
 
 
Working Paper 12-16-(10) 
Statistics and Econometrics Series  
June 2012 
 

Departamento de Estadística 
Universidad Carlos III de Madrid

Calle Madrid, 126
28903 Getafe (Spain)

Fax (34) 91 624-98-49

BAYESIAN MODELLING OF BACTERIAL GROWTH FOR MULTIPLE 
POPULATIONS 

 
Ana P. Palacios*, J. Miguel Marín*, Emiliano Quinto** and Michael P. Wiper* 

 
 
Abstract: 
 
  
 Bacterial growth models are commonly used for the prediction of microbial safety and 
the shelf life of perishable foods. Growth is affected by several environmental factors 
such as temperature, acidity level and salt concentration. In this study, we develop two 
models to describe bacterial growth for multiple populations under both equal and 
different environmental conditions. Firstly, a semi-parametric model based on the 
Gompertz equation is proposed. Assuming that the parameters of the Gompertz 
equation may vary in relation to the running conditions under which the experiment is 
performed, we use feed forward neural networks to model the influence of these 
environmental factors on the growth parameters. Secondly, we propose a more general 
model which does not assume any underlying parametric form for the growth function. 
Thus, we consider a neural network as a primary growth model which includes the 
influencing environmental factors as inputs to the network. One of the main 
disadvantages of neural networks models is that they are often very difficult to tune 
which complicates fitting procedures. Here, we show that a simple, Bayesian approach 
to fitting these models can be implemented via the software package WinBugs. Our 
approach is illustrated using real experimental Listeria Monocytogenes growth data. 
  
Keywords: Bacterial population modeling, growth functions, neural networks, 
Bayesian inference 
 
 
* Departamento de Estadística, Universidad Carlos III de Madrid, C/ Madrid 126, 28903 
Getafe (Madrid), e-mail: appalaci@est-econ.uc3m.es, jmmarin@est-econ.uc3m.es, 
mwiper@est-econ.uc3m.es. 
** Facultad de Medicina, Universidad de Valladolid, Palacio de Santa Cruz, Plaza de 
Sta. Cruz 8, 47002 Valladolid, e-mail: equinto@ped.uva.es 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29403021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mwiper@est-econ.uc3m.es


Bayesian modelling of bacterial growth for

multiple populations
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Abstract

Bacterial growth models are commonly used for the prediction of mi-

crobial safety and the shelf life of perishable foods. Growth is affected by

several environmental factors such as temperature, acidity level and salt

concentration. In this study, we develop two models to describe bacte-

rial growth for multiple populations under both equal and different en-

vironmental conditions. Firstly, a semi-parametric model based on the

Gompertz equation is proposed. Assuming that the parameters of the

Gompertz equation may vary in relation to the running conditions under

which the experiment is performed, we use feed forward neural networks

to model the influence of these environmental factors on the growth pa-

rameters. Secondly, we propose a more general model which does not

assume any underlying parametric form for the growth function. Thus,

we consider a neural network as a primary growth model which includes

the influencing environmental factors as inputs to the network. One of the

main disadvantages of neural networks models is that they are often very

difficult to tune which complicates fitting procedures. Here, we show that
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a simple, Bayesian approach to fitting these models can be implemented

via the software package WinBugs. Our approach is illustrated using real

experimental Listeria Monocytogenes growth data.

Key words: Bacterial population modeling, growth functions, neural

networks, Bayesian inference.

1 Introduction

The predictability of bacterial growth is of major interest due to the influence

of bacteria on food safety and health. The evolution of microorganisms in food

products can spoil the products or even cause pathogenic effects. Therefore, it

is important to develop models of bacterial growth which can prevent diseases

by determining the shelf life of perishable foods or by predicting the behavior

of foodborne pathogens. Starting from Gompertz (1825), various so called pri-

mary, parametric, growth models which describe the evolution of the population

size directly as a function of time have been developed, see e.g. McKellar and Lu

(2004) for a good comparison. These models perform well in describing the evo-

lution of bacterial density under fixed experimental conditions. Nevertheless, it

is well known that bacterial growth is strongly affected by environmental condi-

tions such as temperature, acidity or salinity of the environment and therefore,

when multiple bacterial populations are analyzed, it is important to account for

these effects in growth curve modeling.

