have written

�∗
k =

nk−1∑
i=nk−1

(
U ∗
n

(
i
n

)
− U ∗

n (tk−1)
)(

V ∗
n

(
i + 1
n

)
− V ∗

n

(
i
n

))
:
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Using the fact that (�∗n; j; a
∗
n; j)

′ is a sequence of independent random variables it can
be proved that

E∗
[
N (n)∑
k=1
�∗
k

]2
=
N (n)∑
k=1
E∗[�∗2

k ]6�̂
2
1(nk − nk−1)2:

Putting everything together,

E(J 2n ) = n
−2E∗

[
N (n)∑
k=1
�∗
k

]2
6

N (n)∑
k=1
�̂21
(nk
n

− nk−1
n

)2
6 �̂21 max

16k6N (n)
(tk − tk−1)→ 0

and Markov’s inequality gives (8).
The next step is to show that

I
�
N (n)∑
k=1
Un(tk−1) (Vn(tk)−Vn(tk−1)) = I
�

N (n)∑
k=1
B1(tk−1) (Vn(tk)−Vn(tk−1))+op(1);

i.e., that in 
� we can change Un(tk−1) by B1(tk−1) and the error goes to zero when
the sample size goes to in�nity. By Cauchy–Schwarz’s inequality and (7),∣∣∣∣∣

N (n)∑
k=1

[Un(tk−1)− B1(tk−1)]I
�(Vn(tk)− Vn(tk−1))
∣∣∣∣∣
2

6
N (n)∑
k=1

(Un(tk−1)− B1(tk−1))2I
�
N (n)∑
k=1
(Vn(tk)− Vn(tk−1))2

6N (n)�2n
N (n)∑
k=1

(Vn(tk)− Vn(tk−1))2:

The expectation of this last expression is

E

[
N (n)�2n

N (n)∑
k=1

(Vn(tk)− Vn(tk−1))2
]
=N (n)�2n

N (n)∑
k=1
E[(Vn(tk)− Vn(tk−1))2]

=N (n)�2n
N (n)∑
k=1

(tk − tk−1)

=N (n)�2n→ 0

and this proves what we wanted.
Now, it is straightforward that

N (n)∑
k=1
B1(tk−1) (Vn(tk)− Vn(tk−1)) =−

N (n)∑
k=1
Vn(tk) (B1(tk)− B1(tk−1))

+B1(1)Vn(1):
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By a similar argument we can replace Vn(tk) by B2(tk) and obtain

I
�
N (n)∑
k=1
Vn(tk) (B1(tk)− B1(tk−1)) = I
�

N (n)∑
k=1
B2(tk) (B1(tk)− B1(tk−1)) + oP(1);

so, using basic algebra

I
�
N (n)∑
k=1
B1(tk−1) (Vn(tk)− Vn(tk−1))

= I
�
N (n)∑
k=1
B1(tk−1) (B2(tk)− B2(tk−1)) + oP(1)

= I
�

∫ 1

0
B1(t) dB2(t) + oP(1);

where the last identity is given by the fact that

E

[
N (n)∑
k=1
B1(tk−1) (B2(tk)− B2(tk−1))−

∫ 1

0
B1(t) dB2(t)

]2

=
N (n)∑
k=1
E



(∫ tk

tk−1

(B1(tk−1)− B1(t)) dB2(t)
)2

+
N (n)∑
k=1

∑
j 6=k
E

[∫ tk

tk−1

(B1(tk−1)− B1(t)) dB2(t)

×
∫ tj

tj−1

(B1(tj−1)− B1(s)) dB2(s)
]
:

The second part of the right-hand side of the equality is clearly zero because B1 has
independent increments. Therefore, we have that

E

[
N (n)∑
k=1
B1(tk−1) (B2(tk)− B2(tk−1))−

∫ 1

0
B1(t) dB2(t)

]2

=
N (n)∑
k=1

�21
2
(tk − tk−1)2

6
�21
2

max
16k6N (n)

(tk − tk−1) = o(1):

Following Knight (1991) and Herce (1996) we will prove the convergence of
n(�̂

∗
LAD − 1) using the convexity theorem in Knight (1989). The theorem says that

if the �nite-dimensional distributions of a sequence of convex stochastic processes
Zn(·) converge weakly to those of Z(·), and Z(·) has a unique minimum, then the
minimizer of Zn(·) converges in distribution to the minimizer of Z(·).
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The value we have to �nd is

