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Programming-by-Demonstration and Adaptation of Robot Skills by
Fuzzy-Time-Modeling

Rainer Palm, Senior Member IEEE, and Boyko Iliev, Member IEEE

Abstract—Complex robot tasks can be partitioned into motion
primitives or robot skills that can directly be learned and
recognized through Programming-by-Demonstration (PbD) by a
human operator who demonstrates a set of reference skills. Robot
motions are recorded by a data-capturing system and modeled
by a specific fuzzy clustering and modeling technique where
skill models use time instants as inputs and operator actions
as outputs. In the recognition phase the robot identifies the skill
shown by the operator in a novel test demonstration.

Skill models are updated online during the execution of skills
using the Broyden update formula. This method is extended for
fuzzy models especially for time cluster models. The updated
model is used for further executions of the same skill.

Index Terms—Programming-by-Demonstrations, Robot skills,
fuzzy modeling, Broyden update

I. INTRODUCTION

Robot skills are low-level motion and/or grasping capabili-
ties that constitute the basic building blocks of robot tasks.
One major challenge in robot programming is to be able
to program robot tasks in an easy and fast way with high
accuracy. Programming-by-Demonstration (PbD) is one such
approach that has the afore mentioned properties. In PbD tasks
are demonstrated as a sequence of skills by a human operator
who is equipped with data-capturing devices (e.g., data glove,
cameras, haptic devices etc.). While the demonstrator performs
a skill, the robot captures the motion data, analyzes it and
generates a robot-centered model of the demonstrated robot
skill. After having learned a number of skills the robot is
able to recognize skills in new test demonstrations. Finally,
motion trajectories and action/reaction patterns of the demon-
strated task are automatically generated by the robot using the
skill models learned before. This approach can be used for
industrial robots, prosthetics, humanoid service robots, remote
control and teleoperation. Selected skills are e.g. contour fol-
lowing, peg-in-hole insertion, handling or grasping of objects.

see [1]
Morrow and Khosla describe the generation of a library of

robot capabilities by analysis and identification of tasks [2].
Kaiser and Dillmann describe a neural net approach for the
initial skill learning and adaptation and reinforcement learning
for skill refinement [3]. Geib et. al. propose an approach to
integrate high-level artificial intelligence planning technology
with low-level robotic control [4]. Chen proposes the use
of hybrid dynamic systems for construction of task-level
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assembly skills from human demonstrations [5] . A general
framework for robot tasks and robot skills has been presented
by H. Liu where fuzzy qualitative kinematic parameters are
modeled by Gaussian Mixture Models [6].

Kwun Han and M. Veloso describe the recognition of robot
behaviors using Hidden Markov Models (HMM) to represent
and recognize strategic behaviors of robotic agents [7].

In [8] the recognition and teaching of robot skills by fuzzy
time-modeling is described. In the case of new data the skill
model will be changed offline so that the robot is enabled to
recognize the skill under the new conditions.

An important aspect is the change of environment conditions
while performing a skill. Here we consider two cases: The
first case concerns disturbances or small deviations between
learned and real world conditions. Small deviations can be
eliminated by conventional feedback control methods using
corresponding sensor information. The second case concerns
larger discrepancies between learned and real world conditions
caused by systematic changes of the robot environment. An
example is the contour following problem for welding or
gluing tasks. In this particular example the workpiece and the
contour may have changed its position or even its shape so that
a simple control strategy alone is not able to solve the problem.
In this case online model learning or model adaptation should
be introduced taking account the new situation.

The method described here is based on an iterative learning
of system models [9] especially on learning of Jacobians in
differential models which ends up with the so-called Broyden
update formula usually applied [10]. Learning of Jacobians
has been reported in [11] where an algorithm for adaptive
control of nonlinear multiple-input, multiple-output (MIMO)
static systems is proposed. A nonlinear system is represented
by a piecewise linear system model with a variable Jacobian
matrix which is updated by the Broyden method using a
fuzzy rule base. Jacobian learning for visual servoing can
be found in [12]. Both publications deal with vision-guided
robotic tracking of a moving target using a moving camera.
For fuzzy system models presented in this paper it is essential
that they consist of a set of fuzzily blended affine local models.
Iterative learning of a fuzzy model requires the equal-ranking
adaptation of each local model. Furthermore, the affine system
model has to be transformed into a representation which makes
a use of the Broyden update formula applicable. Some of these
problems have already been solved by Gorinevsky [13]. Our
work extends these ideas to general fuzzy models in particular
to fuzzy time cluster models.

The paper is organized as follows: In Section II the general
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approach to skill learning is outlined. A brief introduction
to fuzzy time-modeling of skills is discussed in Section III.
Section IV describes the segmentation of skills into phases,
the recognition of phases, and the decision process for the
classification of skills. Section V describes the development
of a Broyden update for fuzzy systems and online training
of time cluster models. Section VI presents simulations and
experimental results. The final Section VII draws some con-
clusions and directions for future work.

