

 © 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29403022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

EsaCake: A Semantic Software Environment for Sharing Software Projects
Knowledge based on the ESA software methodology

Juan Miguel Gomez, Myriam Mencke, Javier Chamizo, Ricardo Colomo, Angel García-Crespo

Universidad Carlos III de Madrid
{juanmiguel.gomez, myriam.mencke, javier.chamizo, ricardo.colomo, angel.garcia}@uc3m.es

Abstract

There is an increasing need of defining standards at
the beginning of any engineering project. The correct
specification of standards has become essential in
software development in order to handle correctly the
development of projects. Nowadays the need to define
standards at the outset of any engineering project is
more evident than ever. The specification of standards
has become an essential topic which universities try to
teach to software engineering students. In fact,
software creation processes are required intrinsically to
be produced according to a systematic methodology to
enable constant control during the project life cycle.
This paper presents a new environment that enables
semantic and social interaction of documentation
produced during software development processes.

1. Introduction

Presently, the need to share and define metadata is
a valuable tool for engineering projects, such as
Knowledge Management [1] or Enterprise Application
Integration [2] applications. Such metadata can be used
for valuable knowledge sharing and also, it can
optimize search from a semantic perspective, as
discussed in [3].

 In addition, the need for standards at the outset of
any engineering project is more evident than ever. The
specification of standards has become an essential
topic which universities try to teach to software
engineering students. It is an intrinsic requirement of
the software creation process that it is produced
according to a systematic methodology which enables
constant control throughout the project life cycle. This
methodology includes generating documentation for
each stage of the life cycle, in order to accurately
report all client requirements, functionalities,
architectural design, and the complete detailed design

of the software, as the project advances. The
application and use of these standards is highly
beneficial for every aspect of the finished software
product, as well as for the continued maintenance of
the product during its life cycle. However, the use of
these standards is frequently viewed as laborious and
tedious, and consequently, they are not applied as they
should be. This problem generates a requirement for
applications which assist software engineers to
correctly apply these standards, making the process
less laborious and more efficient.

 This paper is organized as follows. The problem
statement is outlined in section 2. The ESACake
architecture proposed is discussed in section 3. Section
4 presents the implementation and tool evaluation.
Finally, section 5 concludes the paper.

2. Problem Statement

When the development of a software application
commences, several problems related to the application
of software engineering methodologies appear.

The first problem which arises is the tediousness of
working exactly according to the methodology
specified in the ESA standards, and applying the
guidelines. The above-mentioned standard is divided
into different phases related to the analysis and design
of a software product and, in each of these phases, a
document is produced. These documents are:

� URD (User Requirements Document) – This
document details what the client wants the
system to do.

� SRD (Software Requirements Document) –
This document explains, based on the user's
needs captured in the user requirements phase,
what the system will and will not do. In this

2

referencia bibliográfica.
Published in: Third International Conference on Internet and Web Applications and Services. ICIW '08. (8-13 June 2008), pp.535 - 540

document all requirements and restrictions are
defined.

� ADD (Architectural Design Document) – This
document explains which architecture the
system is going to be built upon. Modules,
design patterns, etc. are defined.

� DDD (Detailed Design Document) – In this
document, the exact design of the application
is explained. Classes, methods and attributes
are clearly defined in this phase. The next step
is coding.

The simplest way to accomplish these phases is to
employ the guides provided by the ESA for producing
the stipulated documents in each phase. However,
following the guidelines in this way results in a large
amount of documents, particularly given that there may
be many versions of each document.

One software development domain where such a
problem often arises is in the case of UML diagrams. A
development team may decide to construct their
diagrams using pen and paper, or they may make use
of a non-UML drawing application. The consequence
of both options is the same; in the case of using a
drawing application, a large amount of files is
generated, and in the case of manual drawings, the
development team has to store cumbersome amounts of
papers.

Fortunately, in order to construct any kind of UML
diagram, developers can choose from a wide variety of
tools to aid them to make the diagrams, and benefit
from another even more important functionality – the
unification of all diagrams into projects. This enables
developers to have an organized structure for all of the
elements created.

Creating such a structure is the first problem which
the application described in this paper attempts to
address. ESACake is a tool with which developers can
create all of the elements which comprise each of the
phases of the ESA standard for software engineering,
therefore, providing a means of effectively organizing
and managing the elements.

The second issue which ESACake tries to solve is
the actual use of the standard itself. The aim is to help
analysts and designers to improve their experiences
with developing applications, using the ESA
methodology for software projects. Using ESACake it
is possible to define the most important elements of
each phase, that is: user requirements in the user
requirements phase, software requirements in the
software requirements phase, architectural components
in the architectural design phase and detailed

components in the detailed design phase. It is also
possible to manage the relations between these
components. This is one of the most interesting aspects
of ESACake, as it assists the definition of each of the
elements.