�̂
∗
LAD = arg min

�∈R

n∑
t=1

|X ∗
n; t − �X ∗

n; t−1|:

De�ning �= n(� − 1) we can restate this as the problem of �nding the minimum of

Z∗
n (�) =

n∑
t=1
(|�∗n; t − �n−1X ∗

n; t−1| − |�∗n; t |):

Moreover, if �̂
∗
is a minimizer of Z∗

n (�), then �̂
∗
= n(�̂

∗
LAD− 1); so we have to prove

that

Z∗
n (·) w→ Z(�) =−�

∫ 1

0
B1(s) dB2(s) + � 2f(0)

∫ 1

0
B21(s) ds in probability;

because in this case

�̂
∗
= n(�̂

∗
LAD − 1) w→

∫ 1
0 B1(s) dB2(s)

2f(0)
∫ 1
0 B

2
1(s) ds

in probability;

and this is exactly what we need to prove the validity of our bootstrap procedure. To
use the convexity theorem, we have to prove the following lemma.

Lemma 2.3. For Z∗
n (�) and Z(�) as de�ned above;

Z∗
n (�)

w→ Z(�) in probability:

Proof. It is easy to see that

Z∗
n (�) =−

n∑
t=1
sign(�∗n; t)�n

−1X ∗
n; t−1

+ 2
n∑
t=1
(�n−1X ∗

n; t−1 − �∗n; t) [I(0¡�∗n; t ¡ �n−1X ∗
n; t−1)

− I(�n−1X ∗
n; t−1¡�∗n; t ¡ 0)]:

Proposition 2.2 gives us the asymptotic behavior of the �rst term:

−
n∑
t=1
sign(�∗n; t)�n

−1X ∗
n; t−1

w→−�
∫ 1

0
B1 dB2 in probability:

Thus, we have to show that

2
n∑
t=1
(�n−1X ∗

n; t−1 − �∗n; t) [I(0¡�∗n; t ¡ �n−1X ∗
n; t−1)− I(�n−1X ∗

n; t−1¡�∗n; t ¡ 0)]

w→ � 2f(0)
∫ 1

0
B21

in probability. We will do it in two steps. First, we will prove the weak convergence
of

2
n∑
t=1
(�n−1X ∗

n; t−1 − �∗n; t)I(0¡�∗n; t ¡ �n−1X ∗
n; t−1)

11



to

� 2f(0)
∫ 1

0
B21(s)I(0¡�B1(s)) ds:

We will use the following de�nitions:

V ∗
tnm(�) = (�n

−1X ∗
n; t−1 − �∗n; t)I(0¡�∗n; t ¡ �n−1X ∗

n; t−1)I(�n
−1=2X ∗

n; t−16m);

V ∗
nm(�) =

n∑
t=1
V ∗
tnm;

�∗tnm(�) = E
∗(V ∗

tnm|�∗n; t−1; : : :)
and

�∗nm(�) =
n∑
t=1
�∗tnm(�):

Notice that the sequence {V ∗
tnm(�)− �∗tnm(�)}nt=1 is a martingale di�erence sequence.

We will prove now that

�∗nm(�)
w→ � 2f(0)

2

∫ 1

0
B21(s)I(0¡�B1(s)6m) ds in probability:

Let us de�ne An; t(�) = �n−1X ∗
n; t−1I(0¡�n−1=2X ∗

n; t−16m) and observe that

V ∗
tnm(�) = (An; t(�)− �∗n; t)I(0¡�∗n; t ¡An; t(�));

so that

�∗nm(�) =
n∑
t=1
E∗[(An; t(�)− �∗n; t)I(0¡�∗n; t ¡An; t(�)) | �∗n; t−1; : : : ]

=
n∑
t=1

∫ An; t(�)

0
(An; t(�)− x) dF̂n(x)

=
n∑
t=1

∫ An; t(�)

0
(F̂n(s)− F̂n(0)) ds:

Changing the variable s = v=n�, ds = dv=n� and since s ∈ (0; An; t(�)) implies v ∈
(0; n�An; t(�)), we have that

�∗nm(�) =
n∑
t=1

∫ n�An; t(�)

