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Modeling financial time series with the skew slash distribution

Cristina G. de la Fuente, Pedro Galeano & Michael P. Wiper

Departamento de Estad́ıstica

Universidad Carlos III de Madrid

Abstract

Financial returns often present moderate skewness and high kurtosis. As a consequence,

it is natural to look for a model that is flexible enough to capture these characteristics. The

proposal is to undertake inference for a generalized autoregressive conditional heteroskedastic

(GARCH) model, where the innovations are assumed to follow a skew slash distribution. Both

classical and Bayesian inference are carried out. Simulations and a real data example illustrate

the performance of the proposed methodology.
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1 Introduction

Financial returns are often difficult to model because they can present complicated relation-

ships with previous observations. Returns often present a structure that may be reasonably

explained with conditional heteroskedastic models, such as the generalized autoregressive condi-

tional heteroskedastic (GARCH) model, proposed by Bollerslev (1986), the exponential general-

ized autoregressive conditional heteroskedastic (EGARCH) model of Nelson (1991), the Glosten-

Jagannathan-Runkle GARCH (GJR-GARCH) model by Glosten et al (1993) or the Threshold

GARCH (TGARCH) model by Zakoian (1994).

The case where the stochastic component of these type of processes is assumed to be Gaussian

has been widely explored, but this does not seem to be able to properly capture the essence of

the returns because the residuals after fitting a conditional heteroskedastic model usually show
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moderate skewness and high kurtosis. Deficient modeling has the drawback of leading to poor

prediction, quantile estimation, and so on. Therefore, it is important to design models that better

capture the particular features of financial data. Several alternatives have been proposed to the

use of the Gaussian distribution, including the Student’s t-distribution proposed by Bollerslev

(1987), the generalized error distribution proposed by Nelson (1991) or a mixture of two zero mean

Gaussian distributions proposed by Bai et al (2003). Nevertheless, it still has not been possible to

show the existence of a distribution that adequately describes the behavior of financial returns in

all situations.

In this paper, we enlarge the number of alternative distributions to the Gaussian one by propos-

ing the skew slash distribution (Wang and Genton, 2006) to model the innovations in conditional

heteroskedastic models. The skew slash distribution is based on a scaled mixture of skew normal

distributions; this feature means that it can capture both moderate skewness and high kurtosis,

exactly the features that have often been observed in financial data. This model has also been

applied to describe data with similar characteristics in other settings, see e.g. Lachos et al (2009),

where a Bayesian approach to inference for the skew slash distribution is developed.

Inference for financial time series models can be carried out using both classical, maximum like-

lihood, approaches or Bayesian methods. Here, we shall consider both methods. Firstly, maximum

likelihood estimation is carried out using a direct constrained optimization algorithm. Secondly,

we introduce a new approach to Bayesian inference for the skew slash distribution which is based

on an alternative parameterization of this distribution to that of Lachos et al (2009) and enables

an easy incorporation of the particular parameter restrictions inherent to the GARCH framework.

The rest of this paper is as follows. In Section 2, the skew slash distribution is introduced

and explicit, closed formulae for the moments are derived. In Section 3, the GARCH(1,1) model

with skew slash innovations is outlined and both classical and Bayesian approaches to inference for

this model are developed. In Section 4, the performance of the proposed methodology is evaluated

through a small simulation study and the analysis of the log return series of the Standard & Poor’s

index. Finally, the paper finishes with some conclusions and possible extensions of our approach.
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2 The skew slash distribution

A random variable Z follows a standard skew normal distribution with parameter λ, and is denoted

by Z ∼ SN (λ), if its probability density function (pdf) is given by

fZ (z) = 2φ (z) Φ (λz) , (1)

for z ∈ R, where λ ∈ R and φ (·) and Φ (·) denote, respectively, the density and the cumulative

distribution function (cdf) of the standard normal distribution, see O’Hagan and Leonard (1976)

and Azzalini (1985). The parameter λ controls the skewness of the distribution. In particular,

positive (negative) values of λ imply positive (negative) skewness; when λ = 0, the distribution

reduces to a standard normal.