However, the definition of the elements itself is not
a task which considerably contributes to an improved
user experience, as the elements consist of a list of
attributes which must be filled by the analyst or the
designer in the table inside the corresponding
document. As mentioned above, the major
functionality which ESACake provides is the
management of the relations between each element.
Software requirements are derived from user
requirements, and, at the same time, the software
requirements help to define the design of particular
components of the applications architecture or detailed
design.

These kinds of relationships are created in the ESA
standard documents as traceability matrices. There is
one traceability matrix for each relationship: between
user requirements and software requirements, between
software requirements and architectural components,
and between software requirements and detailed
components. These traceability matrices are easily red,
but laborious to create. It is at this point where
ESACake is the most useful.

A third problem, related to the previous one,
appears when an element of a specific phase is
modified. Due to the relationships presented between
different phases' elements and between the ones of the
same phase, it is possible that modifying one element
will affect other requirements and components. When
this situation arises, the analyst or designer uses the
traceability matrices to know which elements are
related to the one that is being modified, and check
them in order to fix possible changes. ESACake shows
this information automatically when a modification is
performed.

Finally, one of ESACake's mayor features is
focused on knowledge reuse. It provides access to the
documentation of one or more similar projects during
the projects life cycle, which can help to speed up the
design of the application. Previously, accessing these
documents consisted of the laborious process of
searching through large amounts of archived
documents, and consulting each document was
required in order to extract the useful information.

ESACake has a tool that allows the users to search
in the application's database. In practice, a user can
search for a requirement or a component with fixed
characteristics and obtain it quickly.

3

So far, ESACake has been described only as an
ESA methodology supporting tool for analysts and
designers. However, ESACake tries to go further by
adding some features in a way that improves the user
experience, both with the application and with ESA
methodology. Those features are: the design of
ESACake as a Web application, and the addition of
semantics to the elements of the different phases of the
standard.

ESACake is a Web application, hence it does not
need to be installed individually on every computer
where it is required. This provides a great advantage,
as ESACake users can work with the application from
any computer with an internet connection and a Web
browser, avoiding the requirement for cumbersome
installations and configurations.

Regarding the semantic component, ESACake
includes a semantic repository in which the
information concerning the application's different
elements is stored.The semantic repository is based on
a requirements ontology defined for ESACake, which
establishes the existing attributes of user requirements,
software requirements, architectural components,
detailed components, and the relations between them.
Other ontologies, named domain ontologies, coexist
with this requirements ontology, allowing users to link
a project's elements, whether they are requirements or
components, with the terms of a specific ontology, so
that the available information about these elements will
be enriched and the possibility of searching through
them will be enhanced.

3. ESACake Architecture

As mentioned in the previous section, ESACake is

a Web application, so it is based on the client-server
paradigm, ESACake being the server and a web
browser the client.

The internal architecture of ESACake is based on a
MVC (Model-View-Controller) pattern1. This pattern
allows the separation of a business model, user
interface and application's control logic in a way that it
is possible to make modifications in each one of these
layers without making great changes on the others.
Struts framework has been chosen to apply a MVC
pattern. Struts provides a controller called
ActionServlet which evaluates user's requests and the
corresponding responses based on a configuration file
named struts config.xml.

1 http://java.sun.com/blueprints/patterns/MVC-
detailed.html

4. Evaluation and Implementation

ESACake has been developed using Sun
Microsystems' JEE (Java Enterprise Edition)
technology. This technology has been designed to
develop and run distributed and multi-layered Java
applications.

In ESACake, the classes that define the
application's behaviour implement Action interface.
These classes contain a method named execute that
carries out the operations needed for each kind of
action and they are in charge of accesing application's
model, making the appropriated modifications on it.
Action classes are supported by other classes named
ActionForm. These classes gather the information
introduced by the user in the form, validate it and make
it available for the corresponding Action class.

The data layer in ESACake is divided into two

elements: the database that stores the control
information of the application, such as login
information, and the semantic repository where all the
data of user's projects is stored. This semantic
repository leans on a database instance to obtain
persistance.

Jena has been used to provide semantics to
ESACake. Jena is a framework for Java that provides
an API for writing and extracting data from RDF
graphs. Jena has been chosen because, in contrast to
other frameworks like Sesame, Jena provides OWL
support.

For improving ESACake's performance, the data
layer manager SDB has been chosen instead of RDB
(the default database manager in Jena). It has been
specifically designed to work with SPARQL, the query

4

language developed by the W3C. The differences
between them are taken from [7], the most important
factor being that “RDB uses a denormalised database
layout in order that all statement-level operations do
not require additional joins. The SDB layout is
normalised so that the triple table is narrower and uses
integers for RDF nodes, then does do joins to get the
node representation. This optimizers for longer
patterns, not API operations. In SPARQL queries, there
is often a sufficiently complex graph pattern that the
SDB design tradeoff provides significant advantages in
query performance”.