II. PROGRAMMING-BY-DEMONSTRATION OF ROBOT

SKILLS

Programming-by-Demonstration of robot skills requires the
following steps:
1. A library of skill models is generated by human demon-
stration of the individual skills.
2. A user demonstrates a task to the robot consisting of a
sequence of specific test skills.
3. Demonstrated test skills are compared with the trained skill
models in the library.
4. The robot recognizes the full task consisting of the newly
demonstrated skills.
5. The program of robot task including the recognized skills
is automatically generated.
For the training of skills two main tasks are needed to perform:
segmentation of human demonstrations into skill phases and
modeling of the segmented skill phases. Segmentation means
a partition of the data record into a sequence of episodes,
where each one contains a single skill phase. For the test of
skills three main tasks need to be performed: segmentation
of the human test demonstrations, phase recognition, and
skill classification. Phase recognition means to recognize the
phases performed in each episode. The third task is to connect
the recognized skill phases in such a way that a full skill can
be identified.

Each phase starts and ends with a discrete event initiated
either from a discrete sensor or from some preprocessing
unit of continuous sensor signals. The structure of a skill
can be described most appropriately by a hybrid automaton
in which the nodes represent the continuous phases and the
arcs the discrete transitions (switches) between them. The
hybrid process is event-controlled [14] and is assumed to be
stable both within the individual phases and with respect to
the switching behavior between them. On the other hand the
purpose of segmentation is to identify the discrete instants of
time for the switches to occur in order to cut the whole skill
into phases during demonstration.

The following section deals with fuzzy time-modeling in
general that is used both for phase modeling and segmentation.

III. FUZZY TIME-MODELING

Recognition of a phase of a skill is achieved by a model
that reflects the behavior of the operator’s end effector in
time during the episode (phase) considered. To collect enough
samples of every skill phase each demonstration is repeated
several times. From those data, models for each particular

phase are developed by fuzzy time clustering and Takagi-
Sugeno fuzzy modeling ([15], [16]). Fuzzy time clustering
means that time instants are considered as model inputs and
end effector coordinates as model outputs. Let the evolution
of the end effector coordinate be defined by

x(𝑡) = f(𝑡) (1)

where x(𝑡) ∈ 𝑅3, f ∈ 𝑅3, and 𝑡 ∈ 𝑅+. Furthermore, linearize
(1) at selected time points 𝑡𝑖

x(𝑡) = x(𝑡𝑖) +
Δf(𝑡)

Δ𝑡
∣𝑡𝑖 ⋅ (𝑡− 𝑡𝑖) (2)

which is a linear equation in 𝑡,

x(𝑡) = A𝑖 ⋅ 𝑡+ d𝑖 (3)

where A𝑖 =
Δf(𝑡)
Δ𝑡 ∣𝑡𝑖 ∈ 𝑅3 and d𝑖 = x(𝑡𝑖)− Δf(𝑡)

Δ𝑡 ∣𝑡𝑖 ⋅𝑡𝑖 ∈ 𝑅3.
Using (3) as a local linear model one can express (1) in terms
of a Takagi-Sugeno fuzzy model [17]

x(𝑡) =

𝑐∑
𝑖=1

𝑤𝑖(𝑡) ⋅ (A𝑖 ⋅ 𝑡+ d𝑖) (4)

𝑤𝑖(𝑡) ∈ [0, 1] is the degree of membership of a time point 𝑡 to
a cluster with the cluster center 𝑡𝑖, 𝑐 is the number of clusters,
and

∑𝑐
𝑖=1 𝑤𝑖(𝑡) = 1.

Let x = [𝑥1, 𝑥2, 𝑥3]
𝑇 be the 3 end effector position coor-

dinates and 𝑡 the time. The general clustering and modeling
steps are

∙ Select an appropriate number of local linear models (data
clusters) 𝑐

∙ Find 𝑐 cluster centers (𝑡𝑖, 𝑥1𝑖, 𝑥2𝑖, 𝑥3𝑖), 𝑖 = 1...𝑐, in the
product space of the data quadruples (𝑡, 𝑥1, 𝑥2, 𝑥3) by
Fuzzy-c-elliptotype clustering

∙ Find the corresponding fuzzy regions in the space of
input data (𝑡) by projection of the clusters of the product
space into Gustafson-Kessel clusters (GK) within the
input space [18]

∙ Calculate 𝑐 local linear (affine) models (4) using the GK
clusters from step 2.

The membership degree 𝑤𝑖(𝑡) of an input data point 𝑡 in
an input cluster 𝐶𝑖 is calculated by

𝑤𝑖(𝑡) =
1

𝑐∑
𝑗=1

(
(𝑡−𝑡𝑖)𝑇𝑀𝑖𝑝𝑟𝑜(𝑡−𝑡𝑖)

(𝑡−𝑡𝑗)𝑇𝑀𝑗𝑝𝑟𝑜(𝑡−𝑡𝑗
)

1
�̃�𝑝𝑟𝑜𝑗−1

(5)

The projected cluster centers 𝑡𝑖 and the induced matrices
𝑀𝑖𝑝𝑟𝑜 define the input clusters 𝐶𝑖 (𝑖 = 1 . . . 𝑐). The parameter
�̃�𝑝𝑟𝑜 > 1 determines the fuzziness of an individual cluster.

