
n Corr

E-m
Fully 3D GPU PET reconstruction
J.L. Herraiz a,n, S. España b, J. Cal-González a, J.J. Vaquero c, M. Desco c,d, J.M. Udı́as a

a Grupo de Fı́sica Nuclear, Departmento Fı́sica Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Spain
b Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
c Departmento de Bioingenierı́a e Ingenierı́a Espacial, Universidad Carlos III, Madrid, Spain
d Unidad de Medicina y Cirugı́a Experimental, Hospital General Universitario Gregorio Marañón, Madrid, Spain
a r t i c l e i n f o

Available online 16 December 2010

Keywords:

Tomographic reconstruction

Positron emission tomography

Graphics processing unit
esponding author. Tel./fax: +34 913 944 484.

ail address: joaquin@nuclear.fis.ucm.es.(J.L. H
a b s t r a c t

Fully 3D iterative tomographic image reconstruction is computationally very demanding. Graphics

Processing Unit (GPU) has been proposed for many years as potential accelerators in complex scientific

problems, but it has not been used until the recent advances in the programmability of GPUs that the best

available reconstruction codes have started to be implemented to be run on GPUs.

This work presents a GPU based fully 3D PET iterative reconstruction software. This new code may

reconstruct sinogram data from several commercially available PET scanners. The most important and

time consuming parts of the code, the forward and backward projection operations, are based on an

accurate model of the scanner obtained with the Monte Carlo code PeneloPET and they have been

massively parallelized on the GPU. For the PET scanners considered, the GPU based code is more than 70

times faster than a similar code running on a single core of a fast CPU, obtaining in both cases the same

images. The code has been designed to be easily adapted to reconstruct sinograms from any other PET

scanner, including scanner prototypes.
1. Introduction

Graphics Processing Unit (GPU) has been proposed for many
years as potential accelerators in complex scientific problems [1]
like image reconstruction, with large amount of data and high
arithmetic intensity. Indeed, tomographic reconstruction codes are
suitable for massive parallelization, as the two main time con
suming parts of the code (forward and backward projection) can be
organized as single instruction multiple data (SIMD) tasks and
distributed among the available processor units by assigning part
of the data to each unit [2,3].

In a previous work, we developed the tomographic reconstruc
tion code fast iterative reconstruction software for (PET) tomo
graphy (FIRST) [4] using the message passing interface (MPI)
protocol [5] to launch parallel tasks and communicate results
between a master and several slave processes, which run on the
available CPUs (or CPU cores) in a cluster of computers. FIRST has
proved to be a successful implementation of a tomographic code for
high resolution small animal PET scanners [4,6].

However, programming a code like FIRST to take full advantage of
GPU features was not an easy task. Good knowledge of targeted GPU
architecture was required, and it was necessary to translate the opera
tions in the algorithm into graphics related terms like vertex and
erraiz)
fragment shaders [7], making it difficult to create complex codes for
the GPU. Therefore, it has not been until the recent advances in the
programmability of GPUs [8] that the best available reconstruction codes
like FIRST have started to be implemented to be run on GPUs [9,10].

In this work, we have implemented a fully 3D PET iterative
reconstruction software using CUDA [8] that makes use of the
efficient computing capabilities of GPUs. The main goal was to obtain
a significant acceleration of the code (similar to the ones obtained
using a cluster of CPUs) without compromising with the quality of
the reconstructed images. Therefore, we avoided approximations in
the forward and backward projection kernels, and we used the same
model, called the system response matrix (SRM), as it would be used
in a CPU code. Furthermore, numerical approximations such as
integer conversion of float image values were also avoided.
2. Materials and methods

The reconstruction code implemented in this work is based on
the 3D OSEM algorithm [11]. In this statistical method, the recon
structed image is iteratively updated pursuing that the estimated
projections obtained from that image were the most compatible
ones with the acquired data that contains Poisson noise.

The code was implemented in CUDA [8], an application program
ming interface (API), which allows writing programs in C language
with extensions to execute part of them (CUDA kernels) on the GPU.
These kernels may execute large number of threads in parallel in
1

Cita bibliográfica
Published in: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 648, suplement 1, 21 august 2011. Pp. S169-S171



Fig. 1. Flowchart of the fully 3D iterative reconstruction code implemented using

the GPU.

Fig. 2. Symmetries used to reduce the number of LORs that need to be stored in

memory: (a) in-plane rotations and reflections, (b) translations and reflections in the

axial direction. Coefficients for TORs in (a) and (b) have identical values.