0
(F̂n(v=n�)− F̂n(0)) dvn2�

and ( v
n�

)−1
(F̂n(v=n�)− F̂n(0)) = f(0) + oP(1) if �¡

1
2
:

12



So

�∗nm(�) =
n∑
t=1

∫ n�An; t(�)

0

v
n2�
(f(0) + oP(1)) dv

=
1
2

n∑
t=1
(f(0) + oP(1))A2n; t(�)

=
1
2
(f(0) + oP(1))� 2n−2

n∑
t=1
X ∗2
n; t−1I(0¡�n−1=2X ∗

n; t−16m):

Using Propositions 2.1 and 2.2, part (ii), we have that

�∗nm(�)
w→ �∗m(�) =

1
2
f(0)� 2

∫ 1

0
B21(s)I(0¡�B1(s)6m) ds

in probability as n tends to in�nity. On the other hand,

lim
m→∞ �∗m(�) =

1
2
f(0)� 2

∫ 1

0
B21(s)I(0¡�B1(s)) ds:

By the Asymptotic Equivalence Lemma (see, e.g., White, 1984, p. 63), the limiting
distribution of V ∗

nm(�) is the same as that for �
∗
nm(�) provided that V

∗
nm(�)−�∗nm(�) P→ 0.

But V ∗
nm(�)−�∗nm(�)=

∑n
t=1 (V

∗
tnm(�)−�∗tnm(�)) and {V ∗

tnm(�)−�∗tnm(�)} is a martingale
di�erence sequence; using the corresponding convergence result for them (see, e.g.,
Pollard, 1984, p. 171), we just have to show that, when n→∞

n∑
t=1
E∗(V ∗2

tnm(�) | �∗n; t−1; : : :)→ 0 in probability;

but this can be proved using that An; t(�)6mn−1=2.
We have shown the following two weak convergences:

V ∗
nm(�)→ �∗m(�) in probability; as n→∞;

�∗m(�)→ �∗(�) in probability; as m→∞:

Now we have to deal with the error due to truncation, i.e., if we de�ne

V ∗
n (�) = (�n

−1X ∗
n; t−1 − �∗n; t)I(0¡�∗n; t ¡ �n−1X ∗

n; t−1);

we have to show that

lim
m→∞ lim sup

n→∞
P{|V ∗

n (�)− V ∗
nm(�)|¿”}= 0

for each positive ”, because this implies that V ∗
nm(�)

w→ �∗(�) in probability. Now

P{|V ∗
n (�)− V ∗

nm(�)|¿”}

6P
{

n∑
t=1
(�n−1X ∗

n; t−1 − �∗n; t)I(0¡�∗n; t ¡ �n−1X ∗
n; t−1)I(�n

−1=2X ∗
n; t−1¿m)¿0

}
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6P
{

n∑
t=1
I(�n−1=2X ∗

n; t−1¿m)¿0
}

=P
{
max
16t6n

�n−1=2X ∗
n; t−1¿m

}
:

So,

lim
m→∞ lim sup

n→∞
P{|V ∗

n (�)− V ∗
nm(�)|¿”}

6 lim
m→∞ lim sup

n→∞
P
{
max
16t6n

�n−1=2X ∗
n; t−1¿m

}

6 lim
m→∞ P

{
sup
s61

�B(s)¿m
}
= 0:

The term I(�n−1X ∗
n; t−1¡�∗n; t ¡ 0) is handled similarly, and therefore

Z∗
n (�)

w→−�
∫ 1

0
B1dB2 + � 2f(0)

∫ 1

0
B21 in probability:

Now we are ready to state the main theorem:

Theorem 2.1. For �̂
∗
LAD de�ned as in (3),

�̂
∗
= n(�̂

∗
LAD − 1) w→

∫ 1
0 B1(s) dB2(s)

2f(0)
∫ 1
0 B

2
1(s) ds

in probability.