One useful property of the skew normal distribution is that it admits the following stochastic

representation as shown in Henze (1985)

Z ≡ δ|X0|+
√

1− δ2X1, where δ = λ/
√

1 + λ2, (2)

where ≡ signifies equivalence in distribution, and X0, X1 are independent standard normal random

variables.

The skew slash distribution (Wang and Genton, 2006) generalizes the skew normal distribution

as follows. If Z is a skew normal variable as in (1) and U is an independent, beta distributed

random variable, U ∼ Be(ν, 1) where ν > 0, then we will say that W = U−1Z follows a standard,

skew slash distribution, W ∼ SSL(λ, ν).1

A four parameter skew slash distribution with location parameter η, scale parameter σ, skewness

parameter λ and kurtosis parameter ν, can be defined in a straightforward generalization as

W = η + σU−1Z.

In this case, we shall write W ∼ SSL(η, σ, λ, ν).

1In fact, Wang and Genton define the skew slash variable using U−1/2, but this definition is equivalent.
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Consequently, the skew slash distribution is a scale-mixture of a variable with a skew normal

distribution. The pdf of a skew slash variable is given by

fW (w) =

1∫
0

2νuν−1φ
(
w; η, u−2σ2

)
Φ

(
λu (w − η)

σ2

)
du,

where φ
(
w; η, u−2σ2

)
denotes the pdf of a Gaussian distribution with mean η and variance u−2σ2.

Generalizing from (2), it is also easy to see that the skew slash distribution also admits a

stochastic representation as

W ≡ η + σU−1
(
δ |X0|+

√
1− δ2X1

)
. (3)

This representation will be very useful in the context of Bayesian inference.

2.1 Moments

In order to derive the central moments of the skew slash distribution, two results are summarized

in the following lemma, whose proofs, provided in the Appendix, are useful.

Lemma 1 For j ∈ N,

1. If U ∼ Be (ν, 1), then

E
[
U−j

]
=

ν

ν − j
, ν > j.

2. If Z ∼ SN (λ), then

E
[
Zj
]

= 2(j−2)/2π−1
(

1

1 + λ2

)j/2 j∑
i=0

aijλ
i,

where

aij =

(
j

i

)(
1 + (−1)j−i

)
Γ

(
i+ 1

2

)
Γ

(
j − i+ 1

2

)
,

for i = 0, 1, . . . , j. In particular, aij = 0 if j − i is an odd number.

These results can be used to derive the expectation and central moments of the skew slash

distribution, as summarized in the following Proposition.
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Proposition 2 If W ∼ SSL (η, σ, λ, ν), then

1. The expectation of W is given by

E [W ] = η + σ

(
2

π

)1/2 ν

ν − 1

(
λ2

1 + λ2

)1/2

, ν > 1.

2. For k ∈ N, the central moments of the skew slash distribution are given by

mk [W ] = E
[
(W − E [W ])k

]
= 2(k−2)/2σk

(
1

1 + λ2

)k/2 k∑
l=0

clkλ
l, (4)

for ν > k, where

clk =

l∑
m=0

bm,k−l+m,k, (5)

and

bm,k−l+m,k =

(−1)l−m
[
1 + (−1)k−l

]
π−(l−m+2)/2 ν

ν − (k − l +m)

(
ν

ν − 1

)l−m(k
l

)(
l

m

)
Γ

(
m+ 1

2

)
Γ

(
k − l + 1

2

)
,

for fixed k, fixed l ∈ {0, 1, . . . , k} and m ∈ {0, 1, . . . , l}, respectively. In particular, note that

clk = 0 if k − l is an odd number.

Given the general expression of the central moments of the skew slash distribution given in (4),

it is straightforward to obtain the variance and the skewness and kurtosis coefficients of W , as

summarized in the following corollary.