IV. RECOGNITION OF ROBOT SKILLS

In a first step the segmentation of a skill into phases is
described. The second step addresses the recognition of phases
(or sub-skills). The third step deals with the recognition of
skills using an apriori known number of phases. Finally, the
recognition of skills with an unknown number of phases is
discussed.
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A. Segmentation principle

Let for simplicity the signals of a skill be the end effector
position coordinates x(𝑡) ∈ 𝑅3 and the forces f(𝑡) ∈ 𝑅3 in
the end effector. In order to generate the ’events’ determining
the time bounds for the phases, x(𝑡) is differentiated twice and
f(𝑡) only ones by time. The absolute values of the resulting
vectors are collected in

X(𝑡) = [∣ẍ(𝑡)∣𝑇 , ∣ḟ(𝑡)∣𝑇 ]𝑇 . (6)

For a segmentation we need the time-discrete case

X̃ = [X(𝑡1)...X(𝑡𝑛)] ∈ 𝑅6×𝑛. (7)

Further define a vector of bounds B > 0 ∈ 𝑅6 above
which X(𝑡𝑖) are counted as ’events’. Then a vector I =
[𝐼1...𝐼𝑘...𝐼𝑚]𝑇 is generated where 𝐼𝑘 are discrete time stamps
𝑡𝑖 for which at least one component of X(𝑡𝑖) lies above the
corresponding component of the vector of bounds B.

𝐼𝑘 = 𝑡𝑖 𝑖𝑓 X(𝑡𝑖) > B. (8)

The next step is to select the number of time clusters 𝑐
and find the clusters by time clustering for the data Y =
([X(𝐼1); 𝐼1]...[X(𝐼𝑘); 𝐼𝑘]...[X(𝐼𝑚); 𝐼𝑚]). Y is a combination
of ’events’ X(𝑡𝑖) and their corresponding time instants 𝐼𝑘.
Once the time clusters are found the skill can be cut at these
time instants into phases. However, for complicated skills the
number of phases 𝑐 might not be known in advance. Therefore
we choose a higher number 𝑐𝑝ℎ and merge close cluster centers
into one.

B. Recognition of phases using the distance between fuzzy
clusters

Let the number of clusters 𝑐𝑝ℎ for each phase of the model
be the same. Then each duration 𝑇𝑙 (𝑙 = 1...𝐿) of the 𝑙-th
phase is divided into 𝑐𝑝ℎ−1 time intervals Δ𝑡𝑖, 𝑖 = 2...𝑐𝑝ℎ of
the same length. Let the phases be executed in an environment
comparable with the modeled phase to avoid calibration and
re-scaling procedures. Furthermore let

𝑉𝑟𝑒𝑓,𝑝ℎ𝑙 = [X1, . . . ,X𝑖, . . . ,X𝑐𝑝ℎ ]𝑟𝑒𝑓,𝑝ℎ𝑙
(9)

X𝑖 = [𝑥, 𝑦, 𝑧, 𝑓𝑥, 𝑓𝑦, 𝑓𝑧]
𝑇
𝑖

where matrix 𝑉𝑟𝑒𝑓,𝑝ℎ𝑙 includes the output cluster centers X𝑖

for the 𝑙-th phase reference model.
A test model of the phase to be classified is then formed

by matrix

𝑉𝑡𝑒𝑠𝑡,𝑝ℎ = [X1, . . . ,X𝑖, . . . ,X𝑐𝑝ℎ ]𝑡𝑒𝑠𝑡,𝑝ℎ (10)

A decision about the type of phase is made by the Euclidean
matrix norm

𝑁𝑙 = ∣∣𝑉𝑟𝑒𝑓,𝑝ℎ𝑙 − 𝑉𝑡𝑒𝑠𝑡,𝑝ℎ∣∣ (11)

Once the unknown phase is classified to the phase model with
the smallest norm 𝑚𝑖𝑛(𝑁𝑙), 𝑙 = 1...𝐿 then the recognition of
the phase is finished.

C. Recognition of skills using an a priori known number of
phases

Once the phases of a test skill are recognized (identified)
one should be able to recognize the skill as a whole and finally
to reconstruct a sequence of phases (hybrid automaton) that
represents the skill. For this purpose a list of possible skills and
their phases should be produced. Table I and Figs. 1,2, and 3
show 3 robot skills and 7 skill phases and the correspondence
among them.

TABLE I
SKILLS AND PHASES

Phases Skills: handling contour following assembly

1. Grasp object x x
2. Free motion x
3. Search contact x x x
4. Keep contact x
5. Follow with contact x x x
6. Peg-in hole x
7. release object/contact x x x

Fig. 1. Handling skill

Fig. 2. Contour following skill

Fig. 3. Assembly skill
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D. Recognition of skills with an a priori unknown number of
phases

In the last subsections the recognition of skills with a
priori known phases per skill has been discussed. However,
experiments have shown that for a certain class of skills a
clear distinction among phases is difficult to obtain. One of
these ’difficult’ classes is assembly where transitions among
phases like ’follow with contact’ and ’peg-in-hole insertion’
are uncertain to detect by the sensors available and the
segmentation software. This can lead to a mismatch among
the number of phases for the reference skill and the test skill.
This in turn makes a proper comparison and recognition of
phases impossible. A solution to this problem is to define a
constant number of clusters for the whole skill to be the same
for each skill. Then, instead of comparing the cluster centers of
phases we can perform a comparison of the cluster centers of
the total skills. This can be done by the following assumptions:

- The number of phases is restricted by a predefined upper
bound

- The total number of clusters for a skill is defined in
advance and is identical for each skill

- The modeling error for a skill has an upper bound 𝑒𝑠𝑘𝑖𝑙𝑙 =∫
𝑡
∣[x, f ]− [x, f ]𝑚𝑜𝑑𝑒𝑙∣𝑑𝑡 ≤ 𝑒𝑚𝑎𝑥

The total number of clusters 𝑐𝑠𝑘𝑖𝑙𝑙 for a skill can be determined
as follow: Let 𝑇𝑠𝑘𝑖𝑙𝑙𝑚𝑖𝑛 be the minimum number of data points
among all skills to be considered. Let, furthermore, 𝑐𝑠𝑔,𝑚𝑎𝑥−1
be the maximum number of phases. If we require at least two
time clusters per phase and allow the maximum total number
of clusters to be half of 𝑇𝑠𝑘𝑖𝑙𝑙𝑚𝑖𝑛 then we obtain the following
conservative bounds for 𝑐𝑠𝑘𝑖𝑙𝑙

2 ⋅ (𝑐𝑠𝑔,𝑚𝑎𝑥 − 1) ≤ 𝑐𝑠𝑘𝑖𝑙𝑙 ≤ 𝑇𝑠𝑘𝑖𝑙𝑙𝑚𝑖𝑛/2 (12)

from which 𝑐𝑠𝑘𝑖𝑙𝑙 can be determined taking into account the
upper bound 𝑒𝑠𝑘𝑖𝑙𝑙 ≤ 𝑒𝑚𝑎𝑥.

The next step is to compute the number 𝑐𝑝ℎ,𝑖𝑗 for the 𝑖𝑗
phases of a skill where 𝑖𝑗 denotes the 𝑖-th phase of the 𝑗-th
skill. This number is obtained by the relation between the time
length 𝑇𝑝ℎ𝑎𝑠𝑒,𝑖𝑗 of the 𝑖𝑗-th phase and the total time length
𝑇𝑠𝑘𝑖𝑙𝑙,𝑗 of the 𝑗-th skill. A simple calculation between the time
lengths and the cluster numbers yields

𝑐𝑠𝑔𝑖𝑗 =

[
𝑇𝑝ℎ𝑎𝑠𝑒,𝑖𝑗

𝑇𝑠𝑘𝑖𝑙𝑙,𝑗
⋅ 𝑐𝑠𝑘𝑖𝑙𝑙

]
(13)

where the brackets [...] mean a round-operation to the
nearest integer. Such a round-operation can lead to a difference
between the sum over all clusters

∑
𝑖 𝑐𝑠𝑔𝑖𝑗 and the total

number of clusters 𝑐𝑠𝑘𝑖𝑙𝑙. In order to avoid any mismatch a
possible difference is added/subtracted to/from that phase with
the maximum number of clusters 𝑐𝑠𝑔𝑖𝑗 .

E. Recognition of skills using the distance between fuzzy
clusters

Recognition of a skill is performed in a similar way like
with models (9) and (10). Let the model of the 𝑘-th skill be

composed by the sequence of the corresponding phase models
𝑘 = 1...𝐾

𝑉𝑟𝑒𝑓,𝑠𝑘𝑘 = [𝑉𝑟𝑒𝑓,𝑝ℎ1...𝑉𝑟𝑒𝑓,𝑝ℎ𝑚]; 𝑚 = 𝑐𝑝ℎ,𝑖𝑗 𝑟𝑒𝑓
𝑉𝑟𝑒𝑓,𝑝ℎ𝑙 = [X1, . . . ,X𝑖, . . . ,X𝑐𝑝ℎ ]𝑟𝑒𝑓,𝑝ℎ𝑙

; 𝑙 = 1...𝑚

X𝑖 = [𝑥, 𝑦, 𝑧, 𝑓𝑥, 𝑓𝑦, 𝑓𝑧]
𝑇
𝑖 (14)

Furthermore, let the test skill be composed by a sequence of
phase models being different from (14)

𝑉𝑡𝑒𝑠𝑡,𝑠𝑘𝑘 = [𝑉𝑡𝑒𝑠𝑡,𝑝ℎ1...𝑉𝑡𝑒𝑠𝑡,𝑝ℎ𝑛]; 𝑛 = 𝑐𝑝ℎ,𝑖𝑗 𝑡𝑒𝑠𝑡
𝑉𝑡𝑒𝑠𝑡,𝑝ℎ𝑙 = [X1, . . . ,X𝑖, . . . ,X𝑐𝑝ℎ ]𝑡𝑒𝑠𝑡,𝑝ℎ𝑙

; 𝑙 = 1...𝑛

X𝑖 = [𝑥, 𝑦, 𝑧, 𝑓𝑥, 𝑓𝑦, 𝑓𝑧]
𝑇
𝑖 (15)

A decision about the type of test skill is made by applying
the Euclidean matrix norm

𝑁𝑘 = ∣∣𝑉𝑟𝑒𝑓,𝑠𝑘𝑘 − 𝑉𝑡𝑒𝑠𝑡,𝑠𝑘∣∣ (16)

Once the unknown skill is classified to the skill reference
model with the smallest norm 𝑚𝑖𝑛(𝑁𝑘), 𝑘 = 1...𝐾, then the
recognition of the skill is finished.