Proof. Now the proof is straightforward. Note that Z∗
n (�) and Z(�) are respectively

minimized at �̂
∗
=n(�̂

∗
LAD−1) and

∫ 1
0 B1 dB2=2f(0)

∫ 1
0 B

2
1; using the convexity theorem

of Knight (1989), we have that

n(�̂
∗
LAD − 1) w→

∫ 1
0 B1 dB2

2f(0)
∫ 1
0 B

2
1

in probability:

Remark. Herce (1996) states that even when the median of the innovations is not
zero, the statistic converges; but in this case the convergence is at rate n1=2 and the
limiting distribution is di�erent. The same result can be proved using bootstrap. The
only di�erence in the resampling algorithm is that in step (ii) we should resample
from the empirical distribution of the residuals centered in mean (F̂n would be, in this
case, the empirical distribution of {�̂t}={�t}−n−1

∑n
t=1 �t). The asymptotic distribution

of the statistic is

n1=2(�̂
∗
LAD − 1) w→ m

∫ 1
0 B1(s) ds

2f(0)
∫ 1
0 B

2
1(s) ds

;

where m is the median of the distribution of the errors and B1 and B2 are analogous
to the previous ones.
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3. LAD-based unit root tests

We have seen that the distribution of the statistic n(�̂LAD − 1) is rather complicated
and depends on the distribution of the errors through f(0) and �. Even if we multiply
by a consistent estimator of the density, the distribution still depends on the covariance
matrix and the tabulation of the critical values would be speci�c for each case. Herce
(1996) suggests two di�erent tests based on this statistic. First, he proposes a linear
combination of the LAD estimator with the least-squares estimator, namely

L� =
2f̂(0)�̂21

�̂
1=2 n(�̂LAD − 1)− �̂12

�̂
1=2 n(�̂LS − 1)

w→
[∫ 1

0
W 2
1

]−1=2
�; (9)

where �̂21 and �̂12 are estimators of the variance of the errors and the covariance of the
errors and their sign, f̂(0) is a consistent estimator of the density evaluated at zero,
and � is a standard normal random variable independent of W1(1). The second test
statistic he proposes is

Lt =
[
�̂−21 n

−2 n∑
t=1
X 2t−1

]1=2
L�

w→ �:

Both statistics are asymptotically distribution free and can be tabulated. Despite of this,
they still present a great drawback: because of the form of the expression L�, both tests
have no power if the distribution of the errors is normal.
In this work we propose a di�erent approach for testing. The goal is to avoid the

estimation of the covariance matrix and specially the estimation of f(0), using the
bootstrap approximation. To do it we have proved in Section 2 that the asymptotic
distribution of n(�̂

∗
LAD− 1) when the errors are independent and identically distributed

is the same as that of n(�̂LAD−1). The bootstrap methodology provides a very powerful
tool in this situation: once we have proved that the resampled version of the statistic
has the same asymptotic distribution as the estimator, a large number of resamples
can be used to obtain empirical critical values for the asymptotic distribution. This
approach has a double advantage over the proposal of Herce (1996). The �rst one is
that, as we have already mentioned, the estimation of the distribution parameters is
avoided; the second one is that the new test has power where the other one failed.
To check the behaviour of the proposed test in �nite samples, an empirical study was

designed. We compare in it the behaviour of several tests proposed in the literature;
three of them are based on the least-squares estimator, the Dickey and Fuller test
(1979), and two bootstrap tests: the �rst one was proposed by Basawa et al. (1991b)
and the second by Ferretti and Romo (1996). The other three are based on LAD
estimators; one is the test based on L� and the other two are our new proposals. The
�rst one uses the results in Section 2 and is based on the statistic n(�̂

∗
LAD−1) calculated

as was proposed there. The second one is based on a di�erent type of resampling that
only centres the residuals in the mean (the behaviour of this test in the simulation
indicates that probably the procedure is correct in this case also). In both cases the
tests are going to be based on empirical bootstrap critical values.
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Li and Maddala (1996) review bootstrap methods for time-series models presenting
the di�erent ways of resampling from residuals for testing. They suggest the possibility
of resampling from the residuals obtained directly from the model under the null hy-
pothesis. The bootstrap tests we propose in this paper have been conducted also in this
fashion, the results are not included because their behaviour in the cases studied where
remarkably worse than the ones based on the residuals obtained with LAD estimation.
The simulation has been conducted as follows: 2000 series were created of sizes 50,

100 and 250 for di�erent values of �: 0.8, 0.9, 0.95, 0.99, 1.01, 1.05, 1.1 and 4000
series of the same sizes for � = 1. For all the bootstrap tests, 4000 resamples were
taken. The critical values for Herce’s test were calculated using 40 000 series, f(0)
was estimated using a gaussian kernel with a bandwidth of h = n−1=5. Five models
were considered for the distribution of the errors:

1. N(0; 1).
2. Double exponential.
3. Mixture of N(0; 1) and N(0; 25) with weights 0.6 and 0.4, respectively.
4. Student’s t with 3 degrees of freedom.
5. Mixture of N(−4; 9:766) and U(−1; 9) (this distribution has mean and median equal
to zero but is asymmetric).