Corollary 3 1. The variance of the skew slash distribution is given by

V [W ] = m2 [W ] = σ2
c02 + c22λ

2

1 + λ2
,
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where

c02 = ν
ν−2 ,

c22 = ν
ν−2 −

2
π

(
ν
ν−1

)2
,

(6)

respectively. In terms of δ

V [W ] = σ2

(
ν

ν − 2
−
(

ν

ν − 1

)2 2

π
δ2

)
for ν > 2.

2. The skewness coefficient of the skew slash distribution is given by

S [W ] =
m3 [W ]

m2 [W ]3/2
= 21/2

c13λ+ c33λ
3

(c02 + c22λ2)
3/2

,

for ν > 3, where c02 and c22 are given in (6) and

c13 =
3

π1/2

(
ν

ν − 3
− ν

ν − 2

ν

ν − 1

)
,

c33 =
4

π3/2

(
ν

ν − 1

)3

− 3

π1/2
ν

ν − 2

ν

ν − 1
+

2

π

ν

ν − 3
,

respectively.

3. The kurtosis coefficient of the skew slash distribution is given by

K [W ] =
m4 [W ]

m2 [W ]2
= 2

c04 + c24λ
2 + c44λ

4

(c02 + c22λ2)
2 ,

for ν > 4, where c02 and c22 are given in (6) and

c04 =
3

2

ν

ν − 4
,

c24 =
6

π

ν

ν − 2

(
ν

ν − 1

)2

− 12

π

ν

ν − 3

ν

ν − 1
+ 3

ν

ν − 4
,

c44 = − 6

π2

(
ν

ν − 1

)4

+
12

π

ν

ν − 2

(
ν

ν − 1

)2

− 8

π

ν

ν − 3

ν

ν − 1
+

3

2

ν

ν − 4
,

respectively.
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Figure 1: Skewness coefficient of the SSL distribution as a function of λ0 and ν0

A direct consequence of these results is that the skew slash distribution is able to generate

both skewness and high kurtosis. To illustrate this, Figures 1 and 2 show some values of the

skewness and the kurtosis coefficients for values of λ and ν in the intervals (−10, 10) and (4, 10),

respectively. Observe that, as with the skew normal distribution, the skewness coefficient is 0 for

λ = 0, and positive (negative) for positive (negative) values of λ. Note also that ν has a small

effect on skewness. On the other hand,, the kurtosis coefficient gets larger as ν gets smaller. Note

also that λ has a small effect on the kurtosis.

3 The GARCH model with skew slash innovations

Although the proposed approach can be adopted in any conditional heteroskedastic model, for

simplicity and because it is one of the most popular models for estimating the dynamics of financial
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Figure 2: Kurtosis coefficient of the SSL distribution as a function of λ0 and ν0

returns, for illustration we use the GARCH(1,1) defined as follows

yt = µ+
√
htεt;

ht = ω + α (yt−1 − µ)2 + βht−1,
(7)

for t = 1, . . . , T, where ht is the conditional variance of yt, given Ft−1 = {yt−1, yt−2, . . . }, the

information set available until time t− 1, and the innovations, εt, are independent and identically

distributed random variables such that E [εt] = 0 and V [εt] = 1, for t = 1, . . . , T . It is typically

assumed that h0 and y0 are known constants, ω > 0, α ≥ 0, and β ≥ 0, to ensure positivity of ht

and α+ β < 1, to ensure covariance stationarity.

Here, it is proposed to model the innovations, εt, as skew slash distributed random variables.

This seems to be a desirable approach because financial returns usually present moderate skewness

and high kurtosis in the innovations when modeled through a GARCH framework and, as it has

already been shown, the skew slash distribution is able to help capture this kind of characteristics

8



due to its nature. It is important to note that usual stationarity conditions of the GARCH process

are directly applicable using the results in Carrasco and Chen (2002). In particular, from Propo-

sition 12 in that paper, if ν > 2, then, E [ht] <∞ and E
[
y2t
]
<∞. Moreover, if h0 is a constant,

then {(yt, εt)} is strictly stationary and β-mixing with exponential decay.

