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Abstract— The concept of independent contact regions on a
target object’s surface, in order to compensate for shortcomings
in the positioning accuracy of robotic grasping devices, is well
known. However, the numbers and distributions of contact
points forming such regions is not unique and depends on the
underlying computational method. In this work we present a
computation scheme allowing to prioritize contact points for
inclusion in the independent regions. This enables a user to
affect their shape in order to meet the demands of the targeted
application. The introduced method utilizes frictionless contact
constraints and is able to efficiently approximate the space of
disturbances resistible by all grasps comprising contacts within
the independent regions.

I. INTRODUCTION

Accounting for uncertainties occurring in the positioning

of robotic grasping devices is a central topic in dexterous

manipulation research. The quality of a given multifingered

grasp is not only reflected in its capability to withstand ex-

ternal disturbances, but also in its robustness to shortcomings

in the positioning accuracy. An important issue in manu-

facturing and grasping procedures is object immobilization.

In this context, Reuleaux [1] coined the term form-closure as

the ability of a fixturing device to fully prevent motions of

the target object via unilateral frictionless contact constraints.

In contrast, force-closure imparts that the object’s motion is

restrained by suitable contact forces considering frictional

contact constraints [2]. Contact force vectors and result-

ing torque vectors are commonly concatenated to wrench

vectors. Mishra et al. [3] showed that a grasp is force/form-

closure, if the convex hull spanned by the contact wrenches

contains a neighborhood of the origin.

However, for many applications the basic ability to im-

mobilize an object is just a necessary but not a sufficient

requirement. A good grasp should be able to efficiently

withstand disturbance forces/torques which are likely to

occur during the performed task. If nothing about possible

disturbances is known, a common grasp quality measure is

the radius of the largest origin-centered insphere of the Grasp

Wrench Space (GWS), which was proposed by Kirkpatrick

et al. [4]. The GWS is defined as the set of all wrenches that

a manipulator can exert on the object for a given grasp. In

this definition it is presumed that the sum of the magnitude

of the grasping forces is bounded.

From the viewpoint of a grasping device, not only the

ability to resist disturbances, but also the robustness of

a grasp to modeling and positioning inaccuracies is an

important factor. In this context, the notion of Independent

Contact Regions (ICRs) was introduced by Nguyen [5]. He

defined the set of optimal independent regions with the

largest minimal radius, which yield a force-closure grasp if

each finger is placed anywhere within its respective region.

The concept was extended to the computation of independent

regions for three-finger grasps on planar objects [6] and

four-finger grasps of polyhedral objects by Ponce et al. [7].

Pollard [8] employs the ICR paradigm in order to synthesize

sets of similar whole-hand grasps on 3-D objects. The

algorithms in [8] are based on geometric reasoning in the

wrench space and incorporate a task related grasp quality

measure. Roa and Suárez [9] suggested an approach which

grows independent regions for precision grasps on discretized

objects. In a previous work [10], the authors presented an

efficient algorithm for the computation of such regions.

The approaches in [8][9][10] have in common that they

utilize a prototype form/force-closure grasp and specify

disturbances which need to be resisted. Eligible contact

constraints can be formulated via frictionless/frictional or

soft finger point contact models. ICRs are not unique with

respect to the numbers and distributions of contact points

forming the regions. Frequently, contact regions yielded by

current methods are shaped undesirably. This is due to the

fact that the underlying computational principle strongly

conditions the shape of the resulting contact regions on the

GWS of the given prototype grasp.

In this paper, we address the question of how to produce

regions which are shaped to befit the considered application.

For example regions comprising evenly distributed contact

points are often attractive, since such uniform regions can

be directly related to the positioning accuracy achievable

by the deployed grasping device. Contributed is the idea of

prioritizing contact points for inclusion in the ICRs. We limit

ourselves to the form-closure case and utilize the frictionless

point contact model. A computational method, which allows

for a user to specify a suitable strategy for including contact

points in the ICRs in order to form desired regions, is

suggested. This novel approach allows to evaluate the actual

disturbances every member of the grasp set associated with

the ICRs is able to resist. To this end, we introduce the

Exertable Wrench Space (EWS) as a generalization of the

GWS applied to sets of grasps.