Distributions 2, 3 and 4 are heavy tailed distributions and both Herce’s and our tests
should outperform Dickey–Fuller’s. Distribution 5 is considered to study the behaviour
of our test when the distribution is not symmetric. The results are summarized in
Tables 1–5.
In the tables we have used the following notation: Dn is the Dickey–Fuller statistic,

B∗n is the test proposed by Basawa et al., D
∗
n is the bootstrap version proposed by

Ferretti and Romo (1996). L� and n(�̂
∗
LAD − 1) have already been de�ned in (9) and

(3), respectively; �nally, we have used M∗
n to note the test based on the residuals

centred in the mean.
In the case of the standard normal distribution the behaviour of our tests is compa-

rable with those of Dickey–Fuller, Basawa et al. and Ferretti–Romo and signi�cantly
better than Herce’s. In models 2, 3 and 4 (symmetric distributions with heavy tails
but �nite variance) it can be observed that Herce’s works better when the size of the
sample is very small and when � is between 0.99 and 0.95; the important fact is that
in all the remaining cases our tests outperform the rest. It is also remarkable how the
empirical size of the tests is pretty close to the nominal size in almost all the cases.
In model 5 (asymmetric distribution) Herce’s test presents the worst behaviour; this

is the only case where the empirical level is clearly above the expected level. Despite
of the asymmetry, our tests still work properly and the results, though a little worse,
are comparable with those of the tests based on least-squares estimation. (Notice that
in this case the distribution is not heavy tailed.)
We present also two �gures that show graphically the power of the tests consid-

ered here compared to ours. Fig. 1 shows that even with a small sample size our
method is comparable to those that use least squares when the innovations are normally
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Table 1
Empirical power with model 1, � = 5%

n Test �

0:80 0:90 0:95 0:99 1.00 1:01 1:05 1:1

Dn 61.30 20.60 9.20 5.35 7.15 12.45 69.50 96.55
B∗n 56.10 18.55 7.60 3.40 5.40 10.90 70.25 95.85
D∗
n 66.30 23.35 10.90 6.20 7.65 12.75 69.85 96.60

50 L� 31.60 18.10 11.40 6.65 6.10 4.60 1.70 0.60
n(�̂

∗
LAD − 1) 51.50 21.20 10.05 7.55 7.30 8.30 43.25 96.40

M∗
n 48.75 17.90 8.35 5.45 5.17 5.45 31.25 95.45

Dn 99.20 55.25 18.35 3.75 5.95 25.35 96.95 100.00
B∗n 98.80 56.15 17.55 3.65 4.95 23.05 96.75 99.85
D∗
n 99.30 58.50 20.05 4.15 5.85 25.20 97.00 100.00

100 L� 47.05 30.20 18.20 6.70 4.65 3.10 0.20 0.95
n(�̂

∗
LAD − 1) 91.15 47.75 17.30 6.55 6.40 8.80 97.30 100.00

M∗
n 92.40 47.75 19.25 7.05 4.35 7.10 96.55 100.00

Dn 100.00 100.00 76.15 7.60 5.15 70.80 100.00 100.00
B∗n 100.00 99.80 73.10 7.50 4.97 71.75 100.00 100.00
D∗
n 100.00 100.00 76.75 7.65 5.15 70.55 100.00 100.00

250 L� 67.00 53.50 36.25 12.00 5.35 0.95 0.25 100.00
n(�̂

∗
LAD − 1) 100.00 97.40 63.85 8.40 5.45 42.05 100.00 100.00

M∗
n 100.00 97.70 61.75 7.20 4.40 33.15 100.00 100.00

Table 2
Empirical power with model 2, � = 5%

n Test �

0:80 0:90 0:95 0:99 1.00 1:01 1:05 1:1

Dn 61.85 19.75 8.50 4.40 4.95 10.50 70.75 96.45
B∗n 54.80 16.70 6.95 4.05 4.82 11.15 72.85 96.10
D∗
n 66.90 22.45 10.00 5.10 5.42 10.90 70.75 96.50