We shall consider two slightly different but equivalent formulations of this basic model to facil-

itate inference in the classical and Bayesian contexts, respectively, which incorporate the moment

restrictions on the innovation mean and variance. Firstly, we describe a classical approach.

3.1 Classical inference

Here we shall assume directly that εt ∼ SSL (η, σ, λ, ν) with E [εt] = 0 and V [εt] = 1. Therefore,

from Proposition 2

E [εt] = 0 = η + σ

(
2

π

)1/2 ν

ν − 1

(
λ2

1 + λ2

)1/2

so that

η = −σ
(

2

π

)1/2 ν

ν − 1

(
λ2

1 + λ2

)1/2

. (8)

Also, from Corollary 3

V [εt] = 1 = σ2
c02 + c22λ

2

1 + λ2

so that

σ2 =
1 + λ2

c02 + c22λ2
(9)

where c02 and c22 are given in (6).

Assume that a series of returns y = (y1, . . . , yT ) is observed. Under the GARCH model with

skew slash innovations, the likelihood function of a GARCH(1,1) model is given by

f (y|θ) = f (yT |FT−1) f (yT−1|FT−2) · · · f (y1|F0)

=
T∏
t=1

h−1/2t

1∫
0

2ν0u
ν−1φ

(
yt − µ√
ht

; η, u−2σ2
)

Φ

(
λu
(
yt − µ− η

√
ht
)

σ2
√
ht

)
du

 ,

where θ = (µ, ω, α, β, λ, ν)′ is the vector of parameters of the model, f (y1, . . . , ym|θ) is the joint
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pdf of y1, . . . , ym, and η and σ2 are given in (8) and (9), respectively.

The ML estimator is obtained by maximizing the log conditional likelihood function

L (θ|y1, . . . , yT ) =

T∑
t=1

`t (θ) ,

where

`t (θ) = −1

2
log ht + log


1∫

0

2νuν−1φ

(
yt − µ√
ht

; η, u−2σ2
)

Φ

(
λu
(
yt − µ− η

√
ht
)

σ2
√
ht

)
du


The maximization of the log conditional likelihood is a highly nonlinear problem but can be carried

out by standard numerical algorithms. By the stationary and mixing properties of the processes

yt and ht, previously mentioned, it is reasonable to apply usual large sample results of ML es-

timation and to assume that the ML estimator of θ, denoted by θ̂, is asymptotically Gaussian

distributed with mean θ and covariance matrix −E
[
∂2L (θ|y1, . . . , yT ) /∂θ∂θ′

]−1
. Then, approxi-

mated standard errors of the parameters can be obtained by taking the square roots of the elements

of ∂2L
(
θ̂|y1, . . . , yT

)
/∂θ∂θ′.

3.2 Bayesian inference

In order to consider a Bayesian approach to the skew slash GARCH model, it is convenient from a

practical viewpoint to define h̃t = ht/ω, and (7) becomes

yt = µ+
√
h̃tε̃t;

h̃t = 1 + α̃ (yt−1 − µ)2 + βh̃t−1,
(10)

so that E[ε̃t] = 0, V [ε̃t] = ω and 0 < α̃ = α/ω < 1/ω. Assume that ε̃t ∼ SSL(η, σ, λ, ν), where, in

order to comply with the mean restriction, we set E[ε̃t] = 0 so that

δσ = −
√
π

2

ν − 1

ν
η.
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Then, incorporating this condition into the stochastic representation of the skew slash distribution

in (3) we have

ε̃t ≡ η
(

1−
√
π

2

ν − 1

ν
U−1t

[
|X0t|+

1

λ
X1t

])
,

where Ut|ν ∼ Be(ν, 1) and X0t, X1t are standard normal random variables. Then, defining Rt =

U−1t |X0t|, and ρ =
(√

2
π

ν
ν−1

λ
η

)2
, we have

ε̃t ≡ η
(

1−
√
π

2

ν − 1

ν
Rt

)
+

1

Ut
√
ρ
Z1t

Given the above formulation, we have that:

yt|µ, α̃, β, η, ρ, ν, xt, ut, yt−1, h̃t−1 ∼ N

(
µ+

√
h̃tη

(
1−

√
π

2

ν − 1

ν
xt

)
,
h̃t
u2tρ

)
.