The assumptions and required background are provided

in Section II. In sections III and IV we motivate and

detail our computation scheme. Section V discusses possible

prioritization strategies and finally in Section VI we provide

a numerical evaluation of the suggested approach.
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II. BACKGROUND

A. Nomenclature

S Set of position vectors representing the target object,

s index used for the points representing the object,

N number of contact points in a grasp / number of ICRs,

gn index used for the N grasp contact points,

Cn set of contact points forming the nth ICR,

Ĉn set containing the indexes c of the points in region Cn,

Wn set of wrenches associated with the contact points in Cn,

H number of hyperplanes confining a convex hull,

h index used for hyperplanes,

K dimension of the wrench space.

B. Assumptions & Problem Description

The target object’s surface is described as a polygonal

mesh (or a polygonal chain in the case of planar objects)

whose vertices are represented by the set S = {p
1
, . . .pS}.

The position vectors ps ∈ S are expressed in a coordinate

frame which is located in the center of mass of the object.

Each point ps has an associated inward-pointing unit normal

n̂s and neighboring points, defined as the ones connected to

ps by an edge of the mesh. Thus, this representation can be

seen as a graph where nodes represent mesh vertices ps and

edges define the neighboring relation between these vertices.

A grasp G = {pg1
, . . . ,pgN

: pgn
∈ S} is represented as a

set of N contact points. ICRs are specified as N sets Cn
which contain points on the target object’s surface. Each

finger of a grasping device is associated with one such

region. Form-closure grasps, which comprise one contact

drawn from each region Cn and are suitable to resist expected

disturbances (see Section II-D), are denoted as viable grasps.

It is assumed that the target object is sufficiently discretized

to capture local curvature, i. e., grasps with contacts on mesh

facets spanned by the discrete points forming regions Cn
are also viable grasps. We presume that user-input in form

of an initial viable grasp Ginit is available. The necessary

prototype grasp can be acquired by one of the many algo-

rithms proposed for grasp synthesis (e.g. [9][11]) or by an

expert demonstrator. Furthermore, quasi-static conditions are

assumed and the kinematic constraints of the device grasping

the target object are not considered.

The aim of this work is to allow a user to influence the

distribution of contact points within the regions Cn, i. e.,
to affect their shape on the target object’s boundary. In

addition to the necessary initial grasp Ginit and expected

disturbances, we consider two possible user inputs. First, we

want to investigate what is the set of disturbances that every

viable grasp is guaranteed to resist, if desired regions Cn
themselves are defined by a user beforehand. An example of

predefined ICRs for an eight-fingered grasp on the model of

a parallelepiped is shown in Fig. 1. Second, we are interested

in prioritizing contact points for inclusion in regions Cn
according to a user-provided logic.

Ginit

ICRQP

Fig. 1. Predefined Contact Regions on a parallelepiped: Uniform regions
Cn for an 8-fingered grasp; Contact points in the Regions Cn are specified
via a BFS, stopping at a depth of one (see Section V-A); Form-closure of
all viable grasps was verified utilizing Algorithm 1;

C. Contact Model

We consider frictionless point contacts between the target

object and the fingers of the gripper. The force fs applied

at point ps acts along the normal n̂s and creates a torque

τ s = ps×fs. Force and torque vectors can be concatenated

to a wrench vector ws = (f s, τ s/λ). Dividing the torque

parts by the largest possible torque arm λ = max
s

(||ps||)

grants scale invariance [12]. Let Ĉn be the set containing

indexes of the contact points forming the nth independent

region. Thereby, the region formed by these contact points

can be formalized as Cn = {pc : c ∈ Ĉn}. The corresponding

wrench set is defined as

Wn = {w(pc) : c ∈ Ĉn}. (1)

Given a grasp G, the discrete grasp wrench space in the

frictionless case is described by the convex hull over the N
wrenches generated at the grasping points pgn

.

GWS = ConvHull
(
{w(pg1

), . . . ,w(pgN
)}
)
. (2)

Note that we assume convex hulls to be in simplicial form.

Equation (2) characterizes the space of wrenches, which

can be exerted to the grasped object when the sum of the

magnitudes of all finger forces is bounded. All wrenches lie

on the Limit Wrench Space (LWS) [12], which is limited

only by the magnitude of the contact forces (unit magnitude

in the present case) and the resulting torques.