50 L� 53.15 28.85 12.60 5.15 4.17 3.95 1.95 2.15
n(�̂

∗
LAD − 1) 79.35 28.00 9.95 4.95 4.97 7.15 71.50 97.65

M∗
n 76.10 22.40 7.85 3.65 3.92 5.00 50.15 97.45

Dn 98.85 58.90 20.30 4.50 4.70 24.35 97.05 100.00
B∗n 98.85 55.70 18.25 3.70 4.95 22.95 97.00 99.95
D∗
n 99.05 60.45 21.60 5.00 4.77 24.25 97.05 100.00

100 L� 80.65 57.80 28.10 5.85 3.47 3.45 1.75 42.80
n(�̂

∗
LAD − 1) 99.65 83.15 33.70 5.40 4.87 13.10 98.65 100.00

M∗
n 99.65 79.70 26.55 4.75 3.57 8.50 98.20 99.95

Dn 100.00 99.80 75.20 7.55 5.35 72.05 100.00 100.00
B∗n 100.00 99.90 73.50 6.70 4.77 74.00 100.00 100.00
D∗
n 100.00 99.95 75.80 7.60 5.42 72.00 100.00 100.00

250 L� 98.70 91.35 69.50 10.00 3.75 2.35 83.10 100.00
n(�̂

∗
LAD − 1) 100.00 100.00 96.10 9.40 5.12 78.60 100.00 100.00

M∗
n 100.00 100.00 95.35 9.55 4.35 61.10 100.00 100.00
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Table 3
Empirical power with model 3, � = 5%

n Test �

0:80 0:90 0:95 0:99 1.00 1:01 1:05 1:1

Dn 62.95 18.70 8.20 4.10 5.60 10.30 69.60 96.05
B∗n 54.95 15.20 7.10 3.75 4.85 10.85 70.90 96.90
D∗
n 66.95 21.35 9.15 4.55 5.92 10.25 69.75 96.15

50 L� 93.75 72.65 39.95 8.75 6.57 5.20 11.40 72.00
n(�̂

∗
LAD − 1) 96.95 54.40 14.40 5.20 5.82 8.70 83.75 98.75

M∗
n 95.10 45.10 11.45 3.60 3.92 4.95 59.40 98.05

Dn 99.10 57.55 17.85 3.50 4.57 22.80 97.10 100.00
B∗n 98.50 53.60 17.30 3.60 4.85 22.50 97.85 100.00
D∗
n 99.25 59.55 19.20 3.50 4.65 22.80 97.15 100.00

100 L� 100.00 95.60 74.40 12.75 5.40 3.90 82.85 99.65
n(�̂

∗
LAD − 1) 100.00 98.55 58.90 5.45 5.10 20.80 99.15 100.00

M∗
n 100.00 97.50 48.15 4.40 3.05 8.95 98.85 100.00

Dn 100.00 99.95 75.90 7.70 5.85 71.40 100.00 100.00
B∗n 100.00 99.80 73.85 6.70 4.52 70.60 100.00 100.00
D∗
n 100.00 99.95 76.20 7.70 5.90 71.40 100.00 100.00

250 L� 100.00 99.90 98.60 34.30 5.92 9.45 100.00 100.00
n(�̂

∗
LAD − 1) 100.00 100.00 99.85 18.30 6.32 86.80 100.00 100.00

M∗
n 100.00 100.00 99.90 14.25 4.52 67.10 100.00 100.00

Table 4
Empirical power with model 4, � = 5%

n Test �

0:80 0:90 0:95 0:99 1.00 1:01 1:05 1:1

Dn 60.30 19.00 7.35 3.15 4.65 10.50 71.65 97.05
B∗n 56.55 16.00 6.70 3.25 5.02 10.00 71.70 96.35
D∗
n 65.30 21.90 8.95 3.55 5.15 11.15 71.75 97.10

