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Abstract 
 
Customer Relationship Management generally uses the value of customers to allocate marketing 
budget. But marketing interventions generally change the customer behavior, turning upside-down 
the customers ranking based on their initial valuations and making the budget allocation 
suboptimal. Rational Managers should allocate the marketing budget to maximize the expected net 
present value of future profits drawn from each customer, simultaneously planning mass 
marketing interventions and direct marketing effort on each individual. This is a large dimensional 
Stochastic Dynamic Program, which cannot be easily solved due to the curse of dimensionality. 
This paper propose a new decomposition algorithm to alleviate the curse of dimensionality in SDP 
problems, which allows forward-looking firms to allocate the marketing budget optimizing the 
CLV of their customer base, simultaneously using customized and mass marketing interventions. 
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1 Introduction

Customers are central assets of the firm, and marketing departments increasingly adopt Customer Relation-
ship Management (CRM) schedules to improve customer acquisition, expenditure and retention. Essentially,
CRM involves a systematic allocation of differential resources to customers, based on the their individual
value to the business. The resources allocated to each customer can be channelled through a mix of alter-
native interventions, and complemented by mass actions. Traditionally, marketing resource allocation was
based on heuristic rules (see Mantrala, 2002). But the benefits of CRM policies are nowadays justified by
their impact on firms’return (Rust, Lemon and Zeithaml, 2004). In order to plan the allocation of resources,
managers should maximize the value of its customer base. This concept is ideally measured by the summa of
Customer Lifetime Values (CLV), that is, the summa of net present values of discounted cash flows between
a customer and the firm (Gupta, Lehmann and Stuart 2004, Gupta and Lehmann 2006). The assessment
of customers’values, and the effectiveness of a marketing intervention is typically based on the econometric
analysis of large customer databases.
CRM requires planning a portfolio of alternative marketing mix interventions. The literature on budget

allocation typically considers mass interventions from the marketing mix (advertising promotion and sales
force, reference prices and price-promotions, product and production, and distribution channels). For a
review see, e.g., Gupta and Steenburgh (2008) and Shankar (2008). The direct marketing literature typically
considers a single intervention customized, or at least tailored to small segments. For example, it is common
the use of certain pricing decisions (Lewis 2005), catalog mailing (see, e.g., Bitran and Mondschein 1996;
Gönül and Shi 1998; Gönül and Ter Hofstede 2006; Simester et al. 2006), couponing decisions (e.g., Bawa
and Shoemaker 1987; Rossi et al. 1996), direct mailing (Roberts and Berger 1989) and relationship-oriented
magazines (Berry 1995, Bhattacharya and Bolton 1999, McDonald 1998).
Planning the optimal CRM interventions maximizing the global expected CLVs is, by all means, a

diffi cult task. In an attempt to address it, the standard CRM procedure allocates marketing budget to each
individual customer, after ranking customers by its CLV value (Reinartz and Kumar 2005, Rust, Lemon and
Zeithaml 2004, Venkatesan and Kumar 2004). Assessing new marketing interventions using CLVs computed
from historical data is potentially misleading. The planned CRM marketing interventions will change the
purchasing behavior of different customers, changing their CLVs, turning upside-down the customers ranking
and making our history-based decisions sub-optimal. To cope with this inherent endogeneity, the objective
of the allocation marketing models should be a CLV measure computed as the optimal value achieved when
the optimal CRM investment is implemented. The idea is that when the CLV is computed we should take
into account how customers will react to the changes in the CRM policies.
To avoid this endogeneity problem, some authors have tried to optimize the expected CLVs. Rust

and Verhoef (2005) optimize each individual customer’s profitability year by year (a myopic planning).
Alternatively, other authors optimize the expected CLV using Stochastic Dynamic Programming (SDP).This
is a natural approach to solve this problem, but SDP is affected by the curse of dimensionality (the complexity
increases drastically with the size of the problems). Therefore, they consider a partial solution, that consists
of ignoring mass interventions (aimed to all the customers) focusing on direct individual interventions, so
that the investment decision for each customer is independent, and the standard SDP algorithms can be
applied to at low computational cost considering “decoupled”decision problem. Gönül and Shi (1998) and
Montoya et al. (2007) study direct marketing problems. Khan et al. (2009) estimate the impact of multiple
promotional retail instruments, (discount coupons, free shipping offers, and a loyalty program) on customer
behavior, designing a customized promotional schedule solving a different SDP problem for each customer.
Yet, how to optimize simultaneously both types of interventions (mass, and direct ones) is an unsolved issue,
as the SDP optimization problems are not separable among customers. Maximizing the expected CLVs of
a customers portfolio with multiple types of personalized and mass marketing interventions, accounting for
long term returns, and solving the endogeneity issue is what Rust and Chung (2006, p. 575) called the “Holy
Grail”of CRM.
In this paper we provide a fully tailored approach for planning policies that maximize the expected CLV of

all the customers in the market accounting for the endogeneity issues. Our approach considers that customer
behaviour follows a Markov model in which sales respond to mass and direct marketing interventions, and
marketing expenditures are allocated to maximize the summa of expected CLVs for all its customers. Because
such models can become rather intractable in general, we propose a method to address this problem by
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splitting it into manageable pieces (subproblems) and by coordinating the solutions of these subproblems.
With this approach, we obtain two main computational advantages. First, the subproblems are, by definition,
smaller than the original problem and therefore much faster to solve. Second, the uncertainty can be easily
handled in each subproblems. To validate the effi ciency of the approach, we provide a proof of convergence
and have solved several stochastic dynamic CLV models. The numerical results show the effectiveness of the
method to solve large-scale problems.
We also present an empirical application. We consider a medium size international wholesale company

based in eastern Europe of built-in electric appliances for kitchens. This is a firm with various forms of
sales response so its marketing budget allocation strategy involves general marketing investments (mainly
advertising and promotions in professional fairs) and personalized customer investments. In this research,
we therefore investigate whether these two types of interventions differ across customers. The results show
that companies should consider different strategies to different customers to achieve long-term profitability
over all of the periods of time.
The paper proceeds as follows. In Section 2, we provide a model for dynamically allocating marketing

budgets in the context of CRM. The present model considers simultaneously direct marketing interventions
tailored to each customer and mass marketing interventions aimed to the customer base. In Section 3,
we present the proposed decomposition methodology. In section 4, we illustrate the performance of the
algorithm using numerical simulations, and provide a proof of convergence. In Section 5, we present an
empirical application to customers of manufacturer of electric appliances. Finally, in Section 6, we discuss the
results and provide some concluding remarks. The Appendix provides technical details about the algorithm
implementation.

2 A Model for optimal dynamic budget allocation in CRM

Planning marketing interventions in CRM requires managers to allocate budget dynamically maximizing the
summa of expected CLVs from all customers, based on historic customer state information. To address the
optimal budget allocation problem, the firm must carry out two tasks (see, e.g., Gupta et al. 2009):

Task 1. Estimate the expected CLV building analytical models to forecast future sales response by customers
(Gupta and Lehmann 2003, 2005, Kamakura et al. 2005, Gupta and Zeithaml 2006); and

Task 2. Solve the stochastic dynamic optimization problem including all individual customers (see, e.g., Rust
and Verhoef 2005, Rust and Chung 2006).

