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Abstract

The first Fundamental Theorem of Asset Pricing establishes the equivalence between the absence of arbitrage in financial
markets and the existence of Equivalent Martingale Measures, if appropriate conditions hold. Since the theorem may fail when
dealing with infinitely many trading dates, this paper draws on the A.A. Lyapunov Theorem in order to retrieve the equivalence for
complete markets such that the Sharpe Ratio is adequately bounded.
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1. Introduction

In 1940 Lyapunov proved in [18] that the range of any n-dimensional vector measure is compact, and it is also
convex if the measure is atomless. This result has been crucial in control and optimal control theory since, amongst
other applications, it allows us to establish the Pontryagin Maximum Principle (see [20]). The A.A. Lyapunov
Theorem has been extended in several directions (see [8]) and a recent line of research shows its tie with stopping
time linked problems (see [15]), closely related to many important topics in Finance (for example, the problem of
pricing and hedging American call or put options, see [11]). The present paper attempts to show some possible
relationships between the A.A. Lyapunov Theorem and The First Fundamental Theorem of Asset Pricing, a crucial
issue in Mathematical Finance.

Since Harrison and Kreps established in [10] the existence of martingale probability measures for some particular
arbitrage-free pricing models their result has been extended in multiple directions, generating the Fundamental
Theorem of Asset Pricing. For instance, [6,7] or [12] provide deep characterizations of the existence of martingale
measures in different settings.

Nevertheless, a simple version of the Fundamental Theorem cannot be proved, in the sense that the arbitrage
absence is not sufficient to construct martingale measures if the set of trading dates is not finite and we are far from a
Gaussian world. It was pointed out by Back and Pliska in [1], where a simple dynamic discrete time counter-example

∗ Corresponding address: Universidad Carlos III, Dpto. de Economia de Ia Empresa, C/Madrid, 126, 28903 Getafe, Madrid, Spain.
E-mail addresses: alejandro.balbas@uc3m.es (A. Balbás), smayoral@unav.es (S. Mayoral).

©

1

http://www.elsevier.com/locate/mcm
http://www.elsevier.com/locate/mcm
mailto:alejandro.balbas@uc3m.es
mailto:alejandro.balbas@uc3m.es
mailto:smayoral@unav.es
mailto:smayoral@unav.es
http://dx.doi.org/10.1016/j.mcm.2006.11.002
http://dx.doi.org/10.1016/j.mcm.2006.11.002
Cita bibliográfica
Published in: Mathematical and Computer Modelling, jun. 2007, v. 45, nº 11-12, pp. 1308-1318. ISSN: 0895-7177



was provided. To overcome this problem the concept of “free lunch” was introduced in [4] and [5], but this new notion
is much weaker than the concept of arbitrage. The absence of free lunch has been the key to yield further extensions
of the theorem, even in the imperfect market case (see, for instance, [13]).

Every free lunch can be understood as an “approximated arbitrage”. However, it is not an arbitrage, it is not so
intuitive and its economic interpretation is not so clear. On the contrary, it is introduced in mathematical terms and
solves a mathematical problem, but classical pricing models (binomial model, Black and Scholes model, etc.) usually
deal with the concept of arbitrage. Recent studies of efficiency in imperfect markets avoid the use of free lunches
and retrieve the concept of arbitrage, but they have to deal with models containing a finite number of trading dates
(see [14,22], etc.).

The results of Balbás et al. in [2] have shown that it is possible to solve the counter-example of Back and Pliska
without drawing on free lunches. This paper characterizes the arbitrage absence in dynamic discrete time pricing
models by building an appropriate projective system of probability measures (see [23]) that are martingale measures
for each finite subset of trading dates. Then it is shown that the projective limit may be understood as a martingale
measure for the whole set of trading dates. The initial probability measure and the martingale measure cannot be
equivalent, as illustrated by using the counter-example of Back and Pliska. However, for any finite subset of trading
dates one can find projections of both measures that are equivalent, and there are Radon–Nikodym derivatives in both
directions. This property is used in [2] to introduce the concept of “projective equivalence” of probability measures.

