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Programming-by-Demonstration of Reaching

Motions for Robot Grasping

Alexander Skoglund, Johan Tegin, Boyko Iliev and Rainer Palm

Abstract— This paper presents a novel approach to skill
modeling acquired from human demonstration. The approach
is based on fuzzy modeling and is using a planner for generating
corresponding robot trajectories. One of the main challenges
stems from the morphological differences between human and
robot hand/arm structure, which makes direct copying of hu-
man motions impossible in the general case. Thus, the planner
works in hand state space, which is defined such that it is
perception-invariant and valid for both human and robot hand.
We show that this representation simplifies task reconstruction
and preserves the essential parts of the task as well as the
coordination between reaching and grasping motion. We also
show how our approach can generalize observed trajectories
based on multiple demonstrations and that the robot can match
a demonstrated behavoir, despite morphological differences.
To validate our approach we use a general-purpose robot
manipulator equipped with an anthropomorphic three-fingered
robot hand.

Index Terms— Programming-by-Demonstration, Hand State,
Motion Planner, Fuzzy Modeling, Correspondence Problem.

I. INTRODUCTION

Programming-by-Demonstration (PbD) refers to variety

of methods where the robot learns how to perform a task

by observing a human teacher, which greatly simplifies

the programming process [1], [2], [3] and [4]. One major

scientific challenge in PbD is how to make the robot capable

of imitating a human demonstration. Although the idea of

copying human motion trajectories using a simple teaching-

playback method seems straightforward, it is not realistic

for several reasons. Firstly, there is a significant difference

in morphology between the human and the robot, known as

the correspondence problem in imitation [5]. The difference

in the location of the human demonstrator and the robot

might force the robot into unreachable parts of the workspace

or singular arm configurations even if the demonstration

is perfectly feasible from human viewpoint. Secondly, in

grasping tasks the reproduction of human hand motions

is not possible since even the most advanced robot hands

cannot match neither the functionality of the human hand

nor its sensing capabilities. However, robot hands capable

of autonomous grasping can be used in PbD provided that

the robot is able to generate an appropriate reaching motion

towards the target object.

In this article, we present an approach to learning of

reaching motions where the robot uses human demonstra-
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tions in order to collect esential knowledge about the task.

This knowledge, i.e., grasp-related object properties, hand-

object relational trajectories, and coordination of reach and

grasp motions is encoded and generalized in terms of hand

state space trajectories. The hand state components are

defined such that they are perception-invariant and defines

the correspondence between the human and robot hand. The

hand-state representation of the task is then embedded in a

motion planner which enables the robot to perform reaching

motions from an arbitrary robot configuration to the target

object. The resulting reaching motion ensures that the robot

hand will approach the object in such way that the probability

for a successful grasp is maximized.

Four experiments describe how human demonstrations

of goal-directed reach-to-grasp motions can be reproduced

by a robot. Specifically, the generation of reaching and

grasping motions in pick-and-place tasks is addressed. The

first experiment is a simulation of an autonomous grasp

performed from different poses in relation to the target. This

will show how accurate the positioning of the end effector

needs to be to execute a successful grasp. It is important

to know when the end effector is in a position where the

grasp execution can be started. The second experiment shows

how the correspondence problem can be solved and how

to generate a trajectory to executable on a real robot. The

third experiment illustrates how the robot generalizes its

knowledge for new positions of the object. It reproduces the

demonstration regardless of the initial position of the robot

and the position of the object. The goal of this experiment is

to investigate how well each model can generalize across the

workspace. This is related to the number of models needed

for the robot to perform a successful reaching-to-grasp ac-

tion; good generalization ability means that fewer models are

needed. The fourth experiment is done to assess the reaching

and grasping as an integrated process. A complete pick-and-

place task is eventually demonstrated and executed by the

robot.

The contributions of the work in this paper are as follows:

1) We introduce a novel approach using a next-state-

planner based on the fuzzy clustering approach to

encode human and robot trajectories.

2) We apply the hand state concept [6] to encode motions

in hand state trajectories and apply this in PbD. The

hand state description is the link between human and

robot motions.