The first task requires the design of a dynamic panel sales response model. Let I = {1, ..., I} be a finite
set of active customers and t ∈ {0, 1, 2, ...} the time index. The firm chooses a sequence of dynamic controls:

• eit is the direct marketing interventions on customer i ∈ I at period of time t, such as personalized
advertising and directed promotional expenditures. We use the notation et = (e′1t, ..., e

′
It)
′
, where e′

denotes the transpose of e.

• At is the mass marketing interventions at period of time t,

• Pt denotes the prices for the different products.

These controls (At, Pt, et) are defined on the a control set A, a Borel-measurable subset of the Euclidean
space.
The dynamic control variables have an effect on the customer behavior state variables. We will consider

the following state model:

• Sit is the random vector describing the sales-level state of customer i ∈ I at time t, and we use
the notation St = (S1t, ..., SIt)

′
. With probability one, St takes values on a set of states S a Borel-

measurable subset of the Euclidean space.

• We assume that St follows a Markovian process with transition probability

F (s′|s,A, P, e) = Pr (St ≤ s′|St−1 = s,At−1 = A,Pt−1 = P, et−1 = e) =
∏
i∈I Fi (s′i|si, A, P, ei)
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The typical example is when the company considers a dynamic panel model where each customer satisfies

Sit = ρSit−1 + gi (At−1, Pt−1, eit−1) + εit (1)

where |ρ| < 1, the innovation εit is a strong white noise independent for each customer with cumulative
distribution Hi (·). The functions gi (·) and Hi (·) are continuous and can vary across customers to allow
heterogeneity in the expected responses, so that

Fi (s′i|si, A, P, ei) = Pr {εi ≤ s′i − ρsi − gi (A,P, ei)} = Hi (s′i − ρsi − gi (A,P, ei)) .

The one-lag memory structure imposed by the Markov dependence assumption can be relaxed by considering
p-lags autoregressive models in the space-of-states.
The dynamic model can be estimated using standard econometric techniques for time series cross-section

and/or dynamic panels. Firms increasingly store large panel data basis with information about their cus-
tomers, including social information (such as socio-demographic, geographic information, lifestyle habits) and
trade internal data (such as historical transaction records, customers feedback, or Web browsing records), see
Bose and Chen (2009). The econometric literature has developed a battery of linear and nonlinear models
for the dynamic analysis of large data-panels, and the marketing researchers have tailored these models for
the prediction of future purchases at customer-level (e.g., Schmittlein and Peterson 1994). Using these tools,
company managers often estimate the expected CLV for each customer based on its past behavior, (generally
in a ceteris paribus context, omitting or fixing the marketing mix variables).
The main contribution of this paper is to propose a methodology for solving Task 2. The firm should

choose the CRM policy maximizing the expected sum of its CLVs, constrained to the customer response to
feasible marketing policies. This problem is a large dimensional (discounted) SDP problem. In other words,
we consider that a rational forward-looking firm has to decide on CRM budget allocation policies over time,
drawing profits

r (St, At, Pt, et) :=
∑
i∈I

ri (Sit, At, Pt, eit) (2)

at each period of time t > 0 from all of their customers1 . Let δ ∈ (0, 1) be a time discount parameter, then

we assume that the company maximizes the expected net present value E0
[∑

t≥0 δ
tr (St, At, Pt, et)

]
.

Marketing budget decisions generally face corporate constraints settled by the interactions between man-
agers, bond holders, and stockholders. We consider that for each state St−1, there is a non-empty compact
set A (St−1) ⊂ A of admissible controls at time t > 0 which depends upon the previous period sales; i.e.
(At, Pt, et) ∈ A (St−1) . The admissible state-controls pairs are given byK := {(S,A, P, e) : S ∈ S, (A,P, e) ∈ A (S)}.
As usual, we assume that |r (S,A, P, e)| is bounded on K except for a null probability set.

Problem 1 Given the initial state S0, the firm faces the following problem:

max
{(At,Pt,et)∈A(St−1)}t>0

E0

∑
t≥0

δtr (St, At, Pt, et)

 := V (S0)

As usual, we denote the maximum V (S0) as the “value function”.

This is a SDP problem in discrete time. Problem 1 is solved by the optimal policy (A∗ (s) , P ∗ (s) , e∗ (s)),
which is a time-invariant function prescribing the best decision for each state s, i.e.

V (S0) = E0

∑
t≥0

δtr (St, A
∗ (St−1) , P

∗ (St−1) , e
∗ (St−1))

 .
Interestingly, for each period of time t, we can interpret V (St) as the expected present discounted value
of profits under the current state St. Under certain regularity conditions, the optimal policy function

1We use the standard notation “:=” for definitions.
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(A∗ (s) , P ∗ (s) , e∗ (s)) are characterized by the value function V (·) as the solution of the Jacobi-Bellman
equation (Bellman, 1955, 1957):

V (St) = max
(At,Pt,et)∈A(St−1)

{r (St, At, Pt, et) + δEt [V (St+1)]} .

Given the optimal policy rule, managers can make optimal decisions on marketing activities (A∗ (s) , P ∗ (s) , e∗ (s)),
that maximize their expected profits given the sales state s observed in the previous period. Also, V (St)
gives us the company value derived from the CLVs customer portfolio at time t, provided that the firms
are optimally managed. Using optimal policies for solving the SDP problem has several advantages: they
are Simple (ease of understanding for managers) and Adaptive (the decisions can be automatically updated
as new state-information becomes available). Note that they can be used also for simulation. For each
period of time t, given St drawn from the conditional distribution F (s|St−1, At−1, Pt−1, et−1), the values
At+1 = A∗ (St), Pt+1 = P ∗ (St) , et+1 = e∗ (St) can be used to simulate Monte Carlo scenarios, and then to
compute numerically the expected path for the optimal policies E [At] , E [Pt] , E [et] and states E [St], as
well as confidence intervals.
The computation of large SDP remains one of the most challenging optimization problem. Most problems

can become intractable as the dimension of the state space increases (the CPU time to calculate a value
function increases exponentially in the dimension of the state space), which is the well known “curse of
dimensionality" (Bellman, 1961). Due to the curse of dimensionality, SDP problems can be solved numerically
for decision problems in which only few state variables are considered. This implies that CRM decision
problems with more than 3 customers cannot be solved using the standard approaches: value iteration and
policy iteration (see Appendix A for an introduction).
One of the classical strategies to solve large decision problems are the decomposition based approaches.

There exists several mathematical programming decomposition algorithms for large optimization problems
with an appropriate structure (Danzting-Wolfe and Benders-decomposition in convex problems, and aug-
mented Lagrangian relaxation in nonconvex problems). Some attempts to solve large SDP problems com-
bine traditional decomposition algorithms and statistical sampling techniques. Sampling is used to create
a scenario tree that represents the uncertainty (Heitsch and Römisch, 2009). Then the original problem is
approximated by a finite deterministic one. The dimension of the tree grows exponentially with the num-
ber of states variables, and so does the complexity of the deterministic problem. To tackle this issue, a
decomposition method is used such as Benders and Lagrangian schemes (see Birge and Louveaux, 1997),
but these methods may converge slowly in practice (see Chun and S.M. Robinson, 1995). In contrast, the
current paper first considers the decomposition of the original stochastic problem using the law of iterated
expectations, and then, each subproblem is solved either using value-iteration or policy-iteration algorithms.
It must be noted that this approach represents a general and versatile tool, as it describes how marketing
policies evolve over an infinite number of time periods, and the expected present value of those decisions.

