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A New Finger Inverse Kinematics Method for an Anthropomorphic
Hand

Choukri Bensalah, Mohamed Abderrahim and Juan Gonzalez Gomez

Abstract— In this paper, a new method for solving the
inverse kinematics of the fingers of an anthropomorphic hand
is proposed. Our approach combines a Modified Selectively
Damped Least Squares (MSDLS) and Jacobian Transpose (JT)
methods. The main advantages of this method with respect to
the ordinary SDLS are: optimal Cartesian increment, shorter
computation time and better response near singularity config-
urations. The original JT method exhibits a strong shattering
with small magnitudes which occurs near the goal position or in
the case of unreachable positions. Like in the SDLS, a damping
factor was applied to each input singular vector to filter the
undesirable behavior. A comparative study between the MSDLS
applied to the inverse Jacobian and JT matrix is developed
to investigate manipulator performance in critical end-point
positions of the index finger of a commercial anthropomorphic
robotic hand and also to evaluate the impact of the increment
length on computation time.

I. INTRODUCTION

Achieving higher autonomy and dexterity for robotic
hands in the manipulation of objects and tools are among
the major challenges to be resolved. The fingers of a robotic
hand can be viewed as manipulators which are required to be
controlled as a single set to achieve a given task. Performing
the dextrous tasks requires an efficient control philosophy in
both high and low level control. The fingertip position control
is considered as one of those low level control schemes
that achieve the contact position with the object using the
inverse kinematics model. Like in humans skills, the soft-
contacts are defined as a small area rather than a point [1].
Using this kind of contact, the required inverse kinematics
scheme does not need to be too accurate. However, the
inverse kinematics scheme must be fast enough to allow the
real time implementation.
During the late 80’s and early 90’s, the calculation of the
inverse kinematics of manipulators has been widely studied.
These studies provide several theoretical concepts such as
the ill-conditioned Jacobian matrix. Physically, this means
that the manipulator is at singularity configuration or in
its neighborhood. In this situation, a small deviation in
the cartesian space provides a high change in joint space
variables which is not desirable. It is extremely important
to ensure a good behavior of the manipulator in this critical
configuration.
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Many researchers have proposed methods to avoid singu-
larities. The most successful is the Damped Least Squares
scheme (DLS) which is used to damp the norm of joint
velocity [2] [3]. The damping factor should be carefully
chosen to guarantee good behaviors near singularities with-
out affecting the normal working. With the Singular Value
Decomposition (SVD) of the Jacobian matrix, this choice
is also easy to understand. The intuitive idea is to apply a
switch between the pseudoinverse far from the singularities
and the damped solution near any singularity configuration
using some comparative criteria of the damped factor and
some threshold [5],[6],[8],[9],[10] and [11]. When only DLS
scheme is used, there are several ways to find the optimal
value of the damping factor. It has been chosen constant
[7], and it is computed from the estimation of the smallest
singular value [3]. There are relatively simple ways to
compute this factor based on conditions imposed on the
maximum allowable values of the joint velocity, cartesian
velocity, condition number or by minimizing the residual
function with respect to this factor [6],[12].
Other solutions are proposed to overcome the problem of
perturbation of the good behavior. They consist of regu-
larizing the smallest singular value, by omitting it [13] or
by applying a filter [12]. However, the main drawback of
these methods is the heavy computation time cost. In order
to avoid this problem, the solution proposed in [12] adopts
a recursive numerical algorithm which estimates both the
smallest singular value and the associated singular vector.
This estimate is used to achieve a solution in which the com-
ponent associated with the smallest singular value is damped
more than the others. An extension of this scheme has been
proposed in [8] by estimating not only the smallest singular
value but also the second smallest. From the estimation of
more than one small singular value, this scheme is advised
against due to its heavy computation time. Furthermore, the
smallest estimated value is still only an approximation of the
exact value. The selectively damped least square, from which
this work is inspired, present an extension of [12] for all the
singular vectors. Unlike of above scheme, the SDLS is based
on the exact values of all components of SVD. In addition,
the SDLS method analyzes each joint angle individually and
decides how much this joint can move to reach the desired
end-effector position, and then it compares this to the real
distance. If there is an overrun of the real distance, then the
motion in the direction of this joint angle must be damped
more severely [11]. SDLS exhibits a better performance than
normal DLS in tracking reachable target position rather than
unreachable position without oscillation.
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In the case of need, where there are several singular values
equal to zero, all performed techniques even SDLS have no
solutions. An example of this situation is the case of a robotic
anthropomorphic hand with the index pointing out. Here, the
finger is an outstretched chain and all joint angles are zero.
So there is at least one zero singular value. Therefore, the
aim of this work is to adapt the SDLS philosophy to the
Jacobian transpose method which precludes the apparition
of all kind of dividing operation.
In the literature of the inverse kinematics, few works have
been realized using the Jacobian transpose method. The first
contribution date back to 1984 [14], where the stability of
the technique is proved by using the Lyapunov function and
some assumptions. An augmented Jacobian transpose method
has been proposed in [15] with the aim of taking into account
the obstacle avoidance and limited joint range. It is well
known that the Jacobian transpose method can be computed
in few iteration, does not require the inverse Jacobian calcu-
lation but oscillates near the target. This undesirable behavior
can be reduced by a damping factor such as the adopted in
the SDLS scheme.
The goal of this paper is to extend the SDLS applied to
the Jacobian inverse proposed in [11] to the case of the
Jacobian transpose method. To reduce the computation time,
a switching process has been done between the proposed
technique and the original Jacobian transpose method.
This document is organized as follows. Section II gives a de-
scription of the original SDLS method and the modifications
introduced to it. The inverse kinematics scheme based on the
Jacobian transpose is reviewed in section III, while in section
IV, the technique is used to define the proposed method
MSDLS using the JT scheme. Section V is dedicated to
present the simulated results of comparative studies between
MSDLS and the switched JT with MSDLS applied to JT
using the index finger of our experimental platform of the
HANDLE project [16], the Shadow hand.