In predictive microbiology, models that describe the effect of environmen-

tal conditions on the growth parameters are called secondary models, see e.g.

Ross and Dalgaard (2004). For example, the square-root model of Ratkowsky

et al. (1982) was developed to describe the effect of suboptimal temperature on

growth rates of microorganisms. This initial approach has later been extended

to include other factors such as level of acidity, water activity and salt concentra-
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tion in additive or multiplicative models, see e.g. McMeekin et al. (1987), Miles

et al. (1997), Wijtzes et al. (1995) and Wijtzes et al. (2001). The most common

secondary models are polynomial models, see e.g. McClure et al. (1993), which

allow any of the environmental factors and their interactions to be taken into

account but include many parameters without biological interpretation. An-

other important model class is the cardinal parameter models, see Rosso et al.

(1995), Augustin and Carlier (2000) and Pouillot et al. (2003) which assume

that the effect of environmental factors is multiplicative.

A disadvantage of these models is that they assume simple parametric forms

for the effects of the different environmental factors. Therefore, more recently,

there has been interest in modeling bacteria growth curves using non-parametric

approaches such as artificial neural networks, see e.g. Hajmeer et al. (1997),

Geeraerd et al. (1998) and Garćıa-Gimeno et al. (2002). The advantages of

neural networks are their capability to describe very complex non-linear rela-

tionships and that they do not impose any structure on the relationship between

the interacting effects.

In most empirical work the fitting of any secondary models is carried out

in two steps. Firstly, a primary growth model is fitted in order to estimate

the growth parameters and secondly, a secondary model is fitted conditional

on the estimated parameters in order to estimate the controlling factors. One

problem with this strategy is that the estimated uncertainty of the first stage

is not taken into account in the second stage and therefore, a poor fit at the

first stage could produce inaccurate estimations at the second stage. Secondly,

most work in fitting such models has used classical statistical techniques such as

least squares, which, as noted in Pouillot et al. (2003), may also underestimate

uncertainty. Furthermore, classical approaches do not allow for the inclusion

of prior information, which can be naturally incorporated within a Bayesian

3



framework, see e.g. Powell et al. (2006).

In this paper, we shall develop two approaches which are applicable to growth

curve estimation for bacterial populations under different environmental condi-

tions. The first model is based on the Gompertz function where the dependence

of the growth parameters on the environmental factors is modeled by a neural

network. Secondly, we shall consider a direct non-parametric approach based

on the use of neural networks as a primary growth model. An important feature

of our approaches is that in cases where we observe bacterial growth in various

colonies under possible different environmental conditions, we use hierarchical

modeling to improve estimation of any single growth curve by incorporating

information from the various different bacterial populations. Inference for our

models is undertaken throughout using a Bayesian approach. Up to now, one

problem with inference for neural networks models was that typically, compli-

cated inference algorithms need to be designed and a great deal of tuning often

needs to be carried out for these to work efficiently, see e.g. Lee (2004). Here,

we show that inference can be carried out via the use of the well known WinBugs

software through the R2WinBugs interface.

The rest of this paper is organized as follows. Firstly, in Section 2, we

provide a brief introduction to neural networks. Then, in Section 3 we propose

two alternative models for bacterial growth curves that include environmental

conditions as influencing factors modeled by neural networks. In Section 4 we

show how to undertake Bayesian inference for these models and then, in Section

5, we illustrate the models with an application to listeria monocytogenes growth

curves. Finally, in Section 6, we present our conclusions and some possible

extensions of our approach.
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2 Feed forward neural networks

In many situations, it is assumed that there are q dependent variables, (Y1, . . . , Yq) =

Y, and they can be modeled as an approximate linear or polynomial function of

a set of explanatory variables, (x1, . . . , xp) = x, via e.g. multivariate regression.

