
Software Engineering 2.0: A Social Global Repository
Based on Semantic Annotation and Social Web for

Knowledge Management

Ricardo Colomo-Palacios1, Juan Miguel Gómez-Berbís1,
Ángel García-Crespo1, and Inmaculada Puebla-Sánchez2

1 Universidad Carlos III de Madrid, Computer Science Department
Av. Universidad 30, Leganés, 28911, Madrid, Spain

{ricardo.colomo,juanmiguel.gomez,angelgarcia}@uc3m.es
2 Universidad Francisco de Vitoria, Computer Science Department,

Ctra. Pozuelo-Majadahonda Km. 1.8, 28223 Pozuelo de Alarcón, Madrid, Spain
i.puebla.prof@ufv.es

Abstract. The effective management of the software development process has
become an essential for business survival in an ever more competitive industry.
In order to gain business strengths from the development process, organizations
need to carry out software development in the most efficient manner possible,
avoiding redundancy and time losses. This paper presents an architecture which
combines the strengths of two technologies, Web 2.0 and the Semantic Web, as
a solution to reuse and extrapolate knowledge and software products across pro-
jects and organizations.

Keywords: Software Engineering, Web 2.0, Semantic Web, Reuse, Knowledge
extrapolation.

1 Introduction

The spread of Information Systems in organizational environments in recent years has
turned their development into a critical task for corporations. In this setting, the cru-
cial development process, as well as the large volumes of information which support
this process, have meant that the management of the process, in the context of reutili-
zation, extrapolation and transferability of Software Engineering (SE) elements, has
become an essential research field. Additionally, the globalization of technologies,
such as the Internet, and its subsequent reinvention as the Web 2.0 [1] have lead to a
scenario where the possibilities for reuse and transfer of SE products are multiplied,
and transcend organizational boundaries. Globalization and participation have opened
up infinite opportunities for exploiting the capacities which a network of users can
contribute to the software development process.

The current research is set within this background, and represents the fusion of
some of the most important topics in knowledge management and knowledge reuse:
the application of semantics and the integration of Web 2.0 elements. The present
work proposes Social Global Repository (SGR), a tool created for the exploitation of

1

referencia bibliográfica.
Published in: The Open Knowlege Society. A Computer Science and Information Systems Manifesto, (2008), vol. 19, pp. 468-475. Proceedings First World Summit on the Knowledge Society, (Sep. 2008), Athens (Greece).

the collective knowledge generated by software processes. The use of this knowledge
is realized by the benefits gained from the combination of various aspects: firstly, the
semantic annotation of the different products which are generated during the software
development process. The second benefit is gained from the transferability between
the products generated, and the last factor which is exploited is the social interaction
of the users of the platform, inspired by their experiences with the products and their
use of the products in projects.

2 Background

The term "Semantic Web" was coined by [2] to describe the evolution from a docu-
ment-based web towards a new paradigm that includes data and information for
computers to manipulate. Ontologies [3] are the technological cornerstones of the
Semantic Web, because they provide structured vocabularies that describe a formal
specification of a shared conceptualization. The fundamental aim of the Semantic
Web is to answer the ever-growing need for data integration on the Web. It is pre-
cisely the integration of data on the Web which is the foundation that provides the
starting point for the current research. Semantic Web provides a complementary vi-
sion as a knowledge management environment [4] that, in many cases has expanded
and replaced previous knowledge management archetypes [5]. In other hand, Web 2.0
is seen as a new deal for software management [6].Particularly, in the SE domain, the
capacities of the Semantic Web to be used as a Corpora of Reusable Contents [7] have
been identified, and its potential uses for reutilization and transfer of knowledge in
various environments have been established including experience management [8].

