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Abstract-In this paper we present an overview of a multi
sensor setup designed to record and analyse human in-hand 
manipulation - tasks consisting of several phases of finger 
motions following the initial grasp. During the experiments all 
of the hand, finger, and object positions are recorded, as are 
the contact forces applied to the manipulated objects. The use 
of instrumented sensing objects complements the data. 

The goal is to understand and extract a basic set of finger 
and hand movement patterns, which can then be combined 
to perform a complete manipulation task, and which can 
be transferred to control robotic hands. The segmentation of 
whole manipulation traces into several phases corresponding to 
individual basic patterns is the first step towards this goal. Initial 
analysis and segmentation of two typical manipulation tasks are 
presented, showing the advantages of the multi-modal analysis. 

Index Terms-grasping, in-hand manipulation, tactile sensing 

I. INTRODUCTION AND RELATED WORK 

The capacity of the human hand to grasp and manipulate 
objects, known or unknown and of widely different sizes, 
shapes and materials is unmatched. Despite recent progress 
in the design and control of multi-finger robot hands, their 
use in service-robotics is still limited by the complexity of 
finding and applying grasp movements for any given task. 

Fig. 1. The 24 DOF Shadow hand 

The study of manipulation tasks can be categorised into two 
main groups. In analytical approaches, a grasp is formally 
defined as a set of contact points on the surface of the 
target object together with friction cone conditions [I]. The 
traditional solution to this problem is divided into two stages: 

first, suitable grasping points on the object are determined, 
and in the second step a robot hand posture is computed via 
inverse kinematics to reach those points with the fingertips. 
See [2] and [3] for extensive reviews. 

To realise a better flexibility and robustness, the second 
approach is motivated by the way humans grasp and rely on 
empirical studies and classification of human manipulation 
tasks [4]. Typically, the manipulation task is divided into 
different phases, e.g. pre-shape, grasp, and stabilization of 
an object [5]. Analyzed strategies can then be mapped to a 
robot hand, and complex behaviour is created by sequencing 
and combining basic motion primitives [6]. 

Vision systems and data-gloves are the most common 
sensors used to track the human hand and fingers in the ex
periments, and there is some overlap with research motivated 
by virtual reality and gesture recognition. 

In vision based systems, both marker-based and markerless 
tracking of hand motions has been tried, and multi-camera 
setups are often required to reduce the inherent problem of 
occlusion and self-occlusion. Markerless approaches typically 
include a segmentation step based on skin color and shape
based tools like active contours. Different machine-learning 
techniques are then used to train the classifiers [7] [8]. 

However, humans can grasp and manipulate objects mostly 
without looking, guided only by haptics. Grasp recognition 
from hand postures recorded with a data-glove has been 
demonstrated in [9]. Unfortunately, so far there is no technical 
equivalent to human skin, and the recording of tactile data 
with high spatial resolution and high dynamic force range 
is a topic of active research; see [10] for a recent exhaus
tive review. Only a few of the different technologies are 
already available commercially [II]. For our experiments, the 
Tekscan grip system [29] was chosen. An analysis of human 
manipulation tasks based on force measurements similar to 
our approach was reported recently [12]. 

The most advanced robot hands available today approach 
the mechanical structure and size of the human hand. For 
example, the Shadow robot hand [13] is designed to closely 
match the human hand, with 24-DOF overall and human-like 
thumb movements. Successful grasping of a set of everyday 
objects with the Shadow hand has been demonstrated [14], 
but in-hand re-grasping and dexterous manipulation or the use 
of tools is still beyond the state of the art. 
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Fig. 2. The Tekscan grip system mounted on a right-handed Cyberglove. 
(a) Inside view. For each finger, three matrix sensors are provided for the 
distal (4x4 cells) medial (4x3), and proximal (4x3) phalanges. The thumb 
carries the distal and proximal sensor pads. Separate sensor areas (4x19, 5x9, 
and 5x4 plus 4x8 cells) are placed on the palm of the hand. (b) Layout and 
names of the Tekscan sensors for a right-handed glove. The 2D visualization 
corresponds to a behind-view of the hand. 

Given the kinematics structure of the hand, any finger 

posture is fully specified by the joint angles, and can be 

thought of as a point in a high-dimensional joint space. 

As the number of degrees of freedom to model the human 

hand ranges between 20 .. 27 DOF, plus 6 DOF for the 

hand position and orientation, the resulting search space is 

enormous. However, previous research of human grasps [15] 

indicates that most human grasp postures are derived from a 

small set of common pregrasp shapes. Based on this insight, 

the concept of Eigengrasps was introduced in [16], where 

the finger postures are represented as a linear combination 

of basis vectors calculated by principal component analysis. 