V. ON-LINE TRAINING OF TIME CLUSTER MODELS USING

THE BROYDEN UPDATE

Online training of models addresses the correction of drastic
differences between learned and real world conditions which
occur during the execution of skills by the robot. These
differences are hard to be eliminated just by a simple control
strategy. Instead, based on sensor information the models are
changed online by some optimization procedure. As already
mentioned in Sect. I this is done by the Broyden update
formula for Jacobians. After the online training of a skill
model the updated model is used for further executions of the
same skill by the robot. Furthermore, an additional control
loop is responsible to cope with remaining uncertainties and
disturbances.

In what follows, first the general principle of the update
process will be outlined. In a next step the learning principle
is extended to fuzzy system models especially for fuzzy time
cluster models.

A. The updating principle

The output 𝑌 ∈ ℜ𝑛,1 of a real system let be described by

𝑌 = 𝑓(𝑡) (17)

Furthermore, let

𝑌 = 𝐺(𝜏, 𝑡) ⋅ 𝑈 + 𝑍(𝜏, 𝑡) (18)

𝑌 ,𝑍 ∈ ℜ𝑛,1; 𝑈 ∈ ℜ𝑚,1; 𝐺 ∈ ℜ𝑛,𝑚

be the corresponding model with
𝜏 ∈ ℜ1 - optimization time
𝑡 ∈ ℜ1 - real time
To apply the Broyden update for Jacobians we rewrite (18) by
the substitution

Θ = [𝑍/𝑐 𝐺] ∈ ℜ𝑛,𝑚+1, 𝑊 = [𝑐 𝑈𝑇 ]𝑇 ∈ ℜ𝑚+1,1

(19)
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leading to
𝑌 = Θ ⋅𝑊 (20)

with 𝑐 > 0 as a constant parameter to be defined. To minimize
the error between the outputs of the real system and the model
a quadratic Lyapunov function is formulated

𝑉 (𝜏) =
1

2
(𝑌 − 𝑌 )𝑇 (𝑌 − 𝑌 ) → 𝑚𝑖𝑛 (21)

Derivation of (21) by 𝜏 yields

𝑉 ′ = −(Θ′𝑊 )𝑇 (𝑌 − 𝑌 ) ≤ 0 (22)

where 𝑉 ′ = ∂𝑉
∂𝜏 and Θ′𝑊 ∈ ℜ𝑛,1. 𝑉 ′ ≤ 0 is required for

convergence of the optimization.
In order to meet (22) we choose

Θ′𝑊 = �̃�(𝑌 − 𝑌 ) (23)

from which we obtain

Θ′ = �̃�(𝑌 − 𝑌 )
𝑊𝑇

𝑊𝑇𝑊
(24)

where �̃� > 0 is the learning rate. Substituting (19) into (24)
leads to

[𝑍 ′/𝑐 𝐺′] = �̃�(𝑌 − 𝑌 )
[𝑐 𝑈𝑇 ]

𝑐2 + 𝑈𝑇𝑈
(25)

Finally we obtain the updating law for 𝑍 and 𝐺

𝑍 ′ = �̃�(𝑌 − 𝑌 )
𝑐2

𝑐2 + 𝑈𝑇𝑈
; (26)

𝐺′ = �̃�(𝑌 − 𝑌 )
𝑈𝑇

𝑐2 + 𝑈𝑇𝑈

B. The discrete case

The discrete case follows directly from (26)

𝑍(𝑘+1) = 𝑍(𝑘) + 𝜆(𝑌 (𝑘) − 𝑌 (𝑘))
𝑐2

𝑐2 + 𝑈 (𝑘)𝑇𝑈 (𝑘)
(27)

𝐺(𝑘+1) = 𝐺(𝑘) + 𝜆(𝑌 (𝑘) − 𝑌 (𝑘))
𝑈 (𝑘)𝑇

𝑐2 + 𝑈 (𝑘)𝑇𝑈 (𝑘)

where
𝑍 ′ ≈ Δ𝑍/Δ𝜏 , 𝐺′ ≈ Δ𝐺/Δ𝜏 , Δ𝑍 = 𝑍(𝑘+1) − 𝑍(𝑘), Δ𝐺 =
𝐺(𝑘+1) −𝐺(𝑘), Δ𝜏 = 𝜏 (𝑘+1) − 𝜏 (𝑘), 𝜆 = �̃�Δ𝜏 . Superscript 𝑘
denotes the 𝑘th optimization step.