In order to undertake Bayesian inference, it is first necessary to define prior distributions for

the model parameters µ, α̃, β, η, ν, and ρ. One of the advantages of the Bayesian approach in this

context is that, for many of these parameters, real prior information in the form of expert knowledge,

or based on economic theory, will be available and this information can be incorporated into the

analysis. Thus, for example, economic theory suggests that the drift parameter, µ, in the GARCH

model should be very close to zero. Therefore, a reasonable prior distribution that incorporates this

knowledge is a normal distribution centered at 0. Secondly, analysts with experience in GARCH

models will often be able to provide good prior estimates of the volatility parameters, α and β.

Thirdly, the parameter ν represents the number of finite moments of the error distribution and

analysts will often be able to give good estimates of this parameter. In other cases, where the

parameter does not have such a clear interpretation, more non-informative prior distributions can

be used to represent prior uncertainty. Here, we shall assume the following prior distributions:
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µ ∼ N

(
0,

1

cm

)
where cm >> 1

f(α̃, β|ω) ∝ ω Γ(c)

Γ(cpa)Γ(cpb)Γ(c(1− pa − pb))
(α̃ω)cpa−1βcpb−1(1− α̃ω − β)c(1−pa−pb)

η ∼ N

(
me,

1

ce

)
ν ∼ Ga (an, bn) truncated onto ν > 2

ρ ∼ Ga

(
ar
2
,
br
2

)
where ar, br > 0 are small.

In the above, ω = ω(η, ν, ρ) = V [ε̃t|η, ν, ρ] as derived in Corollary 3. Note that the prior distribution

for α̃, β is derived by assuming a Dirichlet prior distribution for (α, β, 1− α− β).

Given this prior structure, exact inference is impossible. However, expressions for the posterior

conditional distributions can be derived. Thus, we have:

f(µ|y, α̃, β, η, ρ, ν, r,u) ∝

e−
cmµ

2

2

T∏
t=1

1√
h̃t(µ)

exp

(
− u2tρ

2h̃t(µ)

(
yt − µ−

√
h̃t(µ)η

(
1−

√
π

2

ν − 1

ν
rt

))2
)
,

where we have expressed the volatility h̃t as a function of µ to make the dependence clear.

f(α̃, β|y, µ, η, ρ, ν, r,u) ∝ α̃cdpa−1βcdpb−1(1− α̃ω − β)cd(1−pa−pb)−1 ×
T∏
t=1

1√
h̃t(α̃, β)

exp

(
− u2tρ

2h̃t(α̃, β)

(
yt − µ−

√
h̃t(α̃, β)η

(
1−

√
π

2

ν − 1

ν
rt

))2
)
.

where we have written h̃t as a function of (α̃, β) to make the dependence clear. For η,

f(η|y, µ, α̃, β, ρ, ν, r,u) ∝ ω(η)ω(η)cdpa−1(1− α̃ω(η)− β)cd(1−pa−pb)−1φ
(√

c?e(η −m?
e)
)
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where φ(·) is a normal density and

c?e = ce +
T∑
t=1

u2tρ

(
1−

√
π

2

ν − 1

ν
rt

)2

c?em
?
e = ceme +

T∑
t=1

u2tρ√
h̃t

(
1−

√
π

2

ν − 1

ν
rt

)
(yt − µ)

where we have made the dependence of ω on η clear. For ν,

f(ν|y, µ, α̃, β, ρ, η, r,u) ∝ ω(ν)cdpa(1− α̃ω(ν)− β)cd(1−pa−pb)−1×

νan+T−1e−ν(bn−
∑T
t=1 log ut)×

exp

(
−

T∑
t=1

u2tρ

h̃t

(
yt − µ−

√
h̃tη

(
1−

√
π

2

ν − 1

ν
rt

))2
)