We follow the approach of [2] in the sense that the probability space indicating the evolution of prices is given
by a projective limit of probability measures. Thus, the existence of a projectively equivalent martingale measure is
guaranteed, and our major focus is on the equivalence between this measure and the initial one.

The outline of the paper is as follows. The second section presents the general framework and the financial market
model we are going to deal with, as well as those properties of Financial Economics that will apply throughout the
article. The third section will use the A.A. Lyapunov Theorem in order to prove Theorem 4, a major result of this
paper, since it is shown that the projectively equivalent martingale measure becomes equivalent if the Sharpe Ratio is
bounded from above and the market is complete. It will be justified that unbounded Sharpe Ratios hardly make sense in
Financial Economics, so our condition is quite intuitive and realistic from the economic point of view.1 Section 4 will
present Theorem 5, where the A.A. Lyapunov Theorem applies again in order to show new conditions guaranteeing
bounded Sharpe Ratios. The last section concludes the article.2

2. Preliminaries

First of all let us describe our model of a frictionless financial market with a finite number of assets
{S0, S1, . . . , Sn}, n ∈ N and a countable set of trading dates

T = {t0, t1, . . . , tm, . . .},

t0 = 0 representing the current date. For convenience, we will suppose that there exists a “tree structure” indicating the
stochastic evolution of prices (or the arrival of information to the market), i.e., the set of “States of Nature” between
consecutive trading dates is finite. Furthermore, the tree of events presents “n + 1 branches (or states of nature) per
node”.

As usual, each sequence of branches on the tree represents an arbitrary “State of the World” or “Trajectory”, and
the set of states of the world will be denoted by Ω . Moreover, Ω is endowed with the filtration (increasing sequence
of σ -algebras) (Fm)∞m=0, where each σ -algebra Fm is generated by the subsets of Ω composed of those trajectories
with the same branches between t0 = 0 and tm . Obviously, Fm is generated by a “canonical partition” of Ω containing
(n + 1)m sets, m = 0, 1, 2, . . . . In particular, F0 = {∅,Ω} is the trivial σ -algebra.

Given an arbitrary node on the tree of events, it is the starting point of n + 1 branches, and we will assume that the
strictly positive probability of any branch is known. Whence, if m ∈ N, then one can multiply m “single” probabilities

1 Indeed, it will be shown that unbounded Sharpe ratios will mean that agents can achieve “almost infinite returns” with bounded risk levels
which is unrealistic in practice and contradicts the assumptions of many portfolio choice problems (amongst many others, [17,19] or [24] provide
modern approaches on portfolio optimization).

2 In order to simplify the mathematical exposition and some mathematical proofs our financial model will incorporate a finite set of “States of
Nature” between consecutive trading dates. This assumption could be relaxed by drawing on the more complex setting of [2].
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in order to obtain the probability of an arbitrary event in the canonical partition generating Fm . Consequently,
Fm is endowed with a probability measure that will be represented by µm . It may be easily shown that µm is a
projection of µm+1, in the sense that both probability measures coincide when applied on measurable elements of Fm ,
m = 0, 1, 2, . . . .

Fix m ∈ N and endow the (finite) set Ωm of trajectories between 0 and tm with the discrete topology. Then the set
Ω of “whole” trajectories may be endowed with the projective limit topology (see [23]), and becomes a Hausdorff and
compact space. If F represents its Borel σ -algebra, then the Prokhorov Theorem (see [23]) guarantees the existence
of a unique Radon probability measure µ on F such that

µ(F) = µm(F) (1)

whenever F ∈ Fm , m = 0, 1, 2, . . . . Recall that a probability measure is called a Radon measure if it is inner regular
(or tight) by compacts [23]. More generally, if ν is a Radon Measure on the Borel σ -algebra F , then νm will denote
the restriction (or projection) of ν to Fm , i.e.,

ν(F) = νm(F) (2)

whenever F ∈ Fm , m = 0, 1, . . . .
Denote by S(ω, t) = (S0(ω, t), S1(ω, t), . . . , Sn(ω, t)) ∈ Rn+1 the vector of prices at t ∈ T under the trajectory

ω ∈ Ω . Then the price process will be the stochastic process

Ω × T 3 (ω, t) −→ S(ω, t) ∈ Rn+1.

