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Abstract— The presented work goes one step further than
only combining data from different sensors. The corresponding
points of an image and a 3D point cloud are determined through
calibration. Color information is thereby assigned to every voxel
in the overlapping area of a stereo camera system and a laser
range finder. Then we analyze the image and search for the
locations, which are especially susceptible to errors by both
sensors. Depending on the ascertained situation, we try to
correct or minimize errors. By analyzing and interpreting the
images as well as removing errors we create an adaptive tool
which improves multi-sensor fusion. This allows us to correct
the fused data and to perfect the multi-modal sensor fusion
or to predict the locations where the sensor information is
vague or defective. The presented results demonstrate a clear
improvement over standard procedures and show that other
progress based on our work is possible.

I. INTRODUCTION

Multi-sensor fusion is a well-known topic in computer

science. For several decades now this technology has been

successfully used in different research areas like topography,

robotics, environment reconstruction, the building of virtual

worlds or object recognition. The manner as well as the used

sensors depend mostly on the scenario. In the following we

present some typical examples and explain them briefly.

The work in [1] presents a method for collision avoidance

based on the fusion of camera and sonar sensors for mobile

robots. Objects are recognized through the camera data

and edge detection algorithms compared/completed with the

sensor data. The estimation or/and calculation of the distance

to the found object is based on the position of the object in

the image and on sonar data. The performance is better than

that of single sensors.

For the same approach the authors in [2] use the fusion

of a laser range finder and sonar sensors. The optimal path

is used as an initial solution to avoid nearby obstacles. A

triangular area in front of the robot which is guaranteed to be

free of obstacles is computed and used to search for the next

drive commands. The characteristic attribute of this algorithm

is its quickness, which is essential for its application in the

RoboCup.

The use of sensor fusion for Simultaneous Localization

and Mapping (SLAM) is also widespread. This is possible

with the combination of many kinds of different sensors. For

example, in work [3] several laser scans are merged to permit

not only a SLAM estimate, but to reconstruct objects as well.

Furthermore, for humanoid robotics sensor fusion is an

indispensable tool. For balance and stability control the fusion

of information from gyroscopic and/or acceleration sensors

is needed. In [4] the input of two gyroscopic sensors is used

for active balancing. In [5] the gyroscopic and acceleration

sensor data are fused to ensure stable robot control.

In geodesy, the fusion of the 3D point cloud and camera

images has become very popular after the development of 3D

laser scanners. Mostly it is only required for understanding

what the point cloud represents or for taking the texture and

adopting it to the point cloud. A similar estimate is also

presented in [6]. The correspondence between the voxels of

a terrestrial laser scanner and image pixels is found through

a geometrical model of each sensor.

The examples named above present different kinds of

multi-sensor fusion, like cooperative, complementary or

redundant. Nevertheless, no interpretation of the data takes

place. Moreover, the data are not qualitatively compared or

evaluated.

Of course there were several estimates to compare the

acquired information. In our group [7] multi-sensor fusion

was realized by the use of fuzzy rules. Thus, for example,

tables can be found in an unknown environment. Besides,

the different data are weighted with regard to their quality

or significance and afterwards are fused. The use of the

Dempster-Shafer theory is also possible and was successfully

realized in [8].

Most presented methods allow for large tolerances con-

cerning the accuracy of the results, for example in outdoor

scenarios. For indoor scenarios and/or grasping is is not

possible to accept the same range of tolerances. In this

paper we present multi-sensor fusion with high accuracy. The

method opens possibilities for object detection, recognition

and grasping. The presented approach is evaluated with a

typical office table scene. The authors know of no other

research groups that analyze the data in the step after the

fusion and find potential error sources or locations. This

would make it possible to interpret the data in the next step

and to improve multi-modal sensor fusion or to predict the

locations where sensor information is vague or defective.

With the application to dynamic surroundings multi-sensor

fusion could automatically adapt itself to external conditions.

II. CHARACTERISTICS OF SINGLE SENSORS

The most important sensors for environment perception

are the camera and laser range finder systems. The following

list summarizes the problem areas of both sensors.

Camera:
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system and the laser range only the transformation from one

camera to the laser scanner is needed, as shown in fig. 3.

The original idea was to combine the calibration patterns

for the camera and the laser scanner. Basically we use the

typically checkered pattern which is extended with a 3D

structure. Because of the difficulties of most laser scanners

with black surfaces, as already mentioned, the checkered

pattern was renounced in the design of the calibration pattern.

The 3D calibration pattern consists of a planar surface, two

opposite so-called Y structures and some pins of different

length. The Y structures permit the ideal alignment of the

laser scanner. Their surfaces as well as those of the pins are

used later for the localization of the corresponding points

for the laser scanner. We use the color information for the

localization of corresponding pixels in the image (red lines

at the Y-structure and points at the front of the pins).