where we have made the dependence of ω on ν clear. For ρ,

f(ρ|y, µ, α̃, β, η, ν, r,u) ∝ ω(ρ)ω(ρ)cdpa−1(1− αω(ρ)− β)cd(1−pa−pb)−1g

(
ρ

∣∣∣∣a?g2 , b?g2
)

where g(·|·, ·) is a gamma density and

a?g = ag + T

b?g = bg +

T∑
t=1

u2t

h̃t

(
yt − µ−

√
h̃tη

(
1−

√
π

2

ν − 1

ν
xt

))2

,

where again, we have made the dependence of ω on ρ obvious. Finally, for t = 1, . . . , T , we have:

f(rt|y, µ, α̃, β, η, ρ, ν, ut) ∝ φ
(
rt|m?

t ,
1

c?t

)
IR∪{0} (rt) ,
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where

c?t = u2t

(
1 +

π

2
η2ρ

(
ν − 1

ν

)2
)

c?tm
?
t =

u2t ηρ√
h̃t

√
π

2

ν − 1

ν

(
µ+

√
h̃tη − yt

)
,

and

u2t |y, µ, α, β, η, ρ, ν, rt ∼ Ga

(
ν + 2

2
,

(
r2t +

ρ

h̃t

(
yt − µ−

√
h̃tη

(
1−

√
π

2

ν − 1

ν
rt

))2
))

I(0,1) (ut) .

A Metropolis Hastings within Gibbs algorithm can then be designed to sample the joint posterior

parameter distribution by successively sampling the above distributions. In the cases of rt and ut,

sampling is straightforward. In the cases of η and ρ, sampling can be carried out using a Metropolis

Hastings algorithm based on truncated normal and gamma candidate distributions, respectively.

In the case of ν, we consider a griddy Gibbs sampler based on the reparameterisation τ = (ν−1)/ν.

For µ, we use a Metropolis sampler based on a normal distribution centred at the current value.

Finally, in the case of α̃, β we consider a sampler based on a combination of an independence

sampler centred on the maximum likelihood estimates and a Metropolis Hastings sampler centred

on the current values.

4 Examples

In this section, we illustrate our approach with a small simulation and the analysis of real data

from the Standard & Poor’s 500 Index. In both cases, the Bayesian prior parameters are specified

as cm = 10, c = 10, pa = 0.1, pb = 0.8, me = 0, ce = 1, an = bn = 1 and ar = br = 1. The sampler

is run for 5000 iterations to burn in and 10000 iterations in equilibrium.

4.1 Simulation results

We focus first on the maximum likelihood method. Then, we generate three sets of 2500 time series

from a SSL GARCH model with GARCH parameters µ = 0, ω = 0.01, α = 0.1 and β = 0.85 and
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with skew slash parameters η = 0.652, σ2 = 0.855, λ = −1 and ν = 5. Note that η = 0.652 and

σ2 = 0.855 are set to verify the two moment conditions. Each set corresponds to the sample sizes

T = 1000, T = 2000 and T = 3000, respectively.

Table 1 shows the mean and standard error of the model parameters over the 2500 time series

estimated through maximum likelihood. Observe that the parameter estimation results are appar-

ently very good, even given the small sample size. Also, as expected, the larger the sample size,

the smaller the standard errors and the better the mean estimates.

Table 1: Mean and Standard deviation for the ML estimators, with T simulated observations.
T = 1000 T = 2000 T = 3000

µ
-0.00136 -0.00058 -0.00085
(0.01237) (0.00861) (0.00699)

ω
0.01161 0.01068 0.01025
(0.00505) (0.00286) (0.00237)

α1
0.10115 0.10114 0.09981
(0.02610) (0.01906) (0.01542)

β1
0.84053 0.84519 0.84854
(0.04301) (0.02736) (0.02190)

λ
-1.02685 -1.01937 -1.02641
(0.27714) (0.19226) (0.15933)