3) The combination of the next-state-planner and the hand

state approach provides a tool to address the correspon-

dence problem resulting from the different morphology
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of the human and the robot. The experiments shows

how the robot can generalize and use the demonstration

despite its fundamentally different morphology.

One advantage of this approach over trajectory averaging

(e.g., [1] or [7]) is that one of the human demonstrations

is used instead of an average which might contain two

essentially different trajectories [8]. By capturing a human

demonstrating the task, the synchronization between the

reach and the grasp is also captured, demonstrated in [9].

Other ways of capturing the human demonstrating, such as

kinesthetics, cannot easily capture this synchronization.

II. INTERPRETATION OF HUMAN DEMONSTRATIONS IN

HAND-STATE SPACE

Interpretation of human demonstrations is done on the

basis of the following assumptions:

• The type of tasks and grasps that can be demonstrated

are a priori known by the robot.

• We consider only demonstrations of power grasps (e.g.,

cylindrical and spherical grasps) which can be mapped

to–and executed by–the robotic hand we use.

If hand motions with respect to a potential target object

are associated with a particular grasp type Gi, it is assumed

that there must be a target object that matches the observed

grasp type. In other words, the object has certain grasp-

related features, also called affordances [6], which makes

this particular grasp type approapriate.

For each grasp type Gi, a subset of suitable object affor-

dances is identified a priori and learned from a set of training

data. In this way, the robot is able to associate observed grasp

types Gi with a set of affordances Ai offered by the object to

perform the observed grasp. Once the target object is known,

the hand state can also be defined. According to Oztop [6],

the hand state must contain components describing both the

hand configuration and its spatial relation with respect to

the affordances of the target object. Thus, the hand state is

defined in the form:

H =
{

h1,h2, . . .hk−1,hk, . . .hp

}

(1)

Here, h1 . . .hk−1 are hand-specific components which de-

scribe the motion of the hand during grasping. The remaining

components hk . . .hp describe the motion of the hand in

relation to the object. Thus, a hand state trajectory contains

a record of both the reaching and the grasping motions as

well as their synchronization in time and space.

In the PbD framework, h1, . . .hk must be such that they

can be recovered from both human demonstrations and the

perception system of the robot. That is, the definition of

H must be perception invariant and can be updated from

arbitrary types of sensory information. Fig. 1 shows the

definition of the hand state in this paper.

Let the human hand be at some initial state H1. Then the

hand moves along a certain path and reaches the final state

H f where the target object is held by the hand. That is,

the recorded motion trajectory can be seen as a sequence of

states, i.e.,

Hd(t) : H1(t1) → H2(t2) → . . . → H f (t f ) (2)
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Fig. 1. The hand state describes the relation between the hand pose and
the object affordances.
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Fig. 2. Mapping from human hand to robotic gripper.

Since Hd(t) cannot be executed by the robot without

modification in the general case, we have to construct the

robotic version of Hd(t), denoted by Hr(t), see Fig. 2 for an

illustration. To find Hr(t) a mapping from the human grasp to

the robot grasp is needed, denoted T r
h . This mapping is cre-

ated as follows. T r
h is a transformation matrix which defines

the spatial relation between the human hand and the robot

hand while holding the object with a grasp corresponding

to Gi. Thus, we can measure the pose of the demonstrator

hand and the robot hand holding the same object at fixed

position and obtain T r
h as a static mapping between the two

poses. It should be noted that this method is only suitable for

power grasps. In the general case it might produce ambiguous

results or rather inaccuarate mappings.

With T r
h defined, we can now create the robot version of

Hd as follows. The current pose of the robot hand defines

the initial state of Hr
1 . The target state of Hr

f will be derived

from the demonstration by mapping the goal configuration

of the human hand H f into a goal configuration for the robot

hand Hr
f (see Fig. 2) using the transformation T r

h :

Hr
f = T r

h H f (3)

For the power grasp the robot hand is positioned so the grasp

is expected to be successful at Hr
f . Next the human hand

position H f in hand state space and the robot hand position

H f are use to compute the transformation T r
h from human to

robot obtained by:

T r
h = Hr

f H−1
f (4)
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III. GENERATION OF ROBOT HAND STATE TRAJECTORIES

FROM DEMONSTRATIONS

In this section we describe how robot reaching motions are

generated based on generalization of human demonstration

in hand state space.

