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Abstract

In this paper, we propose a bootstrap procedure to construct prediction intervals for future values of a variable after a

linear ARIMA model has been fitted to its power transformation. The procedure is easy to implement and provides a useful

tool in empirical applications given that it is often the case that, for example, the log transformation is modeled when the

variable of interest for prediction is the original one. The advantages over existing methods for computing prediction

intervals of power transformed time series are that the proposed bootstrap intervals incorporate the variability due to
parameter estimation and do not rely on distributional assumptions neither on the original variable nor on the transformed
one. We derive the asymptotic distribution and show the good behavior of the bootstrap approach versus alternative

procedures by means of Monte Carlo experiments. Finally, the procedure is illustrated by analyzing three real time series

data sets.
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1. Introduction

Forecasting future values of time series data is

one of the main objectives of time series analysis.

Generally, predictions are given as point forecasts,

although it is even more important to provide

interval forecasts as well; see, for example, Chatfield

(1993).

In empirical time series analysis, it is common to

transform the data using power transformation prior to

the estimation of the model used for forecasting.

There are several reasons for transforming the data

before fitting a suitable model, for example, the

necessity of stabilizing the increasing variance of
* Corresponding author. Tel.: +34 916249851; fax: +34

916249849.

E-mail addresses: lorenzo.pascualcaneiro@h-c.es (L. Pascual)8

romo@est-econ.uc3m.es (J. Romo)8 ortega@est-econ.uc3m.es

(E. Ruiz).
1 Tel.: +34 917819338; fax: +34 917819359.
2 Tel.: +34 916249805; fax: +34 916249849.
trending time series, to reduce the impact of outliers,

to make the normal distribution a better approxima-

tion to the data distribution, or because the trans-

formed variable has a convenient economic interpre-

tation; for example, first differenced log-transformed

data correspond to growth rates.
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The well-known family of Box–Cox transforma-

tions is given by

g Xtð Þ ¼
X k
t 1

k ; k p 0

ln Xtð Þ; k ¼ 0;

�
ð1Þ

where {Xt} denotes the observed time series with

XtN0, ln (d ) denotes the natural logarithm, and k is a

real constant. The transformation for k=0 follows

from the fact that limkY0
X k
t 1

k ¼ ln Xtð Þ; see Box and

Cox (1964). Subtracting 1 and dividing it by k does

not influence the stochastic structure of Xt
k, and hence,

without loss of generality, one often considers the

following transformation suggested by Tukey (1957)

g Xtð Þ ¼ X k
t ; k p 0

ln Xtð Þ; k ¼ 0;

�
ð2Þ

instead of the Box–Cox transformation in Eq. (1).

Once a model has been estimated, point and

interval forecasts can be obtained for the transformed

seriesYT+k= g(XT+k) asdefined inEq. (2) for k=1, 2,. . ..
We will focus on ARIMA models fitted to the series

yt, t=1,. . .,T. The specification of the model and the

parameter k will be assumed to be known. Notice that

this is an interesting case given that, in many

empirical applications, the logarithmic transformation

is assumed. If the objective is to predict future values

of Xt, the retransformed point forecasts induce bias in

the forecasts, as shown for linear models in Granger

and Newbold (1976). When YT+k is normally dis-

tributed and the point forecast of XT+k is just the

inverse transformation of the forecast obtained for the

transformed variable, this naive point prediction is not

the minimum mean squared error (MMSE) forecast

but the minimum mean absolute error (MMAE),

which is the median of the conditional probability

density function (pdf) of XT+k. Therefore, if the error

loss function is quadratic, this naive prediction of

XT+k is not optimal; see Guerrero (1993).

Assuming Gaussianity of Yt, Granger and Newbold

(1976) propose a debiasing factor to reduce the

transformation bias in the point forecast. Unfortunately,

inasmuch as they solve the problem using Hermite

polynomial expansions, their procedure becomes very

complicated for many fractional power transforma-

tions, making this approach not useful in practice.

Later, Taylor (1986) proposes a simpler expression for

the debiasing factor, but it does not provide an adequate
solution for k=0. Notice that, as pointed out above, the
logarithmic transformation is one of the most popular

in practice. Another alternative proposed by Pankratz

and Dudley (1987) is complicated and, additionally,

only admits a closed form expression when k is a

fractional positive integer. Finally, the method pro-

posed by Guerrero (1993) avoids all the drawbacks

found in previous approaches. His proposal is both

simple and general. In a comparative study, Guerrero

(1993) shows that his method has a performance

similar to or better than the other procedures.

Although it is relatively well studied how to obtain

a good estimate for the conditional mean in the

original metric, there is no generally accepted method

of constructing prediction intervals for the untrans-

formed variable. One solution is based on a normal

assumption on XT+k, providing a symmetric interval.

This seems not to be a good choice unless the

distribution of XT+k is close to be Gaussian; see

Chatfield (1993). Another alternative is to construct

prediction intervals for XT+k by retransforming the

upper and lower values of the corresponding pre-

diction interval for YT+k. Finally, Guerrero (1993)

suggests to correct for bias the endpoints of the latter

prediction intervals, using a procedure similar to the

one he proposes for the point forecast.

In this paper, we propose a bootstrap resampling

scheme to obtain an estimate of the pdf of XT+k,

conditional on the available data when an ARIMA

model has been fitted to yt, t=1, . . ., T. Given this

density, the required prediction intervals for XT+k can

be constructed. There are several advantages over the

methods previously described. First of all, the boot-

strap procedure does not rely on distributional

assumptions neither on the transformed data nor on

the original scale. The second advantage is that the

bootstrap intervals incorporate the variability due to

parameter estimation, which is not allowed by any of

the alternative procedures. Finally, the method is very

easy to implement.

The finite sample behavior of the bootstrap intervals

is compared with the alternative intervals by means of

an extensive simulation study. It is shown that the

proposed procedure performs as well as the best

alternatives when Yt is Gaussian and tends to outper-

form its competitors when leaving this assumption.