3 Solving the SDP using a Bellman-decomposition algorithm

In this section we present the decomposition approach to address large CRM problems. To attain this goal,
we first assume,

Condition 2 There is a random vector St := h (St) where h (·) is a measurable function from the state
space to another Euclidean space of low dimension, such that the expected effect of St on r (St, At, Pt, et) can
be summarized in the index St, i.e.

E0 [r (St, At, Pt, et) |St, At, Pt, et] = E0
[
r (St, At, Pt, et) |St, At, Pt, et

]
, a.e. (3)

A relevant example in which this condition is satisfied, is the decision problems in which managers’
objectives are given by:

r (St, At, Pt, et) : = (Pt − c0) ISt −
∑
i∈I

ci (eit)− cm (At) ,

ri (Sit, At, Pt, eit) : = (Pt − c0) · Sit − ci (eit)− cm (At) /I, (4)
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i.e., they optimize the value drawn from a measurement of total sales
∑
i∈I Sit = ISt, where (Pt − c0) is the

unit margin, cm (·) ≥ 0 is the cost of mass advertising interventions (when At are monetary units, cm is the
identity function) and ci (·) ≥ 0 is the cost of the direct marketing interventions on customer i.
Next, we discuss the transition of the index St = h (St), given by

F (s′|s,A, P, e) = Pr
(
St ≤ s′|St = s,A, P, e

)
=

∫
{h(s)≤s′}

F (ds′|s,A, P, e) ,

where s = h (s) and F (s′|s,A, P, e) = E [F (s′|St, A, P, e) |h (St) = s,A, P, e] . In practice, the computation
of F (s′|s,A, P, e) may require the use of numerical methods, but the analysis is particularly simple when we
consider dynamic panels as described in (1), and St = I−1

∑
i∈I Sit as in (4), using that

St = ρSt−1 + g (At−1, Pt−1, et−1) + εt,

where εt = I−1
∑
i∈I εit has probability distribution GI (ε) = G∗ (ε/I) with G∗ = G1 ∗ ..∗GI the convolution

of individual shocks’distributions, and g (A,P, e) =
∑
i∈I gi (A,P, ei) /I, so that

F (s′|s,A, P, e) = GI (s′ − ρs− g (A,P, e)) .

Finally we assume that admissible prices, mass and direct marketing interventions are bounded by a
maximum level which can be adapted to the previous state of sales.

Condition 3 The non-empty compact set A (S) ⊂ A is defined for all S as

A (S) :=
{

(A,P, e) ∈ A : Al(S) ≤ A ≤ A
u

(S),

P l(S) ≤ P ≤ P
u

(S), e
l
i (Si) ≤ ei ≤ eui (Si)

}
,

Si is the i-th coordinate of S, and where S = h (S) and 0 ≤ Al ≤ Au, 0 ≤ P l ≤ Pu, 0 ≤ eli ≤ eui are bounded
continuous functions in S.

Let us define the subproblems:

Vi (si) : = max
{eit}

E0

∑
t≥0

δtRi (Sit, eit)

 , for all i ∈ I,

V (s) = max
{At,Pt}

E0

∑
t≥0

δtR
(
St, At, Pt

) ,
where Ri (Sit, eit) and Ri (Sit, eit) are conditional expectations

Ri (Sit, eit) = I · E [ri (Sit, A
∗
t , P

∗
t , eit) |Sit, eit] ,

R
(
St, At, Pt

)
:= E

[
r (St, At, Pt, e

∗
t ) |St, At, Pt

]
,

(5)

with A∗t , P
∗
t , e

∗
t the optimal decisions for time t.

Notice that any policy function (A,P, e) , by the Law of Iterated Expectations it is satisfied that

E0

∑
t≥0

∑
i∈I

δtri (Sit, At, Pt, eit)

 =
∑
i∈I

E0

∑
t≥0

δtE [ri (Sit, At, Pt, eit) |Sit, eit]


= E0

∑
t≥0

δtE

[∑
i∈I

ri (Sit, At, Pt, eit) |St, At, Pt

] ,
where At = A (St−1) , Pt = P (St−1) , et = e (St−1); which under conditions (2) and (3) imply that V (s) =
I−1

∑
i∈I Vi (si) and also that V (s) = V (s) almost everywhere.
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Therefore the subproblems {Vi (si)}i∈I and V (s) characterize the value function V (·), the subproblems
are, by definition, smaller than the original problem (Problem 1) and therefore much faster to solve. In order
to solve the subproblems separately, we need the transition kernel for {Vi (si) : i ∈ I} and V (s) respectively
given by

Fi (s′i|si, ei) = E
[
Fi
(
si|Sit−1, A∗t−1, P ∗t−1, eit−1

)
|Sit−1 = si, eit−1 = ei

]
, for all i ∈ I,

F (s′|s,A, P ) = E
[
F
(
s′|St−1, At−1, Pt−1, e∗t−1

)
|St−1 = s,At−1 = A,Pt−1 = P

]
.

and we need also to know Ri (Sit, eit) and R
(
St, At, Pt

)
. The computation of the required conditional

probabilities and expectations is unfeasible since the optimal policy function (A∗, P ∗, e∗) is unknown.

3.1 The algorithm

The general scheme of the algorithm is stated as follows.
ALGORITHM

1. Initialization: Choose a scenario set of states and a starting policy
{
Ak (s) , P k (s) , ek (s)

}
with ek (s) =

(
ek1 (s1) , ..., e

k
I (sI)

)
. Set k = 0.

2. Repeat:

2.1 Generate recursively
{
Skt , A

k
t , P

k
t , e

k
t

}T
t=1

where Skt is drawn from

F
(
s|Skt−1, Ak

(
S
k

t−1

)
, P k

(
S
k

t−1

)
, ek
(
Skt−1

))
,

and compute S
k

t = h
(
Skt
)
,

2.2. With the simulated data compute

Rki (Sit, eit) = I · E
[
ri
(
Sit, P

k
t , A

k
t , eit

)
|Sit, eit

]
,

Rk
(
St, At, Pt

)
= E

[
r
(
St, Pt, At, e

k
i

)
|St, At, Pt

]
.

and the kernels

Fk (s′i|si, ei) = Pr
(
Skit ≤ s′i|Skit−1 = si, eit−1 = ei

)
, i ∈ I,

Fk (s′|s,A, P ) = Pr
(
S
k

t ≤ s′|S
k

t−1 = s,At−1 = A,Pt−1 = P
)
.

2.3 Solve the SDP subproblems

max
{eit∈Ai(Sit−1)}t>0

E

∑
t≥0

δtRki (Sit, eit) |Si0 = si

 := V ki (si) ,

in
{
ekit
}
t>0
for each i ∈ I, where Ai (Sit−1) = {ei : 0 ≤ ei ≤ ei (Sit−1)} .

2.4 Solve the SDP subproblem

max
{At,Pt}∈A(St−1)

E

∑
t≥0

δtRk
(
St, At, Pt

)
|S0 = s

 := V
k

(s) ,

where
A
(
St−1

)
=
{

(p,A) : 0 ≤ A ≤ A(St−1), 0 ≤ P ≤ P (St−1)

}
.