Having the initial and the target states defined, we have to

generate the trajectory between the two states. In principle,

we could transform Hd(t) using (3) in such way that it has its

final state in Hr
f . Then, the robot starts at Hr

1 , approaches the

displaced demonstrated trajectory and tracks it until the target

state. However, such approach would not take trajectory

constraints into account. Thus, it is also necessary to specify

exactly how to approach Hd(t) and what segments must be

tracked accurately. Moreover, Hr(t) has to synchronize the

reaching motion driving the arm with the grasping.

The workspace restrictions of the robot also have to be

considered when creating trajectories. A trajectory might

contain regions which are out of reach, or two connected

points on the trajectory require different joint space solutions,

thus, the robot cannot execute the trajectory. To avoid or

remedy the effect from this problem the manipulator must

be placed at a position/orientation with good reachability.

Other solutions include a mobile platform, larger robot, or

more degrees of freedom (DOF) to mimic the redundancy of

the human arm.

A. Trajectory modeling using fuzzy clustering

By modeling the hand state trajectories recorded from the

demonstration using Takagi-Sugeno (TS) fuzzy clustering

we obtain three benefits: 1) a compact representation of the

dynamic arm motion in form of cluster centers, 2) nonlinear

filtering of noisy trajectories and 3) simple interpolation

between data samples. Three types of models are needed:

a model of the distance to the object and as a function of

time; a model of the hand states a function of time; and a

model of the hand state as a function of the distance. The TS

fuzzy models are constructed from captured data described

by the nonlinear function:

x(y) = f(y) (5)

For fuzzy time clustering (see [10] for details) x(y) ∈ Rn,

where n is either 1 for distance and 6 for hand state, f ∈ R1,

and y ∈ R+. For distance clustering of the end effector pose

x(y) ∈ R6
, f ∈ R6, and y ∈ R+. The parameter y can be the

time or the distance. Equation (5) is linearized at selected

data points which results in a linear equation in y.

x(y) = Ai · y+ai (6)

where Ai = ∆f(y)
∆y

|yi
∈ Rn and ai = x(yi)−

∆f(y)
∆y

|yi
· yi ∈ Rn.

Using (6) as a local linear model one can express (5) in

terms of an interpolation between several local linear models

by applying TS fuzzy modeling [11]:

x(y) =
c

∑
i=1

wi(y) · (Ai · y+ai) (7)
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Fig. 3. Position- and orientation-variance of the hand state trajectories as
function of distance, across 21 demonstrations of a reaching motion to grasp
a soda can.

wi(y)∈ [0,1] is the degree of membership of the data point y

to a cluster with the cluster center yi, c is number of clusters,

and ∑c
i=1 wi(y) = 1.

B. Variance in hand state trajectories

In this section, we show how to generate an executable

Hr(t) by incorporating knowledge from previous demonstra-

tions of similar tasks. We exploit the fact that when humans

grasp one object several times they seem to repeat the

same grasp type, which leads to similar approach motions.

Based on that, multiple demonstrations of grasp type (Gi)

using affordances Ai become very similar to each other the

closer we get to the target state. This implies that successful

grasping requires accurate positioning of the hand in some

area near the object while the path towards this area has

to satisfy less strict constraints. By looking at the variance

in several demonstrations, the importance of each hand state

component can be determined. The variance of the hand state

at distance d to the target is given by:

var(kh(d)) =
1

n−1

n

∑
i=1

(khi(d)−mean(kh(d)))2 (8)

where d is the Euclidean distance to the target, khi is the

kth hand state parameter of ith demonstration (from Eqn. 1)

and n is the number of demonstrations. Fig. 3 show how the

variance decreases as the distance to the object decreases,

which means that the position and orientation of the hand is

less relevant when the distance to the target increases.

C. Generation of robot trajectories

In this section, the next-state planner is presented. The

next-state planner generates a hand state trajectory for the

robot using the TS fuzzy-model of a demonstration. As the

resulting Hr(t) is in Cartesian space we exploit the inverse

kinematics provided by the controller for the robot arm. The

TS fuzzy-model serves as a motion primitive for controlling

the arm’s reaching motion. The initial hand state of the robot
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is determined from its current configuration and the position

and orientation of the target object, since these are known at

the end of the demonstration. Then, the desired hand state

Hr
d is computed from the from the TS time cluster model

(Eqn. 7).