The organizational aspect of ESACake is arranged
around projects. This means that the main unit with
which the users will work is the software project. There
is no possibility of working with the application
without creating a project and developing it in terms of
the ESA methodology for software engineering.

Inside a software project, ESACake allows the user
to define any number of user requirements, software
requirements, architectural components and detailed
components, as well as all the relations established
between them. This point gives an idea of the
application's organizational model. ESACake
establishes that one user can work in one or more
projects, each of these projects can be composed of one
or more users and, as previously mentioned, the four
main phases of the ESA methodology with their
corresponding elements are developed in each project.

Concerning ESACake's visual aspect, all the
information is visually organized in the form of trees.
In every page where it is necessary to show
requirements (user or software requirements),
components (architectural or detailed components),
ontology terms, traceability matrices or search results,
hierarchical trees are used.

The interaction between users and this kind of
visual representation is realized as follows. If a tree
node is selected, then all the information pertinent to
that node is shown in the same web page, allowing the
user to see all the information about an element without
seeing the rest of the tree containing all the elements of
the current phase.

Finally, ESACake has printing functions, that is,
users can export their work to a printable format, like
PDF or RTF, this format being editable. The user can
configure the characteristics of the document (size,
kind and colour of the fonts, titles, tables, etc.). The
internal format of these documents follows the ESA
methodology specification.

5. ESACake Use Case Scenarios

One typical scenario of ESACake use is as follows:

A team comprised of analysts and designers
undertake a new software project, and decide to use the
ESA methodology for software engineering.

The development team has decided to work with
ESACake, a software engineering tool that is installed
in a company's web server and has been used in other
projects in the past. As it is a web tool, each team
component can access his/her work (and other team
member's) from any computer that has an internet
connection, whether it be in the office, at home or
traveling by plane; without installing in every single
computer needed.

Initially they will interview the client to determine
what his expectations and wishes are with regard to the
application or the system that is going to be built.
These interviews with the client plus the experience of
the development team will result in the user
requirements document.

These user requirements will be created using
ESACake. This will allow the team to associate each
requirement with different terms of, for example, a
domain ontology pertaining to e-commerce (supposing
the project they are developing is related to e-
commerce) and relate each requirement with other user
requirements with any points in common. These
relationships between requirements allow them to
know which requirements could be affected by the
modifications made in another user requirement. This
avoids a loss of time when reviewing all requirements
in order to determine errors.

5

Once the user requirements capture and analysis
phase ends, the software requirements phase starts.
Using the ESACake tool, the development team
defines the software requirements based on the user
requirements obtained in the previous phase. ESACake
allows the definition of relationships between the user
requirements and the newly created software
requirements. The traceability matrix between user
requirements and software requirements is
automatically generated.

In the rest of the project's phases, designers can use
ESACake for organizing the system components, the
diagrams of these components and the relationships
between the components and the software
requirements they are derived from. Similarly to the
rest of the phases, they can establish the relations
between the components and the domain ontology.
They can relate, for example, the component
responsible for carrying out credit card transactions
with the term named Transaction/Credit card.

At any point during the project, the development
team can use ESACake printer to generate PDF or RTF
documents in order to give them to the client or any
other member of the company. The development team
can also allow the client or any other interested
individuals to access the application with the user name
observer. The user name observer has permission to
consult information about the project, but cannot edit
nor delete data.

Once the project terminates, the team will generate
the required documents using ESACake. These
documents will complement the rest of the
documentation generated in the different phases of the
project. At this point, the analysis and design phase is
followed by the coding phase.

It is the coding phase which displays the most
promising part of the application, since future analysts
and design teams will be able to use ESACake carry
out successful projects with the semantic database at
their disposal. In other words, if a new team has to
develop an application for another company which
requires an online shopping module, they can benefit
from using ESACake’s search engine in order to look
up requirements and components related to E-
commerce; for example, credit card transactions. Thus,
knowledge about the requirements and components of
the first team’s project can be re-used in the design of
the current application.

6. Related Work

There are many applications that are similar to
ESACake in the way that they are designed for helping
analysts, designers and developers in creating software
products. These kinds of applications are divided into
two big groups: CASE (Computer Aided Software
Engineering) and CAKE (Computer Aided
Knowledgement Enviroment) tools.

� CASE tools are applications aimed towards
increasing productivity of software
development, reducing costs in terms of time
and money.

� CAKE tools are applications and
methodologies for identifying, classifying,
retrieving, organizing, managing and reusing
knowledge.

There is an application that is more similar to
ESACake than the others, because of its orientation
towards software reuse and software engineering
processes (although it is not based in ESA
methodology). This application is The Reuse
Company's swReuser suite2 [3].