A specific example of the application of such technology is in the field of Re-
quirements Engineering, where semantics has been used for diverse aspects such as
how to apply the use of Semantic Wikis for the determination of requirements [9] or
the application of semantics for Aspect-Oriented Requirements Engineering [10].
However, the efforts to integrate the Semantic Web and Web 2.0 have now gone
beyond Requirements Engineering, including aspects such as the modeling of ontolo-
gies for the CMMi maturity model [11] of the software process [12], [13] or software
maintenance [14]. In this specific field, which is focused on information reuse, ex-
trapolation, and integration, in the context of software development projects, a num-
ber of initiatives have been launched to benefit from the capabilities brought about by
the advent of the Semantic Web.

Possibly the most relevant initiative is the proposal to facilitate Software Reuse by
searching the knowledge repository and suggesting relevant knowledge for the current
task the user is performing [15]. Without a doubt, the initiative described in the cur-
rent work is an innovative proposal, and which opens up new horizons for the possi-
bilities brought about by the reuse of knowledge generated in Software Development
projects. The functionalities of the tool presented in this work combine the benefits of
search and organization of information offered by the Semantic Web, the transferabil-
ity of the products generated by the SE process, and extend the functionalities to users
by incorporating their participation using Web 2.0 tools.

2

3 Social Global Repository (SGR)

In our particular case, the breakthrough of adding semantic metadata to a Software
Repository is the ability to enable automatic or semi-automatic sharing and discovery
of a number of features. This approach is at risk of the so-called chick-en-egg prob-
lem of metadata. The provider of the service would request for a good reason, a good
application or benefit, of providing the metadata. However, if the metadata is not
generated, no application or value-added functionality can be achieved. Metadata is
provided through the tagging system, which certainly constitutes an interesting devel-
opment, since emerging folksonomies (a set of tags, useful in learning and knowledge
environments [16]) are organically appearing, because a number of people are inter-
ested in particular information and are encouraged to describe it, being it rather than a
centralized form of classification, a free bottom-up attempt to classify information
[17]. Users are moving towards the concept of shallow ontologies which comprise
relatively few unchanging terms that organize very large amounts of data, by using a
set of very common and always-showing-up terms and relations.

This issue has loomed over recent sharing-oriented software projects and it is of
the utmost importance for our approach. The lack of motivation and accuracy of effi-
ciency from the user perspective in providing the metadata could hamper the SGR's
full potential. However, a twofold strategy has been developed which overcomes the
problem in the SGR approach:

1 Stakeholders of the SGR are gaining in terms of productivity and efficiency
from the very first moment they provide metadata and use another stakeholder's
metadata. The sharing of knowledge about software project elements enables a
quid pro quo benefit situation as described in ProLink [18]. Particularly, the
ever-changing nature of IT is the perfect growing field for various experiences
that can very much help the lack of knowledge, background and expertise, by
distributing the knowledge gained from these experiences across different infra-
structures and environments. This can be achieved by means of sharing
resources. Harnessing the potential spread of knowledge through a Social envi-
ronment is not new, but must be leveraged with a technology that allows the de-
termination of expertise that are hidden somewhere around the world wide web.

2 Metadata is also clearly creating the boundaries of sharing in organizations.
There is a critical tradeoff associated with the tension between user privacy re-
quirements, and providing persistent and increasingly broad visibility of their
activities. Identity tradeoffs in community networks are even greater - in ex-
change for our privacy, we expect to gain a sense of security and well-being.
The significance of adding privacy-enhancing technologies (PET) in virtual
community networks is overwhelming [19]. In the SGR both premises are ad-
dressed since sharing of requirements and knowledge gains visibility (and it is
used by a broad base of software projects stakeholders), while also protecting
their privacy.

Integration of Software Requirements in the SGR conceptual framework through
semantics is a growing and recognized challenge that can revolutionize IT working
environments as we know them today. Nevertheless, it must rely on a consistent
architecture.

