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Abstract

A new bootstrap procedure to obtain prediction densities of returns and volatilities of GARCH
processes is proposed. Financial market participants have shown an increasing interest in prediction
intervals as measures of uncertainty. Furthermore, accurate predictions of volatilities are critical for
many financial models. The advantages of the proposed method are that it allows incorporation of
parameter uncertainty and does not rely on distributional assumptions. The finite sample properties
are analyzed by an extensive Monte Carlo simulation. Finally, the technique is applied to the Madrid
Stock Market index, IBEX-35.
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1. Introduction

Financial market participants have an increasing interest in prediction intervals for future
returns as measures of uncertainty. For example, in the area of financial risk management,
it is important to provide density forecasts of portfolio prices and to track certain aspects of
these densities such as value at risk (VaR); see, for example, Bollerslev (2001) and Engle
(2001). On the other hand, accurate predictions of future volatilities are critical for the im-
plementation and evaluation of asset and derivative pricing theories as well as trading and
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hedging strategies. It is by now well documented in the literature that the volatility of fi-
nancial returns evolves over time. Generalized autoregressive conditionally heteroscedastic
(GARCH) models, originally introduced by Bollerslev (1986), provide dynamic prediction
intervals which are narrow in quiet times and wide in volatile periods. However, despite the
extensive literature related with GARCH models, relatively little attention has been given
to the construction of prediction intervals for GARCH models. Furthermore, the literature
on volatility prediction has traditionally dealt with point forecasts without considering any
measure of the uncertainty associated to forecasting future volatilities. The interest of having
this measure has been put forward, among many others, by Baillie and Bollerslev (1992),
Shephard (1996), Andersen and Bollerslev (1998), Andersen et al. (2001), Engle and Patton
(2001) and Tsay (2002). The few procedures available in the literature to obtain predic-
tion intervals for future volatilities are mainly Bayesian and need to assume a particular
distribution for the errors; see, for example, Jacquier et al. (1994).

In this paper, we propose to use bootstrap methods to obtain prediction densities of future
returns and volatilities generated by GARCH models. Our proposal is a generalization of
the procedure proposed by Pascual et al. (2004) for linear autoregressive integrated moving
average (ARIMA) models. The resulting prediction intervals for returns and volatilities
incorporate the uncertainty due to parameter estimation without distributional assumptions
on the sequence of innovations. Miguel and Olave (1999) have also proposed a bootstrap
procedure to obtain prediction intervals for future observations generated by ARCH models
but their intervals do not incorporate the parameter uncertainty. Consequently, their proposal
does not allow to construct prediction intervals for one-step ahead future volatilities.

The paper is organized as follows. Section 2 describes the main properties of GARCH
processes and predictions. In Section 3, we present the proposed resampling procedure
to estimate prediction densities and intervals for returns and volatilities. Its finite sample
behavior is analyzed in Section 4, which reports the results of an extensive Monte Carlo
simulation study. Section 5 presents an application with real financial data. Finally, the
conclusions appear in Section 6.

2. The GARCH(1,1) model

The GARCH(1,1) model provides a simple representation of the main dynamic charac-
teristics of returns of a wide range of assets and it is extensively used to model them. Hence,
although it could not be the optimal model for volatility forecasting in any given series,
it serves as a natural benchmark for the forecast performance of heteroscedastic models.
For simplicity, we concentrate on it hereafter. However, the bootstrap procedure proposed
in the following section can be directly generalized to general GARCH(p,q) processes. A
GARCH(1,1) model is given by

Yt = 0té,
ad=w4oay’  + o>, t=1,...,T, (1)

where ¢; is a white noise process with unit variance, o, is a stochastic process known as
volatility and assumed to be independent of ¢;, and w, o and f§ are unknown parameters that



satisfy @ > 0, >0, >0 to ensure the positivity of the conditional variance. The process
y; is covariance stationary if o + ff < 1. Nelson (1990) shows that y, is strictly stationary if
E [log (B + a&7)] < 1. Note that o7 is observable with information available at time ¢ — 1
and, consequently, given the assumptions on the distribution of ¢, the conditional mean of
y; is zero and otz is the conditional variance. Moreover, the conditional distribution of y;
coincides with the distribution of ;.

Alternatively, the conditional variance can also be expressed as a function of past obser-
vations as follows:
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The predictor of yrii, given observations of the process up to time 7, Y7 =
{v1, y2, ..., yr}, is zero and its conditional mean square error (MSE) is given by
2 w k=1 ( 2 w
ET (o-TH):m#—(oH—ﬁ) (GTJrl —m> (3)

If & is further assumed to be a Gaussian process, then y; is conditionally Gaussian, and
one-step ahead forecast errors are normally distributed. Therefore, (1 — y)% prediction
intervals of y74 are given by £z,/20711, where zy/2 is the y/2-quantile of the standard
normal density. On the contrary, the prediction error distribution when forecasting k-periods
ahead for k£ > 1 is not normal even if ¢ is Gaussian. However, the usual approximation to
the (1 — )% prediction intervals of returns yr for k > 1 is given by
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Alternatively, Baillie and Bollerslev (1992) propose an improvement of the intervals in (4)
based on Cornish—Fisher expansions making parametric assumptions on the distribution of
& . However, the prediction error distribution is only known for the GARCH(1,1) model and
it seems difficult to generalize it to general GARCH(p,q) processes. Furthermore, Baillie
and Bollerslev (1992) point out that the resulting intervals do not take into account the
uncertainty due to parameter estimation and the fact that it could be of interest to know
whether this uncertainty may have an effect on their properties.