Following usual conventions, the price process will be adapted to the filtration (Fm)∞m=0, i.e., it will be adapted to the
arrival of information to the market. Besides, the first security will be the riskless asset, and prices will be normalized
so that the interest rate vanishes. Thus, S0(ω, t) = 1 for every trajectory and every trading date.

Portfolios will be represented by adapted stochastic processes

Ω × T 3 (ω, t) −→ x(ω, t) = (x0(ω, t), x1(ω, t), . . . , xn(ω, t)) ∈ Rn+1,

x j (ω, t) reflecting how many units of S j are being purchased (sold, if x j (ω, t) is negative) at t under ω. The price of
the portfolio above is given by the adapted process

n∑
j=0

S j (ω, t)x j (ω, t).

To simplify notations, if there is no confusion, the price process, the portfolio above and its price will be denoted by
S, x and Sx , or S(ω, t), x(ω, t) and Sx(ω, t) respectively. For a fixed t ∈ T we will denote by S(−, t), x(−, t) and
Sx(−, t) the Fm-measurable random variables indicating the price process, portfolio x and the price of x at t . For a
fixed ω ∈ Ω , S(ω, −), x(ω, −) and Sx(ω, −) will be the paths followed by the price process, portfolio x and its price
if ω is the finally revealed state of the world.

Portfolio x is said to be self-financing if

n∑
j=0

S j (ω, ti )[x j (ω, ti ) − x j (ω, ti−1)] = 0

for i = 1, 2, . . . .
Since the number of branches per node in the tree structure equals the number of available assets, the market will

be complete (every pay-off is reachable) as long as the securities are independent. Hereafter we will assume that this
property holds, i.e., we have:

Assumption 1. For every m ∈ N and every Fm-measurable random variable P there exists a self-financing portfolio
x such that Sx(−, tm) = P . �

As usual, an arbitrage strategy provides investors with “money without risk”.
3



Definition 1. The self-financing portfolio x is said to be an arbitrage if:

(a) Sx(ω, 0) ≤ 0 (its current price is not positive).
(b) There exists m ∈ N such that Sx(ω, tm) ≥ 0 for every ω ∈ Ω (its price is non-negative at a future trading date tm).
(c) µm(Sx(ω, tm) − Sx(ω, 0) > 0) > 0 (the trivial case is excluded).3 �

We follow usual conventions in order to introduce “Equivalent Risk-Neutral Probabilities”, and we adapt the
definition of [2] for “Projectively Equivalent Risk-Neutral Probabilities”.

Definition 2. The probability measure ν on the σ -algebra F is said to be an equivalent risk-neutral probability
measure (or an equivalent martingale measure) if µ and ν are equivalent (µ(F) = 0 ⇐⇒ ν(F) = 0 for F ∈ F)
and the price process is a martingale under ν, i.e.,

S(−, tm) = Eν(S(−, tm+1) | Fm) (3)

holds for every m ∈ N, Eν(− | Fm) denoting the conditional expectation under ν.
The probability measure ν on the σ -algebra F is said to be a projectively equivalent risk-neutral probability

measure (or a projectively equivalent martingale measure) if µm and νm are equivalent for every m ∈ N and Expression
(3) holds. �

Henceforth EMM and PEMM will mean “Equivalent Martingale Measure” and “Projectively Equivalent
Martingale Measure”. Obviously, every EMM is also a PEMM, but the converse fails in general (see [2]).