3

Software architectures are becoming increasingly intelligent and interactive. By re-
placing locally managed hardcoded software structures, with an intelligent on-demand
information paradigm, this model changes how business applications are delivered,
bringing new levels of ease, adoption and success to the challenging area of Informa-
tion Systems. In this section, we will discuss and depict the main components of our
software sharing knowledge intensive platform. Conventional application architec-
tures, at least those of interactive software applications supporting end users, have at
least seven architectural layers [20]:

• Graphical User Interfaces (GUIs) in Web browsers
• User interface logic drivers
• Business Processes
• Business logic implementations
• Business rules constraining valid operations
• A persistence layer
• Storage systems for storing and recalling data

These seven layers execute any successful user request on the GUI, and any re-
sponse travels through them all on the way back to the GUI. That means fourteen
layers back and forth. For our particular context, it is noteworthy that our platform
will be using a "semantic" data representation as well as a data-interpretation model
[20]. For the sake of simplicity, we have coupled and regrouped several of these
seven layers as can be seen in Figure 1.

Fig. 1. SGR System Architecture

4

Particularly, we have grouped the first two into a presentation layer, which covers
the annotation of software products, reuse, sharing and interlink, in addition to search,
functionalities. Business processes and business logical implementations, together
with business rules constraining valid operations are concentrated on the Business
Logic layer. Finally, the persistence layer and storage systems for storing data are
located in the last layer. Hence, we finally derive into the canonical three-tier archi-
tecture, due to the fact that we want to decouple the views, the business and the data
access management. Each of these tiers will contain one or more subsystems.

In the following, we will present the different layers of the architecture, de-scribing
the components belonging to each layer. Firstly, the User Interface and User Interface
Driver layer is composed OF three components. The Annotation of Software Products
component provides semantic annotation through visualization of the various seman-
tic descriptions (and their underlying ontologies). Annotation is simply the adding of
extra information asserted with a particular point in a document or other piece of
information, in our case, semantic information. Secondly, the Search component, the
core of the GUI provides extra functionality to find and relate software products from
among the various software projects included in the SGR. The Search component is
hence the entry-point to locate and retrieve software products from the whole plat-
form. Finally, the Interlink, Share and Reuse component.

The Business Logic Layer is the added-value component of the platform. The Rea-
soner and Inference engine enables required reasoning capacities that would derive
knowledge from the user queries and preferences related to the current semantic de-
scriptions of a number of software products. Inference can intelligently match prefer-
ences of users and semantic descriptions for extracting new knowledge. The Business
Rules engine validates if operations can be applied, and the Visibility Constraints
refers to the tradeoff between public awareness and public concerns mentioned in the
previous section, SGR, as discussed by [19].

The Persistence and Storage Systems layer enables data to perform the business proc-
ess execution of the platform. There are three main components, namely: the Domain
Ontologies, Semantic Descriptions and Software Project Repositories. Both the first and
the second consist of a RDF (or another potential Semantic language, such as OWL, for
that matter) semantic data store system that allows semantic querying, and offers a higher
abstraction layer to enable fast storage and retrieval of large amounts of RDF while keep-
ing a small footprint and a lightweight architecture approach. An example could be the
OpenRDF Sesame RDF Storage system, which deal with data and legacy integration.
Currently, we have focused for our implementation in RDF, given that the advantages of
using RDF as a "lightweight" ontology language are supported by reliable implementa-
tions, software scalability and a mature base of developers and users.

In what follows, we focus on our proof-of-concept implementation, the SGR sys-
tem which has been used for the management of a set of software projects, related to
the European Software Agency (ESA) standard. SGR has been developed using Sun
Microsystems' JEE (Java Enterprise Edition) technology. This technology has been
designed to develop and run distributed and multi-layered Java applications.

In SGR, the classes that define the application's behavior implement Action inter-
face. These classes contain a method named execute that carries out the operations
needed for each kind of action and they are in charge of accessing application's
model, making the appropriated modifications on it. Action classes are supported by
other classes named ActionForm. These classes gather the information introduced by

5

the user in the form, validate it and make it available for the corresponding Action
class. The data layer in SGR is divided into two elements: the database that stores the
control information of the application, such as login information, and the semantic
repository where all the data of user's projects is stored. This semantic repository
leans on a database instance to obtain persistence.