D. State of the art

Recent approaches for generating ICRs [8][9][10] allow

for user-input in form of a set comprising expected distur-

bance wrenches. The convex hull over the mirror image of

this set is commonly labeled as Task Wrench Space (TWS). It

represents the set of wrenches which every viable grasp has

to be able to exert on the object in order to counterbalance

the expected disturbances and is frequently represented as

an origin-centered sphere. Figure 2 illustrates the basic

principle of the current methods. Shown is the computation

procedure in a hypothetical 2-D wrench space for a four-

fingered frictionless grasp. The ICRs obtained depend on

the geometric properties of the grasp wrench space GWSinit,

corresponding to a provided initial prototype force-closure

grasp Ginit, and the disturbances considered via the TWS. By

construction, the TWS is a subset of the space of wrenches
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(a) (b) (c)

W1

W2

W3

W4

w(pg1) LWS TWS

w(pg2)

w(pg3)
w(pg4)

Fig. 2. Forming search regions via parallel shifting: (a) Wrenches
associated with the initial grasp Ginit; (b) The corresponding GWSinit
and its confining hyperplanes; (c) The TWS represents the set of wrenches
necessary to counterbalance expected disturbances; Hyperplanes associated
with facets of GWSinit are translated in parallel until they are tangent to
the TWS; Search spaces (the yellow shaded areas) in the wrench space
are formed by the intersection of exterior half-spaces1 corresponding to
the shifted hyperplanes; A point ps on the object’s boundary qualifies for
inclusion in region Cn if its associated wrench lies in the search space
associated with pgn

; Regions Cn on the object’s surface are formed by the
contact points with associated wrenches in the sets Wn;

which is guaranteed to be exertable by every viable grasp

(the gray shaded area in Fig. 2-c). A consequence of this

method is that the resulting contact regions Cn are strongly

conditioned on the structure of GWSinit. In a significant

number of cases, the number and distribution of contact

points forming these regions might not be desirable for the

targeted application.

III. THE EXERTABLE WRENCH SPACE (EWS)

Let us for the moment assume that the ICRs are given

beforehand and let V denote the number of associated viable

grasps. If the sets Cn forming the ICRs are disjoint, V is

given by the product of the cardinalities of Cn.

V =
∏

|Cn|, n = 1, . . . , N. (3)

In the case of partially intersecting sets Cn, which is admis-

sible in the scope of this paper, the number V gives an upper

bound. This allows for a formal definition of the exertable

wrench space as the intersection of all grasp wrench spaces

GWSv corresponding to viable grasps.

EWS =
⋂

{GWS1, . . . ,GWSV }. (4)

Analogue to the GWS, which is composed of the wrenches

a single grasp can exert, the EWS represents the space of

wrenches which every grasp in the set of viable grasps at least

can apply to the target object. Figure 3 shows the relation

between the EWS and the contact points in the ICRs. If we

consider to add additional contact points to regions Cn, and

thus to add additional wrenches to their associated sets Wn

in (1), possibilities for new grasps emerge and the EWS is

gradually limited since it is described by the intersection of

all the GWS corresponding to these grasps.

The mirror image of the EWS provides an exact form-

ulation of the disturbance wrenches each of the viable grasps

Gv is guaranteed to withstand. However, from (3) and (4)

it follows that a brute-force approach via computing and

intersecting the convex hulls GWSv of all possible grasps

is prohibitive in the general case, since it requires the

computation and intersection of V convex hulls.

1A half-space is designated as exterior if it does not contain the origin,
opposed to an interior half-space which contains the origin.

(a) (b) (c)

EWS

W1

W2

W3
W4

w(pg1)

w(pg2)

w(pg3)
w(pg4)

GWSinit

Fig. 3. Exertable wrench space: (a) The EWS equals the GWSinit if
each region Cn only contains the initial grasping points pgn

; (b) Adding
new points allows for new grasps to be formed by combinations of contact
points in the sets Cn; (c) The EWS is limited by the intersection of all grasp
wrench spaces GWSv corresponding to viable grasps (in this example not
all of them are depicted for the sake of clarity); The facets of the EWS lie
on hyperplanes which are spanned by wrenches from K = 2 different sets
Wn each; Those hyperplanes are coplanar to facets of the limiting GWSv ;

IV. EVALUATION OF THE EWS

In this light, the general idea of the approaches discussed

in Section II-D is to approximate the EWS based on parallel

shifting of hyperplanes containing the facets of GWSinit.