ν
5.43052 5.22406 5.16790
(1.72854) (0.93940) (0.56823)

Unfortunately, the Bayesian procedure is time consuming and a comparative exercise as the

one performed with maximum likelihood is not possible. However, we consider one time series

generated with sample size T = 3000 to compare the estimated volatilies using both the maximum

likelihood and the Bayesian procedure. Figure 3 shows the true (black line), classically estimated

(red line) and Bayesian posterior mean (blue line) volatility estimates. It can be seen that the

volatility predictions for both models are almost indistinguishable from the true volatilities in this

case.
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Figure 3: True volatilities (black line) and classical (red line) and Bayesian (blue line) volatility
estimates
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4.2 Real data example

As an illustration of the usefulness of the proposed approach based on the skew slash distribution,

this section analyzes the Standard & Poor’s 500 Index (S&P 500). The S&P 500 index is a free-float

capitalization-weighted index of the prices of 500 of the main companies in leading industries of

the U.S. economy. Figure 4 shows the time plot of the simple returns of the daily closing prices of

the index (in percentages) for the period from January 1983 until December 1997, leading to 3035

index returns. Observe that the returns appear to vary more in the first part of the series, which is

the period that includes the one-day crash of “Black Monday” corresponding to October, 19, 1987.

The Black Monday fall was the largest one-day percentage decline in stock market history. The

sample mean, standard deviation, skewness and kurtosis of the return series are 0.0555, 0.9890,

−3.2210 and 70.8934, respectively. Observe that the return series is left-skewed and the kurtosis is

very large, indicating that the return distribution has higher peaks and heavier tails than a normal

distribution with the same variance. Thus, it seems that the proposed skew slash specification can

be adequate to address these issues.

Figure 5 shows the estimated innovation densities under both the classical (red line) and

Bayesian (blue line) approaches. The densities are quite similar and both exhibit some nega-

tive skewness although the Bayesian predictive density is heavier tailed. This can also be seen by

looking at a kernel density estimate of the Bayesian posterior density of ν which is concentrated on

values of ν at 4 or below, see Figure 6, which suggests that there is some evidence that the fourth

and higher moments of the innovation distribution do not exist. Indeed, the ML estimate of ν is

given by 3.3486, which is very close to the posterior mean of ν in the Bayesian approach.

Finally, the fitted volatilities are shown in Figure 7. It can be seen that both approaches capture

the same features, but that in this case, the fitted volatilities estimated via the classical approach

are slightly higher.
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Figure 4: Simple returns of the Standard & Poor’s 500 Index in the period from January 1983 until
December, 1997.
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Figure 5: Estimated innovation density: red = classical, blue = Bayesian

Figure 6: Bayesian posterior density estimate for ν
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Figure 7: Estimated volatilities: red = classical, blue = Bayesian

5 Conclusions and extensions

In this paper, we have introduced a new approach to modeling the innovations in a GARCH(1,1)

model using a skew slash distribution, which allows us to capture the asymmetry and high kurtosis

that are often observed in financial time series. We have shown how both classical and Bayesian

inferential techniques can be used for model fitting and have illustrated our methods with both

simulated and real time series data.

A number of extensions are possible. Firstly, although we have introduced our approach here

with respect to the GARCH(1,1) model, it would also be interesting to extend both our approaches

to classical and Bayesian inference to the more general GARCH(p,q) models. Obviously, this

would extend the complexity of the optimization algorithm used within the classical algorithm and

alternative approaches such as the EM algorithm might be considered in this context. A recent

relevant article that uses the EM algorithm in the context of skew slash and other models is Lachos

et al (2010).
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Secondly, it is possible to extend our approach to multivariate financial time series where a mul-

tivariate skew slash distribution can be considered for the error model. In this line, Barbosa Cabral

et al (2012) develop an approach to EM based inference for multivariate skew slash distributions.

Finally, it would be useful to apply this model for value at risk and conditional value at risk

estimation in the financial time series context. Work on all these problems is currently in progress.
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Appendix

Proof of Lemma 1.