2.5 Update
{
ekit, A

k
t , P

k
t

}
to
{
ek+1it , Ak+1t , P k+1t

}
, and set k ←− k + 1.
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3. Until convergence: for some tolerance ε > 0, when the stopping criteria are satisfied

• Criterion 1: max

{
supt

|Ak+1
t −Ak

t |
1+‖Ak

t ‖∞
, supt

|Pk+1
t −Pk

t |
1+‖Pk

t ‖∞
, supt,i

|ek+1it −e
k
it|

1+‖ekit‖∞

}
< ε,

• Criterion 2: supS0

{ ∣∣∣I−1∑i∈I V
k+1
i (Si0)−V

k+1(S0)
∣∣∣

1+‖I−1∑i∈I V
k+1
i (Si0)‖∞

: S0 = I−1
∑
i∈I Si0

}
< ε,

where the superscript k denotes the current iteration and ‖·‖∞ is the supremum norm.

The algorithm iterates the solution of both types of subproblems. For one set of subproblems, the decision
variables are only the direct marketing intervention {eit}t>0. Once the solutions for these subproblems have
been computed, price and mass marketing intervention {Pt, At}t>0 are updated. An economic interpretation
of the decomposition draws on this partition of the decision variables into individual and general decisions
taken among customers. The convergence of the algorithm is discussed in Appendix B.
Any classical method to solve SDP such as value iteration or policy iteration can be applied in steps 2.3

and 2.4, since the subproblems are small problems with just one state variable, using as initial point the
optimal policy computed in the previous iteration of the algorithm. The specific details are described in
Appendix C.
Note that the value function for the original problem V (S1, ..., SI) and the associated policy functions

[A,P, e] (S1, ..., SI) cannot be graphically represented for more than two customers due to the dimension.
However, graphical figures for these functions would be intuitive user-friendly tools for marketing managers.
Interestingly, our algorithm overcomes this problem providing useful and visual tools for managers imple-
menting CRM. After convergence of the algorithm at step k∗ to a numerical solution of the original problem,
we can depict graphically in the plane the reduced value function V k

∗ (
S
)
and the associated reduced op-

timal policy functions Ak
∗ (
S
)
, P k

∗ (
S
)
to provide graphical rules for planning optimally mass advertising

and price (provided that the optimal individual e is implemented). Furthermore, we can depict in the plane
the reduced value function V k

∗

i (Si) and the associated reduced optimal policy function ek
∗

i (Si) for the i− th
customer, which provide a graphical rule for planning optimally the marketing effort on i-individual (pro-
vided that the optimal mass advertising and price have been implemented as well as the effort on other
individuals).

4 Some numerical simulations

Let us consider a dynamic-regression model where sales follow a dynamic panel model

Sit = ρSit−1 + α1i + β1i eit−1 + β2i At−1 + β3i P
β4i
t−1 + εit

with {β1i, β2i} > 0, and |ρ| < 1, where {eit}t≥1 are individual marketing efforts, {At}t≥1 is the mass
marketing effort, {Pt}t≥1 is the price, and {εit}t≥1 are independent white noise processes N (0, σI). We
assume that {eit}t≥1 and {At}t≥1 are given by a cost function c (x) = γxφ, with γ > 0. Then, given

δ ∈ (0, 1) , the firm aims to maximize the expected net present value E0
[∑

t≥0 δ
tr (St, At, Pt, et)

]
with

r (St, At, Pt, et) := (Pt − c0)
∑
i∈I

Sit − c (At)−
∑
i∈I

c (eit) .

We have implemented our decomposition algorithm using MATLAB 7.6 on an Intel Core vPro i7 with
machine precision 10−16. The algorithm stops whenever ε = 10−8.
First, we consider a simplified model in which prices are considered as given, i.e. β3i = 0 and using

a constant exogenous margin m0 instead of (Pt − c0). For m0 = 50, ρ = 0.2, αi = 60, β1i = 1.2, β2i
= 1.2, σ = 5, Table 1 reports the running times (in seconds) until convergence considering different number
of customers I, and both policy iteration and value iteration algorithms to solve Steps 2.3 and 2.4 of the
algorithm.
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Table 1: Properties of the algorithm for different problem sizes in a model without prices.

Method
Number of
Customers

Stopping Criteria Number of
Iterations

Computational
Time (in seconds)Criterion 1 Criterion 2

Policy
Iteration

1 0.0000 0.0000 3 3.8922
5 0.0000 0.0007 4 11.0790

25 0.0000 0.0008 4 60.5070
50 0.0000 0.0009 4 166.9300

100 0.0000 0.0009 4 687.4300

Value
Iteration

1 0.0000 0.0000 4 3.5335
5 0.0000 0.0007 3 8.6160

25 0.0000 0.0008 4 61.1350
50 0.0000 0.0009 4 169.0700

100 0.0000 0.0009 3 545.9600

Then, we extend the basic model to the general case in which prices are considered as a decision variable.
For c0 = 50, ρ = 0.2, αi = 60, β1i = 1.2, β2i = 1.2, β4i = −0.5, β3i = 0.5, σ = 5, Table 2 reports the
running times (in seconds) until convergence considering different number of customers I. The results show
that the proposed algorithm is capable of solving the problem with many customers in a reasonable amount
of computer time.

Table 2: Properties of the algorithm for different problem sizes in a model with prices.

Method
Number of
Customers

Stopping Criteria Number of
Iterations

Computational
Time (in seconds)Criterion 1 Criterion 2

Policy
Iteration

1 0.0000 0.0527 3 5.9819
5 0.0000 0.0202 4 29.5548

25 0.0000 0.0202 4 150.4374
50 0.0000 0.0202 4 404.8369

100 0.0000 0.0202 2 873.8870

Value
Iteration

1 0.0000 0.0115 6 11.2360
5 0.0000 0.0202 2 16.4847

25 0.0000 0.0202 2 83.7036
50 0.0000 0.0324 2 189.4250

100 0.0000 0.0202 2 663.1727

These results suggest that the proposed methodology is an effective and useful tool for solving this type
of problems as it breaks down a high-dimensional problem into many low-dimensional ones, hence reducing
the curse of dimensionality. It is remarkable that the standard policy iteration approach cannot solve a
problem of more than 3 customers.
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5 An empirical application of a manufacturer of kitchen appli-
ances

In this section we provide an application of the method. We consider a medium size international wholesale
company based in eastern Europe. This company distributes and also manufactures a large range of built-
in electric appliances for kitchens (such as cookers, ovens and hobs, cooker and chimney hoods, external
motors, microwaves, dishwashers, washing machines, refrigerators, and related accessories). The company
invests in general marketing effort (mainly advertising and promotions in professional fairs) and personalized
investments in their customer relationships management. We do not provide additional company information
by confidentiality requests of the company managers.
We use a monthly customer-panel from this company spanning from January 2005 to December 2008.