Points on the object’s surface are qualified for inclusion in

regions Cn if their associated wrenches lie in appropriate

search spaces constructed in the wrench space. According

to Pollard [8], this yields families of similar viable grasps.

Here, we state an explicit definition of similarity opposed to

the informal one given in [8]:

Definition 1: Two grasps are similar if the face lattices of

their corresponding grasp wrench spaces are isomorphic.

Loosely speaking, the face lattice of a convex polytope

describes its topology. The face lattice is the partially ordered

set of all its faces, the ordering is by set inclusion. Thus,

the above definition implies that the GWS of similar grasps

comprise the same topological structure in a sense that

there exists a homeomorphism between their faces. A more

detailed discussion can be found in [13].

The state-of-the-art principle of approximating the con-

fining hyperplanes of the EWS and forming associated

search spaces provides a computationally efficient way of

generating ICRs. However, it is by no means unique. The

only requirement is that the intersection of interior half-

spaces associated with the hyperplanes forming search spaces

contains the TWS. This requirement is fulfilled by infinitely

many hyperplanes if the constraint of parallelism is relaxed

and inclination of these hyperplanes is allowed. In the

following, we motivate a strategy for a better approximation

of the EWS taking into account the wrench sets Wn corres-

ponding to contact points in the specified desired independent

regions Cn. Let us formulate

Proposition 1: The facets of the EWS lie on hyperplanes,

each spanned by wrenches from K different sets Wn.

According to (4), the EWS is formed by the intersection

of all GWSv . Therefore, the facets of the EWS lie on

hyperplanes which also contain facets of certain limiting

GWSv (see Fig. 3-c). Recall, that the facets of convex hulls

are in simplicial form. Thus, the hyperplanes containing

these facets have to be spanned by wrenches stemming from

K different sets by definition, which validates the above

proposition.
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(a) (b) (c) (d)

TWS

B1

B2

B3

B4EWS

H1

H2

H3

H4

Fig. 4. Confining Hyperplanes of the EWS: Hyperplanes corresponding to
facets of the convex hulls Bh confine the EWS; Those hyperplanes linearly
separate the TWS and Bh;

It is implied that the convex hull describing the GWSinit

according to (2) is represented by its vertex-facet incidences

which are stored in index sets ξh, h = 1, . . . , H . Thus, ξh
describes which vertices of GWSinit span its hth hyperplane.

Consider the initial grasp wrench space depicted in Fig. 3-a.

For this example the sets ξh are: ξ1 = {1 2}, ξ2 = {2 3},

ξ3 = {3 4} and ξ4 = {1 4}. We define the H unions of

wrench sets Wn in (4) indexed by ξh as

Wξh =
⋃

Wn : n ∈ ξh, h = 1, . . . , H. (5)

Let Bh = ConvHull (Wξh) , h = 1, . . . , H describe the

convex hulls over the wrench sets formulated above. The

facets of the EWS lie on hyperplanes which also contain

facets of the convex hulls Bh as depicted in Fig. 4. In the

following, the polytope EWSapp, formed by the intersection

of interior half-spaces defined by hyperplanes H̃h, denotes

an approximation of the actual EWS. Eligible hyperplanes

H̃h need to linearly separate Bh from the TWS (which has

to be a subset of EWSapp). In order for hyperplanes H̃h to

approximate the hyperplanes confining the EWS well, we

want to find those H̃h which maximize the margins between

the TWS and the convex hulls Bh.

A. Approximation of the EWS

An efficient solution of the problem of finding the

maximum-margin separating hyperplane between two con-

vex hulls is provided in the framework of Support Vector

Machines (SVM) [14]. Let W ξh ∈ R
M×K be the matrix

corresponding to Wξh in (5), where M =
∑

|Cn| : n ∈ ξh.

