

© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29402937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

CLOUDIO: A Cloud Computing-oriented Multi-Tenant Architecture for Business
Information Systems

Enrique Jiménez Domingo
Javier Torres Niño

Angel Lagares Lemos
Computer Science Department

Universidad Carlos III de Madrid
Leganés, Madrid, Spain

enrique.jimenez@uc3m.es
javier.torres@uc3m.es
angel.lagares@uc3m.es

 Miguel Lagares Lemos
Ricardo Colomo Palacios

Juan Miguel Gómez Berbís
Computer Science Department

Universidad Carlos III de Madrid
Leganés, Madrid, Spain

miguel.lagares@uc3m.es
ricardo.colomo@uc3m.es

juanmiguel.gomez@uc3m.es

Abstract— Cloud Computing is evolving from a mere
“storage” technology to a new vehicle for Business Information
Systems (BIS) to manage, organize and provide added-value
strategies to current business models. However, the underlying
infrastructure for Software-as-a-Service (SaaS) to become a
new platform for trading partners and transactions must rely
on intelligent, flexible, context-aware Multi-Tenant
Architectures.

 In this paper, we present Cloudio, a Cloud Computing-
based metadata-powered Multi-Tenant Architecture, backed
with a proof-of-concept J2EE implementation.

Keywords: Cloud, Multi-Tenancy, business, architecture

I. INTRODUCTION

Cloud Computing has provided a reliable, cost-efficient,
cutting-edge infrastructure for advanced software delivery
models such as Software-as-a-Service (SaaS). Most SaaS
platforms are built on Multi-Tenant Architectures (MTA),
which allow expanding and modeling efficiently large data
management structures, such as databases.

 Nevertheless, from a software engineering standpoint,
the need for flexible, context-aware and dynamic Multi-
Tenant Architectures is gaining momentum, particularly
because when dealing with Business Information Systems
BIS) scenario requirements, such as Customer Relationship
Management (CRM) or Enterprise Resource Planning (ERP)
systems, which require the capability for extending Data
Models inside the MTA and also provide more knowledge-
oriented metadata-driven approaches such as inference,
where data relationships can be entailed.

 In this paper, we present CLOUDIO, a Cloud
Computing-based flexible, Data Model extended and
dynamic Multi-Tenant Architecture which addresses the
aforementioned topics by supporting it with a very pragmatic
and implementation-driven details. For that, we have
implemented a proof-of-concept of CLOUDIO using both
J2EE and JDBC technologies.

II. CONCEPTUAL MODEL

A multi-tenant architecture allows managing different
kind of users of a system in a very flexible way due to the
great amounts of configurations that can be adopted easily.
For this reason, it is necessary to establish the difference
between what is a tenant and a user.

A tenant is considered the owner or the supplier of a
SaaS application. He is responsible of the management,
maintenance and update of the application and should ensure
its availability and security.

The other aspect that provides the advantages and power
to multi-tenant architectures is the database model. An
appropriate model for the database can take an important
increase in the scalability of the system. For achieving that it
is possible to find different configurations, each one with its
domain of applications, powers and limitations: Separate
databases, Shared database, separate schema, Shared
database, shared schema. To choose the best option in each
case it is necessary to study the case in which the
configurations are going to be used and try to make the most
of them in terms of efficiency and cost.

Now we are going to provide a brief description of each
one to get a better understanding of the matter that it has
been treating.

In our approach we have chosen shared database, shared
schema. This allows using only the stored space that is
necessary in each case and avoiding the problems explained
before with lower costs

Here, a metadata table stores important information about
every custom field defined by every tenant, including the
field´s name (label) and data type.

Firstly, the particular ID data of the associated record in
the primary data table is vital for the approach. Secondly, the
extension ID associated with the correct custom field
definition and finally, the value of the custom field in the
record which is being saved and eventually transformed into
a string. This approach allows each tenant to create as many
custom fields as necessary to meet its business needs.

1

referencia bibliográfica.
Published in: IEEE 3rd International Conference on Cloud Computing (CLOUD), (July 2010), 532-533, Miami (Florida).