The panel is unbalance, although the vast majority of the clients purchases practically every month within
the sample period. As the company sells a wide range of products with different sales to each client, they
aggregated their data providing us the monthly net-profit drawn from each client. Therefore, in this section
Yi,t is regarded as the financial value obtained from client i at time t, the individual marketing effort on
this customer is denoted by ei,t, and the general marketing effort is At. The basic Markovian model is a
dynamic-panel specification

Yi,t = ρYi,t−1 + β1 ln At−1 + β2 ln ei,t−1 + (ηi + uit) , E [ui,tXi,t] = 0, E [ui,t] = 0,

for all i, t, where |ρ| < 1, ui,t is white noise and ηi is a zero mean random coeffi cient accounting for individual
heterogeneity in customer profitability levels. The noise vit = ηi + ui,t is autocorrelated due to the stability
of ηi, and therefore the OLS and the Within-Group estimators are both inconsistent (as Yi,t−1 is a regressor).
Taking first differences in the model, we eliminate the specific group effects

4Yi,t = ρ4Yi,t−1 +4X ′i,t−1β +4ui,t, t = 2, ..., T,

where X ′i,t−1 = (ln At−1, ln ei,t−1)
′. The errors {4uit} are no longer independent but follow a non invertible

MA (1) . This equation can be estimated by Instrumental Variables (IV), as proposed by Andersen and Hsiao
(1982). It is convenient to use lags of the variable in levels Yi,t−1 as instrument, as well as lags of other
exogenous regressors. Nonetheless, the IV estimator is not effi cient due to the fact that only a few moment
conditions are used. Arellano and Bond (1991) proposed a GMM estimator dealing with this problem.
The Arellano and Bond (1991) estimators can perform poorly in certain cases, and the method was refined
by Blundell and Bond (1998) who included additional moment conditions (building on previous work by
Arellano and Bover, 1995). The model was estimated in STATA using the Blundell-Bond refinement. Table
2 reports the estimators of this model. The Wald global significance test is 169.73 distributed as a χ23 with
a p-value 0.0000.

Table 2: Main coeffi cients in the dynamic-panel model for customer profitability.

Yt−1 Coef. Std. Err z P>|z|
Yi,t−1 .024 0.011 2.15 0.031
At−1 821.52 235.244 3.49 0.000
ei,t−1 1175.05 172.395 6.82 0.000

In order to improve the heterogeneity analysis, we have decided to include additional information, clas-
sifying clients by continental location (4 large regions with dummies {Dki}4k=1), and a customers’strategic
classification by the company (3 levels with dummies {dji}3j=1), so that we have 12 basic segments. Therefore,
we introduce heterogeneity in the response to marketing effort as

Yi,t = ρYi,t−1 + β1 ln At−1 + β2 ln ei,t−1 +

+
∑3

j=1
γj (dji × lnAt−1) +

∑3

j=1
γ′j (dji × ln ei,t−1)

+
∑4

k=1
αk (Dki × lnAt−1) +

∑4

j=1
α′k (Dki × ln ei,t−1) + (ηi + uit) .
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To ensure identification, we impose that the dummy coeffi cients sum up to zero by classification factors.
Substituting these parametric constraints in the mode, we obtain that

Yi,t = ρYi,t−1 + β1 ln At−1 + β2 ln ei,t−1 +

+
∑2

j=1
γj (dji − d3i) lnAt−1 +

∑2

j=1
γ′j (dji − d3i) ln ei,t−1

+
∑3

k=1
αk (Dki −D4i) lnAt−1 +

∑3

j=1
α′k (Dki −D4i) ln ei,t−1 + (ηi + uit)

with γ3 = −
∑2
j=1 γj , γ

′
3 = −

∑2
j=1 γ

′
j , α4 = −

∑3
k=1 αk, and α′4 = −

∑3
k=1 α

′
k. The final model was

estimated in STATA using the Blundell-Bond refinement. We used 6, 728 observations with 260 customers,
and 1.1e + 03 instruments. The Wald global significance test is 195.43 distributed as a χ211 with a p-value
0.0000. The individual marketing effort has a significant impact, as well as the general advertising. The
dummy coeffi cients

{
γ′j
}2
j=1

are non significant, and set them equal to zero in the optimization part. All the
other types of dummy coeffi cients are significant. After the model coeffi cients have been estimated, since T is
large, we can consistently estimate each specific intercept ηi. For each customer we need to take time-means
on the panel regression equations, then replace

∑T
t=1 uit/T by zero (the expected value), and finally getting

the estimator of ηi.
Next, consider a SDP problem for the returns function

r (Yt, At, et) =
I∑
i=1

Yit −At −
I∑
i=1

eit,

where the state variable {Yit} are returns drawn from the i-th customer. The transition equations for all
customers in one of the identified segments are identical, but there are relevant different across segments.
We have computed the optimal general advertising and marketing effort policies for a stylized version of

the model with 12 representative customers, applying the proposed decomposition method. The collocation
algorithm was run using a state discretization with 10 scenarios (sales levels, disguised by company request)
for each individual-sales variable and 20 equidistant knots for each control, applying policy iteration for each
subproblem. It takes 7 iterations (about 11 minutes) of the full decomposition method for the algorithm
to converge. Figures 1 and 2 show {Vi (si)}12i=1 and V (s), the individual and mean reduced value functions
respectively.

Figure 1: Individual reduced value functions (customer value associated to its sales state).
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Figure 2: Mean reduced value function (total value associated to mean sales states).
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Figures 3 and 4 show {ei (si)}12i=1 and A (s) , the optimal individual and general marketing effort reduced
policy functions respectively.

Figure 3: Individual marketing effort reduced policy functions.
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These results show that the optimal budget allocated to mass marketing is decreasing with respect to total
sales. By contrast, the individual effort is hold constant with sales but, the level is different for each segment.
In particular for the 3 segments which have a negligible individual marketing coeffi cient, the optimal solution
prescribes not to invest at all on them. Furthermore, notice that the ranking of individual effort investments
by segments does not follow exactly the pattern given by individual reduced value functions. This is not
a surprising result as the optimal solution takes into account not just differences in profitability but also
different sensibilities of the segments to the marketing mix.

6 Conclusions

There is a growing interest for firms to customize their marketing activities to smaller and smaller units
– individual stores, customers and transactions” (Buckling et al., 1998), implying an enormous number of
decisions. This scale requires Decision Automation tools based on dynamic optimization of small unit panels.
In this paper, we make a computational contribution for solving SDP problems, which allows forward-

looking firms to allocate the marketing budget optimizing the CLV of their customer base, simultaneously
using customized and mass marketing interventions. The solvability of these models suffers from the curse of
dimensionality, which limits practitioners from the modelling standpoint. In this sense, we have introduced
a novelty decomposition methodology for the computation of solutions of CRM problems. The proposed
approach deflates the dimensionality of the models by breaking the problem into a set of smaller independent
subproblems. The numerical results have revealed the effi ciency of the methodology in terms of computing
time and accuracy, concluding that the proposed approach is promising for application in many marketing
problems with similar structure.
We have shown the decomposition method works very well in practice. The methodology has been

successfully applied to value more than 260 customers of a medium size international wholesale company.
We have presented a customer profitability analysis of the company considering the effect of direct marketing
and mass marketing interventions at the customer level, simultaneously.
Since often CRM databases do not involve panel data across several competitors, no competitive effects

have been considered in this article. To include competition, we should consider a behavioral model for several
firms competing for the same customers with mass and customized marketing actions, and the equilibrium
would be given by the Markov perfect equilibrium (see Dubé et al. 2005). The computational effort to solve
this problem is formidable, and the decomposition algorithm presented in this article could be a useful tool
to address it. We leave this problem for future research.
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8 Appendix A: Value iteration and Policy iteration for continuous
problems

Continuous SDP problems are usually solved combining the ideas of value iteration and policy iteration
with collocation methods. The basic idea of Collocation methods is to consider a sequence of functions
{φk}k≥1 ⊂ B∞ such that any function v ∈ B∞ can be expressed asymptotically as a linear combination of
these functions, or more formally for all v ∈ B∞

inf
{θk}Kk=1

∥∥∥∥∥v (s)−
K∑
k=1

θk φk (s)