The global market above will be represented by M whereas Mm will be the restricted model that only involves
the finite set of trading dates {t0, t1, . . . , tm}, m = 1, 2, . . . .

Under appropriate conditions, the (first) Fundamental Theorem of Asset Pricing establishes the equivalence
between the absence of arbitrage and the existence of EMM. For instance, this equivalence would hold if the number
of trading dates were finite ([6,12], etc.) and, in particular, if we focused on market Mm, m = 1, 2, . . . . However,
when dealing with infinitely many trading dates, the equivalence is not fulfilled, as pointed out by a classical counter-
example of Back and Pliska in [1].4 The lack of equivalent martingale measures for arbitrage-free models was partially
solved in [2], where the weaker concept of PEMM was introduced. By readapting some proofs of these authors one
can establish the theorem below.

Theorem 3. MarketM is arbitrage-free if and only if there exists a projectively equivalent martingale measure. �

Assumption 2. Hereafter we will assume that the market is arbitrage-free. �

3 For illustrative reasons, it may be worthwhile to present the notion of “free lunch” of [4] and [5], once adapted to our framework. So, the
self-financing portfolio x above is said to be a free lunch if (a) holds and there exist F ∈ F and a stopping time τ (i.e. a F -measurable function
τ : Ω 7−→ T ) such that µ(F) = 0, Sx(ω, τ(ω)) ≥ 0 if ω ∈ Ω \ F ,

{ω ∈ Ω; Sx(ω, τ(ω)) − Sx(ω, 0) > 0} ∈ F ,

and

µ({ω ∈ Ω; Sx(ω, τ(ω)) − Sx(ω, 0) > 0}) > 0.

Notice that the arbitrage strategy of Definition 1 is a free lunch since one can take F = ∅ and the constant stopping time τ(ω) = tm for every
ω ∈ Ω . Thus, the absence of free lunch is strictly stronger than the absence of arbitrage. Furthermore, if the arbitrage absence and the existence of
free lunch simultaneously hold in the model, then agents could purchase portfolios with non-positive price whose liabilities could not be neutralized
in a finite period of time, which is hardly compatible with the economic intuition. Consequently, if mathematically possible, it may be worthwhile
to characterize the absence of arbitrage rather than the absence of free lunch.

4 For illustrative reasons, let us summarize the simple counter-example of Back and Pliska. Imagine the random experiment of rolling a fair die
until the first number different from 6 comes out. Denote by ω ∈ N the number of the roll when this occurs. Clearly, the probability of every event
ω is µ(ω) =

5
6 ( 1

6 )ω−1, and µ(∞) = 0. Suppose that only two securities can be sold and bought every time t = 0, 1, 2, . . . that we roll the die.
The first one is the riskless bond whose constant price is one dollar. The price process of the second security is

S1(ω, t) =


1, t = 0
(ω2

+ 2ω + 2)

2t 0 < t < ω

1
2ω

t ≥ ω.
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Suppose that ν is a PEMM. The completeness of the market allows us to apply the Second Fundamental Theorem
of Asset Pricing, which guarantees uniqueness of martingale measures (see [12]). Consequently, the projections (or
restrictions) νm of ν to Fm are unique since they are EMM for Mm . Then, the uniqueness of the projective limit of
Radon measures (Prokhorov Theorem, see [23]) leads to the uniqueness of ν, PEMM. Thus, the absence of arbitrage,
the latter theorem and the ideas above imply that the PEMM exists and is unique. It will be denoted by ν. The major
objective of this paper is to find general conditions ensuring that ν is also an EMM.

Since µm and νm are equivalent, there exists the Radon–Nikodym derivative

fm =
dνm

dµm
(4)

m = 0, 1, . . . , which is strictly positive and is usually called “Stochastic Discount Factor” of Market Mn (see [3]).
If it is constant then Market Mm is said to be “Risk-Neutral”, but the empirical evidence always conclude that real
markets are risk adverse. We will impose a strictly weaker assumption.