The desired hand state Hd is fed to a hand state trajectory

generator. This planner is inspired by the Vector-Integration-

To-Endpoint (VITE) planner suggested by Bullock and

Grossberg [12]. Instead of using a goal attractor as in VITE,

we use the desired hand state trajectory as an attractor at

each state. The system has the following dynamics:

Ḧ = α(−Ḣ + γ(Hd −H)) (9)

where H is the hand state, Ḧ is the acceleration Hd is the

desired hand state encoded in Eqn. 7, α is a positive constant,

and γ is a positive weighting parameter for the tracking point.

The weight γ reflects the importance of the path, acquired

form variance, see Sec. III-B. We have empirically found γ
to produce satisfying results at:

γpos = 0.3
1

√

Var(Hxyz(d))

γori = 5
1

√

Var(Hrpy(d))

where γpos and γori are the weights for position and orien-

tation, respectively. Var(Hxyz(d)) and Var(Hrpy(d)) are the

variance for the position and orientation respectively, from

Eqn. 8, of the respective hand state component. αpos and αori

were fixed during our experiments at 8 and 10, respectively,

with dt = 0.01. These gains were chosen to provide dynamic

behavior similar to the demonstrated motions, but other

criteria can also be used.

Analytically, the poles in Eqn. 9 are found from:

p1, p2 = −
α

2
±

√

α2

4
−αγ (10)

so the real part of p1 and p2 will be ≤ 0, which will result

in a stable system [13]. Moreover, α 6≤ 4γ and α ≥ 0, γ ≥ 0

will contribute to a critically damped system, which is fast

and has small overshoot. Fig. 4 shows how different values

γ affects the dynamics of the planner.

The next-state planner uses the demonstration to generate

a similar hand state trajectory, using the distance as a

scheduling variable. Hence, the closer to the object the robot

is the more important it becomes to follow the demonstrated

trajectory. This property is reflected by adding a higher

weight to the trajectory-following dynamics when we get

closer to the target; in reverse a long distance to the target

leads to a lower weight to the trajectory following dynamics.

IV. EXPERIMENTS

We recorded human demonstrations of a pick and place

task with two different subjects, using the PhaseSpace Im-

pulse motion capturing system. The data are collected at a

sampling rate of 120 Hz, using nine LEDs located a different
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Fig. 4. The dynamics of the planner for six different values of γ . The
tracking point is tanh(t), with dt = 0.01 and α is fixed at 8. A low value
on γ = 2 produces slow dynamics (black dot-dashed line), while a high
value γ = 64 is fast but overshoots the tracking point (black dashed line).

point on the hand and one LED attached to the object. The

experimental setup can be seen in Fig. 10. The motions

are automatically segmented into reach and retract motions

using the velocity profile and distance to the object. The

robot used in the experiments is the industrial manipulator

ABB IRB140. The anthropomorphic gripper is the KTHand,

described in detail in [14].

The hand state is defied for these experiments to contain

six hand-object relation components: displacement x, y and

z direction and rotation around the three axes: roll r, pitch

p and yaw y, see Fig. 1.

A. Experiment 1 – Gripper pose variation

To investige how end effector position–and hence the ap-

proach trajectory–affect grasp succes, we have dynamically

simulated grasping an orange using different hand positions

across a 3D-grid. The joint space is linerarly transformed

to enable control of the total grasping force using the sum

from all tactile force sensors. The relative positions of the

fingers are position controlled. The hybrid force/position

controller is applied to the Barrett hand model from grasp

initiation until the grasp is completed. See [14] for a detailed

description of the robotic hand and the hybrid force/position

controller. A grasp is considered failed if no force closure

grasp was reached during grasp formation. Fig. 5 shows the

results from such simulations.