With respect to the prediction of future values of volatilities, the point predictor of 0'2T tk
is given by (3). Although Baillie and Bollerslev (1992) present the expression for the condi-
tional MSE for the k-steps ahead predictor of the conditional variance, the prediction error
distribution for the conditional variance is not derived and, therefore, prediction intervals
cannot be obtained.

It is important to notice that, as we have mentioned before, if the parameters of the
GARCH model are known, the one-step ahead conditional variance is observable and,
consequently, perfectly predictable. Therefore, the only uncertainty associate with the pre-
diction of 62T 41 is due to parameter uncertainty. However, if we predict the variance two
or more steps ahead, then there is also uncertainty about future errors. Therefore, in this
case, even if the parameters were known, the volatility cannot be perfectly predicted more
than two-steps ahead. In this case, it is especially interesting to have prediction intervals for
future volatilities.



3. Bootstrap prediction intervals

In this section, we extend the procedure proposed in Pascual et al. (2004) for ARIMA
models to obtain prediction densities of future values of returns and volatilities of series
generated by GARCH processes.

Let Y7 be a sequence of T observations generated by the GARCH(1,1) process given by
Eq. (1). The goal is to estimate directly the distribution of y74; and o7y conditionally
on the available data. Once the parameters of the model, 0 = (w, a, f§), are estimated by

0r= (’(I), o, ﬁ) ,the residuals are computed by ¢, =y, /77, t=1, ..., T where’&f:@—kﬁ?ytz_l +
atzfl, t =2,..., T, are the estimated conditional variances and '5? =0/ (1 —— /3) is

the estimated marginal variance.

To implement the bootstrap technique, it is necessary to obtain bootstrap replicates Y =
{yi", el y;} that mimic the structure of the original series. These replicates are obtained
from the following recursions:

P 7N 7] D2
o, =w+uyZ + o,

v =¢0a;, fort=1,...,T, 5)

where & are random draws with replacement from Fr, the empirical distribution function
of the centered residuals, and 3’{2 = 3%. Once the parameters of this bootstrap series are

. % o’y —x .
estimated, 0, = (a)*, o, B ), bootstrap forecasts of future values are obtained through the
following recursions:
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YTk =74k O074k» fork=1,2,... (©)
with &7, being random draws with replacement from Fr, y; = yr and

=5k =5k
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Note that, in expression (7), although 3’;2 is different for all bootstrap replicates, its value
is obtained using the corresponding bootstrap parameter estimates and always the original
series. Therefore, its value is small when the returns at the end of the sample period are
small and large when they are large in absolute value. Consequently, 6'\”}2 incorporates the
variability due to parameter estimation and, at the same time, takes into account the state

of the process when predictions are made.

Once we obtain a set of B bootstrap replicates (y;(i}(, ceey y;(flg ) for yr 1, the prediction
limits are defined as the quantiles of the bootstrap distribution function of y7 4k More
specifically, if G§(h) = Pr (y; Tk gh) is the distribution function of y7_, and its Monte
Carlo estimate is G’; gh)=# (y;l;k < h) /B, where #(-) counts the number of cases where

the condition within brackets is satisfied, then, a 100(1 — 7)% prediction interval for y; Tk



is given by

(2350, 05500] =[5 (3) - 256 (1-2)]. ®)

where Q7 5 = G* I
We can 51multaneously obtain prediction intervals for the volatility k periods into the

future. Given a set (?c\;(i)k e ,'a‘?f,i) of B bootstrap replicates of the volatility for any

horizon k, we proceed as before, using as prediction limits the quantiles of the bootstrap
distribution function of 67 . In this case, if G}(h) = Pr (G, <h) is the distribution
function of 67, and its Monte Carlo estimate is G}, (h) =# (0T+k <h)/B,a100(1—)%
prediction interval for o7, 4k Is given by

(L350, Uza@] = [055 (2) 056 (1-2)]. ©

where Q7 , = G;_Bl

Alternatively, the bootstrap procedure just described could be also applied to construct
prediction intervals conditional on the parameter estimates. This conditional bootstrap (CB)
has been previously proposed by Miguel and Olave (1999) although they only focus on the
construction of prediction intervals for y7; and do not consider the construction of predic-
tion intervals for future volatilities. In their proposal, the estimated parameters are kept fixed
in all bootstrap forecasts of y; Tk and 3’; Tk fork =1, 2, ... . Therefore, it is not necessary
to generate bootstrap replicates of the series as in (5) and the bootstrap forecasts k-steps
ahead depend only on the resampled residuals. The recursive equations of the CB are

) T2
074k = O +ay75—1 + PoT i1
* K Sk —
Viik =&k Opqn, fork=1,2,..., (10)

where yj=yr and ¢ aT —O'T Since the parameter estimates are kept fixed in all bootstrap
replicates of future values, the CB prediction intervals do not incorporate the uncertainty
due to parameter estlmatlon Note that since in GARCH models the variance is observable
one period ahead, O’T +1_w + ocyT + [ﬁ’A is also kept fixed in all bootstrap replicates.
Consequently, CB does not allow to estimate the one step ahead distribution of the volatil-
ity process.