1. The equality holds from

E
[
U−j

]
=

1∫
0

u−jνuν−1du = ν

1∫
0

u−j−ν+1du =
ν

ν − j
, ν > j.

2. First, from the stochastic representation of Z in (2)

E
[
Zj
]

=

(
1

1 + λ2

)j/2
E
[
(λ |X0|+X1)

j
]

=

(
1

1 + λ2

)j/2 j∑
i=0

(
j

i

)
λiE

[
|X0|i

]
E
[
Xj−i

1

]

22



Now, the moments of the standard normal distribution are given by

E
[
Xj−i

1

]
=
(

1 + (−1)j−i
)

2(j−i−2)/2π−1/2Γ

(
j − i+ 1

2

)
,

where Γ (·) is the Gamma function, while the moments of the half normal distribution are

given by

E
[
|X0|i

]
= 2i/2π−1/2Γ

(
i+ 1

2

)
.

Therefore,

E
[
|X0|i

]
E
[
Xj−i

1

]
=
(

1 + (−1)j−i
)

2(j−2)/2π−1Γ

(
i+ 1

2

)
Γ

(
j − i+ 1

2

)

that leads to

E
[
Zj
]

= 2(j−2)/2π−1
(

1

1 + λ2

)j/2 j∑
i=0

aijλ
i,

where

aij =

(
j

i

)(
1 + (−1)j−i

)
Γ

(
i+ 1

2

)
Γ

(
j − i+ 1

2

)
,

for i = 0, 1, . . . , j.

Proof of Proposition 2.

1. From Lemma 1, we have that

E
[
U−1

]
=

ν

ν − 1
, ν > 1

E [Z] =

(
2

π

)1/2( λ2

1 + λ2

)1/2

.

Consequently,

E [W ] = E
[
η + σU−1Z

]
= η+σE

[
U−1

]
E [Z] = η+σ

(
2

π

)1/2 ν

ν − 1

(
λ2

1 + λ2

)1/2

, for ν > 1.
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2. First, W − E [W ] can be written as

W − E [W ] = σ
(
U−1Z − E

[
U−1

]
E [Z]

)
,

leading to

(W − E [W ])k = σk
(
U−1Z − E

[
U−1

]
E [Z]

)k
= σk

k∑
j=0

(−1)k−j
(
k

j

)
U−jZjE

[
U−1

]k−j
E [Z]k−j

Now, taking expectations in the previous equation,

mk (W ) = σkE

 k∑
j=0

(−1)k−j
(
k

j

)
U−jZjE

[
U−1

]k−j
E [Z]k−j

 =

= σk
k∑
j=0

(−1)k−j
(
k

j

)
E
[
U−j

]
E
[
Zj
]
E
[
U−1

]k−j
E [Z]k−j =

= 2(k−2)/2σk
(

1

1 + λ2

)k/2 k∑
j=0

j∑
i=0

bijkλ
k−j+i,

for ν > k
2 , where

bijk = (−1)k−j
(
k

j

)
ν

ν − j

(
ν

ν − 1

)k−j
π−(k−j+2)/2aij ,

with k fixed, j ∈ {0, 1, . . . , k}, and i ∈ {0, 1, . . . , j}, respectively.

Finally, the two sums can be reduced as follows.

mk (W ) = 2(k−2)/2σk
(

1

1 + λ2

)k/2 k∑
l=0

clkλ
l,

where

clk =
l∑

m=0

bm,k−l+m,k,
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and

bm,k−l+m,k =

(−1)l−m
[
1 + (−1)k−l

]
π−(l−m+2)/2 ν

ν − (k − l +m)

(
ν

ν − 1

)l−m(k
l

)(
l

m

)
Γ

(
m+ 1

2

)
Γ

(
k − l + 1

2

)
,

for fixed k, fixed l ∈ {0, 1, . . . , k}, and m ∈ {0, 1, . . . , l}, respectively.

Proof of Corollary. The three equations lead from (4) for k = 2, 3 and 4, respectively.
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