II. INVERSE KINEMATICS BASED ON SELECTIVELY

DAMPED LEAST SQUARES WITH OPTIMAL INCREMENT

By definition, the inverse kinematics problem consists
of solving for a particular joint configuration in terms of
given cartesian configuration. This problem requires solving
a strong nonlinear system that can have some undetermined
configurations, called singularities. The alternative approach
to dealing with the problem of no-linearity is to approximate
the system as a linear system and apply an iterative method
through the Jacobian matrix. There are two configurations
of the singularity, when the target position is reachable, the
end-effector can not move in those directions in which the
associated singular values equal or near to zero. Whereas, the
second configuration is when the target position is unreach-
able. In both cases, a simple pseudoinverse method yields to
instable system. Using SVD theory, the instability means the
existence of zero singular value. The pseudoinverse method
of the Jacobian matrix is defined by:

𝑞 = 𝐽†�̇� (1)

Fig. 1. Actual (dotted line) and linear approximation of the motion

Where 𝐽† is the pseudoinverse of the Jacobian matrix of the
end-effector 𝐽 (𝑚 × 𝑛). The SVD of 𝐽 allows to describe
the system (1) by two subspaces; 𝑈(𝑚×𝑚) and 𝑉 (𝑛× 𝑛)
which are respectively composed by 𝑚 output and 𝑛 input
singular vectors.

𝐽 = 𝑈Σ𝑉 (2)

where the 𝑚× 𝑛 matrix Σ has the block matrix form:

Σ =

[
𝑆𝑟×𝑟 0𝑟×(𝑛−𝑟)

0(𝑚−𝑟)×𝑟 0(𝑚−𝑟)×(𝑛−𝑟)

]
, 𝑆 = 𝑑𝑖𝑎𝑔(𝜎1, ⋅ ⋅ ⋅ , 𝜎𝑟)

For convenience, the diagonal elements of 𝑟 × 𝑟 matrix 𝑆
can be ordered so that 𝜎1 ≥ 𝜎2 ≥ . . . ≥ 𝜎𝑟 ≥ 0 where
𝑟 = 𝑟𝑎𝑛𝑘(𝐽). Hence, the equation (1) can be rewritten as
follow:

𝑞 =

𝑟∑
𝑖=1

1

𝜎𝑖
𝑣𝑖𝑢

𝑇
𝑖 �̇� (3)