∥∥∥∥∥
∞

K→∞−→ 0,

and therefore we can express V (s) ≈
∑K
k=1 θk φk (s) for some coeffi cients {θk} and a large enough K. Several

classes of functions that can be used for the approximation (e.g., Chebyshev polynomial, splines, Neural
Networks, etc.). When the state variable is multidimensional, the base functions are generally obtained by
tensor products on univariate basis. The integer K is exponentially increased with the dimension to obtain
a good approximation (this is one type of the curse of dimensionality). Notice that the continuous SDP
problem can be approximated by another one with finite states (just considering a finite partition {Sk} of
the Euclidean state’s space S, we can approximating v by simple functions

∑K
k=1 θk I (s ∈ Sk), choosing a

representative scenario sk for each element of the partition and interpreting θk = v (sk)).
The coeffi cients {θk}Kk=1 are unknown, the collocation method approximates a functional equation in

such a way that the approximated function fits exactly at the pre-specified points of the domain. Then,
Bellman’s Equation becomes

K∑
k=1

θk φk (s) = max
(A,P,e)∈A(s)

{
r (s,A, P, e) + δ

K∑
k=1

θk

∫
φk (s′)F (ds′|s,A, P, e)

}
. (6)

Next, we evaluate the linear equation at K grid-points {s1, ..., sK} ⊂ S and solve the system in {θk}Kk=1.
The system (6) can be expressed in matrix notation as

Φθ = Γ (θ) (7)

where K ×K matrix Φ has element Φmk = φk (sm) and the K × 1 vector Γ (θ) has m− th element

Γm (θ) = max
(A,P,e)∈A(sm)

{
r (sm, A, P, e) + δ

K∑
k=1

θk

∫
φk (s′)F (ds′|sm, A, P, e) .

}
The solution of this system is not trivial, first we need to evaluate the expectations∫

φk (s′)F (ds′|sm, A, P, e) , (8)

for m = 1, ...,K; often using a numerical integration method or a Monte Carlo approach. When the integral
is replaced by an average over a finite set of sampled points, the number of required points required to have
a good approach increases exponentially with the dimension of the state variables (this is another type of
curse of dimensionality). After computing these expectations, it is generally impossible to attain closed form
solution to the collocation system (7), and some computational algorithm is required.

• The Value iteration method considers the system θ = Φ−1Γ (θ), and iterates the following:

θ ←− Φ−1Γ (θ)

from an initial point θ0. It was initially proposed by Bellman (1955, 1957) for discrete problems.
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• The Policy iteration method uses the Newton iterative updating,

θ ←− θ − [Φ− Γ′ (θ)]
−1

[Φθ − Γ (θ)]

where Γ′(θ) is the Jacobian of the collocation function Γ at θ that can be computed by applying the
Envelope Theorem to the optimization problem in the definition of Γ (θ) , so that

Γ′mj (θ) = δ

∫
φj (s′)F (ds′|sm, A, P, e)

This method was initially proposed by Howard (1960).

Notice that when the approximation method is based on simple functions, then Φ is the identity function,
and we can omit this factor. Each time that the operator Γ (θ) is applied we must solve the maximization
problem in Γm (θ) for all states sm ∈ {s1, ..., sK}. This can be done, e.g., using a global optimization
algorithm. In many applications, the maximization is carried out discretizing the decision space A (sm).
Once we have converged, V (s) =

∑K
k=1 θk φk (s) , and the optimal policy is computed at each state sm ∈

{s1, ..., sK} , as the maximizing decision taken at Γm (θ) for the last iteration and the function is computed
interpolating these points. The main problem with the all previous techniques is the curse of dimensionality
(Bellman, 1961). So far, researchers can solve numerically only SDP problems with very few state variables.

9 Appendix B: Convergence Analysis

In this section we discuss the convergence of the algorithm. We first introduce some basic notation. The
convergence of classical Value Iteration method is based on central ideas from functional analysis. Define
the operator

Γ (v) = max
(A,P,e)∈A(s)

{
r (s,A, P, e) + δ

∫
v (s′)F (ds′|s,A, P, e)

}
transforming a function of the state variables v (s) into another function Γ (v) (s) . Obviously that value
function is a fixed point of Γ, i.e. an element v∗ such that Γ (v∗) = v∗. The value iteration algorithm
considers an arbitrary function v0, and compute recursively vj = Γ (vj−1) . Under regularity conditions, the
sequence {vj}j≥1 converges to a limit which is the value function v∗.
The argument uses basic concepts of functional analysis. Convergence can be ensured, provided that Γ is

a contractive operator in a complete metric space. If B is a complete2 metric space, an operator Γ : B → B
is called contractive if d (Γ (v) ,Γ (v′)) ≤ cd (v, v′) for all v, v′ ∈ B with parameter c ∈ (0, 1). Any contractive
operator in a complete metric space has a unique fixed point v∗, and satisfies that v∗ = limj→∞ Γj

(
v0
)
for

any initial point v0 ∈ B, so that the sequence vj = Γ
(
vj−1

)
= Γj

(
v0
)
converges to the fixed point, for an

introduction see Kolmogorov and Fomin (1970). In particular we consider the Banach3 space B∞ of bounded
and Borel-measurable real valued functions defined on the Euclidean state’s space S, and endowed with the
supremum norm ‖v‖∞ = supy |v (y)|. If the function |r (s,A, P, e)| is bounded on K, then it is easy to prove
that Γ (v) is a contractive operator on B∞ with parameter δ ∈ (0, 1), and the fixed point V = Γ (V ) solves
the SDP4 , see e.g. Denardo (1967), and Blackwell (1965). Under stronger conditions on the SDP problem,
the value function V can be proved to be continuous, Lipschitz, once/twice continuously differentiable.
Unfortunately, the implementation of the algorithms is unfeasible with more than 3-4 state variables,

as the computation of Γ (v) requires approximation of the numerical integral
∫
v (s′)F (ds′|s,A, P, e) by an

average at selected points, and the number of required points to provide an accurate estimate increases
exponentially with the dimension of the state variables.

2A metric space B is complete if it is equal to its closure
3A Banach space is a normed linear space, which is complete with respect to the distance d (v, v′) = ‖v − v′‖ defined from

its norm.
4There are also extensions for the case where r (s,A, P, e) is bounded on compact subsets, by using other distances (see

Rincón-Zapatero and Rodríguez-Palmero, 2003).
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Next we discuss the convergence of the presented algorithm. Recall that V (S0) = I−1
∑
i∈I Vi (S0i) =

V
(
S0
)
, where

V (s) = max
{At,Pt}

E0

∑
t≥0

δtR
(
St, At, Pt

)
|S0 = s

 ,
Vi (si) = max

{et}
E0

∑
t≥0

δtRi (Sit, eit) |Si0 = si

 .
Consider the operators:

Υi (Vi, A, P ) (si) = max
{ei∈Ai(si)}

{
Ri (Sit, eit) + δ

∫
Vi (s′i)F

A,P (s′i|si, ei)
}
,

Φ
(
V , e

)
(s) = max

{A,P∈A(s)}

{
R
(
St, At, Pt

)
+ δ

∫
V (s′)F e (ds′|s,A, P )

}
.

where FA,P (s′i|si, ei) , F e (ds′|s,A, P ) are defined as in the algorithm steps (2.1) and (2.3). The arguments
that maximize these two problems are {ei (si)}Ii=1 and (A (s) , P (s)) , respectively. The convergence of the
decomposition algorithm can be deduced similarly to the proof of convergence of the policy iteration method,
using the following arguments:
1) The solution to the functional equation system