Assumption 3. Mm is not risk-neutral, that is, the random variable fm has positive variance (it is not constant and
depends on the state of the world ω ∈ Ω ), m = 1, 2, . . . . �

Remark 1. If x is a self-financing portfolio with positive current price (at t = 0), one can consider its return, expected
return and standard deviation at tm , given by

Rx (−, tm) =
Sx(−, tm)

Sx(−, 0)
,

Ex (tm) = Eµ(Rx (−, tm))

and

σx (tm) =

√
Eµ(Rx (−, tm)2) − [Eµ(Rx (−, tm))]2

where m = 1, 2, . . . . If its price at tm is not constant then its Sharpe Ratio between 0 and tm is given by

Sx (tm) =
Ex (tm) − 1

σx (tm)
. (5)

According to [3], Assumption 3 implies that Sx (tm) achieves a maximum value S(tm) > 0, which is attained at those
self-financing portfolios x satisfying Sx(−, 0) > 0 and

Sx(−, tm) = α1 − α2 fm (6)

for some α1 > 0 and α2 > 0.5

One can find neither arbitrage opportunities nor equivalent martingale measures. The absence of arbitrage follows from the existence of equivalent
martingale measures for every finite subset of trading dates. Indeed, it is sufficient to check that

ν̃t (ω) =
1

2ω(ω + 1)
1 ≤ ω ≤ t

ν̃t [t + 1, ∞] = 1 −

t∑
ω=0

1
2ω(ω + 1)

is a martingale measure for theMt market, t = 1, 2, . . . . Back and Pliska showed that there is no martingale measure for the global marketM.
Moreover, if we adapt the model to our “projective system approach”, the projective limit of (ν̃t )

∞
t=1 is given by

ν(ω) =
1

2ω(ω + 1)
ω 6= ∞

ν(∞) = 1 −

∞∑
ω=0

1
2ω(ω + 1)

=
1
2

which is not equivalent to µ because µ(∞) = 0.
5 As a consequence, if one maximizes the Sharpe Ratio then the resulting portfolio is quite close to the “Market Portfolio” or the “Stochastic

Discount Factor”, crucial strategies when introducing the Classical Equilibrium Financial Models, “Capital Asset Pricing Model (CAPM)” and
5



If the price Sx(−, tm) above is constant, i.e., if σx (tm) = 0, then the absence of arbitrage implies that Expression
(5) leads to 0/0 but we will accept that the Sharpe ratio also attains the value S(tm) in this case.

Finally, since prices have been normalized so that the risk-free rate vanishes, it is easy to show that the sequence
of optimal Sharpe ratios is increasing, that is, 0 < S(t1) ≤ S(t2) ≤, . . . . �

3. The first fundamental theorem of asset pricing

According to the A.A. Lyapunov Theorem, µ(F) and ν(F) are compact subsets of R, and

(µ, ν)(F) = {(µ(F), ν(F)) ∈ R2
; F ∈ F}

is a compact subset of [0, 1]
2. Therefore, there exist µ̃, ν̃ ∈ R and Fµ, Fν ∈ F such that

µ̃ = µ(Fµ) ≥ µ(F)

for every F ∈ F with ν(F) = 0, and

ν̃ = ν(Fν) ≥ ν(F)

for every F ∈ F with µ(F) = 0. Obviously, ν is µ-continuous (respect. µ is ν-continuous) if and only if ν̃ = 0
(respect. µ̃ = 0), and the equivalence between µ and ν holds if and only if

µ̃ = ν̃ = 0. (7)

Suppose that U is an upper bound for S(tm), i.e.,

S(tm) ≤ U (8)

holds for m = 1, 2, . . . . Then

Ex (tm) ≤ 1 + Uσx (tm), (9)

for every self-financing portfolio with positive initial price. Expression (9) means that expected returns Ex (tm) cannot
be “too large” unless risk levels σx (tm) become “too large” as well. This is a meaningful idea from the economic
viewpoint. Indeed, if (8) failed then agents could reach “infinite expected returns” in the long term, despite prices
being normalized and the risk-free rate becoming zero. Thus, agents could borrow one dollar and invest this money in
a self-financing strategy with a Sharpe Ratio as high as desired. It is almost an arbitrage, though the exact definition of
arbitrage is not fulfilled. Actually, under appropriate assumptions, it might be proved that this strategy would be a free
lunch, in the sense of [4] and [5], although it has been introduced by using economic arguments rather than technical
and mathematical conditions.