The model of the resulting 3D calibration body is shown

in fig. 4(a), the lateral view of the calibration body can be

seen in fig. 7(a). The pseudo code of the implemented sensor

fusion method is presented in algorithm 1, for more detail

see our publication in [9].

Algorithm 1 The sensor fusion algorithm

1: procedure FUSION(LRF , SCS)

2: The laser scanner is moved by the pan-tilt unit and

scans the environment in coarse steps.

3: Through changes in the depth information, our system

localizes the region of interest (ROI) and the changeover

from one to two teeth (or vice versa) in the Y-structure

and rescans it in finer steps to find the desired position.

4: Detection of the characteristic pattern for the correct

position of the laser scanner in relation to the calibration

body and moves the pan-tilt unit to that position.

5: Stopping the platform and acquiring a camera image.

6: Applying the color threshold value to the camera

image.

7: Calculating of corresponding points.

8: Rectification of both lines in relation to each other

(laser scanner and an image).

9: Calculation of transformation matrix between a laser

range finder and a camera (is independent of scene

structure).

10: Calculation of the overlapping area with help of

known geometrical parameters and computed fundamen-

tal matrix (the transformation matrix can be used in the

overlapping area only, otherwise the transformation would

cause an error and produce wrong correspondences).

11: Adopt the matrix to the point cloud and an image.

12: return partially colored point cloud

13: end procedure

When the parameters have been determined, the over-

lapping area has been calculated and the transformation is

unambiguous, adaptive sensor fusion can be accomplished.

The best and most accurate results were achieved with the

described calibration method by using a 3D calibration body.

Nevertheless the authors tested other calibration methods. For

example the Iterative Closest Point algorithms (ICP). The

difficulties are the different sizes of the resulting point clouds

and quality of the stereo camera depth results. The algorithm

temporarily delivers practical transformation, but often there

are no or inaccurate results. Repeatability was not given in

many cases, the calculation of meaningful transformation

cannot be guaranteed. The improvement of the algorithms by

merging characteristic local features from the information of

both sensors like edges or corners sounded very promising

and is under examination. The same applies to previously

segmented statical surfaces or segmentation from motion.

The authors are convinced that the use of a 3D calibration

body yields an accurate fusion result. The comparison with

well-known approaches in 2D image processing confirmed

this assumption.

IV. DATA INTERPRETATION

As already mentioned, the resulting depth information in

the overlapped areas is redundant and can be used to improve

the data of the early multi-sensor fusion. The point density

depends on the physical properties of the single components

and is shown for the laser scanner and its combination with

the stereo camera in fig. 5.

Therefore we employ the depth information to improve

the fusion data. To this end, the camera images are used

for detecting locations which are particularly susceptible to

errors of both sensors as describe before. The location can

be determined with standard algorithms of image processing

like a Median filter or a value comparison in the HSV color

space. For example, the retrieval of homogeneous regions can

be accomplished with Mean-Shift-segmentation or Similarity-

Measure-algorithms.

(a) (b)

Fig. 5. Point density for the simulated 3D laser range finder based on the
2D laser scanner and pan-tilt unit as well as their combination with a stereo
camera system.

The following table shows the choice of the sensor for the

depth information depending on the ascertained problems.
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Problems LRF SCS Avail. inform.

Homogeneous surfaces × – dLRF

Invalid values (LRF) – × dSCS+c+t

Tiny objects – × dLRF +dSCS+c+t

Black surfaces – × dSCS+c+t

Lighting conditions × – dLRF

Strong reflexions – – –

– × × dLRF +dSCS+c+t

Thereby LRF is an acronym for the laser scanner, SCS for the

stereo camera system, d for depth, c for color and t for texture

information. The depth information from × marked sensors

is preferred in the ascertained situation. Otherwise the more

exact data of the laser scanner are used. Using the knowledge
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Fig. 6. Simplified flow-chart of our 3D colored reconstruction system.

of the previous table, the implemented architecture is based

on the presented assumptions. Fig. 6 illustrates a simplified

flow-chart of our 3D colored reconstruction system.

The more sensor information about the surrounding exists

the more the accuracy and safety of the client applications

can be guaranteed. Consequently one of the best strategies for

the robot motion can be to find the position and orientation

related to the ROIs, that deliver all possible sensor information

with minimal errors. The problem is comparable to the Next

Best View problem in image processing.

Another approach can be the integration of further sensor

information, if the sensor information is exact, continuable

and reliable, like laser scanner data. For example, the second

laser scanner of our main platform is mounted on the arm.