The approach was refined in [17] and makes it possible to 

reduce the effective dimension of the parameter space for 

grasp generation dramatically. 

Running the Grasplt! simulator [18] with this search tech

nique, grasps could be generated quickly for thousands of 

3D models, using a model of the human hand as well as 

different robotic hands. This collection of pre-calculated form 

closure grasps has been published recently as the Columbia 

Grasp Database [19]. The authors suggest to use an object's 

3D geometry as an index into the database, so that finding 

suitable grasps for a new object turns into a database lookup. 

An important area of current research is the modelling 

of object affordances, and the integration of the affordances 

and relevant object properties into the grasp generation and 

grasp quality evaluation [20]. For example, object shape is 

used in [21], while the handover of objects between robot 

and operator is considered in [22]. A flexible grasp quality 

estimation based on a weighted sum of different criteria is 

described in [23] and has been implemented in our in-house 

grasp simulator [24]. 

The rest of the paper is organized as follows. First, the 

multi-sensor setup used for the manipulation experiments 

is described in section II. Initial experimental results for 

two selected scenarios are then described in section III. We 

conclude with an outlook on future work in section IV and a 

short summary. 

(a) (b) 

Fig. 3. Picture of an original and the instrumented Rubik cube (a) and 
numbering of the force sensors (b). 

II. MULTI-SENSOR EXPERIMENT SETUP 

Precise recording of the human hand during grasp and 

manipulation tasks is particularly challenging, because ex

ternal sensors suffer from occlusion problems, while sensors 

mounted onto the hand must be very small and flexible to 

avoid restraining the finger movements. 

Targeting the manipulation of everyday objects, a small 

table-scene environment observed by several sensors provides 

the basic setup for our experiments. As no single device can 

record all the data we want to collect, a complex multi-sensor 

setup is used which includes stereo cameras and magnetic 

or optical trackers as the external sensors. To record the 

finger positions, as well as contact forces, a special data-glove 

equipped with tactile sensing is used. At the moment, any of 

the following sensors are supported and used: 

• stereo camera(s), used both for an overall view of the 

scene and also to gather depth-maps for hand tracking 

and object recognition (Videre systems STDC [25)). 

• magnetic tracker (Polhemus Liberty with up to six sen

sors, each providing absolute 6D position and orientation 

data [26)). 

• optical tracking of finger positions with active markers 

(PhaseSpace Impulse system [27)). 

• data-glove for the recording of hand orientation and 

finger positions (Cyberglove [28]). 

• high-resolution tactile sensing of finger forces (Tekscan 

Grip system [29)). 

• instrumented objects with force, acceleration, and orien

tation sensors (Rubik -cube [30], Wiimote [31)). 

Additionally, we record and analyse grasps from the tele

operated Shadow hand, controlled by the data-glove. While 

this approach is more difficult for the experimenter, due to 

the lack of tactile feedback and a sub-optimal mapping from 

the data-glove sensors to the actuators of the Shadow hand, 

it provides us with high-resolution hand and finger positions 

from the built-in resolvers of the robot arm and the Shadow 

hand. Of course, not all sensors are used at the same time 

or for all experiments. For the data presented in this paper, 

the stereo-camera, magnetic tracker, data-glove with tactile

sensing and the instrumented objects were used. 
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Fig. 4. Example histograms of Tekscan force sensor activations for the finger sensors. The five columns show the data for (from left to right) the thumb, 
and then mdex, middle, nng, and httle finger. The upper, middle, and bottom group of histograms corresponds to the distal, medial, and proximal sensors. 
For each sensor cell, the color encoded histogram visualizes the occupation numbers of the force values encountered during an experiment (log scale, from 
left to nght). The palm sensors are not shown. (a) in hand manipulation of the Rubik cube with a precision grasp. Only the proximal phalanges of the thumb 
and �ndex finger are active, with some additional stabilization from the ring finger. (b) using the ball pen for writing. All fingers and most sensors except the 
proximal sensors on the thumb are activated during the experiment. 