The mayor features of swReuser are:

� UML support

� Knowledge reuse system

� Colaborative working

� Requirements support

� Risks management

� Project estimation technique

� Design Patterns

� UML model comparison

� Code generation

� Test case management

� Integrated forum system

� Trazability management

There are many differences between swReuser and
ESACake: ESACake is a web application, ESACake
gives support to ESA standard methodology for
software engineering, swReuser suite includes an UML
CASE tool, etc.

swReuser is a very mature tool and includes a lot of
tools and features, but ESACake is focused on other

2 http://www.reusecompany.com/swREUSER.aspx

6

aspects, improving knowledge reuse and giving
complete support to ESA methodology (with the
exception of code development phases).

7. Conclusions and Future Work

As said before, ESACake can help analysts and
designers of software products to improve their
experience of software engineering with ESA
methdology. Due to the possibility of creating
requirements and components, relating them,
automatically generating traceability matrices, and
exporting the information to PDF or RTF documents,
etc. we believe that ESACake will make the work of
analysts and designers teams easier. Furthermore,
ESACake organizes all the projects' elements, the
result being that making modifications, version control,
requirement and component monitoring, etc. becomes
more efficient and easy.

 The strongest point of ESACake is the possibility of
knowledge reuse. This knowledge can come from other
people in the company, or past projects of the same team,
thus reducing time in redoing existing work or searching
through lots of documents and files.

For these reasons, ESACake can improve the user
experience when addressing the tasks that are
fundamental in ESA methodology. These tasks, at the
same time, improve the quality for the analysis, design
and development processes, eliminating errors and
risks, and the final product.

ESACake is still in an early phase of its life and
therefore there are many possibilities for improving it,
both aspects relative to its characteristics, and security
and efficiency issues.

There are a number of projects where the use of
ESACake could optimize the implementation issues
such as [5]. Furthermore, non-functional properties
such as security could also be enhanced by means of
semantics and particularly, by means of the approaches
discussed in [6]. Some of the possible improvements,
with respect to security, are based in introducing secure
protocols in a way that the communications between
clients and server will be secure, avoiding the
possibility of unauthorized people having access to the
information. Another security improvement focuses on
data stored in the databases, for avoiding important
losses of information caused by any possible
application errors.

Regarding improvements in the fundamental
characteristics of ESACake, these are some ideas:
support for other methodologies (for example Metrica),
including all the sections of each ESA methodology
phase, etc.

8. Acknowledgements

This work is supported by the Spanish Ministry of
Industry, Tourism, and Commerce under the project
GODO (FIT-340000-2007-134), under the PIBES
project of the Spanish Committee of Education &
Science (TEC2006-12365-C02-01) and the MID-CBR
project of the Spanish Committee of Education &
Science (TIN2006-15140-C03-02).

9. References

 [1] Ismael Rivera, Myriam Mencke, Juan Miguel Gómez,
Giner Alor Hernández, Angel García Crespo. A
Collaborative Open Social Network Dataset based on Email
Ranking and Filtering. Proceedings of the 3rd IEEE
International Conference on Systems (ICONS). Cancún,
Mexico. April, 13 18. 2008.

[2] Ismael Rivera, Myriam Mencke, Juan Miguel Gómez,
Giner Alor Hernández, Angel García Crespo. SmartWorld:
More than Meets the Eye in Enterprise Application
Integration.
Proceedings of the 3rd IEEE International Conference on
Systems (ICONS). Cancún, Mexico. April, 13 18. 2008.

[3] Juan Miguel Gomez, Ricardo Colomo Palacios, Belen
Ruiz Mezcua, Angel García Crespo: ProLink: A Semantics
based Social Network for Software Project. In International
Journal of Information Technology and Management. Special
issue: Work Change in the Era of ICTs. 2007.

[4] Juan Miguel Gomez, Ricardo Colomo Palacios, Giner
Alor Hernandez, Ruben Posada Gomez, Angel Garcia
Crespo. Search in the Eye of the Beholder: Using the
Personal Social Dataset and Ontology guided Input to
Improve Web Search Efficiency. Proceedings of the 5th
IEEE Latin American Web Conference (LA WEB07).
Santiago de Chile, Chile. October, 31 November, 2nd. 2007.

[5] Juan Miguel Gomez, Jose Luis Lopez Cuadrado, Ioan
Toma, Angel Garcia Crespo: A Policy Aware Knowledge
Oriented Framework for Web Service Conversations.
Proceedings of the IADIS International Conference. Vila
Real, Portugal. October, 5 8. 2007.

[6] Mohammad M. R. Chowdhury, Josef Noll, Juan Miguel
Gomez: Enabling Access Control and Privacy through
Ontology. Proceedings of the IEEE 4th International
Conference on Innovations in Information Technology,
Innovations'07, November, 18 20, Dubai.

[7]
http://jena.hpl.hp.com/wiki/SDB/Query performance

7