According to the statement below, from a mathematical point of view, the economically meaningful Expression
(8) also provides an adequate condition to solve the lack of equivalence between µ and ν. In particular, the counter-
example of [1] will reflect unbounded Sharpe Ratios.

Theorem 4. Suppose that there exists U > 0 such that S(tm) ≤ U holds for every m = 1, 2, . . . . Then, ν and µ are
equivalent (or the PEMM ν becomes a EMM).

Proof. Let us prove that ν is µ-continuous, i.e., according to (7), ν̃ = 0. If ν̃ > 0, since µ and ν are Radon measures,
there exists a compact set K ⊂ Ω such that

ν(K ) > 0 (10)

and

µ(K ) = 0. (11)

“Arbitrage Pricing Theory (APT)” (see [3], for further details). In particular, if risk levels are given by standard deviations, then the efficient
frontier can be easily computed if one combines the stochastic discount factor and the riskless asset. If risk levels are not given by standard
deviations then the efficient frontier must be computed by solving a vector optimization problem. If so, both classical analyses or balance point
linked methods (see [9]) may apply.
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Being (µ, ν) the projective limit of (µn, νn)∞n=1, one has that

(µ, ν)(K ) = Lim(µm, νm)(Km), (12)

Km being the set of Fm obtained as the union of those sets of the canonical generator of Fm whose intersection with
K is non-void. Since the market is complete (Assumption 1) there exists a self-financing portfolio xm such that

Sxm(−, tm) = νm(Km)XΩ − XKm , (13)

where, as usual, the characteristic function of any V ⊂ Ω is given by

XV (ω) =

{
1, ω ∈ V
0, ω ∈ Ω \ V .

Consider ym = xm + (10−m, 0, . . . , 0), i.e., Strategy ym “is obtained by adding xm plus 10−m dollars invested in the
riskless asset”. According to Expression (3) and Theorem 3,

Sym(−, 0) =

∫
Ω

((νm(Km) + 10−m)XΩ − XKm)dνm

= (νm(Km) + 10−m) − νm(Km)

= 10−m .

Besides, (13) leads to

Sym(−, tm) = (νm(Km) + 10−m)XΩ − XKm ,

and {
Eym(tm) = 10m

[(νm(Km) + 10−m) − µm(Km)],

σym(tm) = 10m
√

µm(Km) − µm(Km)2.

Therefore,

S(tm) ≥ Sym(tm) =
10m

[νm(Km) + 10−m
− µm(Km)] − 1

10m
√

µm(Km) − µm(Km)2

=
[νm(Km) + 10−m

− µm(Km)] − 10−m√
µm(Km) − µm(Km)2

=
νm(Km) − µm(Km)√
µm(Km) − µm(Km)2

,

which, according to (10)–(12), tends to ∞, against the existence of the upper bound U .6

In order to prove that µ is ν-continuous, suppose the existence of a compact set K ∗
⊂ Ω satisfying µ(K ∗) > 0

and ν(K ∗) = 0, and repeat the arguments above by taking Strategy x∗
m such that

Sx∗
m(−, tm) = XK ∗

m
− νm(K ∗

m)XΩ

instead of (13). �

4. Atomless measures and the converse theorem

Throughout this section let us assume that µ is an atomless measure. Then, if δ is a µ-continuous probability
measure on F it is atomless too. Indeed, suppose that F is δ-atom with δ(F) > 0. Obviously µ(F) > 0 and,
according to the Saks Theorem (see [21]), given ε > 0 there exists a partition of F such that µ(Fε) < ε if Fε is
in the partition. Fix Fε so as to guarantee that δ(F) = δ(Fε). Then we get the contradiction Lim µ(Fε) = 0 and
Lim δ(Fε) = δ(F) > 0.