4. Finite sample properties

The finite sample behavior of the bootstrap procedure for prediction densities and intervals
of returns and volatilities of GARCH series is now analyzed by means of Monte Carlo
experiments. We generate series with the GARCH(1,1) model in (1) with @ =0.05, «=0.1
and f = 0.85 and with Gaussian, Student-r with 5 degrees of freedom and exponential
innovations centered to have zero mean. The parameters have been chosen to resemble the
parameter values often estimated when the GARCH(1,1) model is fitted to real series of
high-frequency financial returns. With respect to the distributions, the Gaussian has been
chosen because it is the most popular in empirical applications. However, it has been often



observed in real time series that the residuals from Gaussian-GARCH(1,1) models still have
excess kurtosis. Consequently, it is common to assume that ¢; has a heavy-tailed distribution
like, for example, a Student-¢ distribution. Finally, the exponential distribution is chosen
to illustrate the effects on the prediction intervals of having an asymmetric conditional
distribution. Results for alternative models and distributions are similar to those reported
here and are available from the authors upon request. The sample sizes considered are
T =300, 1000 and 3000. The GARCH parameters are estimated by QML maximizing the
Gaussian likelihood. The estimated parameters are restricted to guarantee the positivity and
stationarity conditions. The corresponding intervals are constructed with nominal coverage
1 — y equal to 0.80, 0.95 and 0.99. For each particular series generated with a particular
sample size and error distribution, we generate R = 1000 future values of yr4x and o7«
and obtain 100(1 — y)% prediction intervals for returns, denoted by (L";, U ;,“), for each
of the three procedures considered. Bootstrap intervals are constructed based on B = 999
replicates. Then, we compute the length and coverage of the interval. The coverage of each

procedure is computed by l/—\y; =# {L; gy;% < U;“} /R, where y;Jrk (r=1,...,R)

are future values of the variable generated previously. We also compute the coverage on the
left and right tails of the distribution. Simultaneously, we compute the same quantities for
future volatilities. Consequently, for each artificial series and each procedure considered,
we have a measure of the length and coverage of the corresponding interval as well as of the
coverage on the left and right tails of the distribution of future returns and volatilities. Then,
we compute the average and standard error of the coverage and length and the average
proportion of observations lying out to the left and to the right through all Monte Carlo
replicates. All the results are based on 1000 replicates.

All computations have been carried out in an HP-UX C360 workstation, using Fortran 77
and the corresponding subroutines of Numerical Recipes by Press et al. (1986). In particular,
Gaussian and Student-¢ errors are generated using the subroutine “gasdev” and the corre-
sponding transformations in each case. Exponential errors are generated using uniform
random numbers generated by subroutine “rand2” and transforming them appropriately.
The numerical optimization of the Gaussian log-likelihood function to obtain the QML
estimates has been carried out using the subroutine “amoeba” with the maximum allowed
function evaluations set equal to 5000 and the fractional convergence tolerance set equal
to 1076, This subroutine does not require analytical derivatives. Alternatively, it is possi-
ble to use computationally more efficient optimizers that use analytical derivatives of the
log-likelihood. For the GARCH model, these derivatives have been calculated by Fiorentini
et al. (1996). The advantage of the optimizer used in this paper is that it can be implemented
even when the corresponding derivatives are not available or are difficult to program as, for
example, in the asymmetric EGARCH model, in high order GARCH models or in multi-
variate GARCH models. In this sense, Ip et al. (2004) prove the convexity of the negative
likelihood in the asymptotic sense for GARCH models. This property provides assurance
for the convergence of numerical optimization algorithms for ML estimation of GARCH.
Furthermore, comparing several alternative optimizers for GARCH models, they conclude
that all the methods perform well for the GARCH(1,1) model considered in this paper.

It is important to point out that the empirical implementation of the proposed bootstrap
procedure is simple and its computational costs are the usual in any resampling technique.



Table 1
Prediction intervals for returns of GARCH(1,1) model with Gaussian errors

Lead Sample Method Average Av. coverage Average
time size coverage (se)? below/above? length (se)°
1 T Empirical 95% 2.5%/2.5% 3.82
300 STD 94.71 (0.022) 2.64/2.65 3.86 (1.00)
CB 94.45 (0.024) 2.70/2.85 3.85(1.03)
PRR 94.52 (0.023) 2.69/2.79 3.84 (0.945)
1000 STD 95.01 (0.011) 2.50/2.49 3.84 (0.846)
CB 94.86 (0.014) 2.51/2.62 3.83 (0.858)
PRR 94.85 (0.014) 2.53/2.62 3.83(0.823)
3000 STD 95.01 (0.009) 2.50/2.49 3.85(0.908)
CB 94.89 (0.011) 2.51/2.60 3.85(0.928)
PRR 94.91 (0.012) 2.50/2.59 3.84 (0.910)
10 T Empirical 95% 2.5%/2.5% 3.90
300 STD 94.44 (0.025) 2.78/2.77 3.90 (0.783)
CB 94.27 (0.027) 2.81/2.92 3.91 (0.833)
PRR 94.35 (0.025) 2.78/2.87 3.90 (0.764)
1000 STD 94.83 (0.014) 2.59/2.58 3.90 (0.588)
CB 94.80 (0.016) 2.55/2.65 3.91 (0.609)
PRR 94.80 (0.016) 2.55/2.65 3.91 (0.576)
3000 STD 94.86 (0.01) 2.58/2.56 3.90 (0.626)
CB 94.90 (0.012) 2.51/2.59 3.92 (0.646)
PRR 94.85 (0.012) 2.53/2.63 3.92 (0.638)
20 T Empirical 95% 2.5%/2.5% 3.94
300 STD 94.30 (0.026) 2.84/2.86 3.92 (0.682)
CB 94.12 (0.029) 2.87/3.00 3.93 (0.762)
PRR 94.23 (0.024) 2.82/2.95 3.93(0.713)
1000 STD 94.73 (0.015) 2.62/2.64 3.92 (0.447)
CB 94.71 (0.017) 2.59/2.70 3.94 (0.475)
PRR 94.77 (0.016) 2.55/2.68 3.95(0.452)
3000 STD 94.77 (0.010) 2.60/2.63 3.92 (0.436)
CB 94.85 (0.012) 2.50/2.65 3.96 (0.481)
PRR 94.83 (0.012) 2.52/2.65 3.95(0.452)