The required accuracy in position of the end effector is in

the centimeter range. The required accuracy of the reaching

motion depends of abilities of the gripper; an autonomous

gripper like the Barrett hand or the KTHand impose a

looser constraint on the reach motion than a parallel gripper,

which requires much higher accuracy. For fully autonomous

execution of a grasp learnt using the suggested approach,

we must also consider uncertainties with respect to object

position, orientation, and in the object model itself.

4



0 0.5 1 1.5
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Time (s)

H
a

n
d

 S
ta

te
 (

m
)

0 0.5 1 1.5
0

5

10

15

20

25

30

Time (s)

γ p
o
s

0 0.5 1 1.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

H
a

n
d

 S
ta

te
 (

ra
d

)

0 0.5 1 1.5
0

10

20

30

40

50

Time (s)

γ o
ri

0 0.5 1 1.5
−0.6

−0.4

−0.2

0

0.2

Time (s)

H
a

n
d

 S
ta

te
 (

m
)

0 0.5 1 1.5
0

10

20

30

40

Time (s)

γ p
o
s

0 0.5 1 1.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

H
a

n
d

 S
ta

te
 (

ra
d

)

0 0.5 1 1.5
0

10

20

30

40

50

60

Time (s)

γ o
ri

Fig. 6. Two sample demonstrations, and the corresponding imitations. The solid lines are the trajectories produced by the controller, dashed lines are the
recorded from the demonstration.

Fig. 5. Grasp results from dynamic simulations of different initial hand
positions. Grid spacing is 10 mm in the xy-plane and 5 mm along the z-axis.
Please note that the coordinate system orientation in this figure is different
from that elsewhere in this paper.

B. Experiment 2 – Learning from demonstration

For this experiment 26 demonstrations of a pick and

place task were performed. A soda can was grasped with

a spherical grasp. To make the scenario more realistic the

object is placed with respect to what is convenient for the

human and what seems to be feasible for the robot.

Five of the 26 demonstrations were discarded in the seg-

mentation (see [3]) and modeling process for reasons such as

failure to segment the demonstrations into three distinct mo-

tions (approach, transport and retract) or the amount of data

were not enough for modeling because of occlusions. Only

the reach to grasp phase is considered in this experiment.

All 21 demonstrations were used for trajectory generation

and to compute the variance, shown in Fig. 3. Moreover, the

variance is used to compute the γ-gain, which determines

how much the robot can deviate from the followed trajectory.

The trajectory generator produced 21 reaching motions, one

from each demonstration, which are loaded to the robot con-

troller and executed. Note that by using each demonstrated

trajectory as the desired trajectory Hd instead of an average
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Fig. 7. The end effector position at the end of the motion for the 8
successfully executed trajectories. The positioning accuracy is within the
millimeter range; 6 mm along x, 4 mm along y and 12 mm along z.

we avoid fusing trajectories which are essentially different

into an incoherent trajectory. Large differences will instead

affect the variance, resulting in a small γ-gain. In eight

attempts, the execution succeeded while 13 attempts failed

because of unreachable configurations in joint space. This

could be prevented by placing the robot at a different location

with better reachability. Moreover, providing the robot with

more demonstrations, with higher variations in the path, will

lead to fewer constraints. Two sample hand state trajectories

of the successfully generated ones are shown in Fig. 6. In the

top graphs it is shown how the generated trajectory converges

towards the desired trajectory, after the initially different

locations. The bottom graphs shows how γ varies over time,

to make the generated trajectory Hr follow the desired Hd .

In the eight successfully executed reaching motions we

measured the variation in position of the gripper, shown in

Fig. 7, which is within the millimeter range. This means

that the positioning is accurate enough to enable successful

grasping using an autonomous gripper, such as the Barrett

hand [15] or the KTHand.

C. Experiment 3 – Generalizations in work space

In this experiment, the method is tested on how well

it generalizes by examining if feasible trajectories will be
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Fig. 8. Left:A trajectory generated when the initial position is the same as
the desired final position, showing that the method generate trajectories as
similar to the demonstration as possible based on the distance. Right: The
object is placed at four new locations within the workspace.

generated when the object is placed at arbitrary locations

and when the initial configuration of the manipulator is very

different from the demonstration. This will determine how

the trajectory planner handles the correspondence problem

in terms of morphological differences.