A. Tactile sensing 

To record the contact forces applied during the experiments, 
a Tekscan grip system [29] has been stitched onto a standard 
Cyberglove [28]. A photo is shown in figure 2 together with 
the 2D visualization provided by Tekscan and re-implemented 
in our own software. The Tekscan grip system consists of a 
set of matrix sensor elements using force-sensitive resistive 
material and connected by a flexible circuit board. The layout 
of the sensors is shaped to match the human hand, with three 
groups of sensors (distal, medial, proximal) on each finger, 
two groups on the thumb, and three groups on the palm of the 
hand. Despite the extra weight and some restrictions on finger 
positions caused by the stiffness of the glove and sensors, 
many manipulation tasks can be performed well. 

B. Instrumented objects 

The use of special instrumented sensing objects is a third 
keystone of our experiment setup. The sensors in the object 
measure orientation, accelerations, and grasp forces to com
plement the data gathered from the glove and hand itself. 

The first instrumented sensing object is a custom-built cube 
equipped with tactile sensors [30], see figure 3 for a photo of 
the prototype next to an original Rubik cube. Every face of 
the cube consists of a small circuit board carrying an array of 
3x3 resistive force sensors and one 3-axis accelerometer. Six 
boards are interconnected, with a single CAN-bus interface 
to the host computer. For convenience, the faces are colored 
identically to the original cube, and the resulting numbering 
of the sensor cells is shown in figure 3b. 

C. Software environment 

While real-time analysis and direct teleoperation of robots 
is planned for a later stage, the grasping and manipulation 

experiments reported here are just recorded for later off
line analysis. Sacrificing file size for portability, all recorded 
sensor data is times tamped and encoded as XML, with a 
common basic structure including calibration information 
followed by the raw sensor samples. Video data from the 
cameras is stored as individual image files, which are in turn 
referenced from the XML. A single additional 'root.xml' file 
describes the overall experiment setup, the sensors employed, 
and also includes comments and annotations [32]. Both a 
Matlab toolbox and several Java tools are available for parsing 
and visualization of experiment traces. 

D. Multi-sensor calibration 

Given the variety and complexity of the sensors employed, 
the calibration of the multi-sensor setup is quite challenging, 
and so far only the stereo-camera calibration is performed 
automatically. The Polhemus tracker uses its own absolute 
coordinate system, which can be mapped into the coordinate 
system of the cameras. 

The initial calibration of the Tekscan sensor cells has 
been performed with objects of known weight, but this is 
very time-consuming and suffers from problems with the 
Tekscan system mounted onto the data-glove. As a result, the 
experimental data presented below just uses the uncalibrated 
raw sensor data. 

A similar approach with objects of known weights is 
used to calibrate all 6x3x3 force sensors of the instrumented 
Rubik cube. The accelerometers are factory-calibrated, but 
additional calibration in the range of ±1 g is easily performed 
by putting the cube on all of its six faces in turn, and then on 
a simple rig with 30 and 45 degrees of tilt, providing a set of 
seven known levels and accurate offset for each accelerometer. 
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Fig. 5. Picking up the instrumented Rubik cube. The photos in the upper row show the left image of the recorded stereo image pairs during the experiment, 
with the corresponding force signatures from the Tekscan glove in the middle and the forces from the Rubik cube in the bottom row: (a) approach (b) first 
contact (intentionally off center of the object) (c) lift off, precision grasp with thumb and index finger only (d) lowering the finger forces to let the cube slide 
down (e) finger forces remain low, because the cube is now stabilized by gravity, (f) setting the cube on the table. Compare figure 9 for a plot of the recorded 
finger forces vs. time. 

III. EXPERIMENTS 

We are currently recording a number of typical tasks 
involving everyday objects and tools, in order to compile 
a database of human manipulation strategies. While existing 
taxonomies and databases mostly concentrate on the finger 
positions for static grasps, our database includes the measured 
finger forces and the context information during the complete 
manipulation task, consisting of a sequence of several typical 
phases (e.g. reach, hand preshape, grasp, lift-off, stabilize, in
hand rotate, controlled lowering, release). The segmentation 
of the recorded data enables us to mark those phases and is 
therefore the first step towards data analysis and understand
ing. 

In this section, we present initial experimental results. 
Two simple experiments are picked to showcase two typical 
tasks and the resulting sensor data. The first task involves a 
precision grasp with the thumb and index finger, while the 
second task illustrates a complex manipulation task with in
hand re-grasping. 