All averages have been computed through 1000 Monte Carlo replicates.
4Average coverage of prediction intervals with standard errors in parenthesis.
bAvc:rage coverage in the left and right tails of prediction densities.
€Average length of predictions intervals with standard errors in parenthesis.

For example, using our own Fortran codes, the time taken by an Intel(R) Pentium computer
to obtain the prediction intervals for future returns and volatilities of the IBEX-35 series
analyzed in Section 5 is just 10s.

4.1. Prediction intervals for returns
Table 1 reports the average coverage and the corresponding standard error (se) together

with the average coverage on the left and right tails and the average length with its corre-
sponding standard error obtained when series are generated with &; Gaussian, for prediction



Table 2
Prediction intervals for returns of GARCH(1,1) model with student-5 errors

Lead Sample Method Average Av. coverage Average
time size coverage (se)? below/above? length (se)°
1 T Empirical 99% 0.5%/0.5% 5.92
300 STD 97.68 (0.012) 1.16/1.15 4.92 (1.76)
CB 98.42 (0.012) 0.75/0.81 6.00 (2.52)
PRR 98.59 (0.010) 0.68/0.73 6.07 (2.35)
1000 STD 97.88 (0.007) 1.07/1.05 4.88 (1.49)
CB 98.78 (0.007) 0.57/0.66 5.92 (1.94)
PRR 98.81 (0.007) 0.55/0.64 5.95(1.88)
3000 STD 97.96 (0.005) 1.03/1.01 4.99 (1.48)
CB 98.86 (0.005) 0.53/0.61 6.04 (1.93)
PRR 98.87 (0.005) 0.52/0.61 6.04 (1.84)
10 T Empirical 99% 0.5%/0.5% 6.31
300 STD 97.56 (0.012) 1.22/1.22 5.12 (1.45)
CB 98.47 (0.012) 0.72/0.81 0.66 (2.39)
PRR 98.61 (0.010) 0.65/0.74 6.48 (2.22)
1000 STD 97.73 (0.008) 1.14/1.13 5.04 (1.17)
CB 98.77 (0.007) 0.56/0.67 6.33 (1.73)
PRR 98.81 (0.007) 0.54/0.65 6.39 (1.74)
3000 STD 97.82 (0.006) 1.10/1.08 5.12 (1.05)
CB 98.90 (0.005) 0.51/0.58 6.48 (1.56)
PRR 98.88 (0.005) 0.52/0.60 6.43 (1.51)
20 T Empirical 99% 0.5%/0.5% 6.51
300 STD 97.43 (0.013) 1.27/1.29 5.19 (1.36)
CB 98.41 (0.013) 0.76/0.83 6.52(2.23)
PRR 98.50 (0.011) 0.71/0.79 6.63 (2.20)
1000 STD 97.61 (0.009) 1.19/1.19 5.13(1.02)
CB 98.71 (0.008) 0.58/0.71 6.56 (1.72)
PRR 98.75 (0.007) 0.57/0.68 6.57 (1.58)
3000 STD 97.74 (0.006) 1.12/1.14 5.18 (0.784)
CB 98.85 (0.005) 0.51/0.64 6.62 (1.31)
PRR 98.86 (0.005) 0.52/0.62 6.59 (1.24)

All averages and standard errors have been computed through 1000 Monte Carlo replicates.
4Average coverage of prediction intervals with standard errors in parenthesis.
bAverage coverage in the left and right tails of prediction densities.
€Average length of predictions intervals with standard errors in parenthesis.

intervals constructed for k=1, 10 and 20 steps ahead. Note that, for daily data, these horizons
correspond approximately, to predictions made one day, two weeks and one month ahead.
In Table 1 and subsequent tables, standard (STD) intervals are based on the normal approx-
imation in (4), our proposed intervals in this paper (denoted PRR from now onwards) are
bootstrap intervals that incorporate the uncertainty due to parameter estimation and, finally,
CB intervals are bootstrap intervals conditional on parameter estimates. It is possible to
observe that for Gaussian-GARCH(1,1) models, all the procedures considered to construct
prediction intervals for returns have similar properties for all prediction horizons and sample



sizes considered. Furthermore, note that although the conditional distribution of y7 4 is not
normal, it seems that the normality approximation in (4) is adequate when constructing 95%
prediction intervals. Also, note that the performance of the bootstrap procedures is never
worse than the standard approach. Finally, when we compare PRR and CB intervals, small
differences between them are observed. Therefore, introducing or not the variability due
to parameter estimation does not lead to an improvement in the performance of bootstrap
prediction intervals for y7x in Gaussian-GARCH models.