C. The fuzzy case

Theorem:
For the fuzzy system

𝑌 (𝑘) =

𝑐𝑙∑
𝑖=1

𝑤𝑖(𝑡
(𝑘))(𝐴

(𝑘)
𝑖 𝑡(𝑘) +𝐵

(𝑘)
𝑖 ) (28)

with
𝑐𝑙 - number of fuzzy clusters
𝑘 - adaptation step

we obtain

𝐵
(𝑘+1)
𝑖 = 𝐵

(𝑘)
𝑖 + 𝜆(𝑌 (𝑘) − 𝑌 (𝑘))

𝑤𝑖𝑐
2∑𝑐𝑙

𝑖=1 𝑤
2
𝑖 (𝑐

2 + 𝑡(𝑘)
2
)

(29)

𝐴
(𝑘+1)
𝑖 = 𝐴

(𝑘)
𝑖 + 𝜆(𝑌 (𝑘) − 𝑌 (𝑘))

𝑤𝑖𝑡
(𝑘)∑𝑐𝑙

𝑖=1 𝑤
2
𝑖 (𝑐

2 + 𝑡(𝑘)
2
)

Proof: A general fuzzy system

𝑌 =

𝑐𝑙∑
𝑖=1

𝑤𝑖(𝑈)(𝐺𝑖𝑈 + 𝑍𝑖) (30)

where 𝑤𝑖(𝑈) ∈ [0, 1] is the degree of membership of 𝑈 to a
cluster with the cluster center 𝑈 = 𝑈𝑖. 𝑐𝑙 is the number of
clusters, and

∑𝑐𝑙
𝑖=1 𝑤𝑖(𝑈) = 1 is rewritten into

𝑌 = Θ ⋅ Φ(𝑝, 𝑈) (31)

where

Θ = [[𝑍1/𝑐 𝐺1], ..., [𝑍𝑐𝑙/𝑐 𝐺𝑐𝑙 ]] (32)

Φ(𝑝) = [𝑤1, ..., 𝑤𝑐𝑙 ]
𝑇 ∈ ℜ𝑐𝑙,1

and

Φ(𝑝, 𝑈) = Φ(𝑝)⊗𝑊 = (33)

[[𝑤1𝑐 𝑤1𝑈
𝑇 ], ..., [𝑤𝑐𝑙𝑐 𝑤𝑐𝑙𝑈

𝑇 ]]
𝑇

with ⊗ as Kronecker (direct matrix) product.
In (24) we replace 𝑊 by Φ(𝑝, 𝑈)

Θ′ = �̃�(𝑌 − 𝑌 )
Φ(𝑝, 𝑈)𝑇

Φ(𝑝, 𝑈)𝑇Φ(𝑝, 𝑈)
(34)

which can be rewritten into

Θ′ = [[𝑍 ′
1/𝑐 𝐺′

1], ..., [𝑍
′
𝑐𝑙
/𝑐 𝐺′

𝑐𝑙
]] = (35)

𝜆

∣∣Φ(𝑝, 𝑈)∣∣2 (𝑌 − 𝑌 )[[𝑤1𝑐 𝑤1𝑈
𝑇 ], ..., [𝑤𝑐𝑙𝑐 𝑤𝑐𝑙𝑈

𝑇 ]]

from which we get

𝑍 ′
𝑖 = 𝜆(𝑌 − 𝑌 )

𝑤𝑖𝑐
2

∣∣Φ(𝑝, 𝑈)∣∣2 ; (36)

𝐺′
𝑖 = 𝜆(𝑌 − 𝑌 )

𝑤𝑖𝑈
𝑇

∣∣Φ(𝑝, 𝑈)∣∣2

where ∣∣Φ(𝑝, 𝑈)∣∣2 =
∑𝑐𝑙

𝑖=1 𝑤𝑖
2(𝑐2 + 𝑈𝑇𝑈). By using the

substitutions 𝐵𝑖 = 𝑍𝑖, 𝐴𝑖 = 𝐺𝑖, 𝑡 = 𝑈 and discretizing (36)
we finally obtain (29).
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VI. EXPERIMENTS AND SIMULATIONS

A. Recognition of skills

The experimental platform comprises a data glove with
diodes mounted at the fingertips and links, see Fig. 4. A system
of 5 stereo cameras takes records of the positions of the diodes
so that the position of hand and fingers can be tracked. In
addition, tactile sensors are mounted at each fingertip to detect
the contact between fingertips and objects. In the experiment
only the tip of the index finger is tracked in order to identify
the contour followed by this finger. The experiments include
contour following examples using different contours running
at different speeds. We recorded 10 samples for each skill
to perform a reliable modeling. Each example consists of
three phases: the approach phase, the contour following phase,
and the retract phase. The experiment starts with the index
fingertip being in contact with a defined starting position at
a distance from the contour. In the approach phase the finger
moves towards the starting point of the contour. In the contour
following phase the index finger moves along the path while
the contact is preserved until the end of the contour is reached.
During the retract phase there is no contact until the index
finger reaches again the start location. The experiments can be
divided into 3 groups see Table II. We recorded 10 samples
for each skill to perform a reliable modeling.

TABLE II
EXPERIMENTS

Straight lines Meanders
1. slow speed (see Fig. 5) 7. meander slow (see Fig. 6)
2. fast speed 8. meander fast
3. ramp downhill slow Loops
4. ramp downhill fast 9. loop slow 1 (see Fig. 7)
5. ramp uphill slow 10. loop fast 1
6. ramp uphill fast

Fig. 4. Experiment with a meander-like contour

Three modeling examples are shown in Figs.5 - 7. The blue
curves represent the modeled phases whereas the red curves
represent the original data. Each skill phase is modeled by 15
cluster centers. The crosses depict the cluster centers. It can
be observed that the modeling/approximation quality of the
fuzzy time models is excellent. The partition of the skill into
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Fig. 5. Contour following: line

0
50

100
150

200
250

300
350

300

400

500

600

700
0

50

100

150

200

250

300

350

400

xy

z

approach phase 

retract phase 

contour following
        phase    

 