A. Force histograms 

As shown in figure 4, even a first cursory glance at the 
data recorded with the Tekscan grip system provides a useful 
classification of the grasping. In the diagram, the forces 

recorded during an experiment are visualized using color
encoded histograms. The five columns correspond to the 
thumb, and the index, middle, ring and little fingers (from left 
to right). Inside a column, each row plots the force histogram 
recorded at a single sensor element, with the distal sensors as 
the upper group, followed by the sensors on the medial and 
proximal finger phalanges. For every sensor, the histogram 
shows the occupation number of the corresponding bin, with 
low forces on the left and the highest forces on the right. 

For the experiment shown in figure 4a, only the leftmost bin 
(zero force) of most histograms is populated, indicating that 
the corresponding sensor cells were never activated during the 
whole experiment. It is immediately evident that a precision 
grasp involving only the proximal phalanges of the thumb and 
index finger was performed, with some additional stabilization 
by some cells on the ring finger. 

On the other hand, the data shown in figure 4b indicates 
that all sensors on the fingers were activated during the ex
periment, with the single exception of the proximal sensors on 
the thumb. The data correspond to the complex manipulation 
reported in more detail in section III-C, grasping a ball-point 
pen to pick it up, in-hand re-grasp to reach the button, clicking 
the pen, re-grasping again to the writing position, and writing 
a few characters. 
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(a) (b) (c) (d) (e) (t) 
Fig. 6. Pickung u a ball point pen for writing. The photos in the upper row show the left image of the recorded stereo image pairs during the experiment, 
with the corresponding force signatures in the lower row: (a) initial position, (b) approach and hand preshape, (c) first contact (d) grasping for pickup with 
thumb and index finger (precision grasp) (e) lift off, (f) starting the in hand re grasping into a power grasp configuration 

(g) (h) (i) U) (k) (I) 
Fig. 7. In hand manipulation to reach the "'click'" button of the ball point pen. Starting from the initial position (g), the pen is put between the proximal 
phalanges (h) and then moved laterally until the thumb can reach the button of the pen (i j k). It can be seen clearly how the peak of the forces travels with 
the object. The last image (I) shows the forces while writing. Note that the palm sensors are activated by the little finger. 

B. Grasping the Rubik-Cube 

While in-hand manipulation tasks typically start and end 
with controlled stable grasps, the intermediate phases during 
re-grasping often involve short periods of time where finger 
forces are reduced until the resulting grasp is statically 
unstable. 

The simple experiment shown in figure 5 was designed to 
track the finger forces in such situations. The first phase of the 
experiment consists of grasping and lifting the Rubik cube, 
but intentionally off-center. 

Figure 8 shows the accumulated forces of the distal pha
langes of the thumb and index finger as recorded with the 
Tekscan glove. The data is shown as uncalibrated raw sensor 
readings, and due to some sensor non-linearity the forces on 
the index finger are larger than the forces on the thumb. 

The traces show that the thumb is first to make contact 
with the object, closely followed by the index finger at t =5 .0 

seconds. The forces increase rapidly and force closure makes 
it possible to lift the cube. Once in mid-air, the forces are 
slightly reduced and remain roughly constant. At t = 8.6 
seconds, the test subject releases the grip force for a moment, 
and the cube rotates under the influence of gravity. At t = 
11 seconds, the cube is put on the table again. 

For comparison, the corresponding traces recorded by the 
force sensors on the instrumented cube are shown in figure 9. 
Initially, the cube rests on the green face, resulting in sensor 
response on that face. Then, the cube is grasped with the 
index finger at cell WI and the thumb on cell Y 1. Again, the 
reduced forces that initiate the sliding near t = 8.6 seconds 
are clearly recorded. Finally, the cube is set down on the 
orange face. Unfortunately, the mechanical design results in 
some crosstalk between neighboring faces. For example, note 
the erroneous activation of sensor cell R4 in figure 5 due to 
the strong force applied at cell Wi. 
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Fig. 8. Grasping the Rubik cube off center, and letting it slip so that it swings 
downwards. The plot shows the accumulated forces on the tips of the thumb 
and index finger vs. time (in seconds) during the experiment shown in figure 5 
as recorded by the Tekscan sensor. The different phases of the manipulation 
task are clearly visible: initial approach, lift off at 5 sec, stabilization, swing at 
8.6 sec, stabilization, drop off at II sec. Forces are not scaled and correspond 
to the raw data values. Note that the experimenter intuitively keeps the thumb 
forces low once the Rubik cube is pointed downwards and kept stable by 
gravity. 
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Fig. 9. Accumulated forces for the green, yellow, and orange faces as 
recorded by the instrumented object for the same experiment traced in 
figure 8. Initially, the cube rests on the green face, and is picked up by 
a strong grasp at cells WI and Y 1. After the slipping phase, the orange face 
is at the bottom. Note the short peak as the cube is set on the table. 