III. ARCHITECTURE

The architecture of this system has been designed to offer
the best flexibility and usability for the multi-tenancy
database. The major contribution of this paper is the two
levels of multi-tenancy that this architecture provides. The
first level of multi-tenancy is due to different tenants are
assigned to different databases (Different Instances), and the
second one is provoked for the ability of the tenants to share
the tables of the database (Shared Schema). It has been
possible adding two innovative elements to the typical
architecture: the “JDBC Driver Manager” and the “Multi-
Tenant DB Index”, which together make the transition from
single-tenant to multi-tenant almost automatic in a very
flexible way. These two artifacts make this architecture
different from a regular multi-tenant application working in
the Amazon or another cloud.

The SaaS application is in the top of the architecture and
it is a J2EE application that needs to store information in a
database. Actually, it does not need to be a “SaaS”
application but this paper is focused on SaaS applications
because multi-tenancy is a key feature in the Cloud
Computing world.

The JDBC Driver Manager is just above the predefined
JDBC driver and allows, as it was explained, a multi-tenant
database to be created automatically with no effort in the
tenant side. In the same layer there is the Multi-Tenant DB
Index that contains the data of which database is the
correspondent for each tenant, therefore it is implemented as
a hash map of key->value pairs, being the key the tenant id,
and the value the connection parameters and the subjacent
JDBC driver to use.

Under the JDBC Driver Manager it is located the JDBC
Driver that really connects to the database, any regular driver
works. The cloud infrastructure is in charge of balancing the
amount of work of every database to keep them working in a
high-performance status.

In the bottom down there are the databases. The data of a
tenant exists only in one database, although that database can
be replicated as many times as needed. This means that the
queries against the database thankful to the Multi-Tenant DB
Index will consult in just one database.

IV. IMPLEMENTATION

The implementation consists of two parts: the necessary
modifications to the database schema, and the driver
implementation.

A. Database Modification
First, a new table is created to store tenant data, with a

single field, the tenant id. This table is not strictly needed,
but it allows the user to associate data with tenants (e.g:
tenant name) and to maintain data consistency in the
database, forcing every data to be owned by one of the
tenants on this table.

The other bit of data that is added to the database is a
new column, storing the identifier of the data owner, in every
existing table. This new column allows to yielding loosely

decoupled virtual tables of each tenant, so they can only
access the data rows that are really owned by them. By
adding a reference from these columns to the tenants table,
we achieve consistency, in the sense that invalid tenants
cannot be specified as owners of database rows. Application
developers are encouraged to add any information related to
the tenant to this table, and the driver will not be affected.

These modifications to the database schema are
automated with a Java program that connects to the specified
database, create a tenant table with a single tenant_id field,
and then list all the original tables and add the owner column

B. Driver Implementation
The actual driver is implemented as a JDBC driver, so

any Java application can use it without significant
modifications.

When a Java program requests a new connection, the
driver starts a real connection to the database using a second
database driver. The back-end driver to use, as well as its
connection parameters, depends on the tenant that is
requesting the connection to the database, which is passed
from the application to the front-end JDBC driver. This
approach allows the application developer to use any method
he sees appropriate to determine the tenant that is connecting
to the database.

The tenant identifier is looked-up in a hash table, which
associates it with a parameter set that allows to opening a
JDBC connection. Once a connection is established, the
application can begin sending queries. Each query will then
be analyzed, and then rewritten to include the extra data
needed to handle the multi-tenancy schema.

This re-implementation of the queries implements the
second level of Multi-Tenancy, where the data is separated
into virtual tables while sharing the same tables of the same
database instance. This query is then send to the database
through the back-end driver, and the results are returned
verbatim to the application, which can use them as usual.

V. CONCLUSIONS

In this paper, we have presented the CLOUDIO software
platform a new approach for Multi-Tenant Architectures
supporting the SaaS advanced software delivery approach,
which is rooted on the ever-growing use of Cloud
Computing. CLOUDIO builds on a set of Business
Information Systems scenario requirements, mostly
concerned with the flexibility of the Data Model and
managing large datasets, optimizing the underlying
architecture. We have focused on providing a result-oriented
evaluation where we can proof the forthcomings of using our
J2EE-based implemented solution.

ACKNOWLEDGMENT
This work is supported by the Spanish Ministry of

Industry, Tourism, and Commerce under the project GODO2
(TSI- 020100-2008-564), SONAR2 (TSI-020100-2008-665),
and SITIO (TSI-0204000-2009-148), under the PIBES
(TEC2006-12365-C02-01) and MID-CBR (TIN2006-15140-
C03-02) projects of the Spanish Committee of Education &
Science.

2