Fig. 6. Contour following: meander

phases has been done using the forces applied to the tip of the
index finger. Figure 8 shows the time plots for the meander
experiment 7. Using force 𝑓 applied to the fingertip and its
derivative 𝑑𝑓 the segmentation can be obtained very easily
because of the distinct derivatives of the force signals 𝑑𝑓 . The
recognition of skills have been achieved by comparing each
test skill with all model skills. Since we only discuss contour
following experiments, the norms over the total skill have
been computed instead of considering the phases separately.
The results are shown in Table III. To read this table, let us
consider experiment 3, ramp downhill slow, for example (3rd
row). Compared to a model skill of the same type the norm of
the differences between model and test skill is near zero. The

TABLE III
IDENTIFICATION RESULTS, − MEANS < 0.1

skill 1 2 3 4 5 6 7 8 9 10

1 - 0.2 0.6 0.5 0.6 0.4 0.7 0.9 1.8 1.8
2 0.2 - 0.7 0.6 0.6 0.5 0.7 0.9 1.8 1.8
3 0.5 0.7 - 0.3 0.8 0.6 0.9 1.0 1.9 1.8
4 0.5 0.6 0.3 - 0.8 0.6 0.8 0.9 1.8 1.8
5 0.6 0.6 0.8 0.8 - 0.5 0.9 1.0 1.9 1.9
6 0.4 0.5 0.6 0.6 0.5 - 0.8 1.0 1.8 1.9
7 0.7 0.7 0.9 0.8 0.9 0.8 - 0.4 1.4 1.4
8 0.9 0.9 1.0 0.9 1.0 1.0 0.4 - 1.5 1.3
9 1.8 1.8 1.9 1.8 1.9 1.8 1.4 1.5 - 0.4
10 1.8 1.8 1.8 1.8 1.9 1.9 1.4 1.4 0.4 -
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Fig. 7. Contour following: loop
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Fig. 8. Contour following: loop, time plots

next higher norm difference can be observed for experiment
4, ramp downhill fast. This corresponds completely with the
idea that similarity of trajectories should lead to small norm
differences. Going through all 11 experiments it turns out
that almost all contour following skills can be identified. One
exception is experiment 6 where skill 1 or 2 are identified
instead of skill 5 as expected. It can also be noticed that the
groups ”A: Straight lines”, ”B: Meander” and ”C: Loops” can
be significantly distinguished from one another. Furthermore,
one can see that, from the recognition point of view, groups
A and B are more related than B and C or A and C.

B. Updating of models

Updating of a skill model is tested by the simulation of a
contour following process with the steps:

1. Demonstration of the contour following process along an
flat surface

2. Modeling of the three phases: approach, follow contour,
retract

3. Following of the flat surface by the robot using the skill
model

4. Following of a wavy and rising slope by the robot using
the old skill model for the flat surface (see Fig. 9 )

5. Following the new surface by updating the old skill model
6. Following the new surface using the new skill model

Fig. 9. Change of contour from plane to ripple

Fig. 10. Change of contour: results

7. Following the new surface using the new skill model and
an additional control loop

Notice that in this simulation only phase 2 is updated. The
approach phase 1 persists until the contact force ∣𝑓𝑚𝑒𝑎𝑠𝑚∣ <
∣𝑓0∣ where ∣𝑓0∣ is a minimal force above which the contact
between robot tool and object (surface) is established and
phase 2 begins. The contact force 𝑓𝑚𝑒𝑎𝑠𝑚 is simulated as a
spring force 𝑓𝑚𝑒𝑎𝑠𝑚 = 𝐾Δ𝑥, where
𝐾 - stiffness parameter
Δ𝑥 - deviation of position
Phase 2 is the actual contour following part of the skill during
which a desired contact force 𝑓𝑑 = 1𝑁 is required. After
phase 2 it follows the retract phase 3 which is, for an flat
surface, attended with a loss of contact between tool and
surface. However because of the new condition of a rising
slope, tool and surface still keep in contact. Fig. 10 a shows
the result for phase 2 before the model update. Because of the
rising slope of the surface and the use of the old model, high
contact forces are the result. Fig. 10 b shows the contact forces
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during model adaptation. Fig. 10 c shows the behavior after
adaptation with no further control included. This plot shows
that changing the model according to the new conditions leads
to an acceptable result. This result is further improved by a PD
- force controller (Fig. 10 d) plus a feedforward control term
( Fig. 10 e) consisting of an additional position term acting in
the direction of the surface.

To further improve the contour following results the updat-
ing procedure was performed with a lower speed. Here the
robot has more time to adapt to the new contour. Once the
contour model has been updated the real contour following
process can run with the original higher speed. Figure 11
shows the results where the modeling speed was half of the
real speed of the contouring operation. Figure 11 a shows the
result after adaptation with slow speed but with no control
included. Figures 11 b and 11 c show the results with a
PD-force controller and with an additional feedforward term,
respectively. Comparing the results from Figures 10 e and 11 c
we can notice a further improvement of the contour following
quality for a slow speed of adaptation.