The paper is organized as follows. Section 2

presents a description of the existing methods for



obtaining prediction intervals for a variable in its

original scale. In Section 3, we introduce the

bootstrap approach. A Monte Carlo study comparing

the finite sample performance of all existing methods

is presented in Section 4. In Section 5, we illustrate

the procedure analyzing empirically three real data

sets. Finally, we conclude with some remarks and

suggestions for future research in Section 6.
2. Prediction intervals for transformed time series

There are two main alternatives proposed in the

literature to obtain prediction intervals for XT+k given

the observed series xt, t=1, . . ., T after an ARIMA

model has been fitted to the power-transformed

variable yt, t=1, . . ., T. In this section, these two

procedures are described.

Consider that {x1, . . ., xT} is an available sequence

of T observations such that, for any of the reasons

previously mentioned, it needs to be transformed

adequately by a function g(d ) defined in Eq. (2) to

obtain a new sequence y1, . . ., yT. Lets also assume

that the transformed sequence is well fitted by an

ARIMA(p, d, q) process given by

/ Lð Þjdyt ¼ /0 þ h Lð Þat; ð3Þ

where at is a white noise process, /(L) and h(L) are
autoregressive and moving average polynomials

defined as /(L)=1�/1L�. . .�/pL
p and h(L)=

1�h1L�. . .�uqL
q, respectively, where L is the lag

operator such that Lxh=xt h, j is the difference

operator such that j=(1�L) and d is the number

of differences needed for the series yt to be sta-

tionary. The polynomials /(L) and h(L) satisfy the

usual conditions to guarantee stationarity, invertibility

and noncommon roots. From the transformed series

{ y1, y2,. . ., yT}, the parameters of model (3) can be

estimated by a consistent estimator, for example,

conditional quasi-maximum likelihood (QML). Given

the estimates (/̂0, /̂1, . . ., /̂p, ĥ1,. . ., ĥq), the residuals
are calculated by the following recursion

âat ¼ jdyt � /̂0 � /̂1j
dyt 1 � N � /̂pj

dyt p

� ĥ1âat 1 � N � ĥqâat q; t ¼ pþ d þ 1; N ; T ;

ð4Þ
where the residuals corresponding to periods of time

t=p+d, p+d�1, . . ., 1, 0, �1, �2,. . . are set equal to 0;

see, for example, Harvey (1993).

Once the ARIMA model has been estimated, the

optimal linear predictor of YT+k, k=1, 2, . . ., denoted
by ŶT(k), can be obtained in the usual way. If, for

example, d=0, then the optimal predictor is given by

ŶY T kð Þ ¼ /̂0 þ /̂1ŶY T k � 1ð Þ þ /̂2ŶY T k � 2ð Þ þ N

þ/̂pŶY T k � pð Þ þ ĥh1âaTþk 1 þ N þ ĥhqâaTþk q

ð5Þ
where ŶT( j)=YT+j for jV0 and âT+j=0 for jz0.

Alternatively, if for example d=1, then ŶT(k) is given

by

ŶY T kð Þ ¼ /̂0 þ 1� /̂1

� �
ŶY T k � 1ð Þ

þ /̂2 � /̂1

� �
ŶY T k � 2ð Þ þ N

þ /̂p � /̂p 1

� �
ŶY T k � pð Þ

þ ĥ1âaTþk 1 þ N þ ĥqâaTþk q; ð6Þ

Expressions of the optimal predictor for other

values of d can be obtained similarly. The usual Box

and Jenkins (1976) prediction intervals for YT+k are

given by

ŶY T kð Þ � za=2 r̂r2
a

Xk 1

j¼0

ŵw2
j

 !1=2

; ŶY T kð Þ

2
4

þ za=2 r̂r2
a

Xk 1

j¼0

ŵw2
j

 !1=2
3
5;

ð7Þ

where za/2 is the 1�a/2 quantile of the standard normal

distribution, r̂a
2 is the usual estimate of the innovations

variance and ŵj are the estimated coefficients of the

moving average representation yt ¼
Pl

i¼0 wiat i,

where the parameters wi are the coefficients of the

polynomial given by w(L)=h(L)// (L)jd.

2.1. Symmetric prediction intervals

Multistep symmetric prediction intervals have been

widely used in linear time series models. These

intervals are constructed under the assumption of

normality for the variable of interest. Therefore, they



provide a reasonable performance in terms of cover-

age and length if the density of the forecast error is

well approximated by the normal distribution.

To obtain a symmetric prediction interval k periods

into the future, a point forecast X̂T(k) for XT+k is

needed first, usually corrected by a bias using one of

the methods previously mentioned to compute the

debiasing factor, and secondly, an explicit expression

for the k-step ahead conditional mean squared error

(MSE), say Vc(k). Then, assuming normality, it

follows that the conditional distribution of XT+k given

the available data is normal with mean estimated by

X̂T(k) and MSE estimated by V̂c(k). In such a case,

the k-step ahead prediction interval is given by

X̂X T kð Þ � za
2
V̂V c kð Þ

1
2 ; X̂X T kð Þ þ za

2
V̂V c kð Þ

1
2

h i
: ð8Þ

The expression of Vc(k) given by Granger and

Newbold (1976) heavily depends on the Gaussian

assumption for the series Yt. Furthermore, this

expression is derived by using Hermite polynomials,

and it is not easy to obtain for a general transformation

g(d ). In fact, Granger and Newbold (1976) only give

the final expression of Vc(k) for the logarithmic and

square root transformations. For example, if the

logarithmic transformation is considered, V̂c(k) is

given by exp {2ŶT(k)+ r̂2(k)} [exp{r̂2(k)}�1], where

r̂r2 kð Þ ¼ r̂r2
a

Pk 1
j¼0 ŵw2

j .

Furthermore, the prediction intervals in Eq. (8)

ignore the skewness and all higher moments in the

distribution of the forecast error by assuming that it is

approximately normal and therefore will only be

accurate if the corresponding forecast error is approx-

imately normally distributed.

Notice that usually, Yt is assumed to be normally

distributed, and consequently, the untransformed

variable Xt will be not normally distributed unless

the parameter k in the Box–Cox transformation is

equal to 1; that is, Xt is not transformed.

2.2. Naive prediction intervals

Alternatively, prediction intervals for the variable

in the original scale can be constructed by retrans-

forming the upper and lower values of the corre-

sponding prediction intervals for the transformed

variable Yt given by Eq. (7). If the prediction interval

for Yt has a prescribed probability, say (1�a), then the
retransformed prediction interval for Xt should have

the same prescribed probability; see Harvey (1989).