Υi (Vi, A, P ) (si) = Vi (si) , i = 1..., n

Φ
(
V , e

)
(s) = V (s)

satisfies by construction that V (s) = I−1
∑I
i=1 Vi (si, A (s) , P (s)) = V (s, {ei (si)}) a.e., where V (s) is the

value function of the original SDP problem.
2) The algorithm can be considered as a recursion defined by a contractive operator. Consider some initial

value V (s) ∈ B∞, then we can write V = 1
I

∑I
i=1 Vi for a vector (V1, ..., VI) with coordinates Vi = ΠiV (s) ,

where the operator Πi is defined as:

Πiv (s) = E

∑
t≥0

δtRiv (Sit, eiv (Sit)) |Si0 = si

 ,
Riv (Sit, eiv (Sit)) = E [I · ri (Sit, eiv (Sit) , Pv (St) , Av (Sit)) |Sit]

andAv (s) , Pv (s) , ev (S) are the policies rendering the value function v (s). These operators satisfy ‖Πi (v)‖∞ ≤
‖v‖∞ .
The algorithm can be regarded as a sequence obtained alternating the operators (β1, ..., βI) from B∞ →

BI∞ defined by βi = Υi ◦ΠiV , with the operator Φ. In other words, it is a recursion defined by the operator

∆ =
(

Φ ◦ 1I
∑I
i=1 βi

)
from B∞ → B∞. The operator ∆ is a contractive operator on B∞, since Φ and Υi

are Bellman operators (contractive with parameter δ),

‖∆ (v)‖∞ =

∥∥∥∥∥Φ ◦
(

1

I

I∑
i=1

βi

)
(v)

∥∥∥∥∥
∞

≤ δ
∥∥∥∥∥1

I

I∑
i=1

βi (v)

∥∥∥∥∥
∞

≤ δ 1

I

I∑
i=1

‖Υi ◦Πi (v)‖∞

≤ δ2
1

I

I∑
i=1

‖Πi (v)‖∞ ≤ δ
2 ‖v‖∞

and we can apply a fixed point theorem to the alternating operator ∆ to prove convergence to a fixed point
satisfying the conditions in 1).
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10 Appendix C: Algorithm Implementation

The first step follows the discretization technique. Mainly, we consider a grid of controls, {A,P, e1, ..., eI} ,
containing a discretization of the feasible decision set. In particular we consider relatively large finite intervals
for each decision, and introduce N equidistant points for each decision.
The second step is the definition of the scenario nodes and transition probabilities across scenario states.

The unconditional distribution can be used to define a grid of representative state values, and the conditional
distribution to compute the transition matrix across the elements of the grid. In particular, when we consider
the model 1 Sit = ρSit−1 + gi + εit where εit = ηi + uit ∼ N

(
0, σ2εi

)
with σ2ε = σ2η + σ2u, and

Sit|Sit−1, A, P, e ∼ N
(
ρSit−1 + gi, σ

2
ε

)
,

SIt|SIt−1, A, P, e ∼ N

(
ρSIt−1 + g,

σ2ε
I

)
,

with gi = gi (A,P, ei) , g (A,P, e) =
∑
i gi (A,P, ei) /I. The stationary marginal distribution of Sti and St

are N
(
gi(A,P,ei)
(1−ρ) ,

σ2ε
(1−ρ2)

)
and N

(
g(A,P,ei)
(1−ρ) ,

σ2ε
I·(1−ρ2)

)
, respectively. For the i-th customer, we set scenarios

in the interval
[
Sli, S

u
i

]
, where

Sli = min
A,P,ei

gi (A,P, ei)

(1− ρ)
− 5

√
σ2ε

(1− ρ2) ,

Sui = max
A,P,ei

gi (A,P, ei)

(1− ρ)
+ 5

√
σ2ε

(1− ρ2)

Therefore, we cover 5 times the standard deviation from the most extreme mean values. After checking that
max

{
Sli, 0

}
< Sui we generate N scenarios distributed uniformly as

si1 = max
{
Sli, 0

}
,

siN = Sui ,

sin = si1 +

(
siN − si1
N − 1

)
(n− 1) , n = 2, 3, .., N − 1.

Then we define the product space of states SI=
∏I
i=1 {si1, ..., siN} . The discrete scenario grid SI be used

to compute the Bellman problem, defining the value functions and the policy functions as mappings defined
on SI .
However, in our context it is convenient to think of an augmented space of states including mean sales.

Consider the mean interval
[
Sl, Su

]
, with Sl =

∑
i∈I S

l
i/I and S

u =
∑
i∈I S

u
i /I, and generate N scenarios

{s1, ..., sN} distributed uniformly in max
{
Sl, 0

}
< Su. Therefore, we can define the augmented space as

SI+1 =

{
(s, s) : s = (s1, ...., sI)

′ ∈ SI , s ' 1

I

∑
i∈I

si

}
,

where ' means that s is the scenario in {s1, ..., sN} closest to
∑
i∈I si/I. Thus a specific realization of the

random vector
(
St, St

)
will be approached by a vector (s, s) ∈ SI+1. Given the structure of the problem, we

can define the policy functions
(
Ak, P k, ek

)
in the augmented space as a mapping(

Ak, P k, ek
)

: SI+1 3 s→
(
Ak (s) , P k (s) , ek1 (s1) , ..., e

k
I (sI)

)
∈ {A,P, e1, ..., eI} .

The value function can be approximated in SI+1 by a simple function,

v (s, s) =
∑

n1,....,nI ,nI+1

θn1,....,nI ,nI+1 ·
{

I∏
i=1

I (bni−1 < si ≤ bni) · I
(
bnI+1−1 < s ≤ bnI+1

)}
.
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An smooth functional basis could be considered instead of simple functions, e.g. replacing the bracket in the
previous expression by a tensor product of orthonormal polynomials.
We need to compute Fk (s′i|si, ei) and Fk (s′|s,A, P ) in Step 2.2. In order to marginalize the effect of

some policy controls over the transition probabilities, we apply the Monte Carlo method. First, given the
policy

(
Ak, P k, ek

)
we generate recursively a sample

{
Skt , A

k
t , P

k
t , e

k
t

}T
t=1

as

Skit = ρSkit−1 + gi
(
Akt−1, P

k
t−1, e

k
it−1

)
+ εit, i ∈ I

S
k

t−1 = I−1
∑
i∈I

Skit

with εi ∼ N
(
0, σ2εiIT

)
and Ski0 = 0, and compute recursively the associated controls as follows:

Akt =
N∑
n=1

Ak (sn) I
(
bn−1 < S

k

t−1 ≤ bn
)