50 L� 59.00 36.80 19.85 6.05 5.30 3.90 3.40 11.35
n(�̂

∗
LAD − 1) 76.25 29.80 10.45 4.85 5.10 6.65 64.45 98.15

M∗
n 76.10 28.95 10.05 3.95 3.97 5.25 41.60 97.45

Dn 99.20 60.10 18.60 4.75 5.07 21.85 96.70 100.00
B∗n 98.55 53.70 15.35 3.45 4.10 22.55 97.60 100.00
D∗
n 99.35 62.30 19.80 5.10 5.30 22.25 96.70 100.00

100 L� 79.90 60.85 36.90 8.05 5.50 4.10 10.50 51.20
n(�̂

∗
LAD − 1) 99.50 78.80 31.15 5.60 5.17 10.70 98.50 100.00

M∗
n 99.55 77.80 29.40 4.80 4.30 6.70 97.70 99.95

Dn 100.00 99.80 75.65 6.90 4.62 72.85 100.00 100.00
B∗n 100.00 99.80 74.65 6.35 5.15 70.95 100.00 100.00
D∗
n 100.00 99.80 75.75 6.95 4.75 73.05 100.00 100.00

250 L� 97.60 90.70 73.15 16.00 4.55 3.85 81.25 100.00
n(�̂

∗
LAD − 1) 100.00 99.95 91.95 10.95 5.10 72.80 100.00 100.00

M∗
n 100.00 100.00 92.05 8.50 4.60 50.50 100.00 100.00
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Table 5
Empirical power with model 5, � = 5%

n Test �

0:80 0:90 0:95 0:99 1:00 1:01 1:05 1:1

Dn 60.55 20.30 8.20 4.50 5.45 10.85 70.65 96.45
B∗n 58.00 19.10 8.30 3.85 6.02 10.45 70.45 96.95
D∗
n 65.65 23.75 10.20 5.10 6.22 10.90 70.55 96.45

50 L� 54.55 35.25 23.50 15.70 12.95 11.30 6.05 8.60
n(�̂

∗
LAD − 1) 39.80 16.35 9.50 6.30 7.07 6.60 32.75 95.90

M∗
n 41.05 16.25 8.85 5.30 4.82 5.50 23.30 95.20

Dn 99.30 58.50 18.30 4.90 5.97 23.20 97.25 100.00
B∗n 98.75 55.70 17.45 4.40 5.77 23.05 96.10 100.00
D∗
n 99.45 61.05 19.65 5.40 6.30 23.10 97.15 100.00

100 L� 67.35 48.65 31.00 13.85 11.45 7.15 3.40 24.10
n(�̂

∗
LAD − 1) 85.15 39.60 14.85 6.90 6.67 7.40 96.20 100.00

M∗
n 85.70 36.45 13.80 5.55 4.72 5.35 95.80 99.90

Dn 100.00 99.95 74.70 7.25 5.45 72.85 100.00 100.00
B∗n 100.00 99.90 75.15 8.40 4.97 73.20 100.00 100.00
D∗
n 100.00 99.95 75.25 7.45 5.52 72.70 100.00 100.00

250 L� 78.55 66.20 48.05 16.05 7.20 2.15 21.50 100.00
n(�̂

∗
LAD − 1) 100.00 94.75 54.85 6.15 5.27 41.80 100.00 100.00

M∗
n 100.00 94.05 53.05 6.55 3.95 29.95 100.00 100.00

Fig. 1. Empirical power with model 1, n = 100.

distributed. It can be appreciated also that Herce’s test has considerably small power
in this case.
In Fig. 2 our test presents better behaviour than the others when the distribution is

heavy tailed, in this case we have used the double exponential with n= 100.
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Fig. 2. Empirical power with model 2, n = 100.

4. Conclusions

In this paper we propose a new test for detecting unit roots in a AR(1) process with
independent innovations. This new test exploits the power of the resampling procedures
in the sense that it is automatic, natural and easy to compute. Its main advantage is that
it avoids the problem of estimation of the variance matrix and the density at zero and
at the same time the problem of the arti�cial linear combination with the least-squares
estimator needed to obtain a distribution free statistic. On the other hand, the test we
propose presents a good behaviour when the distribution is heavy tailed, it has the
advantages of a robust test and it works properly when the distribution is normal. It
also improves Herce’s proposal in the sense that it has power when �¿ 1. Another
interesting question that is being currently studied is what happens when the variance
is in�nite and we use bootstrap to obtain the critical values for the test.
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