The corresponding prediction interval with nominal

coverage of 1�a is given by

g 1 ŶY T kð Þ � za
2
r̂r kð Þ

n o
; g 1 ŶY T kð Þ þ za

2
r̂r kð Þ

n oh i
:

ð9Þ

Additionally, as proposed by Guerrero (1993), it is

possible to correct for bias in the previous confidence

interval by multiplying the end points of Eq. (9) by

the following debiasing factor

Ck kð Þ 0:5þ 0:5 1þ 2 k�1 1
� �

r2 kð Þ=ŶY 2
T kð Þ

� �1=2n o1=k
; kp0

exp r2 kð Þ=2ð Þ; k 0:

(

ð10Þ
Notice that the prediction intervals in Eq. (9) are

able to cope with the potential asymmetry of the

distribution of Xt, although they still rely on the

Gaussianity assumption for the transformed variable,

Yt, and do not incorporate the uncertainty due to

parameter estimation.
3. The bootstrap approach

In this section, we describe a bootstrap procedure

to obtain prediction densities and prediction intervals

of future values of the series of interest, Xt. The

resampling scheme is based on the proposal by

Pascual, Romo, and Ruiz (2004) to estimate predic-

tion densities and intervals of series generated by

ARIMA( p, d, q) processes.

Denoted by F̂a, the empirical distribution function

of the centered residuals of the ARIMA model for yt
given in Eq. (4). Given the p+d initial values of the

variable yt, say { y1, . . ., yp+d}, a bootstrap replicate of
the transformed series { y1*, . . ., yT*} is constructed by

the following equation

jdyt4 ¼ /̂0 þ
Xp
j¼1

/̂jj
dyt j4 þ

Xq
j¼1

ĥjâat j4 þ âat4;

t ¼ pþ d þ 1; N ; T ; ð11Þ

where yt*=yt, t=1, . . ., p+d and â1+p+d q* , . . ., âT* are

random draws from F̂a. Once the parameters of this

bootstrap series are estimated, say (/̂0*, /̂1*, . . ., /̂p*,



ĥ1*, . . ., ĥq*), the bootstrap forecast k steps ahead is

obtained as follows,

jdyTþk
4 ¼ /̂04þ

Xp
j¼1

/̂j4j
dyTþk j
4 þ

Xq
j¼1

ĥj4âaTþk j
4

þ âaTþk
4 ; k ¼ 1; 2; N ð12Þ

where yT+k j* =yT+k j, j[k and âT+k j* =âT+k j, j[k;

that is, the last p+d observations of the series and the

last q residuals are fixed in order to obtain the

prediction density conditional on the observed data.

Finally, in expression (12), âT+k j* , jbk are random

draws from F̂a.

Once B bootstrap replicates of YT+k* are obtained,

it is possible to construct a bootstrap estimate of the

distribution of YT+k conditional on { y1, . . ., yT} and

the corresponding prediction intervals. Pascual et al.

(2004) prove that, for the transformed series { yt},

YT+k* YYT+k in conditional probability, in probabil-

ity, as the sample size T goes to infinity. They also

show that the finite sample properties of the

bootstrap procedure just described outperforms

other alternative bootstrap mechanisms proposed to

compute prediction intervals in stationary AR( p)

models.

However, in this paper, the objective is to estimate

the distribution of XT+k conditional on {x1, . . ., xT}. In
this case, a new step has to be introduced in the

described procedure. The bootstrap forecast k steps

ahead for the variable in the original metric is then

obtained as

xTþk4 ¼ g 1 yTþk4
� �

; k ¼ 1; 2; N ð13Þ

This procedure is repeated B times to obtain a set

of B bootstrap replicates for XT+k, say (xT+k*(1), . . .,
xT+k*(B)). Then, the prediction limits are defined as the

quantiles of the bootstrap distribution function of

XT+k* ; that is, if G*(h)=Pr(XT+k* Vh) is the distribution
function of XT+k* and its Monte Carlo estimate is

GB*(h)=#(xT+k*(b)Vh)/B, a 100(1�a)% prediction interval

for XT+k* is given by

LB4; UB4
� �

¼ QB4
a
2

� �
; QB4 1� a

2

� �h i
; ð14Þ

where QB*=GB*
1.
Before summarizing the steps for obtaining boot-

strap prediction densities and intervals for XT+k, we

illustrate the method with a simple example. Suppose

that after taking an adequate power transformation,

the sequence { y1, . . ., yT} follows an ARIMA(0, 1, 2)

model without constant term, i.e.

jyt ¼ at þ h1at 1 þ h2at 2: ð15Þ

Once the parameters of model (15) have been

estimated and the bootstrap draws â0*, â1*, . . ., âT* are

available, a bootstrap replicate of the transformed

series is constructed by

yt4 ¼ yt 14 þ âat4þ ĥ1âat 1
4 þ ĥh2âat 2

4 ; t ¼ 2; N ; T ; ð16Þ

where y1*=y1. Then, bootstrap estimates ĥ1* and ĥ2* are
obtained for the bootstrap series, and bootstrap

replicates of future values of the transformed series

are generated by

yTþ14 ¼ yT þ âaTþ14 þ ĥh1
4âaT þ ĥh2

4âaT 1

yTþ24 ¼ yTþ14 þ âaTþ24 þ ĥh1
4âaTþ14 þ ĥh2

4âaT

yTþ34 ¼ yTþ24 þ âaTþ34 þ ĥh1
4âaTþ24 þ ĥh2

4âaTþ1:

It is important to note that inasmuch as the

predictions are conditional on the sample informa-

tion available at time T, in the recursions above,

âT and âT 1 are kept fixed in the different

bootstrap replicates of yT+1* and yT+2* while âT+1* ,

âT+2* and âT+3* change from one replicate to

another. Finally, bootstrap replicates of future

values of the series in the original scale are

generated by expression (13).

Now, we summarize all the steps needed for

obtaining bootstrap prediction intervals for XT+k.

Step 1. Compute the residuals ât as in Eq. (4) for the

transformed series. Let F̂a be the empirical distribu-

tion function of the centered residuals.

Step 2. Generate a bootstrap series using the recursion

in Eq. (11) and calculate the estimates (/̂0*, /̂1*, . . .,
/̂p*, ĥ1*, . . ., ĥq*).