P kt =
N∑
n=1

P k (sn) I
(
bn−1 < S

k

t−1 ≤ bn
)

ekit =
N∑
n=1

eki (sin) I
(
bi,n−1 < Ski,t−1 ≤ bi,n

)
, i ∈ I,

where bn = (sn+1 + sn) /2 and bi,n−1 = (si,n+1 + si,n) /2 for n = 1, ..., N − 1, and we set b0 = bi,0 = −∞
and bN = bi,N = +∞. The last expressions are used due to the fact that the policy functions are defined
for discrete scenarios, for example we set Akt = Ak (sn) whenever S

k

t−1 ∈ (bn−1, bn] which is the interval
centered in sn. We trow away the first 100 observations to remove the effect of the initial data, and continue
to generate a large sample with at least T = 3000 observations, but this figure could be doubled when the
diameter of the feasible decision set or N increases.
In order to define properly the objective function for each subproblem, we compute certain conditional

expectations and transition kernels using the simulated sample
{
Skt , A

k
t , P

k
t , e

k
t

}T
t=1

. First, for all i ∈ I
we compute the conditional expectations P kin = E

[
P kt |Skit = sin

]
, Ckin = E

[
cm
(
Akt
)
|Skit = sin

]
, at the

discrete scenarios {sin}Nn=1 and ckin = E
[
ci
(
ekit
)
|Skt = sn

]
at the scenarios {sn}Nn=1 . Then we compute an

approximation of the subproblem objective functions (5) evaluated at the discrete scenarios as

Rki (sin, eit) = I ·
((
P kin − c0

)
· sin − ci (eit)− I−1Ckin

)
,

Rk (sn, At, Pt) = (Pt − c0) · I · sn −
∑
i∈I

ckin − cm (At) .

The fastest method to compute the conditional expectations is based on a simple parametric regression
model (e.g., specifying E

[
P kt |Skit = si

]
= p (si, β)). The model is estimated by a least squares method (e.g.,

minimizing
∑T
t=1

(
P kt − p

(
Skit, β

))2
) for direct use (setting P kin = p

(
sin, β̂

K
)
for each discrete scenario sin).

The parametric approach works well in our application. Alternatively we can use a nonparametric estimator.
For example the Nadaraya-Watson estimator of E

[
P kt |Skit = sin

]
, is given by

E
[
P kt |Skit = sin

]
=

∑T
t=1 P

k
t KhT

(
Skit − sin

)∑T
t=1KhT

(
Skit − sin

)
where KhT (u) = h−1T K (u/hT ) for an arbitrary kernel density K (·) (e.g. a standard normal density),
and a sequence of positive smoothing parameters hT such that hT + (ThT )

−1 → 0. This approach avoids
specification assumptions, but it requires larger sample sizes T than the parametric approach. Besides, an
optimal selection of the smoothing parameter is crucial, which is time consuming. However, it might be
convenient in some applications.
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Second we compute the marginal transition kernels Fk (s′i|si, ei) and Fk (s′|s,A, P ) . There are several pos-
sibilities: parametric methods, semiparametric, and nonparametric. The fastest method is based on a para-

metric model, postulating regression model, E
[
Skit|Skit−1, ekit−1

]
= mi

(
Skit−1, e

k
it−1, βi

)
, E
[
S
k

t |S
k

t−1, A
k
t−1, P

k
t−1

]
=

m
(
S
k

t−1, e
k
it−1, θ

)
, estimating the model by a ordinary/nonlinear least squares method. In our applications

we consider this method for a linear in parameters model without intercept where first regressor is in lev-
els and the controls are in logarithms. Assume that the errors are conditionally independent of the state
variables, we can use the residuals

ûit = Skit −mi

(
Skit−1, e

k
it−1, β̂i

)
ût = S

k

t −m
(
S
k

t−1, A
k
t−1, P

k
t−1, θ̂

)
to estimate the error densities gi (uit), g (ut) . In particular we have assumed Gaussian distributionsN

(
0, σ2ui

)
and N

(
0, σ2u

)
respectively, estimating the variances σ2ui and σ

2
ut
with the mean squared residuals, we get

Fi (s′i|si, ei) =
1

σ̂ui

∫ s′i

−∞
φ

z −mi

(
si, ei, β̂i

)
σ̂ui

 dz = Φ

s′i −mi

(
si, ei, β̂i

)
σ̂ui

 ,

F (s′|s,A, P ) =
1

σ̂u

∫ s′

−∞
φ

z −m
(
s,A, P, θ̂

)
σ̂u

 dz = Φ

 ût −
(
s′ −m

(
s,A, P, θ̂

))
σ̂u


Notice that if it is diffi cult to determine the residuals distribution, we could estimate gi (uit), g (ut) nonpara-
metrically. For example, integrating the Rosenblatt-Parzen kernel density estimator we obtain a cumulative
conditional distribution

Fi (s′i|si, ei) =

∫ s′i

−∞

(
1

T − 2

T∑
t=2

KhT

(
ûit −

(
z −mi

(
si, ei, β̂i

))))
dz,

F (s′|s,A, P ) =

∫ s′

−∞

(
1

T − 2

T∑
t=2

KhT

(
ût −

(
z −m

(
s,A, P, θ̂

))))
dz,

where KhT (u) = h−1T K (u/hT ) . This semiparametric method slows down the algorithm compared with the
parametric case. The last alternative is a fully nonparametric estimator such as the cumulated integral of
the conditional density estimator by Roussas (1967, 1969) and Chen, Linton and Robinson (2001),

Fi (s′i|si, ei) =

∫ s′i

−∞

∑T
t=2KhT

(
Skit − z

)
KhT

(
Skit−1 − si

)
KhT

(
ekit−1 − ei

)∑T
t=2KhT

(
Skit−1 − si

)
KhT

(
ekit−1 − ei

) dz

F (s′|s,A, P ) =

∫ s′

−∞

∑T
t=2KhT

(
S
k

t − z
)
KhT

(
S
k

t−1 − s
)
KhT

(
Akt−1 −A

)
KhT

(
P kt−1 − P

)
∑T
t=2KhT

(
S
k

t−1 − s
)
KhT

(
Akt−1 −A

)
KhT

(
P kt−1 − P

) dz

This method requires very large simulated samples, and it is quite sensitive to the selection of the smoothing
number that must be optimally determined. In general we do not recommend it for this algorithm, but it
might be useful in some applications.
To apply the collocation method for the Bellman equation associated to each subproblem we have to

integrate the basis functions with respect to Fi (s′i|si, ei) and F (s′|s,A, P ), which requires a numerical in-
tegration method. We use the Tauchen’s method (1986) to approximate the continuous transition kernel
Fk (s′i|si, ei) and Fk (s′|s,A, P ) by analogous finite-state transition matrix on the states grid {s1, ..., sN},
considering for all n,m = 1, ..., N the transition from sn to sm

Πi
nm (ei) = Fi (bi,m|sin, ei)− Fi (bi,m−1|sin, ei) ,

Πmean
nm (A,P ) = F (bm|sn, A, P )− F (bm−1|sn, A, P ) ,
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where bi,m = (si,m+1 + si,m) /2, bm = (sm+1 + sm) /2 for m = 1, ..., N − 1, and we set bi,0 = b0 = −∞
and bi,N = bN = +∞ so that Πi

n1 (A,P, e) = Fi (b1|sn, ei) , Πi
nN (A,P, e) = 1 − F (bN−1|sn, A, P ) , and

similarly for Πmean
n1 (A,P ) and Πmean

nN (A,P ). In order to apply the collocation value iteration, or policy
iteration method, the continuous-state expectations of the basis functions (8) for each subproblem, namely∫
φk (s′)Fi (ds′|sm, ei) and

∫
φk (s′)F (ds′|sm, A, P ), are approximated by the expected values in the anal-

ogous discrete Markov chain N−1
∑N
n=1 φk (s′n) Πi

nm (ei) and N−1
∑N
n=1 φk (s′n) Πmean

nm (A,P ) respectively.
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