Table 2 reports the results for the same model with ¢, having a Student-5 distribution for
99% prediction intervals. We have chosen the 99% nominal coverage because, surprisingly,
when 95% intervals are computed, all the procedures have similar properties. However,
when intervals of other coverages as, for example, 80% or 99% are compared, it is possible
to observe differences between the normal approximation and the bootstrap procedures.
Furthermore, note that the 99% intervals could be of interest in many practical situations,
for example, when computing the VaR of a given asset; see, for example, Ruiz and Pascual
(2002). In Table 2, it is possible to observe that the STD average coverages and lengths
are below the corresponding empirical values. The distortion does not disappear when the
sample size increases. Consequently, STD intervals are clearly distorted when the error
distribution is not Gaussian. As an illustration, Fig. 1 represents kernel estimates of the
empirical, the PRR and the standard normal densities for a particular series of size T =
1000, for one-step ahead predictions. Note that the PRR density is remarkably close to
the empirical density while the standard normal is a worse approximation, not being able
to represent the higher kurtosis in the data. On the other hand, the behavior of bootstrap
intervals seems appropriate with average coverages and lengths close to the empirical values.
Comparing PRR and CB intervals, both have similar properties. Therefore, it seems that
for symmetric distributions, introducing the uncertainty due to parameter estimation in
prediction intervals is not so relevant.

All prediction intervals reported in Table 2 are based on the QML estimator obtained by
maximizing the Gaussian likelihood. However, it is possible to estimate the parameters by

Empirica
i STD
0.6 I PRR it

0.4 4

0.29

0.0 1

-4 -2 0 2 4

Fig. 1. Estimated kernel densities of one-step ahead predictions of returns of a particular series generated by
GARCH(1,1) model with Student-5 errors and 7" = 1000.
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Table 3
Prediction intervals for returns of GARCH(1,1) model with exponential errors

Lead Sample Method Average Av. coverage Average
time size coverage (se)? below/above” length (se)®
1 T Empirical 99% 0.5%/0.5% 4.87
300 STD 96.96 (0.012) 0.00/3.04 4.81 (1.85)
CB 97.63 (0.041) 1.44/0.93 4.88 (2.15)
PRR 99.02 (0.012) 0.13/0.85 5.04 (2.04)
1000 STD 97.20 (0.008) 0.00/2.80 4.88 (1.79)
CB 98.37 (0.023) 0.94/0.69 4.93 (1.97)
PRR 99.19 (0.009) 0.13/0.67 4.98 (1.90)
3000 STD 97.22 (0.006) 0.00/2.78 4.91 (1.99)
CB 98.51 (0.019) 0.85/0.64 4.93 (1.99)
PRR 99.20 (0.008) 0.15/0.65 4.96 (2.20)
10 T Empirical 99% 0.5%/0.5% 5.70
300 STD 97.02 (0.013) 0.06/2.92 5.00 (1.60)
CB 97.76 (0.029) 1.32/0.92 5.59 (2.36)
PRR 98.25 (0.017) 0.88/0.86 5.74 (2.14)
1000 STD 97.31 (0.010) 0.04/2.65 5.07 (1.42)
CB 98.53 (0.012) 0.79/0.69 5.73 (1.91)
PRR 98.64 (0.010) 0.67/0.69 5.75(1.88)
3000 STD 97.35 (0.006) 0.03/2.62 5.09 (1.52)
CB 98.74 (0.007) 0.62/0.64 5.72 (1.75)
PRR 98.78 (0.007) 0.58/0.63 5.78 (2.03)
20 T Empirical 99% 0.5%/0.5% 5.97
300 STD 96.96 (0.014) 0.10/2.94 5.10 (1.55)
CB 97.42 (0.027) 1.58/1.00 5.79 (2.44)
PRR 98.00 (0.020) 1.07/0.93 5.93(2.20)
1000 STD 97.28 (0.010) 0.08/2.64 5.17 (1.26)
CB 98.35 (0.013) 0.93/0.72 5.97 (1.83)
PRR 98.50 (0.011) 0.79/0.71 6.03 (1.93)
3000 STD 97.36 (0.007) 0.07/2.57 5.17 (1.21)
CB 98.68 (0.008) 0.67/0.65 6.01 (1.73)
PRR 98.75 (0.007) 0.61/0.64 6.03 (1.80)

All averages and standard errors have been computed through 1000 Monte Carlo replicates.
4Average coverage of prediction intervals with standard errors in parenthesis.
bAverage coverage in the left and right tails of prediction densities.
CAverage length of predictions intervals with standard errors in parenthesis.

maximizing the Student-¢ likelihood, obtaining also an estimate of the degrees of freedom
parameter. In this case, the standard prediction intervals in (4) can be constructed substituting
the quantile of the standard normal distribution z;,> by the quantile of the corresponding
Student-7 distribution. The bootstrap intervals can also improve their performance if they
are based on estimators more appropriate to the properties of the series; see Pascual et al.
(2001) for an illustration of this improvement in linear ARIMA models.

Finally, Table 3 reports the results when the distribution of ¢ is exponential. In
this case, STD intervals are clearly distorted as they are not able to cope with the
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asymmetric shape of the error distribution. Comparing the resampling methods, we ob-
serve that for a sample size of 300, PRR clearly outperforms CB in the short term both
in coverage and interval length, and the behavior tends to be similar as we go further into
the future. As expected, the differences between PRR and CB intervals disappear with the
sample size.

4.2. Prediction intervals for volatilities

We now analyze the performance of PRR and CB prediction intervals for future volatili-
ties. For this purpose, we use the same Monte Carlo design used for returns. In addition, we
also show the results for lead time k =2, since the CB technique does not provide prediction
intervals for k = 1.