Step 3. Obtain a bootstrap future value for the

transformed series by expression (12). Note that the

last p+d values of the transformed series and the final



q residuals are fixed in this step but not in the

previous one.

Step 4. Obtain a bootstrap future value for the series

in the original scale by expression (13).

Step 5. Repeat the last four steps B times and then go

to Step 6.

Step 6. The endpoints of the prediction interval are

given by quantiles of GB*, the bootstrap distribution

function of XT+k* , given by expression (14).

Alternatively, the bootstrap procedure just

described could be also applied to construct

prediction intervals conditional on the parameter

estimates; hereafter CB (conditional bootstrap).

This procedure has been previously proposed by

Cao, Febrero-Bande, González-Manteiga, Prada-

Sánchez and Garcı́a-Jurado (1997) for series {x1,

. . ., xT} following an AR( p) processes, and has

been generalized by Pascual, Romo, and Ruiz

(2001) for the general ARIMA( p, d, q) processes.

With this method, the parameters are estimated

once, and these estimates are used in the calcu-

lation of all bootstrap forecasts xT+k* . The steps to

obtain bootstrap forecasts are similar to those

presented above, except that Step 2 is avoided

inasmuch as now it is not necessary to generate

bootstrap replicates of the transformed series. Then,

the expression to obtain bootstrap future values for the

transformed series in Step 3 is replaced by

jdyTþk4 ¼ /̂0 þ
Xp
j¼1

/̂jj
dyTþk j4 þ

Xq
j¼1

ĥjâaTþk j4

þ âaTþk4 ; k ¼ 1; 2; N ;

where yT+k j* and âT+k j* are defined as in Eq. (12).

Inasmuch as the parameter estimates are kept fixed in

all bootstrap replicates of future values, the CB

prediction intervals do not incorporate the uncertainty

due to parameter estimation.

Notice that the estimated bootstrap density of XT+k

can also be used to obtain a bootstrap estimate of the

expected value and/or the median of XT+k conditional

on the available series. These estimates can then be

taken as point forecasts of XT+k.

Finally, using the asymptotic results in Pascual et

al. (2004) and inasmuch as g(d ) is a known
continuous invertible function, it is straightforward

to prove, using the bootstrap version of the Conti-

nuity Theorem, that g 1( YT+k* )Yg 1( YT+k), i.e.,

XT+k* YXT+k, in conditional probability, in probability,

as TYl.
4. Small sample properties

4.1. Monte Carlo design

We now describe the results of several Monte

Carlo experiments carried out to study the finite

sample performance of the prediction intervals built

by the alternative procedures considered in this paper.

Prediction intervals built by the proposed bootstrap

procedure (PRR) are compared with CB intervals and

with the nonbootstrap methods described in Section 2.

As previously mentioned, PRR is the only approach

that does not condition on parameter estimates and,

consequently, introduces the variability due to param-

eter estimation in the intervals. Comparing PRR with

CB intervals, we are studying the effect of parameter

estimation variability on the shape of estimated

prediction densities. The basic symmetric prediction

intervals in Eq. (8) will be denoted hereafter by STD1,

the intervals based on retransforming the ends in Eq.

(9) will be denoted by STD2, and finally, the corrected

by bias prediction intervals using Eq. (10) will be

denoted by STD3.

The focus of the simulation experiments is on

prediction of future values of a series Xt, such that a

linear ARIMA(p, d, q) model is fitted to a power

transformation of its original values, say yt. We

consider the following three ARIMA processes for

the transformed variable

yt ¼ 0:95yt 1 þ at; r2
a ¼ 0:1 ð17Þ

yt ¼ 0:7yt 1 þ at � 0:3at 1; r2
a ¼ 0:5 ð18Þ

Dyt ¼ 0:3Dyt 1 þ at; r2
a ¼ 0:05: ð19Þ

The AR(1) model was chosen because the autor-

egressive root is 0.95 and, therefore, the model is

close to the nonstationarity region. The ARMA(1, 1)

model was chosen to analyze the finite sample

properties of the proposed procedure in models with



moving average components. Finally, the ARI(1,1)

model was chosen to illustrate the performance of the

PRR bootstrap procedure in the context of integrated

series. The variances of the noises have been chosen

in each case to generate original series with properties

similar to the ones obtained in real-time series.

For each model considered, we generate artificial

series with three alternative error distributions, in

particular, Gaussian, Student-t with five degrees of

freedom and (minus) exponential. In all cases, we

have centered the errors to have 0 mean. The Gaussian

distribution has been chosen as a benchmark for

comparative purposes given that the STD1, STD2 and

STD3 intervals have been derived under this assump-

tion. On the other hand, the Student-t distribution

allows us to analyze the effects on the prediction

intervals for the original series of having leptokurtic

although symmetric innovations after transformation.

Finally, the exponential distribution illustrates the

effects of having nonsymmetric innovations.

Although the exponential distribution may seen rather

unrealistic for real data, it may be of interest when

analyzing nonlinear time series; see, for example,

Granger and Sin (2000) who assume that absolute

financial returns, computed as increments of logarith-

mic prices, are exponential. Furthermore, Harvey and

Newbold (2003) present strong evidence of skewness

for the errors of some macroeconomic series even

after transformation.

Although the Box–Jenkins prediction intervals

have been derived assuming Gaussian errors, they

are extensively implemented in practice even if the

errors are non-Gaussian. Therefore, it seems interest-

ing to compare the bootstrap with STD1, STD2 and

STD3 intervals when the errors are non-Gaussian

even if the latter is not optimal in these circumstances.

We only report the results obtained for the

logarithmic transformation, i.e., yt=log(Xt). The con-

clusions with other power transformations and models

considered are the same and therefore are not reported

to save space.

All the models for the log-transformed series are

estimated by conditional QML, with the parameters

restricted to satisfy the stationarity and invertibility

conditions. We consider two sample sizes: T=50 and

100. The prediction horizons under study are k=1 and

3, and the corresponding intervals are constructed

with a nominal coverage 1�a equal to 0.80, 0.95 and
0.99. For each particular series generated by any of

the models considered, with a particular sample size

and error distribution Fa, we generated R=1000 future

values of XT+k from that series and obtain 100(1�a)%
prediction intervals, denoted by (LX, UX) by each of

the five procedures considered. PRR and CB pre-

diction intervals are constructed based on B=999

bootstrap replicates. The conditional coverage of each

procedure is computed by

âaX ¼ # LXVx
r
TþkVUX

� �
=R;

where xT+k
r , r=1, . . ., R are future values of the

variable generated previously. For each artificial

series, we also estimate the empirical density of the

future values xT+k
r . All the estimated densities in this

paper have been obtained using a kernel estimator of

S-Plus with a rectangular box and a smoothing

parameter of 1. The Monte Carlo results are based

on 1000 replicates.