Fig. 11. Change of contour: results1

VII. CONCLUSIONS

A new approach to Programming-by-Demonstration of ma-
nipulation and handling tasks using skills based on fuzzy
time clustering has been presented. The advantages of the
method are: modeling and recognition of robot skills with both
continuous-time and discrete-time characteristics and excellent
modeling accuracy. In this context the focus is directed to
the skills ”handling”, ”contour following” and ”assembly”.
Skills are partitioned into phases and their modeling by fuzzy
time clustering is discussed. Phases and skills are recognized
by comparing fuzzy time clusters of model skills and test
skills. Experiments with human demonstrations of different
contouring tasks (”straight line”, ”meander”, or ”loop” ) show
very good up to excellent modeling and recognition results.

The goal of online training of models is a correction of
differences between learned and real world conditions during
the execution of skills by the robot. Based on sensor informa-
tion the old models are changed online by using the Broyden
update formula for Jacobians. This method was extended for
fuzzy models especially for time cluster models. The updated
models are used for further executions of the same skill by

the robot. After that, an additional control loop copes with the
remaining uncertainties and disturbances. Simulation results
show the practicability of the method presented. In the future,
the recognition of skills using fuzzy time modeling and hybrid
automata will be developed and extended to different test
persons. Updating of fuzzy system models will keep being
an important focus in the future. A further focus will be the
integration of high-level AI planning techniques with low-level
robotic skills in a common modeling framework.

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of
robot learning from demonstration. Robotics and Autonomous Systems.,
Vol 57:469–483, 2009.

[2] J. D. Morrow and P. K. Khosla. Manipulation task primitives for
composing robot skills. Proceedings of the 1997 IEEE Intemational
Conference on Robotics and Automation, Albuquerque, New Mexico,
pages 3354–3359, 1997.

[3] M. Kaiser and R. Dillmann. Building elementary robot skills from
human demonstration. Proceedings of the 1996 IEEE Intemational
Conference on Robotics and Automation, Minneapolis, Minnesota, 1996.

[4] C. Geib, K. Mourao, R. Petrick, N. Pugeault, M. Steedman, N. Krueger,
and F. Woergoetter. Object action complexes as an interface for
planning and robot control. In Proc. IEEE RAS Int Conf. Humanoid
Robots(Genova), Genova, Dec. 4-6 2006. IEEE, IEEE.

[5] J. Chen. Constructing task-level assembly strategies in robot program-
ming by demonstration. Int. Journal of Robotic Research, 24:1073–1085,
December 2005.

[6] H. Liu. A fuzzy qualitative framework for connecting robot qualita-
tive and quantitative representations. IEEE Trans. on Fuzzy Systems,
16(6):1522–1530, 2008.

[7] Kwun Han and M. Veloso. Automated robot behavior recognition.
Proceedings of the 1999 ijcai Conference, 1999.

[8] R. Palm, B. Iliev, B. Kadmiry, and D. Driankov. Recognition and
teaching of robot skills by fuzzy time-modeling. In Proceedings
IFSA/EUSFLAT 2009, Lisbon, July 20-24 2009. IFSA/EUSFLAT.

[9] Hyo-Sung Ahn, Yang Quan Chen, and K. L. Moore. Iterative learning
control: Brief survey and categorization. IEEE Trans. on Syst., Man, and
Cybern. Part C: Applications and Reviews., VOL. 37, NO. 6:1099–1121,
NOVEMBER 2007.

[10] C.G. Broyden. A class of methods for solving nonlinear simultanuous
equations. Mathematics of Computation, Vol. 19, No. 92:577–593, Oct.
1965.

[11] D. P. Filev, S. Bharitkar, and Meng-Fu Tsai. Nonlinear control of static
systems with unsupervised learning of the initial conditions. In 18th
Intern. Conf. of the North American Fuzzy Informantion Processing
Society - NAFIPS, New York, NY,USA, June 10-12 1999. NAFIPS.

[12] N. Mansard, M. Lopes, J. Santos-Victor, and F. Chaumette. Jacobian
learning methods for tasks sequencing in visual servoing. In Proceedings
of the 2006 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Beijing, China, October 9 - 15 2006. ASME.

[13] D. Gorinevsky. An approach to parametric nonlinear least square
optimization and application to task-level learning control. IEEE
TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 7:912–
927, JULY 1997.

[14] M.S.Branicky, V.S.Borkar, and S.K.Mitter. A unified framework for
hybrid control: Background, model, and theory. Proceedings of the 11th
Intern. Conference on Analysis ond Optimization of Systems. INRIA.
France, June 15-17, 1994.

[15] R. Palm and Ch. Stutz. Open loop dynamic trajectory generator for a
fuzzy gain scheduler. Engineering Applications of Artificial Intelligence,
Vol. 16:213–225, 2003.

[16] R. Palm, B. Iliev, and B. Kadmiry. Recognition of human grasps by
time-clustering and fuzzy modeling. Robotics and Autonomous Systems,
Vol. 57, No. 5.:484–495, 2009.

[17] T. Takagi and M. Sugeno. Identification of systems and its applications
to modeling and control. IEEE Trans. on Syst., Man, and Cyb., Vol.
SMC-15. No.1:116–132, January/February 1985.

[18] D.E. Gustafson and W.C. Kessel. Fuzzy clustering with a fuzzy
covariance matrix. Proceedings of the 1979 IEEE CDC, pages 761–
766, 1979.

8