Fig. 3. Schematics description of the forward and backward projections. Note that in

the code the sampled points represent a three-dimensional grid.
SIMD mode. In this work, only two CUDA kernels were required: the
forward and the backward projection, as shown in Fig. 1.

Due to the large number of threads that can be executed in parallel
on GPUs, the usual bottlenecks of these implementations are memory
access. In our study, we used texture memory, which is a kind of global
memory available in the GPU that is allocated and indexed for fast
access [12]. In our code we defined three 3D textures, as shown in
Fig. 1: one for the reconstructed image, another for the corrections
applied in each iteration, and finally one to store the SRM. In this work,
the time required for the data transfer between the CPU and the GPU
memory in each iteration was negligible compared to the time spent
in the forward and backward projection.

In this work, we show results from the high resolution small
animal PET scanner VrPET [6], which is composed of two pairs of
rotating plane detectors in coincidence with a transaxial field of
view (FOV) of 86.6 mm and axial FOV of 45.6 mm. The sinograms
are organized in 117 radial and 190 angular bins for each of
the direct and oblique crystal combinations, making a total of
117 (radial)�190 (angular)�30�30 (axial) bins. The recon
structed images were composed of 117�117�59 voxels.

2.1. System response matrix

Our fully 3D iterative reconstruction code is based on a realistic
model of the emission and detection of the radiation in the PET
scanner. This model was generated using the Monte Carlo code
developed in our group PeneloPET [13], which is based on
PENELOPE [14]. PeneloPET simulates the most relevant physical
effects in a PET acquisition (positron range, non collinearity,
interaction of the gamma rays with the scintillator crystals and
electronics). Due to these effects, each line of response (LOR)
connecting a pair of detector elements is related to a wide region
of the field of view, commonly known as the tube of response
(TOR). The TOR for a LOR (i) is composed of all voxels (j) with non
zero coefficient Cij, which represents the probability that a positron
emitted in voxel j is detected in LOR i.

In this work, each TOR is made of an array of 117 (longitudinal)�
7 (transaxial)�7 (axial) coefficients. The coefficients from all the
TORs in the scanner form the SRM. Due to the large size of the SRM, all
the symmetries present in the system should be exploited in order to
fit it into the texture memory of the GPU. This implies that only some
TORs need to be computed and stored, because symmetrically
equivalent LORs, as shown in Fig. 2, have the same probability
distribution. When dealing with sinograms acquired using a con
tinuous rotating scanner such as VrPET, the rotational symmetry
yields an SRM that does not depend on the in plane angle, reducing
the size of the SRM considerably.
2.2. Forward projection kernel

In the forward projection kernel, each thread of the GPU projects
one LOR, adding the contribution from all the points connected to it,
as shown in Fig. 3. This way, a large amount of LORs can be
projected simultaneously. Each sampled point corresponds to a
coefficient of the SRM. On the other hand, the values of the image at
each of these points are obtained by tri linear interpolation, which
is easily accessible in 3D textures [12].

2.3. Backward projection kernel

In the backward projection kernel, each thread of the GPU back
projects one voxel and computes the corrections from all the LORs
connected with that voxel that was projected previously (see
Fig. 3). In this case it is necessary to compute the distance of the
voxel to the center of each LOR to obtain the SRM coefficient by tri
linear interpolation within the 3D texture. It is important to note
that this can be easily done because in this work we are dealing
with sinograms that are spatially sorted data. With other data
formats, like list mode acquisitions, it would be difficult to find
which LORs are connected with a specific voxel.

2.4. Equipment

In this work we compare the performance of the reconstruction
code using a 4 core front end computer (IntelsCoreTM i7 (2.93 GHz) )
with two different GPUs. The reconstruction time of the CPU version
run in a single core was taken as a reference. For comparison purposes,
the CPU code was also parallelized using the MPI protocol [5] and
executed using 8 threads on the same 4 core multithread able CPU.
On the other hand, we used a low cost GPU (8600 GT) with 4 stream
multiprocessors (SM) and a more powerful one (Tesla C1060) with
27 SM, to run the GPU version of the code. The maximum number of
threads that can be executed in parallel on the GPU is proportional to
2



Fig. 4. Image reconstructed from a real acquisition both in CPU and GPU. Coronal

view (top) and sagittal view (bottom) of the reconstructed image of a 200 g rat FDG

acquisition.

Table 1
Reconstruction times for one image (one-bed, one-frame acquisition, one full

iteration of 50 subsets) in different architectures. The speed-up factors are

computed against the reference CPU using a single thread.