This leads to an iterative solution of inverse kinematics
problem expressed in function of Δ𝑥 and Δ𝑞 the incre-
menting update of the end-effector position and joint angle
respectively.
For a known 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑥𝑔𝑜𝑎𝑙, the update end-effector
position given by Fig.1 is:

Δ𝑥 = 𝑥𝑔𝑜𝑎𝑙 − 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (4)

This Δ𝑥, which should be quite small, corresponds to a Δ𝑞
given by:

Δ𝑞 =

𝑟∑
𝑖=1

1

𝜎𝑖
𝑣𝑖𝑢

𝑇
𝑖 Δ𝑥 (5)

Unlike the fixed choice of the maximum value of Δ𝑥𝑚𝑎𝑥 in
[10] and [11], there is an optimal choice of Δ𝑥𝑚𝑎𝑥 based
in the sensitivity of the solution of (1) as a function of
the maximum allowable joint change Δ𝑞𝑚𝑎𝑥 and condition
number of the Jacobian matrix, denoted by 𝜅, which is given
by [4]:

∥Δ𝑞∥
∥𝑞∥ ≤ 𝜅(𝐽) ∥Δ𝑥∥

∥𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡∥ (6)

where 𝜅(𝐽) = 𝜎1(𝐽)
𝜎𝑟(𝐽)

, so, in the extreme case when Δ𝑞 =
Δ𝑞𝑚𝑎𝑥, it is clear that:

∥Δ𝑥𝑚𝑎𝑥∥ = 𝜅(𝐽)
∥Δ𝑞𝑚𝑎𝑥∥

∥𝑞∥ ∥𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡∥ (7)
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When ∥Δ𝑥𝑚𝑎𝑥∥ is larger than the allowable physical change,
the matrix 𝐽 is ill-conditioned, this value should be restricted
to that limit, which we denote as ∥Δ𝑥𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒∥. Using
this updating of Δ𝑥𝑚𝑎𝑥, the modified SDLS is denoted as
MSDLS.
Using the SVD theory, the SDLS scheme aims to control
the effect of each input singular vector individually on the
output singular vector. Buss and Kim in [11] proposed this
technique to control rigid multibodies with multiple end-
effectors.
It has been shown [11] that the SDLS scheme worked better
than the DLS and the pseudoinverse methods in terms of
tracking for both reachable and unreachable target position,
but it is slow since the SDLS requires to treat the effect
of each singular vector; as input and output, individually.
However, the worst feature of this method is when the
singular value is equal to or near zero. In this case, a
truncated SVD has been done wherein all singular values
smaller than a certain threshold are omitted [13].

III. JACOBIAN TRANSPOSE AS INVERSE KINEMATICS

METHOD

The Jacobian transpose method consists of replacing the
pseudoinverse of 𝐽† with the transpose matrix 𝐽𝑇 as:

Δ𝑞 = 𝛾 ⋅ 𝐽𝑇Δ𝑥 (8)

To ensure the convergence towards the target position Sciav-
icco and Siciliano [15] proposed the following coefficient:

𝛾 = 𝛼+ (Δ𝑥𝑇 �̇�𝑔𝑜𝑎𝑙)(Δ𝑥
𝑇𝐽𝐽𝑇Δ𝑥)−1 (9)

where 𝛼 > 0. With this choice, they proved that the dynamic
error Δ𝑥 decreases considerably to zero, and concluded that
the second term of (9) can be dropped since with a purely
proportional control law:

Δ𝑞 = 𝛼𝐽𝑇Δ𝑥 (10)

the Lyapunov function stability based on the error dynamic
holds under a certain condition of ∥�̇�𝑔𝑜𝑎𝑙∥ [15]. The attractive
motion towards the 𝑥𝑔𝑜𝑎𝑙 produced by the JT method given
by (10) can be justified as virtual force because it seems
as pulling the end-effector with an elastic force inspired
from the relationship between the joint torque vector 𝜏 and
cartesian force vector 𝐹 [14].