There are two possibilities to integrate this data, one is

the presented calibration method, the another one is the

registration process. All fused data in this work could be

registered to the base frame of TASER. During the sensor

fusion the data from the camera system transform to the

frame of the laser scanner as described below. The laser

beams are registered to the coordinate system in the bottom

of the pan-tilt unit, see eq. 3.

⎡
⎢⎢⎣

c(ϕ)c(θ) −s(θ)c(ϕ) s(ϕ) −dzs(
ϕ
2
)

s(θ) c(θ) 0 0
−c(θ)s(ϕ) s(θ)s(ϕ) c(ϕ) −dzs(

ϕ
2
)c(ϕ

2
)

0 0 0 1

⎤
⎥⎥⎦ (3)

where c and s are cos and sin respectively, θ is the deflection

angle of the laser beams (multiple of angular resolution) and

ϕ is the current angle of the pan-tilt unit, dz is a vertical

vector to the coordinate origin.

With two further simple translations this frame can be

transformed to the base coordinate system of TASER.

V. EXPERIMENTAL RESULTS

For our experiments a perception platform developed by

us is used. The main platform consists of a 2D laser scanner,

a pan-tilt unit and a stereo camera system and is shown in

fig. 7(a). The right image of fig. 7(a) shows our calibration

(a)

(b)

Fig. 7. The upper image shows a laser scanner and a stereo camera
system mounted on the pan-tilt unit. The right image shows our calibration
arrangement. The lower image shows the service robot TASER, the main
platform of our group on the left. On the right the developed environment
perception system.

arrangement. The stereo camera system and the laser scanner

are both mounted on a pan-tilt unit with a displacement

between the optical axes (baseline) of approximately 0.08m.

The 2D laser scanner together with the movable platform

constitute the simulated 3D laser range finder. The setup

is similar to the platform mounted on TASER, the service

robot of our group. The fact that the robot is equipped with

a manipulator offers the possibility of not only recognizing

objects, but also manipulating them.

(a) (b)

Fig. 8. The left image shows the original image of the table scene used
for our initial experiments. The right image shows a robot arm as a moving
platform over a table scene.

For the second platform (see fig. 7(b)) we use the robot

arm Mitsubishi PA10-6C. This manipulator is a part of
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only one value per color channel. Another source of errors is

the Parallax effect which increases with the distance between

both sensors. An error is thereby produced the minimum of

which lies in the middle area and increases outwardly. In

contrast, the effect of Parallax decreases with an increasing

distance.

During the empiric experiments we assess a maximal error

of approximately 5 pixels in the horizontal and 3 pixels

in the vertical direction respectively. Besides, several table

scenes with differently placed objects were examined. The

propagation of the laser beam and pixel size in relation to

the distance as well as the maximal error resulting from it in

mm are summarized in fig. 12.

Fig. 13. Application of two common segmentation algorithms to the fused
images. A color segmentation algorithm (JSEG) is applied on the left and a
Sobel edge detector on the right.

The aim of the fusion was not only embellishment, but

to permit the use of more information for robotic tasks like

object recognition. In this sense we have applied two common

segmentation algorithms for object recognition to the resulting

images, color segmentation and edge detection. The results

are shown in fig. 13.

We use JSEG [10] and the Sobel [11] algorithm for color

segmentation and edge detection respectively. The quality

of the results is satisfactory and is absolutely comparable

with the results for the original images. After applying the

mentioned 2D segmentation algorithms and enhancement

of 3D the separated objects can even be used for possible

grasp calculation. Fig. 14 illustrates the grasp calculation

and simulation for the reconstructed simplified model of a

blue barrel in the original image. The color information was

removed after the segmentation for the better performance of

the grasp calculator. For more information about the grasp

calculator please see [12].

Fig. 14. The grasp calculation and simulation for the reconstructed simplified
model of a blue barrel in the original image. The color information was
removed after the segmentation for the better performance of the grasp
calculator.

The temporal performance of the whole system is linear,

directly proportional to the resolution of the pan-tilt unit and

the number of the 3D points.

VI. CONCLUSION AND DISCUSSION

In this paper, we proposed a perception system which

permits the adaptive fusion of a 3D laser scanner and a stereo

camera system. The result is an improved 3D-colored point

cloud.

The presented adaptive sensor fusion and interpretation

opens up enormous possibilities for robotics. First of all the

method is interesting for object recognition, but also for the

other robotics areas. The combination of a precise distance

measurement and color information permits the application of

several methods and data fusion on a high level. However, not

only perception but also the interaction with the environment

is possible. Due to the lower-error susceptibility and strong

decrease of external influences like lighting conditions, even

the safe interaction in human surroundings and with people

becomes realizable.
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