Reconstruction

time (s)

Speed-up

factor

CPU–Intels CoreTM i7–2.93 GHz (1 Core) 3456 1�

CPU–Intels CoreTM i7–2.93 GHz

(4 Cores – Multithread)

623 5.5�

GPU – 8600 GT–256 MB – 4 SM 509 7�

GPU – TESLA C1060–4 GB – 27SM 49 72�
the number of SM, so a significant difference in the reconstruction
time is expected between these GPUs.
3. Results

3.1. Image quality

Fig. 4 shows a transverse and coronal view of the images
reconstructed of the 200 g rat injected with FDG using both CPU
and GPU codes. The differences between both images are visually
negligible, with a mean square difference smaller than 0.1%.

3.2. Reconstruction time

Table 1 shows the time required for the reconstruction of one
image from one bed, one frame acquisition using 1 full iteration of 50
subsets for different architectures. The reference time correspond to
the one obtained with a fast CPU using a single core. For comparison
purposes, the CPU code was also parallelized using the MPI protocol
[5] and executed using 8 threads on a multithread capable 4 core
front end computer. The speed up factor of 5.5 is smaller than the one
obtained with the worse GPU employed here (8600 GT). It is notice
able that in our best available GPU, the reconstruction time was
reduced by a factor 72 compared to the CPU code.
4. Conclusions

We have implemented a GPU based fully 3D PET iterative
reconstruction software. This new code reconstructs sinogram data
from simulated and commercially available PET scanners and it is up
to more than 70 times faster than a similar code running as a single
thread on a single core of a fast CPU, obtaining in both cases identical
images. It is remarkable that a single Tesla C1060 GPU card would be
comparable to 18 quad core CPU high performance workstations for
these reconstructions. In our cheapest GPU card, the code was even
faster than an expensive modern computer with quad core CPUs.

The code has been implemented using CUDA and it is easily
adaptable to reconstruct sinograms from any other PET scanner; so it
may also be used for fast and accurate reconstruction of acquisitions
from scanner prototypes. Further improvement of the code using the
MPI protocol to run it on several GPUs is currently under
development.
Acknowledgments

The authors would like to thank Dr. R. Cabido and
Dr. A.S. Montemayor for their advice in some GPU related technical
issues. This work has been supported by MEC (FPA2007 62216),
UCM (Grupos UCM, 910059), CPAN (Consolider Ingenio 2010)
CSPD 2007 00042, the RECAVA RETIC network, ARTEMIS S2009/
DPI 1802, European Regional Development, ENTEPRASE grant,
PSE 300000 2009 5 and TEC2008 0675 C02 01, Ministerio de
Ciencia e Innovación, Spanish Government.

References

[1] General-Purpose Computing on Graphics Processing Units repository, /www.
gpgpu.orgS, September 2010.

[2] M.D. Jones, R. Yao, IEEE NSS/MIC Conference Record, 2004, p. 3036.
[3] I.K. Hong, et al., IEEE Trans. Med. Imag. 26 (2007) 789.
[4] J.L. Herraiz, et al., Phys. Med. Biol. 51 (2006) 4547.
[5] W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel Programming with

the Message-Passing Interface, MIT Press, 1999.
[6] E. Lage, et al., Phys. Med. Biol. 54 (2009) 5427.
[7] F. Xu, F.K. Mueller, Phys. Med. Bol. 51 (2007) 3405.
[8] NVIDIA CUDA Programming Guide v.2.5.0, /http://developer.nvidia.com/

object/gpu_programming_guide.htmlS, September 2010.
[9] J.L. Herraiz et al., IEEE NSS/MIC Conference Record, 2009, p. 4064.

[10] X. Jia, Y.F. Lou, R.J. Li, Med. Phys. 37 (2010) 1757.
[11] H.M. Hudson, R.S. Larkin, IEEE Trans. Med. Imag. 13 (1994) 601.
[12] J. Sanders, E. Kandrot, Cuda by Example, Addison-Wesley, 2010.
[13] E. España, et al., Phys. Med. Biol. 54 (2009) 1723.
[14] J Baró, et al., Nucl. Instr. and Meth. Phys. Res. B100 (1995) 31.
3

www.gpgpu.org
www.gpgpu.org
www.gpgpu.org
www.gpgpu.org
www.gpgpu.org
http://developer.nvidia.com/object/gpu_programming_guide.html
http://developer.nvidia.com/object/gpu_programming_guide.html