𝜏 = 𝐽𝑇𝐹 (11)

The real change of the end-effector position 𝑥𝑟𝑒𝑎𝑙 is obtained
by using the forward kinematics of updated joint angle given
in (10):

Δ𝑥𝑟𝑒𝑎𝑙 = 𝛼𝐽𝐽
𝑇 ⋅Δ𝑥 (12)

It is clear to see that for all 𝐽 , Δ𝑥 and 𝛼 ≥ 0, the following
relation is kept: ⟨𝐽𝐽𝑇 Δ⃗𝑥, Δ⃗𝑥⟩ ≥ 0. This means that ⃗Δ𝑥𝑟𝑒𝑎𝑙
and Δ⃗𝑥 manifest in the same half plane (see Fig.1).
The convergence rate of the JT method depends essentially

on the scale 𝛼 which was chosen in [10] and [11] as the
orthogonal projection norm of Δ⃗𝑥 on ⃗Δ𝑥𝑟𝑒𝑎𝑙:

𝛼 =
⟨Δ⃗𝑥, 𝐽𝐽𝑇 Δ⃗𝑥⟩

⟨𝐽𝐽𝑇 Δ⃗𝑥, 𝐽𝐽𝑇 Δ⃗𝑥⟩ (13)

This choice ensures that ∥ ⃗Δ𝑥𝑟𝑒𝑎𝑙∥ is as close as possible to
∥Δ⃗𝑥∥. The JT method as inverse kinematics is characterized
by a few iteration process, which is fairly accurate near the
desired target position but it manifest a strong shaking due
to the direction changing of Δ⃗𝑥 by 𝐽𝑇 . Considering the
advantage of no-existence of singularities and low computa-
tion cost of the JT method, we have used the above filtering
strategy to improve this method against the unwanted shaking
behaviors. The idea is to apply the JT approach when the
end-effector is far from the desired point, and the proposed
MSDLS for transpose method to cancel the oscillations.

IV. JACOBIAN TRANSPOSE AS MODIFIED SELECTIVELY

DAMPED LEAST SQUARES METHOD

It is to be mentioned that, unlike the MSDLS (or all meth-
ods which require the inverse computing), the JT method
admits a solution all the time. With this method, the solution
cannot be reached with very high precision, which therefore
deviate a little from the exact solution given by the pseu-
doinverse method, which may produce undesired behavior
near the desired solution. However, like the MSDLS, it is
possible to damp those solutions which exceed the desired
position. In the following, we adopt an algorithm with the
same steps as MSDLS with some adjaustments to apply it
on the JT method
According to the SVD theorem and equation (10), in this
case the update angle change Δ𝑞 is given by:

Δ𝑞 = 𝛼

𝑟∑
𝑖=1

𝜎𝑖𝑣𝑖𝑢
𝑇
𝑖 Δ𝑥 (14)

If we note by Δ𝑥 =
∑𝑟

𝑖=1𝑁𝑖 ⋅ 𝑢𝑖 the representation of
Δ𝑥 in terms of the input singular vector, then 𝑁𝑖 is the
component of the input in 𝑢𝑖 vector, where 𝑁𝑖 = ⟨Δ𝑥, 𝑢𝑖⟩.
As shown in [11], the proposed algorithm is based on the
relative magnitude parameter 𝜌𝑗 which allows to define the
length of the current end-effector position Δ𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 due to
the small change of the 𝑗𝑡ℎ joint angle

𝜌𝑗 =

∥∥∥∥∂Δ𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡∂𝑞𝑗

∥∥∥∥ (15)

On the other hand, according to equation (10), the response
of input Δ𝑥 acting on 𝑢𝑖 would change the 𝑗𝑡ℎ joint angle,
denoted by 𝑞𝑖𝑗 , as:

𝑞𝑖𝑗 = 𝛼𝑁𝑖𝜎𝑖𝑣𝑖𝑗 (16)

where 𝑣𝑖𝑗 is the entry of 𝑉 singular vector located in 𝑖𝑡ℎ
column and 𝑗𝑡ℎ row. In return, the real magnitude of the
end-effector position moved by 𝑞𝑖𝑗 can be calculated as:

𝑀𝑖 = 𝛼𝑁𝑖𝜎𝑖

𝑛∑
𝑗=1

𝜌𝑗 ⋅ ∣𝑣𝑖𝑗 ∣ (17)
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Joint j 𝑎𝑗 𝑑𝑗 𝛼𝑗 𝜃𝑗