However, such a relationship may not always be appropriate and a more general

functional relation between the dependent and independent variables must be

assumed, say

E[Y|x] = g(x)

where the functional form, (g1, . . . , gq) = g : Rp → Rq, is unknown. One of the

most popular methods of modeling the function g is via neural networks, see

e.g. Stern (1996). In particular, a feed forward neural network takes a set of

inputs x, and from them computes the vector of output values as follows

g(x) = B ·ΨT (xTΓ) (1)

where B is a q×M matrix with q ∈ N the number of output variables andM ∈ N

the number of nodes and Γ is a p×M matrix with p ∈ N being the number of

explicative variables. The element γrk ∈ R is the weight of the connection from

input r to hidden unit k and the element βsk ∈ R is the weight connection from

hidden unit k to output unit s. Finally, Ψ(a1, . . . , aM ) = (Ψ(a1), . . . ,Ψ(aM ))

where Ψ is a sigmoidal function such as the logistic function

Ψ(x) =
exp(x)

1 + exp(x)
, (2)

which we will use here. Equations (1) and (2) define a feed forward neural

network with logistic activation function, p explanatory variables (inputs), one

hidden layer with M nodes and q dependent variables (outputs) that can be
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illustrated as in Figure 1.
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Figure 1: Neural network representation

Note that each output combines the node values in a different way. For

practical fitting of neural networks models, it is typically assumed that the

input variables are all defined to have a similar, finite range, e.g. [0, 1]. From

now on, we shall assume this throughout.

3 Neural network based growth curve models

Here we develop growth curve models based on the use of neural networks to

explain the functional relationship of growth to given environmental factors.

3.1 A neural network based Gompertz model

The bacterial growth process is typically characterized by three distinct phases,

that is: the lag stage that reflects the adaptation of cells inoculated in a new
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medium; the exponential stage that represents the bacterial growth by binary

fission; and finally the stationary stage which describes the decay of the growth

rate as a consequence of nutrient depletion and accumulation of waste which is

followed by death or decline of the population. Sigmoidal functions which ac-

count for these three phases have been typically used to model microbial growth,

see e.g. Skinner et al. (1994). In particular, the Gompertz equation is a well

known model for bacterial growth over time and it has been used extensively by

researchers to fit a wide variety of growth curves from different microorganisms,

see e.g. Ross and McMeekin (1994) and McKellar and Lu (2004).

Here we consider a reparameterized Gompertz equation proposed by Zwi-

etering et al. (1990). Let Nt represent the population concentration of bacteria

cultivated in a Petri dish experiment at time t ≥ 0. Then the Gompertz equation

is

E[Nt|N0, D, µ, λ] = g(t,N0, D, µ, λ) where

g(t,N0, D, µ, λ) = N0 +D exp

(
− exp

(
1 +

µe(λ− t)
D

))
, (3)

where e is Euler’s number, N0 is the initial bacterial density, D is the difference

between the maximum bacterial density, µ is the maximum growth rate and λ

is the time lag.

The primary growth model described in (3) does not allow for the case where

we wish to study bacterial populations under a variety of controlled environmen-

tal conditions. Thus, suppose that we observe the growth of I bacterial popula-

tions under similar initial conditions and that we have J different environments

determined by temperature, level of acidity (pH) and salt concentration (NaCI).

Under fixed environmental conditions, it may be reasonable to assume that all

replications have the same growth curve parameters. However, growth rates

will vary under different conditions and therefore, assuming a Gompertz model,
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we propose the use of neural networks to reflect the parameter dependence on

the environmental factors. If Ntij is the concentration in population i under

environmental conditions j at time t the Gompertz function is

E[Ntij |N0j , Dj , µj , λj ] = g(tij , N0j , Dj , µj , λj), (4)

where g(·) is as in (3), for i = 1, . . . , I and j = 1, . . . , J . Now, we model the

growth parameters µ, λ and D as a function of the temperature, the level of

acidity and the salt concentration by a feed forward neural network, that is

θs =

M∑
k=1

βsk ·Ψ(x′γk), for s = 1, 2, 3. (5)

where θs stands for the parameters D,µ, λ and x = (T, pH,NaCI) is the vector

of explicative variables and Ψ is the logistic function. The model defined in this

section by Expression (4) and (5) will be referred to as GNN model.