W TWS ∈ R
T×K denotes the matrix whose rows contain the

T wrenches defining the TWS. Stated below is the convex

Quadratic Program (QP) used to solve the separation problem

minimize
n′

h
∈RK , b

′

h
∈R

1

2

[
n

′

h

b
′

h

]T [
I 0

0 0

] [
n

′

h

b
′

h

]
(6)

subject to

[
−W ξh −1

W TWS 1

] [
n

′

h

b
′

h

]
≥

[
1

1

]
,

where 1 denotes column vectors of ones with appropriate

dimensions. The hyperplane H̃h tangent to Bh is defined by

the unit vector nh and the offset bh given below.

nh =
n

′

h

‖n
′

h‖
, bh =

1 + b
′

h

‖n
′

h‖
. (7)

The only slight deviation from the conventional SVM formu-

lation lies in the offset value bh in (7) which causes H̃h being

tangent to Bh, whereas the offset in the standard formula-

tion would be b
′

h/‖n
′

h‖. The construction procedure which

(a) (b) (c) (d)

TWS

GWSinit dmaxW1

W2

W3

W4

B3

B4

H̃3

H̃4

Fig. 5. Identifying restrictive wrenches: (a) Wrench sets Wn, TWS

and GWSinit; (b) H̃3 linearly separates the TWS from the wrenches in
{W3,W4}, (c) Wrenches in {W1,W4} are not linearly separable from
the TWS; The wrench with the largest normal distance dmax from the
corresponding facet of GWSinit is identified; (d) Removing the restricting

contact point, and thus its corresponding wrench, allows for H̃4 to be
computed successfully;

Algorithm 1: Computation of EWSapp

Input: Prototype grasp Ginit, Desired regions Cn, TWS

Output: Set of hyperplanes {H̃h} representing EWSapp
Compute GWSinit1

for all H hyperplanes of GWSinit do2

Form W ξh
3

Compute confining hyperplane H̃h according to (6) and (7)4

if the QP in (6) is not feasible then5

return false /* TWS and Bh not linearly separable */6

else7

add H̃h to the set {H̃h}8

return {H̃h} /* EWSapp contains the TWS */9

yields the EWSapp in its H-representation is summarized in

Algorithm 1. Invalid user-specified ICRs are detected when

not all convex hulls Bh are linearly separable from the TWS,

which means that some possible grasps would not be viable.

A continuous spherical TWS with a specified radius can be

considered by letting W TWS in (6) contain the zero-wrench

only. In this case, a subsequent verification if the offsets bh
of every element in the obtained set {H̃h} are equal or larger

then the given radius is necessary. Figure 10 shows an exam-

ple of the sequential computation of confining hyperplanes

H̃h for regions Cn specified on the discretized ellipse shown

in Fig. 9. In this paper, the Qhull-package [15] was employed

for the computation of the convex hull in the first step of

the above algorithm. It has, for six-dimensional input, a

complexity of O
(
N3/6

)
with respect to the N contact points

whose associated wrenches form the vertices of GWSinit.

An upper bound for the maximum number of facets of

GWSinit, and thus for the QP’s to be solved in Algorithm 1,

can be given as H ≤ N3/6 [16]. Forming matrices W ξh

from the vertex-facet incidences of GWSinit in step 3 can

be done in linear time. The results presented in Section VI

were generated using an off-the-shelf QP solver [17].

B. Limitations

The above described way of finding the confining hyper-

planes of the EWSapp does not guarantee for Proposition 1

to hold true. It is possible that the number of those wrenches

in W ξh which act as support vectors of H̃h is smaller

than K . The computation just tries to maximize the margin

between the TWS and the respective convex hull Bh. This

can cause the EWSapp to be unnecessarily limited in some

areas (see Fig. 10-c). Furthermore, if not all viable grasps are

similar according to Definition 1 (which cannot be verified
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Ginit

ICRQP

User-input

Fig. 6. Removing restrictive contact points: ICRs for a 7-fingered grasp;
The regions are evaluated by removing overly restrictive contact points
from the user input according to the strategy presented in Section V-A;
Computation time tQP = 0.067 s;

a priori), the grasp wrench spaces confining the actual EWS

can comprise vertices in different wrench sets Wn than

those indexed in ξh. Again, this can result in unnecessarily

restrictive hyperplanes H̃h.

However, the following holds true: by construction, all

wrenches in Wξh lie in the exterior half-space of the associ-

ated hyperplane H̃h. This is equivalent to the criterion which

is utilized in currently common approaches as discussed in

Section II-D (points qualify for inclusion in region Cn, if their

corresponding wrenches lie in the intersection of exterior

half-spaces associated with initial contacts pgn
). Thus, the

method is conservative in a sense that no false positives

are generated (i. e. no grasps are classified as being able

to preserve a given TWS if they are not).