Table 4 reports the results for 95% prediction intervals when series are generated with
Gaussian errors. Note that, as we have mentioned before, in GARCH models, the volatility
is known one-step ahead, and thus the only uncertainty associated with forecasting 02T 4
is due to parameter estimation. Consequently, all the mass of the empirical distribution
of O'2T 41 conditional on the observed series is concentrated on O'2T 41 and the empirical
length is zero. For the same reasons, if the parameter estimates are considered as fixed,
the CB procedure is not able to give one-step ahead prediction intervals for volatilities.
Note that PRR intervals for future volatilities one-step ahead have average coverages close
to the nominal values and that, as expected, their performance is better the bigger is the
sample size.

When forecasting two or more steps into the future, the average coverage of CB inter-
vals is well under the nominal value. Therefore, when the goal is to construct prediction
intervals for volatilities, it is fundamental to consider the uncertainty due to parameter esti-
mation in order to have intervals with the nominal coverage. On the other hand, the average
coverage of PRR intervals is closer to the nominal for all horizons considered. Although
the average length of PRR intervals is over the empirical length for sample sizes of 300
observations, it gets closer as the sample size increases. Note that the empirical distribu-
tion of future volatilities is bounded by w. Since, in practice, @ should be estimated, it
is impossible to achieve exactly this bound with moderate sample sizes. In this case, the
bootstrap estimate of the conditional distribution of 02T 4« 18 smoother than the empirical
distribution, and tends to have values under this bound. This leads to larger prediction in-
tervals than the empirical ones, usually larger to the left, but with a good performance in
terms of coverage. As an illustration, Fig. 2 represents the empirical, CB and PRR densities
estimated for two-steps ahead predictions of volatilities generated with Gaussian errors and
T = 1000. Observe that, for moderate sample sizes (T = 1000), there are some distortions
in the PRR bootstrap density. As we mentioned before, empirical volatilities generated
by GARCH models are bounded from below while the PRR volatilities can take values
below this bound. On the other hand, the CB density of future volatilities is clearly dis-
placed to the right of the empirical density. Therefore, the PRR density provides a much
better description of the distribution of future volatilities than the CB density. Finally, note
that, for prediction horizons equal or greater than 2, the shape of the volatility is asym-
metric and in concordance with the shapes usually found with real data; see, for example,
Andersen et al. (2001).
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Table 4
Prediction intervals for volatilities of GARCH(1,1) model with Gaussian errors

Lead Sample Method Average Av. coverage Average
time size coverage (se)? below/above? length (se)°
1 T Empirical 95% 2.5%12.5% —
300 CB — — —
PRR 91.50 (0.279) 3.40/5.10 0.65 (0.667)
1000 CB — — —
PRR 93.70 (0.243) 3.0/3.30 0.32(0.249)
3000 CB — — —
PRR 94.70 (0.224) 3.20/2.10 0.18 (0.174)
2 T Empirical 95% 2.5%12.5% 0.50
300 CB 57.88 (0.358) 30.92/11.21 0.56 (1.01)
PRR 91.54 (0.193) 3.63/4.82 0.96 (1.25)
1000 CB 70.52 (0.274) 25.69/3.78 0.52 (0.324)
PRR 94.19 (0.122) 2.91/2.90 0.68 (0.433)
3000 CB 77.46 (0.223) 19.67/2.87 0.51 (0.321)
PRR 94.42 (0.090) 2.91/2.66 0.59 (0.406)
10 T Empirical 95% 2.5%12.5% 1.33
300 CB 75.87 (0.263) 14.06/10.07 1.33 (2.11)
PRR 87.61 (0.162) 5.76/6.62 1.56 (2.05)
1000 CB 89.52 (0.099) 6.56/3.92 1.34 (0.733)
PRR 92.57 (0.074) 3.91/3.52 1.41 (0.756)
3000 CB 93.26 (0.04) 3.80/2.94 1.37 (0.715)
PRR 94.17 (0.03) 2.96/2.87 1.39 (0.750)
20 T Empirical 95% 2.5%/2.5% 1.62
300 CB 75.85 (0.254) 13.68/10.46 1.58 (2.23)
PRR 85.73 (0.167) 6.80/7.47 1.79 (2.15)
1000 CB 89.64 (0.091) 6.18/4.17 1.62 (0.805)
PRR 91.83 (0.074) 4.35/3.81 1.68 (0.807)
3000 CB 93.35 (0.040) 3.27/1.79 1.65 (0.728)
PRR 93.90 (0.035) 3.11/2.99 1.66 (0.737)

All averages and standard errors have been computed through 1000 Monte Carlo replicates.
4 Average coverage of prediction intervals with standard errors in parenthesis.
bAverage coverage in the left and right tails of prediction densities.
€Average length of predictions intervals with standard errors in parenthesis.

The results in Table 4 show that in finite samples even if they are large, it is necessary to
introduce the variability of the parameter estimates in order to obtain prediction intervals
for the volatility with coverages close to the nominal values. We have also compared the
properties of prediction intervals for volatilities when the series are generated by GARCH
models with Student-5 and exponential errors with results similar to the ones reported
in Table 4. Consequently, we do not report these results to save space although they are
available upon request.
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Fig. 2. Estimated kernel densities of two-steps ahead predictions of volatilities of a particular series generated by
GARCH(1,1) models with Gaussian errors and 7 = 1000.