3.2 A hierarchical neural network model

Here, we generalize the previous model to a new one which does not assume any

underlying parametric growth function. Instead, we propose a neural network as

a primary model. The output of the network is the instantaneous reproduction

rate per member of the population and the inputs are the current population
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size and the experimental conditions. Formally, we can write the model as

E[Ntij |N(t−1)ij , fj , Tj , pHj , NaClj ] =

N(t−1)ij +N(t−1)ijfj(N(t−1)ij , Tj , pHj , NaCIj) (6)

fj(N(t−1)ij , Tj , pHj , NaCIj) =

M∑
k=1

βjk(Ψ(γ1kN(t−1)ij + γ2kTj + γ3kpHj + γ4kNaCIj)

−Ψ(γ2kTj + γ3kpHj + γ4kNaCIj)), (7)

for i = 1, . . . , I and j = 1, . . . , J , fj(·) is the growth rate for populations with

environmental condition j. The model defined in this section by (6) will be

referred to as the NN model.

3.3 Error modeling

In the previous subsections, two approaches to modeling the expected popula-

tion density have been provided. These models are completed by including an

error term. Thus, in the case of the full neural network model, we assume that

Ntij = N(t−1)ij +N(t−1)ijfj(N(t−1)ij , Tj , pHj , NaCIj) + εtij (8)

where we assume that the error term is

εtij |N(t−1)ij , σ, p ∼ N
(
0, σ2Np

t−1
)

(9)

where σ2 ≥ 0 and p = 0.5 so that the possibility that the error variance increases

with population density is allowed for. Note in particular that for p > 0, this

error structure implies that if N(t−1)ij = 0, then Ntij = 0, so that once the
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population has died out, then it remains extinct. Figure 2 illustrates different

bacterial growth curves from petri dish experiments under the same conditions.

It can be seen that the curves are closer together initially when the population

density is lower and diverge over time as the population density grows which

suggests that a model of this type is reasonable. Following the same idea of

increasing error variance we assume for the GNN model that the error term is

εtij |gtij , σ, p ∼ N
(
0, σ2g(tij)

p
)

(10)

where g(.) is the Gompertz function evaluated at the current time point.
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Figure 2: 15 replications of bacterial growth under T = 42◦C, pH = 7.4 and
NaCI = 2.5%.
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4 Bayesian inference for the neural network mod-

els

Given a set of observed inputs and outputs from a neural network, say D =

(x1, y1), . . . , (xN , yN ), inference can be carried out using a variety of approaches,

see e.g. Neal (1996) and Fine (1999) for reviews. Here, we shall consider a

Bayesian approach. In order to implement such an approach, we must first

define suitable prior distributions for the neural network parameters β and γ

and for the uncertainty. Firstly, we suppose little prior knowledge concerning

the variance and hence we propose a vague, inverse-gamma, prior distribution

for it σ−2 ∼ G(a/2, b/2). In neural network models is common to use relative

uninformative prior distributions due to the scarcity of prior information about

the parameters. For simplicity we choose normal and gamma distributions with

hierarchical structure, that is

βik|miβ , σ
2
β ∼ N

(
miβ , σ

2
β

)
γk|mγ , σ

2
γ ∼ N

(
mγ , σ

2
γI
)
,

where the subscript i in the GNN model accounts for the growth parameters

and in the NN model for the groups defined by the environmental conditions.

The Bayesian approach is completed by vague, but proper prior distributions
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for the remaining hyperparameters as follows:

miβ |σ2
β ∼ N

(
m0β ,

σ2
β

cβ

)

m0β |σ2
β ∼ N

(
0,
σ2
β

eβ

)
1

σ2
β

∼ G
(
dβ1
2
,
dβ2
2

)

mγ |σ2
γ ∼ N

(
0,
σ2
γ

cγ
I

)
1

σ2
γ

∼ G
(
dγ1
2
,
dγ2
2

)
,

where cβ , eβ , dβ1, dβ2, cγ , dγ1 and dγ2 are assume known and fixed. Similar

hierarchical prior distributions are typically used in Bayesian inference for neural

network models, see e.g. Lavine and West (1992), Müller and Insua (1998)

and Andrieu et al. (2001). For alternatives, see e.g. Lee (2004), Robert and

Mengersen (1999) and Roeder and Wasserman (1997).