1 0 0 −𝜋/2 𝜃1
2 45 0 0 𝜃2
3 25 0 0 𝜃3
4 24 0 0 𝜃4

TABLE I

D-H PARAMETERS FOR THE INDEX FINGER

If the value of 𝑀𝑖 is greater than 𝑁𝑖, namely:

𝛼𝜎𝑖

𝑛∑
𝑗=1

𝜌𝑗 ⋅ ∣𝑣𝑖𝑗 ∣ ≥ 1 (18)

a strong damping operation must be done in this direction to
impede all kinds of excess in the desired distance to move
by the end-effector. In [11], the damping factor is defined
as the ratio 𝜆𝑖 =

𝑁𝑖

𝑀𝑖
. In this case, the ratio becomes quite

small near singularities, since𝑀𝑖 → ∞ as 𝜎𝑖 → 0. However,
according to equation (17), the value of 𝑀 always takes a
finite number which leads to a weak damped factor when
𝑀 becomes greater than 𝑁 . Intuitively, to make this factor
more effective, we have adopted an exponential form to this
ratio:

𝜆𝑖 =

{
1 𝑖𝑓 𝑁𝑖

𝑀𝑖
< 1(

𝑁𝑖

𝑀𝑖

)𝑛

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(19)

When 𝑀𝑖 ≫ 𝑁𝑖, the ideal choice of 𝑛 which allows
higher cancelation in 𝑖𝑡ℎ singular vector direction has to be
large. However, it has been seen; from several experimental
implementations, that this factor leads to an undesirable
behavior starting from a certain value. In the opposite case,
when a light damping factor is required, the 𝑛 should have
a small value but not very small otherwise the proposed
technique converge slowly. Therefor, an adequate choice of
𝑛 is important to ensure this compromise. In order to sum-
marize all the steps to achieve the Jacobian transpose with
the MSDLS method for the inverse kinematics, we propose
the implementation of the idea as shown in Algorithm 1.

V. SIMULATED RESULTS

In this part, we adopt the calculation of the inverse
kinematics for a redundant configuration. As indicated in
the introduction, the method was run on the index finger
of the Shadow hand [17]. The perspective work consist in
implementing the obtained results to the rest of the fingers
with the aim of reaching a grasping configuration. Here, each
finger is considered as an independent manipulator with the
base frames of all five fingers coinciding and attached to the
palm of the robot hand. From the mechanical design of the
Shadow hand, all Denavit-Hartenberg (D-H) parameters of
the index finger are given in table I.
It is clear that, if we are interested only to the fingertip
position 𝑥 ∈ 𝑅3, the finger is in a redundant configuration
(𝑞 ∈ 𝑅4). One of the singular configurations of the index
finger appears when all joint variables are set to zero.
This configuration is both reachable and a singular point
which will be our comparative study between the MSDLS

Algorithm 1 JT method as MSDLS for single multibody
chain
Input: Δ𝑥𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒,Δ𝑞𝑚𝑎𝑥, 𝜎𝑖, 𝑢𝑖, 𝑣𝑖, 𝑞,𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑥𝑔𝑜𝑎𝑙,𝜀,𝐽
Output: Δ𝑞

1: 𝜅← 𝜎1

𝜎𝑟

2: Δ𝑥𝑚𝑎𝑥 ← 𝜅∥Δ𝑞𝑚𝑎𝑥∥
∥𝑞∥ ∥𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡∥

3: if Δ𝑥𝑚𝑎𝑥 > Δ𝑥𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 then
4: Δ𝑥𝑚𝑎𝑥 ← Δ𝑥𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒

5: end if
6: Δ𝑥← 𝑥𝑔𝑜𝑎𝑙 − 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡
7: while ∥Δ𝑥∥ ≥ 𝜀 do
8: if ∥Δ𝑥∥ ≥ Δ𝑥𝑚𝑎𝑥 then
9: Δ𝑥← Δ𝑥𝑚𝑎𝑥