Fig. 2. SGR Conceptual Model

Jena has been used to provide semantics to SGR. Jena is a framework for Java that
provides an API for writing and extracting data from RDF graphs. Jena has been cho-
sen because, in contrast to other frameworks like Sesame, Jena provides OWL sup-
port. For improving SGR's performance, the data layer manager SDB has been chosen
instead of RDB (the default database manager in Jena). It has been specifically de-
signed to work with SPARQL, the query language developed by the W3C. The differ-
ences between them are taken from [21], the most important factor being that "RDB
uses a denormalised database layout in order that all statement-level operations do not
require additional joins. The SDB layout is normalized so that the triple table is nar-
rower and uses integers for RDF nodes, then does do joins to get the node representa-
tion. In SPARQL queries, there is often a sufficiently complex graph pattern that the
SDB design tradeoff provides significant advantages in query performance". The
organizational aspect of SGR is arranged around projects. This means that the main
unit with which the users will work is the software project. There is no possibility of
working with the application without creating a project and developing it in terms of
the ESA methodology for SE. Inside a software project, SGR allows the user to de-

6

fine any number of user requirements, software requirements, architectural compo-
nents and detailed components, as well as all the relations established between them.
This point gives an idea of the application's organizational model. SGR establishes
that one user can work in one or more projects, each of these projects can be com-
posed of one or more users and, as previously mentioned, the four main phases of the
ESA methodology with their corresponding elements are developed in each project.

Concerning SGR's visual aspect, all the information is visually organized in the
form of trees. In every page where it is necessary to show requirements (user or soft-
ware requirements), components (architectural or detailed components), ontology
terms, traceability matrices or search results, hierarchical trees are used.

The interaction between users and this kind of visual representation is realized as fol-
lows. If a tree node is selected, then all the information pertinent to that node is shown
in the same web page, allowing the user to see all the information about an element
without seeing the rest of the tree containing all the elements of the current phase.

4 Conclusions

Integration of SE products and artifacts through semantics is a growing and recog-
nized challenge that can revolutionize the application development environment as we
know it. With the rise of the Semantic Web, the ontology-based approach to social
networks has gained momentum. In such a context, sharing and taking advantage of a
number of information sources, tracing products and artifacts, knowledge, experience
and expertise in different contexts can bridge the gap of knowledge integration and
product extrapolation and reuse. In this work, we have presented a novel approach to
achieve knowledge extrapolation and software lifecycle products reuse across projects
and organizations through a semantics-based social network, providing an architec-
ture and a proof-of-concept implementation.

Our future work in application areas of the framework presented will focus on the ex-
tension of the system constructed, incorporating semantic descriptions of web services,
which can be developed as an additional component of the future platform. This gener-
ates an extra software product for the user, which can be reused and transferred in the
same way as User Requirements, Software Requirements, and the other products which
comprise the Software Development process. Therefore, this new research has the ob-
jective of offering to users of the architecture the ability to integrate web services previ-
ously disconnected to the platform, as well as benefiting from complete documentation
for projects, which will be generated during a standardized development process. This
characteristic, which extends the concept of free software towards new horizons, would
permit users to incorporate disintegrated web services, not only at the application level,
but also as a fundamental part of the corporate development process.