If the initial distance between the end effector and the

target is outside the data range, the TS-models must be

extrapolated, a risky strategy for longer distances. Another

approach is to apply a different control scheme for this

region, such as the VITE strategy (see [12]) and when the

distance is within the data range the proposed trajectory

generator takes over. Three tests were preformed to evaluate

the trajectory generator in different parts of the workspace.

First, trajectories are generated when the manipulator’s

end effector starts directly above the object at the desired

final position with the desired orientation, i.e., Hr
1 = Hr

f .

The resulting trajectory is shown to the left in Fig. 8. Four

additional case is also tested displacing the end effector by

50 mm in +x, -y, +y, and +z direction, all with very similar

results (from the robot’s view: +x is forward, +y left and +z

up).

Second, the object is placed at four different locations

within the robot’s workspace; displaced 100 mm along the

x-axis, and -100 mm, +100 mm, +200 mm, and +300 mm

along the y-axis, seen to the right in Fig. 8. The initial pose

of the manipulator is the same in all reaching tasks. The

planner successfully produces four executable trajectories to

the respective object position.

Third, we tested reaching the object at a fixed position

from a random initial configuration. Fig. 9 shows the result

from two random initial positions where one trajectory is

successfully followed and the other one fails. The failure is

a result of operation in hand state space instead of in joint

space, and it might therefore have a tendency to go onto

unreachable joint space configurations, as seen in the right

column of Fig. 9. To prevent this it is possible to combine

two controllers: one operating in joint space and the other in

hand state space, similar to the approach suggested in [16],

but at the price of violating the demonstration constraints.

The conclusion from this experiment is that the method

generalizes well in the tested scenarios, thus adequately

Fig. 9. A trajectory generated from random initial positions reaching for the
same object. In the left column, a successful reaching motion is generated
where the final position is on top of the can. The right column shows a
case where the robot reaches an unreachable joint configuration and cannot
move along the trajectory.

addressing the correspondence problem. However, the un-

reachability problem has to be addressed in future research to

investigate how the robot should balance the two contacting

goal: reaching an object in its own way, with the risk of

collision, and reaching an object as the demonstrator showed.

D. Experiment 4 – A complete task

To test the approach on an integrated system the KTHand

is mounted on the ABB manipulator and a pick-and-place

task is executed, guided by a demonstration showing pick-

and-place task of a box (110× 56× 72 mm). The reaching

motion and the grasp are executed as described in the

previous experiments in this Section. The synchronization

between reach and grasp can be performed by a simple finite

state machine or by using the hand specific components

of the hand state for automatic synchronization [9]. After

the grasp is executed, the motion to the placing point is

performed by following the demonstrated trajectory. Since

the robot grasp pose corresponds approximately to the human

grasp pose it is possible for the planner to reproduce the

human trajectory almost exactly. This does not mean that the

robot actually can execute the trajectory, due to workspace
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Fig. 10. Industrial manipulator programmed using a demonstration.

constrains. The retraction phase follows the same strategy as

the reaching motion. Fig. 10 shows the complete task learned

from demonstration.

V. CONCLUSIONS AND FUTURE WORK

In this article, we present a method for programming-by-

demonstration of reaching motions for robotic grasping tasks.

Hand state representation is employed to create the mapping

between the human and the robot hand which allows the

robot to interpret the human motions as its own. It is shown

that the suggested method can generate executable robot

trajectories based on current and past human demonstra-

tions despite morphological differences. The generalization

abilities of the trajectory planner are illustrated by several

experiments where an industrial robot arm executes various

reaching motions and performs power grasping with a three-

fingered hand.

One disadvantage of the method is related to the use of

Cartesian space trajectories which may lead to unreachable

joint space trajectories. Another shortcoming is the absence

of obstacle avoidance ability, i.e., the user has this respon-

sibility. One possible solution is to incorporate an obstacle

avoiding component in the dynamics of the planner.

In our future work we plan to extend the theoretical and

experimental work to include all feasible grasp types of the

KTHand. To remedy the effect of the small workspace of

the robot a different workspace configuration will be used.

Furthermore, the robot’s own perception will be incorporated

into the loop to enable the robot to learn from its own

experience.
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