Δ𝑥
∥Δ𝑥∥

10: end if

11: 𝜌𝑗 ←
∥∥∥∥(∂𝑥1

∂𝑞𝑗
, ∂𝑥2

∂𝑞𝑗
, ⋅ ⋅ ⋅ , ∂𝑥𝑚

∂𝑞𝑗

)𝑇
∥∥∥∥

12: 𝛼← ⟨Δ𝑥,𝐽𝐽𝑇Δ𝑥⟩
⟨𝐽𝐽𝑇Δ𝑥,𝐽𝐽𝑇Δ𝑥⟩

13: for 𝑖 = 1 to 𝑟 do
14: 𝑁𝑖 ← ⟨Δ𝑥, 𝑢𝑖⟩
15: 𝑀𝑖 ← 𝛼𝑁𝑖𝜎𝑖

∑𝑛
𝑗=1 ∣𝑣𝑗,𝑖∣ ⋅ 𝜌𝑗

16: 𝐷𝑖 ← 𝑁𝑖

𝑀𝑖

17: if 𝐷𝑖 ≤ 1 then
18: 𝛾𝑖 ← (𝐷𝑖)

𝑛 ⋅Δ𝑞𝑚𝑎𝑥

19: else
20: 𝛾𝑖 ← Δ𝑞𝑚𝑎𝑥

21: end if
22: 𝜑𝑖 ← 𝜎𝑖𝑁𝑖𝑣𝑖
23: 𝜂𝑖 ← ∥𝜑𝑖∥∞
24: if 𝜂𝑖 ≥ 𝛾𝑖 then
25: 𝜑𝑖 ← 𝛾𝑖 𝜑𝑖

𝜂𝑖

26: end if
27: end for
28: Δ𝑞 ← ∑𝑟

𝑗=1 𝜑𝑗
29: if ∥Δ𝑞∥ ≥ Δ𝑞𝑚𝑎𝑥 then
30: Δ𝑞 ← Δ𝑞𝑚𝑎𝑥 ⋅ Δ𝑞

∥Δ𝑞∥
31: end if
32: 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝐽 ⋅Δ𝑞
33: end while
34: return Δ𝑞

and switched JT with MSDLS applied to JT in term of
computation time and accuracy. The index finger inverse
kinematics calculation was performed form an initial config-
uration distanced ∥Δ𝑥∥ = 181.5291𝑚𝑚 from the goal point.
According to the clamping function [11] defined in the lines
8 and 9 of algorithm 1, the generated trajectory is presented
by a straight line with a maximum increment length Δ𝑥𝑚𝑎𝑥.
The choice of this length has an important role to decide the
performance of the tracking task. In some applications this
increment may be important to reach a fast task. However, in
others, when the system has less information about the object
to manipulate, the increment length is required to be small
in order to achieve a slow and accurate task. This kind of
calculation is required in the grasping operations and in the
in-hand manipulation of objects [16] especially for fragile
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Fig. 2. Positions and angles obtained results using the switched method
with Δ𝑥𝑚𝑎𝑥 = 1𝑚𝑚

objects. This problem can also be resolved by adopting the
characteristics of the force sensing if the hand is equipped
with such capabilities.
The results shown in Fig.2 and Fig.3 present the applica-
tion of the switched JT with MSDLS applied to JT and
MSDLS method, respectively. The initial configuration for
both approach was: 𝑞 = (−3 0 0 0)𝑇 𝑟𝑎𝑑. In both cases, the
positions and joints trajectories are similar and take almost
the same iteration number to reach the desired position
(𝑖 ≃ 700). However, this similarity does not apply in term of
computation time. Since the singular value decomposition is
a computationally expensive operation, the MSDLS method
seems to be slower but it gives a more precise solution when
compared to the Jacobian transpose method which does not
need SVD computation. In the switched case, when the error
between the current and the goal position is less than the
threshold (𝜖 ≃ 0.08), while the MSDLS applied to JT has
almost the same computation time as MSDLS.

The joint variations in Fig.3 reveal also that the generated
trajectory is at singularity configuration all along the simu-
lation time. This is evident through the handled zero value
taken by (𝑞2, 𝑞3, 𝑞4)

𝑇 and only 𝑞1 changes, which produces a
planar arc trajectory. There are several factors that affect the
computation time, of which the most important are; the type
of trajectory, the maximum increment, the threshold value
which gives the convergence and the calculation process end
and obviously, the hardware on which the implementation is
executed.
The inverse kinematics and all required operations were
computed and simulated in MATLAB, running on a laptop
with a Duo Core Processor at 2.53 GHz.