References

1. O’Reilly, T.: What is web 2.0? O’Reilly NetWork (June 20, 2008),
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/
what-is-web-20.html

2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (May 2001)

7

 SE 2.0: A Social Global Repository Based on Semantic Annotation and Social Web 475

3. Fensel, D.: Ontologies: A Silver Bullet for Knowledge Management and Electronic Com-
merce. Springer, Berlin (2001)

4. Warren, P.: Knowledge Management and the Semantic Web: From Scenario to Technol-
ogy. IEEE Intelligent Systems, 53–59 (January/February 2006)

5. Davies, J., Lytras, M., Sheth, A.P.: Semantic-Web-Based Knowledge Management. IEEE
Internet Computing, 14–16 (September-October 2007)

6. Chatti, M.A., JArke, M., Frosch-Wilke, D.: The future of e-learning: a shift to knowledge
networking and social software. International Journal of Knowledge and Learning 3(4/5),
404–420 (2007)

7. Tetlow, P., Pan, J.Z., Oberle, D., Wallace, E., Uschold, M., Kendall, E.: Ontology Driven
Architectures and Potential Uses of the Semantic Web in Systems and Software Engineer-
ing. W3C Working Draft (2006)

8. Mohamed, A.H., Lee, S.P., Salim, S.S.: An Ontology-Based Knowledge Model for Soft-
ware Experience Management. International Journal of the Computer, the Internet and
Management 14(3), 79–88 (2006)

9. Decker, B., Ras, E., Rech, J., Jaubert, P., Rieth, M.: Wiki-Based Stakeholder Participation
in Requirements Engineering. IEEE Software 24(2), 28–35 (2007)

10. Chitchyan, R., Rashid, A., Rayson, P., Waters, R.: Semantics-Based Composition for As-
pect-Oriented Requirements Engineering. In: Proceedings of the 6th international confer-
ence on Aspect-oriented software development, Vancouver, British Columbia, Canada
(2007)

11. Capability maturity model integration (CMMI), version 1.1 CMMI for software engineer-
ing (CMMI-SW, v1.1) staged representation. Technical Report CMU/SEI-2002-TR-029,
ESC/TR-2002-029, Carnegie Mellon, Software Engineering Institute, Pittsburgh (2002)

12. Liao, L., Qu, Y., Leung, H.: A software process ontology and its application. In: ISWC
2005 Workshop on Semantic Web Enabled Software Engineering (2005)

13. Soydan, G.H., Kokar, M.M.: An OWL Ontology for Representing the CMMI-SW Model.
In: 2nd International Workshop on Semantic Web Enabled Software Engineering (2006)

14. Hyland-Wood, D., Carrington, D., Kaplan, S.: Toward a software maintenance methodol-
ogy using semantic web techniques. In: Proceedings of Second International IEEE Work-
shop on Software Evolvability (2006)

15. Antunes, B., Seco, N., Gomes, P.: A Software Reuse System based on the Semantic Web.
In: Proc. of the 3rd International Workshop on Semantic Web Enabled Software Engineer-
ing of the European Semantic Web Conference, Innsbruck, Austria (2007)

16. Lux, M., Dosinger, G.: From folksonomies to ontologies: employing wisdom of the
crowds to serve learning purposes. International Journal of Knowledge and Learn-
ing 3(4/5), 515–528 (2007)

17. Shadbolt, N., Hall, W., Berners-Lee, T.: The Semantic Web revisited. IEEE Intelligent
Systems 21(3), 96–101 (2006)

18. Gómez-Berbís, J.M., Colomo-Palacios, R., Ruiz-Mezcua, B., García-Crespo, A.: ProLink:
A Semantics-based Social Network for Software Project. International Journal of Informa-
tion Technology and Management 7(4), 392–405 (2008)

19. Chewar, C.M., McCrickard, D.S., Carroll, J.M.: Persistent virtual identity in community
networks: Impact to social capital value chains. Technical Report TR-03-01 of Computer
Science Dept. at Virginia Tech.,
http://eprints.cs.vt.edu/archive/00000650/01/hcic-cmc.pdf

20. Bussler, C.: Is Semantic Web Technology Taking the Wrong Turn? IEEE Internet Com-
puting 12(1), 75–79 (2008)

21. Jena Project, http://jena.hpl.hp.com/wiki/SDB/Query_performance

8