V. PRIORITIZING POINTS FOR INCLUSION IN Cn

In Section IV-A, we introduced a method for

approximating the space of disturbances all viable grasps,

associated with given sets of contact regions Cn, are able

to resist. Algorithm 1 yields an approximation of the EWS

which is not only conditioned on the grasp wrench space

of the initial grasp, as in the state-of-the-art methods, but

on the regions Cn themselves. From a user point of view,

this opens up the possibility of prioritizing certain points

for inclusion in the ICRs. This gives a useful technique for

a number of applications, one of which is the possibility of

predefining regions Cn in form of a desired distribution of

contact points.

A. Predefined contact regions

Often a uniform and ”circular-shaped” distribution of

points within regions Cn is desired, since they can directly

be related to the positioning accuracy of a robotic fixturing

device. Defining such regions can be done by associating the

contact points forming each region Cn with graphs, which

have the corresponding initial grasp contacts pgn
as their

respective root nodes. A simple breadth-first-search (BFS)

which is stopped at a predefined depth yields ”layers” of

contact points centered around the prototype grasp contacts.

Figure 1 shows an example of such regions on the model of

a parallelepiped. Algorithm 1 gives an efficient way to verify

if all grasps with one contact point in each region are viable.

However, expecting the user to specify sets Cn which

yield a non-empty EWSapp is a stringent requirement. In

Ginit

ICRQP

ICRSoA

Fig. 7. Comparison of algorithms for the generation of ICRs: Regions
Cn for a 7-fingered grasp; ICRQP denotes the regions obtained by the

method detailed in Section V-B, ICRSoA are obtained by the state-of-the-
art approach outlined in Section II-D;

case of Algorithm 1 failing during the computation of

hyperplane H̃h, one possibility is to remove one (or multiple)

contact point(s) from some region(s) associated with Wξh

and retry. We suggest a simple heuristics in order to de-

cide which contact point to remove, which is depicted in

Fig. 5. Removed is the contact point whose associated

wrench lies in the interior half-space of the hyperplane

containing the hth facet of GWSinit and comprises the

largest distance from this hyperplane. Figure 6 shows an

example of regions derived via this method. Another way

of ensuring feasible user input is to treat Algorithm 1

as a post-processing step of the state-of-the-art algorithm

in order to improve the estimation of the EWS.

B. Sequential inclusion of points in Cn

Instead of predefining the ICRs, a user can provide a

logic for sequentially including points in regions Cn in

order to ”grow” them from the corresponding initial grasp

points. Consider adding points to regions Cn according to

the same breadth-first strategy as described above. However,

instead of limiting the depth of the search, each time a

point is added EWSapp is updated according to Algorithm 1.

If the point is feasible (i. e., EWSapp contains the TWS),

the neighbors of the point are enqueued in the search.

The procedure stops when no more feasible points are

found. Regions Cn can be prioritized according to their

position in the sequence. In particular, choosing the sequence

n = 1 → 2, 2 → 3, . . . , N -1 → N provides an alternative

way of computing ICRs which, compared to the state-of-

the-art method, yields larger regions for the same TWS as

illustrated in Fig. 7.

If the position of certain initial grasping points pgn
is

known precisely, e.g. when there are several locator pins

to hold a workpiece [9], it is possible to exclude the

corresponding regions Cn from the sequence. This allows

for more points to be included in the remaining regions. An

example is shown in Fig. 8, where contact points are only

added to two out of seven regions Cn.

VI. NUMERICALLY EVALUATED RESULTS

Algorithm 1 was implemented in Matlab and evaluated on

a PC comprising a Core 2 Duo 2.9-GHz processor and 4GB

RAM. The presented methods work for arbitrary objects,

the model of a parallelepiped sampled with a number of
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Ginit

ICRQP

Fig. 8. Growing ICRs with some fixed grasp contacts: ICRs for a 7-fingered
grasp with 5 contacts fixed beforehand;

S = 1714 vertices, which are meshed by 3424 triangles, was

used for benchmarking. For evaluation purposes hundred

7-fingered prototype form-closure grasps were randomly

created for the test object. Associated to each of these grasps

is a TWS represented by an origin-centered sphere with half

the radius of the largest insphere of the according GWSinit.