Usually, we will have good prior knowledge about the average initial popula-

tion density, m0 = E[N0i|m0, s0] and the variance, s0, as typically, petri dishes

are seeded with very similar quantities of bacteria close to a known, theoretical

level, so we shall typically assume that these are known. Otherwise, a simple

non-informative prior distribution f(m0, t0) ∝ 1/t0, where t0 = 1/s20 can be

used when, immediately, we have that given the observed set of initial densities,

N0 = (N01, . . . , N0I),

m0|N0, s0 ∼ N
(
N0,

s20
I

)
s20|N0 ∼ IG

(
I − 1,

I∑
i=1

(N0i −N0)2

)

where N0 = 1
I

∑I
i=1N0i is the average initial density.
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Given the above prior structure, a closed form for the posterior parameter

distributions is not available. However, Markov-Chain Monte-Carlo (MCMC)

techniques can be employed to allow us to generate an approximate Monte Carlo

sample from the posterior parameter distributions, see e.g. Gilks et al. (1996)

for a full review. Various different MCMC algorithms have been proposed in

the neural networks literature, but in general the efficiency of such samplers

depends on the model, see e.g. Lee (2004).

As an alternative, here, we propose using the generic MCMC sampler, WinBugs,

as developed by Spiegelhalter et al. (1999), which is appropriate for hierarchical

modeling situations, programmed in combination with R, via R2WinBugs.

Figure 3 illustrates the dependence structure of the NN model in WinBugs

style (although code cannot be constructed directly from this diagram). In the

figure, random and logical nodes are represented by ellipses and fixed nodes

(independent variables) are represented by rectangles. The arrows represent

dependence relationships with the single arrows showing stochastic dependence

and the double arrows representing logical dependence. For more details see

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml.

As WinBugs is a generic approach to MCMC sampling, it is important to

check on the convergence of the sampler. Various tools can be used to check

the convergence. In particular, as well as standard graphical techniques such as

looking at the trace, the evolution of the mean and the autocorrelations of the

sampled output, we also use formal diagnostic techniques such as the modified

Gelman-Rubin statistic, as in Brooks and Gelman (1998).

4.1 Model selection

Thus far, inference is conditional on the number of hidden nodes, M , being

unknown. Various approaches to estimating M may be considered. One pos-
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Figure 3: Dependence structure of the NN model

sibility is to treat M as a variable and given a prior distribution for M , use

variable dimensional MCMC approaches to carry out inference, see e.g. Müller

and Insua (1998) or Neal (1996). Another approach which we shall use in this

article is to use an appropriate model selection technique to choose the value of

M .

A number of criteria have been proposed for model selection in Bayesian

inference. A standard, Bayesian selection criterion which is particularly ap-

propriate when inference is carried out using MCMC methods is the deviance

information criterion (DIC), as proposed in Spiegelhalter et al. (2002). However,

in the context of neural networks, the possible lack of identifiability of the model

or multimodality of the posterior densities make this criterium unstable. Many

variants of the DIC have also been considered and here, we prefer to apply the

DIC3 criterion of Celeux et al. (2006). For a model M with parameters θ and

observed data y the DIC3 is defined as follows:

DIC3 = −4Eθ[log f(y|θ)|y] + 2 log
n∏
i=1

Eθ[f(yi|θ,y)].
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In Celeux et al. (2006) this criterion is recommended in the context of latent

variable models.