There is no obvious way to decide whether a

prediction interval is good. Chatfield (1993) and his

discussants conclude that the interval should be such

that its coverage should be as close as possible to the

nominal coverage with the smallest length possible,

and the proportion of observations left outside should

be the same in each of the tails. Consequently,

prediction intervals are compared in terms of average

coverage and length and the proportion of observa-

tions lying out to the left and to the right of the

intervals through all Monte Carlo replicates.

Computations have been carried out in a HP-UX

C360 workstation, using Fortran 77 and the corre-

sponding subroutines of Numerical Recipes by Press,

Flannery, Teuklosky, and Vetterling (1986).

4.2. Results of the Monte Carlo experiments

The results of the Monte Carlo experiments for the

AR(1) model in Eq. (17) with Gaussian innovations

appear in Table 1. First of all, as measured by interval

coverage, the STD1 intervals appear to be about as

accurate as STD2 and PRR at the 95% level.

However, the interval coverage is somewhat mislead-

ing because STD1 generate rather biased one-sided

prediction intervals; see the average of observations

lying out to the left and to the right of the intervals.

Additionally, notice that the accuracy of the STD1



Table 1

Monte Carlo results for AR(1) model with Gaussian errors

Lead time Sample size Method Average coverage Coverage below/above Average length

1 n Empirical 95% 2.5%/2.5% 2.04

50 STD1 94.96 (0.03) 0.33/4.71 2.12 (2.81)

STD2 94.23 (0.03) 2.90/2.86 2.09 (2.77)

STD3 93.94 (0.03) 4.00/2.06 2.20 (2.93)

CB 92.43 (0.04) 3.77/3.80 2.02 (2.74)

PRR 93.45 (0.03) 3.32/3.23 2.06 (2.76)

100 STD1 95.24 (0.02) 0.22/4.54 2.09 (2.68)

STD2 94.63 (0.02) 2.67/2.70 2.06 (2.65)

STD3 94.34 (0.02) 3.76/1.90 2.18 (2.79)

CB 93.83 (0.03) 3.08/3.09 2.05 (2.71)

PRR 94.10 (0.02) 2.92/2.98 2.04 (2.62)

3 n Empirical 95% 2.5%/2.5% 3.44

50 STD1 94.15 (0.04) 0.04/5.80 3.80 (5.64)

STD2 93.11 (0.04) 3.47/3.42 3.65 (5.38)

STD3 92.38 (0.04) 5.54/2.08 4.21 (6.34)

CB 92.31 (0.04) 3.79/3.90 3.55 (5.31)

PRR 92.87 (0.04) 3.56/3.57 3.50 (5.18)

100 STD1 94.69 (0.03) 0.00/5.31 3.68 (4.82)

STD2 94.05 (0.03) 2.93/3.01 3.54 (4.62)

STD3 93.34 (0.03) 4.91/1.74 4.07 (5.38)

CB 93.65 (0.03) 3.07/3.28 3.48 (4.58)

PRR 93.78 (0.03) 3.03/3.19 3.40 (4.32)

Quantities in parenthesis are Monte Carlo standard deviations.
intervals does not improve with sample size. Therefore,

the symmetric STD1 intervals seem to be not adequate

to predict future values of transformed variables. This

effect was also observed by Collins (1991) in the

context of regression models. Furthermore, notice that

the average length of the STD1 intervals is systemati-

cally larger than the empirical length. As an illustration,

Fig. 1 plots the prediction density corresponding to the

STD1 intervals together with the empirical density for a

particular series of size T=100 generated by model (17)

with Gaussian errors. It is rather obvious that the

symmetric density is not adequate to represent the

empirical density of XT+k.

Next, analyzing the behavior of the intervals based

on Eqs. (9) and (10) in Table 1, it is interesting to note

that the use of the bias-corrected STD3 intervals do

not improve in any case the results of the STD2

intervals. They have larger average length than STD2,

and the average observations left out on the right and

on the left are clearly asymmetric. This means that

using the debiasing factor (designed to obtain a better

estimation of the conditional expectation in the
original scale) for correcting the bias of the prediction

intervals does not seem to work for the cases

considered in this paper.

Comparing PRR and STD2 intervals, it is possible

to observe that they have similar performance in terms

of both average coverage and length. The reason for

the good behavior of STD2 seems clear. In this case,

when taking logarithms of the original observations,

the resulting transformed series has normal errors, and

therefore, the usual Box and Jenkins (1976) and the

PRR intervals have similar performance; see Pascual

et al. (2004). Consequently, when going back to the

original metric this similar behavior remains. In Fig.

1, we also plot the density of XT+k corresponding to

retransforming YT+k, as it is done when constructing

the STD2 intervals. Notice that although this density

is closer to the empirical density than the one based on

STD1 intervals, the shape is still slightly different.

Finally, we concentrate on the comparison of PRR

with respect to CB intervals which does not incorpo-

rate the parameter uncertainty variability. The results

reported in Table 1 show that CB intervals have lower



Fig. 1. Densities of one-step ahead predictions of one series of size 100 generated by AR(1)model with Gaussian innovations.
average coverage than PRR, the latter having average

coverage closer to the nominal value. Therefore, it

seems to be important to include the uncertainty due

to parameter estimation in prediction intervals in order

to obtain coverages close to the nominal values. The

necessity of using PRR is more evident for the

smallest sample size. As expected, inasmuch as the

conditional QML estimator is consistent, CB and PRR

intervals get closer in terms of coverage and length as

the sample size increases. The conclusions are

essentially the same for predictions made one and

three steps ahead. In Fig. 1, it is rather clear that the

PRR prediction density is closer to the empirical

density than the CB and STD2 densities which are

rather close. Consequently, it seems that the improve-

ment of PRR over STD2 intervals is not due to the

distribution of the forecast errors but to the inclusion

of the variability due to parameter estimation.