C. Using a ball-point pen 

Our second experiment consists of a typical everyday task: 
picking up a ball-point pen for writing. Camera images 
corresponding to a few key moments are shown in figures 6 
and 7 together with the recorded force signatures. Starting 
from the resting position (6a), the human first pre-shapes the 
fingers (b) and reaches for the pen (c). The thumb and index 
fingers are closed into a pinch-grasp (d), and finger forces are 
increased for lift-off (e). Not shown here are the interesting 
different hand postures and finger pre-shapes for different 
initial positions of the pen on the table. 

Immediately after lift-off, the experimenter starts the in
hand re-grasp required to reach the button on the back end of 
the pen in order to activate it by clicking the button. The first 
stage of this is shown in figure (6e) and (f), where the load 
shifts from the index finger to the middle and ring fingers. 
With the fingers closed around the pen, the pen is then moved 
inside the hand until the thumb can reach and click the button 
of the pen, see figure 7 (g) to (k). A second stage of re
grasping follows to shift the pen until thumb and index finger 
have reached the position for writing (I). 

An example of human grasp force control is presented in 
figure 11 which shows six phases of clicking the ball-point 
pen on and off. The pen is held lightly in a power-grasp 
finger configuration (1Ia) so that all finger sensors and the 

,. 0 

5 

Fig. 10. Grasping a pen and writing. Trajectories of the fingertips during 
the first part of the experiment as recorded by the Polhemus sensors (purple: 
thumb, blue/green/red/cyan: indexlmiddle/ringllittle finger). The trajectory of 
the ball point pen is tracked by a sixth Polhemus sensor (yellow). Note 
that the trajectories are very clean during the approach phase, but individual 
phases of the manipulation task cannot be recognized from the trajectories 
alone. 

palm sensors are activated. Note that the finger forces increase 
significantly during the clicking (b-c-d) to compensate the 
force applied by the thumb. After the clicking (e-f), the finger 
forces are reduced again. 

Compare figure 10 for the finger trajectories recorded by 
the Polhemus magnetic tracker during the first phase of the 
experiment. While the data itself is pretty clean, the trajecto
ries are continuous and smooth, and the different phases of 
the overall manipulation task cannot be distinguished from 
the data. 

(a) 

(d) 

(b) 

(e) 

(c) 

(I) 

Fig. II. Clicking a ball point pen on and off. The pen is held in a power 
grasp with the thumb operating the button. In the initial phase (a b), the 
grasp forces are quite low and distributed evenly across all fingers and the 
palm. The forces increase significantly while clicking the button (c d) in 
order to stabilize the pen, but are reduced again afterwards (e I). The outer 
palm sensors and the proximal part of the thumb do not touch the pen and 
are not activated. 
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IV. FUTURE WORK 

While the experimental setup allows us to collect absolute 
position data for the fingers and objects during the manipu
lation tasks, this has not yet been exploited in our analysis. 
Therefore, we are now working on a integrated 3D physics 
simulation and visualization, which enables us to track and 
reconstruct the hand and finger movements during the grasp 
and manipulation experiments. 

In the tool, the user can play back the recorded experiments, 
showing either or all of the reconstructed 3D positions of the 
fingertips and objects from the Polhemus sensors and stereo 
images, the reconstructed human hand model, and the force
values recorded from the Tekscan and instrumented objects 
mapped onto the hand. Contact points between fingers and 
objects will be visualized similar to GraspIt! and our in-house 
simulator zgrasp [24]. 

The next major step will be to model object affordances 
and to evaluate machine-learning approaches to automatically 
detect, segment, and analyse the several phases of human 
object manipulation. We are working on a mapping, allowing 
to transfer the reconstructed finger movements to a physical 
simulation of the Shadow hand, and then to validate the results 
with the real Shadow hand. 

V. CONCLUSION AND DISCUSSION 

The initial results of our multi-modal analysis of human 
manipulation tasks look promising. The different sensors 
complement each other nicely for our goal of segmentation 
of multi-stage operations into their different phases. For 
example, initial hand positions and finger pre-shapes are 
available from the camera images and Polhemus traces, while 
the force sensors give accurate information about the time 
of initial contact which would be hard to extract from the 
camera images. The spatial resolution of the force sensors in 
the Tekscan glove is enough to provide detailed information 
about in-hand manipulation tasks. 
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