An alternative approach which we also consider when comparing different

models is the posterior predictive loss performance (PPLP) proposed by Gelfand

and Ghosh (1998). Based on the posterior predictive distribution, this criterion

consists in defining a weight loss function which penalizes actions for departure

from the corresponding observed value as well as for departure from what we

expect the replication to be. In this way, the approach is a compromise between

the two types of departures: fit and smoothness. For squared error loss, the

criterion becomes

PPLP =
k

k + 1

n∑
i=1

(mi − yi)2 +
n∑
i=1

s2i

, where mi = E[yrepi |y] and s2i = V ar[yrepi |y] are, respectively, the mean and

the variance of the predictive distribution of yrepi given the observed data y

and k is the weight we assign to departures from the observed data. The first

term of the PPLP is a plain goodness-of-fit term and the second term penalizes

complexity and rewards parsimony.

5 Application: Listeria monocytogenes

In this section we analyze a data set consisting of measures of the concentrations

of Listeria monocytogenes bacteria in a petri dish under several experimental

conditions. The environmental factors taken into account are temperature, level

of acidity and salinity. Temperatures range between 22◦C and 42◦C, pH between

4.5 and 7.4 and NaCI between 2.5% and 5.5%. There are 96 different combi-

nations of environmental factors (we call groups) and for each group there are

several replications (between 15 and 20, depending on the group). The number

15



of observations per curve varies between 16 and 24, depending on the curve.

We kept for the analysis 74 groups (excluding the cases with extreme values of

factors which inhibit growth) and chose randomly 10 replications for each one.

Using the DIC3 criterion as outlined earlier, the optimum number of nodes

for both models is 2. Temperature, pH and NaCI as inputs of the neural net-

works were previously scaled onto [0.1, 0.9]. In the implementation of the GNN

model we keep the hyperparameters miβ , σβ , mγ and σγ fixed at miβ = 0,

σβ = 10, mγ = (0, . . . , 0)′ and σγ = 10. Regarding the error variance we choose

a = 0.2 and b = 0.2. In the NN model the highest level of hyperparameters were

set to cβ = 10, eβ = 10, dβ1 = 0.1, dβ2 = 0.01, cγ = 10, dγ1 and dγ2 = 0.01.

In order to fit the models, in each case we generated chains with random

initial values and 200000 iterations each, including 100000 iterations of burn-

in. To diminish autocorrelation between the generated values we also used a

thinning rate of 1000. Trace plots and autocorrelation functions were used to

check convergence in the predictions and in all cases it was found that the burn-

in period of 100000 iterations was reasonable. Furthermore, the Gelman-Rubin

statistic was equal o very close to 1 for predictions, being a good indicator of

convergence.

In order to have a benchmark for the comparison of models we also fit

two different simple models, the independent Gompertz model and the pooled

Gompertz model. The first one implies that each observed curve, including

the replications, is independent and therefore has its own Gompertz growth

parameters. Independent, relatively diffuse normal N(0, 100) prior distributions

are assumed for these parameters. In contrast, the pooled model assumes that

the replications under a fixed set of environmental conditions are samples from

a unique, underlying growth curve for that set of conditions. Normal priors

are then placed on the parameters of this growth curve as for the independent

16
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Figure 4: Fitting bacterial growth curves

model. For both benchmark models the errors are the same as in the GNN case

with a G(0.1, 0.1) prior distribution for the error variance.

The DIC3 and the PPLP criteria were computed in order to compare the

different models under consideration and Table 1 shows the estimated values

for all of these models. As is expected, the pooled model performs better than

de independent one since the assumption of independence for all the curves is

somewhat extreme. Therefore, it seems reasonable to assume different curves

under different environmental conditions but under equal conditions we assume

a common curve. And this is the approach we choose for the proposed mod-

els. But the problem of this model is that it does not explain the effect of the

environmental factors and it is needed to estimate one model for each group

of conditions. Then, regarding our proposed models which incorporate the en-

vironmental factors as explicative variables the results show that hierarchical

neural network model outperforms the Gompertz model with neural networks

for the parameters. The DIC3 and the PPLP values are lowest for the former

model.