When predictions are made three steps ahead into

the future, the average coverages of all procedures are

relatively larger with respect to the empirical average

than when predictions are made one step ahead.

However, it is important to observe that the relative

increase of the average length of the nonbootstrap

intervals is much larger than the relative increase of

the bootstrap intervals. For example, if the sample size

is 50, the average lengths of the STD2 and PRR one-
step ahead intervals are 2.5% and 1% larger than the

corresponding empirical length. However, when the

prediction horizon is 3, the STD2 interval is 6%

larger, while the PRR interval is only 1.7% larger.

The results for other alternative coverages are

similar or slightly more favorable towards bootstrap

intervals than the ones reported in Table 1 for 95%

intervals.

To analyze whether having a leptokurtic, although

symmetric distribution of the errors in the transformed

variable, affects the results reported above, Table 2

shows the Monte Carlo results for the 80% prediction

intervals for log-transformed series generated by the

AR(1) model with innovations generated by the

Student-t distribution. We report results for the 80%

intervals because the differences are clearer than when

95% intervals are considered. The conclusions with

respect to the comparisons between STD1, STD3 and

CB intervals are the same as before. In this table, it is

also possible to observe the improvement of PRR with

respect to STD2 intervals. In this case, the average

coverage and lengths of the STD2 intervals are larger

than nominal values, and what is even more important

is that this bad behavior does not improve as the

sample size increases. Remember that the STD2

intervals are built assuming that the transformed

variable Yt is normal. Therefore, as soon as this



Table 2

Monte Carlo results for AR(1) model with Student-5 errors

Lead time Sample size Method Average coverage Coverage below/above Average length

1 n Empirical 80% 10%/10% 1.12

50 STD1 84.82 (0.06) 6.01/9.17 1.55 (2.75)

STD2 82.40 (0.06) 8.76/8.83 1.47 (2.58)

STD3 81.89 (0.06) 11.15/6.97 1.55 (2.76)

CB 78.06 (0.06) 10.91/11.03 1.30 (2.29)

PRR 79.15 (0.06) 10.35/10.50 1.31 (2.28)

100 STD1 85.55 (0.04) 5.64/8.81 1.34 (1.89)

STD2 83.14 (0.04) 8.38/8.48 1.28 (1.78)

STD3 82.63 (0.04) 10.74/6.63 1.35 (1.90)

CB 79.21 (0.04) 10.23/10.55 1.14 (1.56)

PRR 79.54 (0.04) 10.15/10.31 1.14 (1.59)

3 n Empirical 80% 10%/10% 1.89

50 STD1 85.52 (0.08) 3.85/10.63 2.93 (7.47)

STD2 78.51 (0.08) 10.68/10.81 2.50 (6.22)

STD3 77.05 (0.08) 15.47/7.48 2.93 (7.49)

CB 76.44 (0.08) 11.66/11.89 2.38 (6.11)

PRR 77.54 (0.08) 11.14/11.32 2.31 (6.01)

100 STD1 87.24 (0.05) 3.01/9.75 2.36 (3.43)

STD2 80.18 (0.05) 9.86/9.96 2.05 (2.88)

STD3 78.75 (0.05) 14.59/6.65 2.37 (3.45)

CB 78.36 (0.05) 10.72/10.91 1.95 (2.77)

PRR 78.38 (0.05) 10.75/10.87 1.90 (2.62)

Quantities in parenthesis are Monte Carlo standard deviations.
assumption is not satisfied, the intervals do not have

the usual properties.

The results are even worse when the innovations

have an asymmetric distribution. Table 3 reports the

results for the 95% prediction intervals for log-

transformed series generated by the ARMA(1,1)

model with exponential innovations. The nonboot-

strap methods have, in general, average coverage and

length over nominal values, and as the sample size

increases, this bad behavior tends to be even worse.

They are not able to cope with the asymmetry of the

transformed series Yt. Notice that the PRR intervals

have an adequate performance, and additionally, as

the sample size gets larger, its average coverage and

length measures get closer to nominal values, support-

ing the asymptotic properties mentioned in Section 3.

Also, notice that, in this case, the necessity of

introducing the variability due to parameter estimation

by the use of PRR is crucial even for large sample

sizes. For the asymmetric distribution considered, CB

intervals have lower average coverage than PRR. Fig.

2 plots kernel estimates of the densities obtained for a

particular replicate in this case. It is possible to
observe that the nonbootstrap densities do not

resemble the shape of the empirical density while

the PRR density is able to mimic it.

Finally, Table 4 reports the Monte Carlo results for

the ARI(1, 1) model in Eq. (19) with Student-t errors

when the intervals have a nominal coverage of 80%.

Notice that, in this case, the average length of the

empirical density changes with the sample size. Table 4

illustrates that the bootstrap procedure proposed also

works adequately in the presence of unit roots. The

results in Table 4 are very similar to the ones reported in

Table 2 for the AR(1) model with a large autoregressive

parameter. However, it is important to mention that the

parameters of the particular ARI(1, 1) model chosen in

these simulations are rather small, and therefore, the

predictions of future values are dominated by the unit

root. Consequently, the CB and PRR are rather similar.

The uncertainty due to parameter estimation should be

more important when predicting with models with

larger parameters. Furthermore, in Table 4, the asym-

metry of the STD1 intervals is not as pronounced as it is

in Table 2. However, this asymmetry increases the

larger the prediction horizon is.



Table 3

Monte Carlo results for ARMA(1, 1) model with exponential errors

Lead time Sample size Method Average coverage Coverage below/above Average length

1 n Empirical 95% 2.5%/2.5% 1.99

50 STD1 99.67 (0.03) 0.06/0.27 4.43 (2.35)

STD2 94.10 (0.03) 5.81/0.09 4.02 (1.88)

STD3 91.98 (0.03) 8.00/0.02 5.38 (3.29)

CB 90.90 (0.09) 3.79/5.31 2.07 (0.78)

PRR 94.27 (0.06) 3.44/2.28 2.28 (0.74)

100 STD1 99.99 (0.01) 0.01/0.00 4.41 (1.84)

STD2 94.44 (0.02) 5.56/0.00 4.05 (1.58)

STD3 92.25 (0.02) 7.75/0.00 5.29 (2.41)

CB 93.18 (0.06) 3.10/3.72 2.07 (0.70)

PRR 94.91 (0.05) 3.02/2.07 2.15 (0.68)