First, we evaluate the quality of the approximations

EWSapp provided by Algorithm 1 and the state-of-the-art

(SoA) method. For this purpose the ICRSoA, generated by the

SoA approach on the test grasp set, were treated as an input

for Algorithm 1. The approximations EWSapp generated by

the two methods were compared to the ground-truth EWS

obtained via a brute-force computation according to (4). The

results are summarized in Table I. Algorithm 1 yields vastly

better results than the SoA method in terms of the average

percentage difference in volume ∆Vol from the ground truth.

The polytope obtained by the SoA approach is very limited

in some directions due to its strong conditioning on GWSinit.

Note that bhmin
, the radius of the largest origin-centered

insphere of the actual EWS, was correctly identified for all

test cases by the QP method.

In another experiment, ICRs were generated via the QP

approach by sequentially adding points to regions Cn as

presented in Section V-B. The flexible orientation of hyper-

planes H̃h provided by the QP method allows for a more than

three times larger average number of contact points in regions

Cn compared to the SoA approach (see Table II). However,

the average computation time tQP for the QP method is of

two orders of magnitude higher than for the SoA method.

In a final experiment, five grasp contact points were fixed

beforehand and points were sequentially added to the regions

associated with the remaining two contacts as described in

Section V-B. In this limited case, a point added to one region

enables a number of additional grasps which equals only the

cardinality of the other region considered for the inclusion

of points. Thus, in each step of the sequence, the number

of possible viable grasps in (3) is moderate which allows

for a brute-force generation of ICRs in tolerable time. Every

time a contact point is added to a region, the viability of the

enabled new grasps is checked by intersecting the according

grasp wrench spaces. The results of the comparison made

between the brute-force computation and the QP approach

are summarized in Table III. The regions generated by both

methods are the same. However, regarding computational

efficiency, the values for average computation time t and

x

y

Fig. 9. Predefined ICRs on an ellipse: Uniform ICRs for a five-fingered
grasp; Big dots characterize the initial prototype grasping points;

TABLE I

EWS - APPROXIMATION: COMPARISON TO THE STATE-OF-THE-ART

∆Vol [%] σ (∆Vol) [%] ∆bhmin
[%] σ(∆bhmin

) [%]

QP 54.0 21.7 0.0 0.0

SoA 99.8 0.4 43.4 7.5

TABLE II

ICR - GENERATION: COMPARISON TO THE STATE-OF-THE-ART

∑
|Cn| σ (

∑
|Cn|) t [s] σ(t) [s]

QP 186 83 0.827 0.623

SoA 60 39 0.008 0.008

TABLE III

ICR - GENERATION WITH FIXED GRASP CONTACTS

∑
|Cn| σ (

∑
|Cn|) t [s] σ(t) [s]

QP 278 119 1.926 7.310

Brute-force 278 119 331.543 414.789

standard deviation σ(t) are two order of magnitudes higher

for the brute force approach.

The results indicate that the algorithm introduced in this

work is equivalent to a brute-force solution regarding the

number of points qualified for inclusion in Cn. Compared

to the state-of-the-art method, it yields larger regions Cn and

provides a better approximation of resistible disturbances for

the price of computational efficiency.

VII. CONCLUSION

In this work, we introduce the idea of allowing a user

to influence the distribution of contact points within grasp-

ing regions on a target object’s boundary. This allows

incorporation of available knowledge about the targeted

application. We discuss the disturbances which grasps, com-

prising unilateral frictionless contacts within such regions,

can resist. Provided is a framework for the efficient ap-

proximation of these disturbances. Future work is directed

at incorporating frictional contact constraints in order to

increase the applicability of the suggested methods.
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Fig. 10. Generating EWSapp: Successive computation of hyperplanes H̃h according to Algorithm 1 for the ellipse shown in Fig. 9, the considered TWS
is represented by the origin; (a) Initial grasp wrench space GWSinit; (b) A viable grasp whose corresponding GWS comprises a different face lattice
than GWSinit (e.g. the convex hull in (a) comprises a facet spanned by one wrench each from the sets W3, W4 and W5 whereas the GWS in (b) does
not); Thus, the grasps corresponding to the GWS in (a) and (b) are not similar according to Definition 1; (c)-(h) Approximation of the EWS by gradually

limiting GWSinit, the wrenches supporting the hyperplanes H̃h are depicted in bold frames; The hyperplane in (c) does not fulfill Proposition 1, thus H̃1

is unnecessarily constrictive; The gray shaded polytope in (h) represents the final EWSapp; (i) The actual EWS, yielded by a brute-force computation;
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