6 Notice that µm (Km ) − µm (Km )2
= 0 does not make any sense for m large enough, since this equality would imply that µm (Km ) = 0, in

contradiction with the absence of arbitrage, or µm (Km ) = 1, in contradiction with

Lim µm (Km ) = µ(K ) = 0.
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According to the A.A. Lyapunov Theorem

(µ, δ)(F) = {(µ(F), δ(F)) ∈ R2
; F ∈ F}

is a convex and compact subset of [0, 1]
2 and, therefore, the set

(µ, δ)(F) ∩ ({u} × [0, 1]) = {(r, s) ∈ (µ, δ)(F); r = u}

is compact and non-void for every u ∈ [0, 1]. Then one can define the function

δµ : [0, 1] −→ [0, 1]

given by

δµ(u) = Max{s ∈ [0, 1]; (u, s) ∈ (µ, δ)(F)}.

The convexity of (µ, δ)(F) trivially implies that δµ is concave. Moreover, since (µ, δ)(F) and

A = {(r, s) ∈ R2
; r ≤ 0, s ≥ 0} (14)

are convex sets and (µ, δ)(F) does not contain any interior point of A, there exists a separating hyperplane (see [16],
the Hahn–Banach Theorem and consequences). It is easy to see that the separating hyperplane takes the form

−θr + ρs = 0,

with θ > 0, ρ ≥ 0. As usual, if one can choose ρ > 0 then we will say that the separating hyperplane is non-vertical,
λ = θ/ρ will be called finite and positive super-gradient of δµ at 0 and we will denote λ ∈ ∂δµ(0).

Next we will prove that the A.A. Lyapunov Theorem permits us to characterize those models with bounded Sharpe
Ratio, i.e., if the “Real Probability Measure” µ has no atoms then some kind of converse of Theorem 4 may be stated.

Theorem 5. The following assertions are equivalent and they imply the existence of U > 0 such that S(tm) ≤ U
holds for every m = 1, 2, . . . .

(a) Measures ν and µ are equivalent and there exists a finite and positive element in ∂νµ(0).
(b) The Radon–Nikodym derivatives ( fm)∞m=1 are bounded from above, i.e., there exists U∗ > 0 such that fm ≤ U∗

holds for every m = 1, 2, . . . .

Proof. First of all let us prove that the fulfillment of (b) implies the existence of U . Expression (6) shows that S(tm)

is achieved at 2 − αm fm if αm ≥ 0, is such that the price of this payoff equals one. It is easy to compute αm since we
have to impose

1 = 2
∫
Ω

fmdµ − αm

∫
Ω

f 2
mdµ

= 2νm(Ω) − αm

∫
Ω

f 2
mdµ

= 2 − αm

∫
Ω

f 2
mdµ,

and consequently

αm =
1∫

Ω f 2
mdµ

. (15)

One has that

Eµ(2 − αm fm) =

∫
Ω

(2 − αm fm)dµ

= 2 − αm

∫
Ω

fmdµ

= 2 − αmνm(Ω)

= 2 − αm . (16)
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Besides, if σ(tm) denotes the standard deviation of the payoff 2 − αm fm we have

σ(tm) =

√
Eµ((2 − αm fm)2) − ((2 − αm)2).

Since (15) leads to

Eµ((2 − αm fm)2) =

∫
Ω

(2 − αm fm)2dµ

= 4 − 3αm,

we get

σ(tm) =

√
4 − 3αm − (2 − αm)2 =

√
αm − α2

m .

The last expression and (16) give

S(tm) =

√
1

αm
− 1. (17)

Therefore, if (b) holds we have that∫
Ω

f 2
mdµ ≤ (U∗)2

and (15) and (17) lead to

S(tm) ≤

√
(U∗)2 − 1.