3 n Empirical 95% 2.5%/2.5% 2.58

50 STD1 99.28 (0.03) 0.01/0.71 5.56 (3.42)

STD2 94.29 (0.04) 5.53/0.19 4.80 (2.15)

STD3 91.78 (0.03) 8.17/0.05 7.12 (5.49)

CB 91.33 (0.07) 3.56/5.11 2.60 (0.77)

PRR 93.48 (0.05) 3.33/3.19 2.77 (0.78)

100 STD1 99.77 (0.01) 0.00/0.23 5.38 (2.15)

STD2 94.83 (0.02) 5.14/0.03 4.75 (1.59)

STD3 92.19 (0.02) 7.81/0.00 6.75 (3.20)

CB 93.06 (0.05) 3.03/3.91 2.59 (0.63)

PRR 93.93 (0.04) 2.97/3.09 2.67 (0.63)

Quantities in parenthesis are Monte Carlo standard deviations.
Summarizing, PRR intervals perform as well as

STD2 intervals when the innovations of the trans-

formed data are well approximated by a normal
Fig. 2. Densities of one-step ahead predictions of one series of size
distribution and outperform the existing procedures

when this distribution differs from the Gaussian one, a

situation frequently found when working with real
100 generated by AR(1) model with exponential innovations.



Table 4

Monte Carlo results for ARI(1, 1) model with Student-5 errors

Lead time Sample size Method Average coverage Coverage below/above Average length

1 n Empirical 80% 10%/10% 0.79

50 STD1 82.27(.06) 8.48/9.25 0.90(1.96)

STD2 82.15(.06) 8.85/9.01 0.90(1.95)

STD3 82.12(.06) 9.33/8.55 0.90(1.96)

CB 78.03(.07) 10.88/11.09 0.80(1.75)

PRR 78.80(.06) 10.44/10.76 0.82(1.79)

1 n Empirical 80% 10%/10% 1.02

100 STD1 83.06(.04) 8.15/8.79 1.15(3.26)

STD2 82.94(.04) 8.51/8.55 1.15(3.25)

STD3 82.91(.04) 9.00/8.09 1.15(3.26)

CB 79.13(.04) 10.40/10.47 1.05(2.97)

PRR 79.41(.04) 10.24/10.35 1.06(3.01)

3 n Empirical 80% 10%/10% 1.81

50 STD1 80.43(.08) 8.99/10.58 2.01(4.63)

STD2 79.81(.08) 10.04/10.14 1.98(4.55)

STD3 79.67(.08) 11.23/9.10 2.01(4.64)

CB 78.19(.08) 10.80/11.01 1.89(4.29)

PRR 78.39(.07) 10.70/10.90 1.89(4.34)

3 n Empirical 80% 10%/10% 2.35

100 STD1 81.50(.06) 8.51/9.99 2.56(7.49)

STD2 80.84(.05) 9.60/9.57 2.53(7.39)

STD3 80.71(.05) 10.79/8.49 2.57(7.50)

CB 79.12(.05) 10.38/10.51 2.42(7.10)

PRR 79.18(.05) 10.33/10.49 2.43(7.11)

Quantities in parenthesis are Monte Carlo standard deviations.
data; see, for example, Harvey and Newbold (2003).

Furthermore, the symmetric intervals based on Eq.

(8) are shown to have poor properties even when the

transformed data are Gaussian. The bias-correcting

factor for the end of the prediction intervals in Eq.

(9) proposed by Guerrero (1993) is also shown not

to improve the properties of the noncorrected

intervals. We have also shown that including the

uncertainty due to estimation of the parameters of the

model in the bootstrap prediction intervals may be

crucial depending on the distribution of the trans-

formed data.

Finally, it is important to point out that, for the

models and sample sizes considered in this paper and

given the computer facilities available nowadays, the

differences between the computer times needed for

the bootstrap and nonbootstrap procedures to get

prediction intervals are irrelevant. For a particular

series, it takes just a few seconds to obtain the
corresponding prediction intervals. Therefore, it

seems that, as soon as the Gaussianity assumption

is not adequate, it is worth using the proposed

bootstrap intervals.
5. Real data applications

In this section, we illustrate empirically the use of

the suggested bootstrap method to construct predic-

tion intervals for transformed variables. We start

considering the Sales Data, studied first by Chatfield

and Prothero (1973) and latter by Pankratz and

Dudley (1987) and Guerrero (1993) among others.

The series, plotted in the top panel of Fig. 3, consists

of 77 observations of the monthly sales of an

engineering product with a marked trend and a strong

seasonal pattern. Inasmuch as the size of the seasonal

effect increases with the mean level of sales, Chatfield



Fig. 3. Observations of monthly sales of an engineering product both in the original (top panel) and in the transformed scale (bottom panel).
and Prothero originally used the log transformation.

However, this transformation was criticized by Wilson

(1973) who found by maximum likelihood that a more

convenient power transformation was k̂=0.34; see

also Guerrero (1993). Therefore, we will consider

k=1/3 as known. The bottom panel of Fig. 3

represents the transformed observations. The model

finally fitted to the transformed data is

1� /Lð ÞDD12yt ¼ 1� HL12
� �

at ð20Þ

where yt=Xt
1/3and Xt denotes the original series. The

first 65 observations of the series corresponding to the

period from January 1965 up to May 1970 are used to

estimate the parameters of model (20). The last 12

observations corresponding to the period from June

1970 up to May 1971 are used to assess the predictive

performance of the STD2, STD3 and PRR prediction

intervals. Note that, for this particular transformation,

STD1 prediction intervals cannot be computed inas-

much as no formulas for the variance of the prediction

error of Xt are available.

The QML estimates are /̂=�0.5437 and

Ĥ=0.5466. The skewness coefficient of the corre-

sponding residuals is �0.2946, and the excess

kurtosis is 0.065, with the former significantly differ-

ent from 0. Therefore, the empirical distribution of the

residuals has a long tail to the left.
Then, we implement the bootstrap procedure

described in Section 3 to construct prediction densities

of the transformed variable y65+k for k=1, . . ., 12. The
estimated density for lead time 1 together with the

normal density appears in Fig. 4 where it can be

observed that the bootstrap density is asymmetric to

the left, as observed in the residuals distribution.