5. An application with real data

In this section, we apply the PRR procedure to construct prediction intervals for returns
and volatilities of the Madrid Stock Market index IBEX-35. The estimation of the GARCH
model used for the prediction of future returns and volatilities is based on daily closing
prices of the IBEX-35 observed from 2 January 1996 to 3 March 2000, with a total of
1045 observations. As usual, daily percentage returns are obtained as first differences of
logarithms scaled by multiplying by 100, i.e., R, =100 log (P;/ P,—1), where P, denotes the
closing price at day . The original series of returns has been filtered previous to its analysis
to clean a small although significant autocorrelation of order one and the effect of two
extraordinary events that occur in Spain during the period of time considered. In particular,
the stock market had a sharp decline on the 4th of March of 1996 when the Partido Popular
(PP) won the elections in Spain by a narrow margin and on the 4th of January 1999 when the
Euro was introduced; see Carnero et al. (2004) for the effects of outliers on the estimation
of the conditional heteroscedasticity. The estimated MA(1) model with interventions is
given by

R; = 0.1188 +4; +0.10374,_1 — 5.2694 D{; 4+ 5.8184 Dy,
(0.046) (0.047) (0.273) (0.287)
—6.9508 D3; — 3.2550 Dy,

(0.134) (0.487)

where the standard errors appear in parenthesis. The variables Dy; and D5, are pulse dummy
variables that take value 1 on the 4th of March of 1996 and on the 4th of January 1999,
respectively. The last two dummy variables are due to extreme market reactions to external
effects. Observe that the estimated MA parameter is rather small, 0.1037, and, consequently,
apart from the outliers, the original and filtered series of returns are very similar. There-



Table 5
Sample moments of residuals from MA(1) model with interventions

Sample size Mean Median S.D. Skewness Kurtosis Max. Min.
1045 —0.0001 —0.0019 1.3697 —0.3098" 5.9578" 5.7889 —7.1571
Autocorrelations r(1) r(2) r(3) r(4) r(5) r(10) r(20)

t —0.007 —0.066 —0.020 —0.005 0.041 0.066 —0.058
[s.e.] [0.047] [0.044] [0.044] [0.047] [0.045] [0.048] [0.042]
y? 0.273" 0.225" 0.224" 0.274" 0.228" 0.304" 0.179"
[s.e.] [0.031] [0.031] [0.031] [0.031] [0.031] [0.031] [0.031]

*Significant values at 5% level.

Table 6
Sample moments of standardized residuals

Sample size Mean Median S.D. Skewness Kurtosis Max. Min.
1045 0.0067 0.0026 0.9932 —0.2257" 3.1470 2.6983 —3.8791
Series/Lag r(l) r(2) r(3) r(4) r(5) r(10) r(20)

& —0.007 —0.029 —0.002 0.026 0.013 0.028 —0.032
[s.e.] [0.030] [0.031] [0.032] [0.031] [0.030] [0.030] [0.031]
th —0.007 0.026 0.039 0.026 —0.003 —0.014 0.010
[s.e.] [0.031] [0.031] [0.031] [0.031] [0.031] [0.031] [0.031]

*Significant values at 5% level.

fore, we expect that the results of the Monte Carlo experiments reported in the previous
section, can be applied to the series of the IBEX-35 residuals, which from now on, will
be denoted by y,. Table 5 reports the sample moments of y,;. The estimated kurtosis co-
efficient is significantly larger than 3 showing that the return distribution is leptokurtotic.
Table 5 also contains the sample autocorrelations of returns and their squares. The standard
errors of sample autocorrelations of returns are corrected by ARCH effects as suggested by
Diebold (1986). The autocorrelation of returns are not significant although their squares are
significantly autocorrelated.

The results reported in Table 5 suggest that the filtered IBEX-35 returns can be con-
ditionally heteroscedastic. Consequently, we fit a GARCH(1,1) model to them. Doornik
and Ooms (2003) point out that when, as in our case, dummy variables are added to the
mean of a GARCH model, the likelihood can be bimodal. To check that we are not facing
this problem in our data, we have used a battery of starting values for the optimizer of the
likelihood. The estimated model is

2 =0.0209+0.1060 y> | 4 0.8866 5> ;.
(0.011) (0.018) (0.020)
The sample moments of the standardized residuals, &, appear in Table 6, where it can
be observed that the estimated GARCH model is able to represent adequately the dynamic
structure of the volatility process. Although the excess kurtosis parameter is not significantly
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Fig. 3. Estimated kernel densities of one- and 20-step ahead predictions of returns.
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Fig. 4. Prediction intervals of future returns together with real observations (e) and point linear predictions (o).

different from 3, the skewness coefficient is significantly different from zero (p-value is
0.04). The Jarque-Bera statistic for normality equals 9.2996 (p-value is 0.0095). Therefore,
the standardized residuals are not Gaussian.

Next, we apply the PRR procedure to obtain out-of-sample prediction intervals of future
returns yr4, from 4 March 2000 until 31 March 2000. The estimated bootstrap densities
for k = 1 and 20 steps ahead, that correspond to predictions made one-day and one-month
ahead, appear in Fig. 3 where it is possible to observe the asymmetric shape previously
observed in the standardized returns. Using the bootstrap densities, we construct 80% and
95% PRR prediction intervals for y7_ that have been plotted in Fig. 4 together with the point
linear prediction of y7 (zero for all horizons), the observed returns and the corresponding
prediction intervals constructed using the normal approximation. Once more, we can see
the asymmetry of the standardized returns, providing prediction intervals slightly larger to
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Fig. 5. Histograms of bootstrap predictions of future volatilities of returns.

the left than those obtained by standard methods.