The results shown in Fig.4 demonstrate that for small
maximum increments the proposed method takes less time
to reach the goal position than the MSDLS method. From
Δ𝑥𝑚𝑎𝑥 ≃ 15𝑚𝑚, this difference becomes less significant.
This part is zoomed in to show more clearly the improve-
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Fig. 3. Positions and angles obtained results using the MSDLS method
with Δ𝑥𝑚𝑎𝑥 = 1𝑚𝑚

ment, using the computation ratio between the execution
times of the two methods (Fig.5). The ratio in percent is
defined as: 𝜚 = 𝑡𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙−𝑡𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑

𝑡𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
100. Here, the curve can be

observed as two regions. In the positive region, the proposed
method provides less computation times until the maximum
increment Δ𝑥𝑚𝑎𝑥 ≃ 15𝑚𝑚 where the curve starts taking
negative sign. In this region, the MSDLS approach becomes
faster than the proposed method. On the other hand, the
inflexion point is not constant and depends on the length
of the trajectory and the threshold of convergence. During
in-hand manipulation tasks, a large increment length is not
advisable, in particular when performing the rolling and
sliding of the finger over the object surface. Therefore,
this proposed method is suited to the application by using
smaller increments. Fig.6 shows the impact of the threshold
of convergence on the computation time repeating the above
simulation but now with the fixed maximum increment
Δ𝑥𝑚𝑎𝑥 = 0.1𝑚𝑚.
Like the above figure, The Y-axis is computed by the ratio
between the computation time of MSDLS and the proposed
method for different convergence thresholds. The negative
part of the curve indicates that the MSDLS is very accurate
and can give for a determined time a quite insignificant
convergence error. This result is well expected, but starting
from 𝜖 = 0.08 mm, the proposed method exhibits faster
execution, and the time ratio varies around 10%. In robotic
hand applications where the calculation of the inverse kine-
matics of the five fingers is required this 10% translates
in an important laps time improvement. This means that
the proposed method reaches a neighborhood of the goal
position in short time but with moderate accuracy. Moreover,
in robotic in-hand manipulation, this cannot be considered
as drawback since 0.1𝑚𝑚 is already considered a very good
precision and due to the soft-contact characteristic the contact
is defined as small area rather than a point.
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VI. CONCLUSION

In this work, the inverse kinematics for the index finger of
an anthropomorphic robotic hand is investigated. This finger
exhibits a redundancy configuration. The recently developed
Selectively Damped Least Squares scheme has been mod-
ified by applying an optimal increment instead of a fixed
one. Using this modification, we proposed a method which
consists of extending MSDLS to cover the Jacobian transpose
method, thus avoiding all kind of singularity configuration
since the JT method does not involve any division operation.

The short computation time yield by the JT method is
another motivation of our choice. However, this method
exhibits an undesirable shattering behavior near the goal
position. Taking inspiration of the MSDLS advantage, this
undesirable behavior can be damped. Therefore, a combined
method was developed to adopt a switching between the
JT and the MSDLS applied to the JT to reduce the com-
putation and improve the convergence error. With regard
to computation time, it is shown that in the case of small
increments, the proposed method runs in a shorter time with
respect to the MSDLS method. This difference can be much
more noteworthy when all fingers are employed for hand
manipulation tasks, especially to achieve rolling and sliding
in-hand manipulation. The convergence threshold parameter
is one of important factors which affect the efficiency of
the proposed method. The obtained results show that the
proposed method exhibits less computation time from a
certain convergence threshold than the MSDLS method. In
soft-contact hand manipulation, where the contact is an area
rather than a point, the required accuracy is not very high
and our method can fulfill the task efficiently. With these
arguments, the use of our proposed method is justified and
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Fig. 6. Impact of the convergence threshold on computation times for two
methods with Δ𝑥𝑚𝑎𝑥 = 0.1𝑚𝑚

since it yields better results than the original SDLS method,
a version in the C++ language is being developed and will
cover the complete model of the anthropomorphic hand
used in our lab as an experimental platform for dexterous
manipulation.
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