Figure 4 shows for a particular curve (T = 34◦C, pH = 6.5 and NaCI =

17



5.5%) the fitting of both models. On the left, the Gompertz model with neural

networks explaining the dependence of the growth parameter on the environ-

mental factor and on the right the fitting of the hierarchical neural network

model. The observed values are represented by points, the estimated growth

curves are represented by the solid line, and the dashed lines represents the 95%

credible interval computed from the posterior distributions. It can be observed

that the fit is good in both cases and in GNN model the credible interval in-

cluded all the true observations. Note that in NN model three observations do

not fall within the credible interval due to the overestimation of the lag period.

In the remaining curves (replications and different group conditions), we also

found good fits for both models. Similar results are observed in the fitted plots

for all the groups.

Table 1: Model comparison
Model DIC3 PPLP

Independet Gompertz −19136 781

Pooled Gompertz −39420 211

Gomp & NN −40099 41

Neural Networks −58492 28

Now, we consider one-step ahead predictions. That is, for a particular curve

we observe data until observation t and predict the population size at t+ 1. In

the next step, we observe data until t + 1 and predict the population size at

t + 2 and so on, until the completion of the predictive curve. Figure 5 shows

the one-step-ahead predictive curves for both models for a particular growth

curve (T = 42◦C, pH = 5.5 and NaCI = 2.5%). In contrast with the fit, the

Gompertz model shows a better predictive performance. The mean square error

of the prediction in the Gompertz model is equal to 0.001, while for the NNs

18



model is 0.008. But in the second model higher accuracy is reached as can be

seen from the narrower credible interval.
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Figure 5: One-step ahead predictions

In the context of model checking, several authors, e.g. Gelfand (1996) and

Vehtari and Lampinen (2003) have proposed the use of cross-validatory pre-

dictive densities. Following this approach, the data is divided in two subsets

(y1,y2). The first of these is used to fit the model and to estimate the pos-

terior distribution of the parameters, while the second set is used to compute

the cross-validatory predictive density: f(y1|y2) =
∫
f(y2|θ)f(θ|y1)dθ. In our

case, we computed the predictive density for one of the groups which was not

used in the model fitting. The environmental conditions for this new group are

T = 26◦C, pH = 6.5 and NaCI = 5.5%. Figure 6 shows the mean prediction

(solide line) and the 95% credible interval (dashed line) for both models, GNN

on the left and NN on the right. As there are many replications for this group,

we plot only the mean curve and shade the area between the minimum value

and the maximum value observed for each time t among replications. As an

input of the neural network for the NN model we used the mean curve of the

replications.
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Figure 6: Cross-validation

Although both cross-validation predictions are fairly good, in the case of

the GNN model some observations lie outside the credible interval. Moreover,

comparing the mean prediction with the mean observed curve, the NN model

yields more accurate predictions.

6 Conclusions and extensions

In this article we have illustrated that neural networks can be used to model

bacterial growth for multiple populations. Neural networks were used as a sec-

ondary model that explains the dependence on environmental factors and also

as a primary model which, besides time, includes experimental conditions as

explicative variables. Inference was carried on in a Bayesian approach that

avoids the problems for doing inference in two steps. Both models yield ac-

curate estimations and good predictions which show that NNs can be used to

model bacterial growth describing accurately the complex interacting effects of

environmental factors without imposing any simplifying assumption.

Estimations were implemented in WinBugs via R2WinBugs showing that WinBugs
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can be a powerful and flexible tool able to handle very complex models such as

neural networks with great ease. As MacKay (1995) pointed out, Gibbs sam-

pling method is not the most efficient of MCMC methods, but there may be

problems of interest where the convenience of this tool outweighs this drawback.

On the other hand, the modified Gompertz equation was used as the base

model for the first approach we considered but other parametric bacteria growth

models such as Baranyi or logistic are equally applicable.

A restriction in the models as assumed here is that we suppose that data

are equally spaced in time. Although this is typically the case in petri dish

experiments, this may not be true with more general populations. In the case

of irregularly spaced data, differential equation models with diffusion type ap-

proximations with the neural network models for the growth functions may be

considered (see Donnet et al. (2010)).

Finally, alternative approximations to the neural network models for growth

functions may be considered as spline methods from a classical point of view or

the use of gaussian process approximations.
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