Finally, we construct bootstrap prediction intervals for future volatilities. In Fig. 5, we
plot the histograms for the bootstrap predictions of volatilities 1, 2, 10 and 20 steps ahead
into the future. Note that the shape of volatility predictions is asymmetric and similar
to the bootstrap densities obtained in the Monte Carlo experiments and represented in
Fig. 2. A common approach for judging prediction intervals is to check whether they con-
tain the subsequent realizations of volatility with the desired coverage. However, as volatility
is not directly observed, this approach is not immediately applicable for prediction inter-
val evaluation. Different measures of volatility have been used in the literature to check
whether GARCH models provide good forecasts of volatility. Andersen and Bollerslev
(1998) propose to use the realized volatility as a measure of volatility. They show that, if
logarithmic prices evolve as a diffusion and if returns are sampled sufficiently frequently,
then the realized volatility is an efficient proxy to volatility and becomes arbitrarily close to
the true volatility as the sampling frequency increases. However, on the other hand, market
microstructure can have a large impact on ultra-high frequency returns; see, for example,
Andersen et al. (2003). In this paper, we compute realized volatilities using one-minute
returns based on tick by tick prices observed from 4 March 2000 to 31 March 2000. The
volatility at day ¢ is estimated by the sum of the corresponding squared returns during day
t,1.e. 0,2 = Ril +--+ Rzn, where n is the number of observations available at day r which
is approximately 500.

Fig. 6 shows point linear predictions of volatility together with the corresponding realized
volatilities and 80% and 95% PRR prediction intervals. These intervals have been obtained
reestimating the parameters each time a new observation is available and constructing the
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Fig. 6. Bootstrap prediction intervals of future volatilities together with realized volatilities computed using
one-minute returns (e) and point predictions (o).
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Fig. 7. One-step ahead bootstrap prediction intervals for future volatilities together with realized volatilities com-
puted using one-minute returns (e) and point predictions (o).

corresponding one-step ahead bootstrap interval. In this figure, we can see how the proposed
resampling scheme gives good prediction intervals for both 80% and 95% in the sense that
the 80% intervals leave 5 future values out when it is supposed to leave 4 and the 95%
intervals leave 1 out that corresponds exactly with the nominal coverage. The empirical
results are in concordance with the simulation results reported in Table 4 that shows that the
empirical coverages of the intervals for future volatilities could be under the corresponding
nominal coverages.

Finally, Fig. 7 plots the realized volatility estimated using one-minute returns together
with the one-step ahead bootstrap prediction intervals. These intervals have been obtained
re-estimating the parameters each time a new observation is available and constructing the
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corresponding one-step ahead bootstrap interval. In this case, the coverage is well under
the nominal. However, this result is in concordance with our previous findings. Remember
that, in the simulation experiments, we have seen that the bootstrap and empirical densi-
ties are closer when the prediction horizon increases. As we have mentioned before, this
lack of adequacy for short horizons could be related more with the way GARCH models
represent the volatility than with the bootstrap procedure. When the volatility is predicted
one-step ahead, the only uncertainty associated with this prediction is introduced through
the parameter uncertainty and, looking at Fig. 7, it seems rather clear that the uncertainty
about future volatilities should be bigger.

6. Conclusions

In this paper, we have extended to GARCH processes the bootstrap procedure originally
introduced by Pascual et al. (2004) to construct prediction intervals for ARIMA models.
The bootstrap prediction intervals proposed incorporate the uncertainty due to parameter
estimation and do not rely on any assumption on the error distribution. Furthermore, incor-
porating the variability of the estimators, we can construct prediction intervals not only for
future returns but also for volatilities.

We analyze the finite sample behavior of the proposed bootstrap procedure by means of
extensive Monte Carlo experiments. The results of these experiments show that the standard
prediction intervals for returns built treating the error distribution as if they were normal
for any prediction horizon are adequate as far as the model is conditionally normal. How-
ever, it has often been observed in empirical applications that the conditional distribution
of the errors of GARCH models is leptokurtic; see, for example, Bollerslev et al. (1994)
and the references therein. Standard prediction intervals for returns are not able to deal
with non-Gaussian errors while bootstrap intervals do. The results of the Monte Carlo ex-
periments also show that incorporating or not the variability due to parameter estimation
makes no difference when building prediction intervals for returns as far as the conditional
distribution is symmetric. However, to construct prediction intervals for future volatilities,
it is necessary to introduce the uncertainty due to parameter estimation in order to have
intervals with coverages close to the nominal values. Although all the results presented
in this paper refer to the GARCH(1,1) model, the extension to GARCH(p,q) models is
straightforward.

Finally, it is important to mention that the proposed bootstrap prediction intervals for
future volatilities are too wide when compared with empirical intervals. As we have noted
before, this effect could be due to the way GARCH models specify the volatility that is
observable one-step ahead. In this sense, Andersen (2000) shows that volatility diffusion
models often used in finance render discrete-time strong-form ARCH based models invalid
because it is impossible for a discrete return to serve as a sufficient statistic for the innovation
to the volatility process. Alternatively, volatility can be modelled by stochastic volatility
(SV) models, as proposed, for example, by Harvey et al. (1994), which represent the volatil-
ity as an unobservable latent process. It could be worth to investigate the performance of
the PRR procedure in the context of SV models.
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