Finally, we implement the PRR procedure to construct

bootstrap prediction densities and intervals for future

values of the variable in the original scale. In Table 5,

which reports the interval lengths for some selected

horizons, it can be observed that the bootstrap

intervals are always thinner than the STD2 intervals,

with both intervals having the same coverages.

In this case, using the mean or the median of the

bootstrap density does not improve the MSE of the

predictions over the retransformed point predictions.

Next, we analyze two economic time series, the

U.S. Dollar–Pound real exchange rate (RXR) and the

ratio of nonborrowed total reserves (NBRX). These

series are studied by Kilian (1998) in the context of

VAR models, who shows that the residuals clearly

reject the normality assumption. Both series consist of

197 observations, where the first 173 are used to

estimate the parameters of the ARIMA model fitted to

the log-transformed data, and the last 24 observations

are used to asses the predictive performance of the

methods considered in this section.



Fig. 4. Estimated density of one-step ahead predictions of the transformed monthly sales constructed by PRR method and normal density.
The final model fitted to the log-RXR series yt is

Dyt ¼ 1þ 0:401Lð Þâat ð21Þ

The skewness coefficient of the residuals ât is

0.2112, and the excess kurtosis is 0.37, with the

former being different from 0. Therefore, as con-

cluded by Kilian (1998), the residuals have an

asymmetric distribution. The PRR and STD2 predic-

tion intervals at 80%, plotted in Fig. 5, are asym-

metric, although the upper and lower bounds of the

bootstrap intervals are under the corresponding

bounds of the STD2 intervals. As a consequence,

the bootstrap intervals are able to include one

observation left out by the STD2 intervals.
Table 5

Naive (STD2) and bootstrap (PRR) interval lengths for Sales data

Nominal Method Forecast horizon

1 2 4 6 8 12

80% STD2 108.28 132.86 268.63 400.23 399.38 258.86

PRR 105.30 132.51 257.79 388.62 376.98 258.08

95% STD2 166.18 203.94 412.48 614.75 614.31 401.13

PRR 174.73 203.48 394.92 604.09 608.20 389.36

99% STD2 221.09 271.38 549.16 818.80 819.73 540.45

PRR 217.56 260.74 523.04 753.21 801.73 558.21
Finally, the model fitted to the log-NBRX data yt is

ŷyt ¼ � 0:031þ 0:8481ŷyt 1 ð22Þ

In this case, the skewness coefficient of the

residuals is �0.9071, and the excess kurtosis is

6.50, both significantly different from 0. Once more,

the assumption of normality is clearly rejected. Fig. 6

shows how the bootstrap prediction intervals capture

the asymmetry and kurtosis inherent in the residuals

and consequently in the prediction densities. It is

important to note that the length of the bootstrap

intervals are shorter than the STD2 ones having the

same coverages.
6. Summary and conclusions

This paper extends the bootstrap technique pro-

posed by Pascual et al. (2004) to construct prediction

intervals for a variable after a linear ARIMA model is

fitted to its power transformation. In this situation,

there is no generally accepted method of computing

prediction intervals. The proposed resampling scheme

does not assume any distribution for the errors neither

in the original nor in the transformed metrics and, at

the same time, allows to incorporate the variability

due to parameter estimation. By means of Monte



Fig. 5. Observed levels of RRX series (.) and point predictions (o). 80% intervals constructed by STD2 and PRR procedures.
Carlo experiments, we compare the finite sample

performance of alternative methods previously pro-

posed in the literature to construct prediction intervals

for power-transformed series with the bootstrap

approach proposed in this paper. There are two main
Fig. 6. Observed levels of NBRX series (.) and point predictions (
alternatives. The first one based on Granger and

Newbold (1976) assumes a symmetric distribution for

both the original and the transformed variable and can

only be implemented for logarithmic and root squared

transformations. These prediction intervals ignore the
o). 80% intervals constructed by STD2 and PRR procedures.



skewness and all higher moments of the variable of

interest. As a result, this approach will generate biased

one-sided prediction intervals.

The second alternative is based on retransforming

the ends of the prediction intervals for the transformed

variable. In this case, only the Gaussianity of the

transformed variable is needed. None of these

intervals are able to take into account the uncertainty

due to estimation of the parameters. The intervals

constructed simply by retransforming the upper and

lower values of the usual prediction intervals for the

transformed series have only good properties when

the transformed series has normal errors. In this case,

the usual Box–Jenkins intervals for the variable in the

transformed metric have very good properties, and

therefore, when going back to the original scale, this

good behavior remains. The results show that, for

nonnormal innovations, these prediction intervals can

be heavily distorted. The bias correction proposed by

Guerrero (1993) does not improve the results for the

cases considered in this paper. The bootstrap intervals

seem to have appropriate properties.

We also analyze how the coverage and length of

prediction intervals are affected by not taking into

account the variability due to parameter estimation.

We show that the average coverage of the intervals is

closer to the nominal value when intervals are

constructed incorporating parameter uncertainty. As

expected, inasmuch as we are considering consistent

estimators, the effects of parameter estimation are

particularly important for small sample sizes. Fur-

thermore, these effects are more important when the

error distribution is not Gaussian; see also Pascual et

al. (2001).

The bootstrap approach presented in this paper

seems to have reasonable properties when prediction

intervals are required for a variable after a power

transformation is taken to its original values. This

approach gives prediction intervals with a reasonable

finite sample performance in terms of average cover-

age and average length with both normal and non-

normal distributions of the innovations. As expected,

its behavior improves as the sample size increases.

Additionally, this method not only gives prediction

intervals but also provides estimates of the prediction

density function of the variable in its original scale;

see, for example, Tay and Wallis (2000) for a survey

on the importance of prediction density.
The behavior of the PRR technique is illustrated

with the analysis of three real-time series. It is shown

that the PRR intervals are shorter than the retrans-

formed intervals having at the same time better

coverage properties.

One interesting generalization of the bootstrap

procedure proposed in this paper is to consider a

procedure to construct prediction intervals that also

incorporate the uncertainty associated with the trans-

formation parameter k which could be estimated by

QML methods as proposed, among others, by

Robinson (1991) or by semiparametric methods as

proposed by Foster, Tian, and Wei (2001). However,

in this case, it is not obvious which is the best inverse

transformation to be used to obtain prediction

intervals in the original scale. This problem is left

for further research.
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