Next we will prove that (b) H⇒ (a). Indeed, if (b) holds then the existence of U and Theorem 4 show that ν and µ

are equivalent. Furthermore, consider the probability measure δm : F −→ [0, 1] such that

fm =
dδm

dµ
,

m = 1, 2, . . . . Expressions (1) and (4) imply that δm extends νm from Fm to F , and, as stated at the beginning of this
section, the µ-continuity of δm guarantees that this measure is atomless. Besides, we have

δm(F)

µ(F)
=

∫
F fmdµ

µ(F)
≤

U∗µ(F)

µ(F)
= U∗,

for F ∈ F , µ(F) 6= 0, m = 1, 2, . . . . Whence,

−U∗µ(F) + δm(F) ≤ 0,

for F ∈ F , m = 1, 2, . . . . Therefore, the closed convex half-space

−U∗r + s ≤ 0 (18)

contains the convex closed set (µ, δm)(F), m = 1, 2, . . . . Suppose that we prove the inclusion

(µ, ν)(F) ⊂ Ad

[
∞⋃

m=1

((µ, δm)(F))

]
(19)

where the symbol Ad represents the adherence. Then (µ, ν)(F) will be included in the half-space (18) and the
hyperplane −U∗r + s = 0 will separate (µ, ν)(F) and the set A of (14), from where λ = U∗ will be a positive
and finite element in ∂νµ(0). Thus, let us prove (19). Since µ and ν are Radon measures, for every F ∈ F and every
ε > 0 there exists a compact set K ⊂ F with

(µ, ν)(K ) ≤ (µ, ν)(F) ≤ (µ, ν)(K ) + (ε, ε).

Since K is compact Expression (12) applies, and

(µ, ν)(F) − (ε, ε) ≤ (µm, νm)(Km) ≤ (µ, ν)(F) + (ε, ε)
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if m is large enough.7 Bearing in mind that µ extends µm and νm(Km) = δm(Km) (notice that Km ∈ Fm)

(µ, ν)(F) − (ε, ε) ≤ (µ, δm)(Km) ≤ (µ, ν)(F) + (ε, ε)

if m is large enough. Now take the sequences

ε = 1, 1/2, 1/3, . . .

and

m1 < m2 < · · ·

such that

(µ, ν)(F) −

(
1
s
,

1
s

)
≤ (µ, δms)(Kms) ≤ (µ, ν)(F) +

(
1
s
,

1
s

)
.

We have

(µ, ν)(F) = Lim(µ, δms)(Kms).

Finally, let us prove that (a) H⇒ (b). Indeed, take λ ∈ (0, ∞) ∩ ∂νµ(0) and one has that

−λr + s = 0

is a separating hyperplane, so

−λµ(F) + ν(F) ≤ 0

holds for every F ∈ F . In particular,

ν(F)

µ(F)
≤ λ

for every F ∈ F such that µ(F) > 0. Hence, (1) and (2) imply that

νm(F)

µm(F)
≤ λ

whenever F ∈ Fm such that µm(F) > 0, m = 1, 2, . . . . Thus, Expression (4), along with the existence of a finite
partition of Ω generating Fm , give

fm ≤ λ,

m = 1, 2, . . . . �

5. Conclusions

The first Fundamental Theorem of Asset Pricing establishes the equivalence between the existence of Martingale
Measures and the Absence of Arbitrage in a Financial Market satisfying appropriate conditions. However, if the set of
trading dates is not finite and the “real world” is not Gaussian then the equivalence may fail, as pointed out by several
counter-examples. We have used the A.A. Lyapunov Theorem and projective systems of Radon measures in order to
retrieve the equivalence for complete markets with a countable family of trading dates and bounded Sharpe Ratios
and/or Discount Factors. The interest of these results seems to be clear since we are dealing with a central topic in
Mathematical Finance.
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