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a b s t r a c t

Theminimization of risk functions is becoming a very important topic due to its interesting
applications in Mathematical Finance and Actuarial Mathematics. This paper addresses
this issue in a general framework. Many types of risk function may be involved. A
general representation theorem of risk functions is used in order to transform the initial
optimization problem into an equivalent one that overcomes severalmathematical caveats
of risk functions. This new problem involves Banach spaces but a mean value theorem
for risk measures is stated, and this simplifies the dual problem. Then, optimality is
characterized by saddle point properties of a bilinear expression involving the primal and
the dual variable. This characterization is significantly different if one compares it with
previous literature. Furthermore, the saddle point condition very easily applies in practice.
Four applications in finance and insurance are presented.

1. Introduction

General risk functions are becoming very important in finance and insurance. The study of risk measures beyond the
variance has a long history. For example, [1] studied the upper expectations. The paper by [2] about their ‘‘Coherent
Measures of Risk’’ gave a new impulse to this topic, and, since then, many authors have extended the discussion. The recent
development of new markets and products (insurance or weather-linked derivatives, commodity or energy/electricity
derivatives, inflation-linked bonds, equity indexes annuities, hedge funds, etc.), the necessity of managing new types
of risk (credit risk, operational risk, etc.), the presence of asymmetries and fat tails, and the (often legal) obligation of
providing initial capital requirements have significantly increased the importance of finding proper measures of risk and
risk management techniques.1 Accordingly, the recent literature presents many interesting contributions focusing on new
methods for measuring risk. Among others, we have the convex risk measures [4], the consistent risk measures [5], and the
general deviations and the expectation bounded risk measures [6].

Many classical actuarial and financial problems lead to optimization problems and have been revisited by using new risk
functions. For example, [7,8] analyze the capital allocation problem using general risk functions. Pricing and hedging issues
in incomplete markets have also been studied [4,9], as well as optimal reinsurance problems involving the CVaR and stop
loss reinsurance contracts [10].

Risk functions are almost never differentiable, which makes it rather difficult to provide general optimality conditions.
This has causedmany authors to look for concrete properties of the special problem they are dealing with in order to find its
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1 The variance is not compatible with the second-order stochastic dominance if asymmetries and/or heavy tails are involved [3].
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solutions. Recent approaches by [11,12] use the convexity of many risk functions so as to give general optimality conditions
based on the sub-differential of the risk measure and the Fenchel duality theory [13]. The present article follows the ideas
of the interesting papers above, in the sense that it strongly depends on classical duality theory, but we attempt to use
more properties of many risk functions that will enable us to yield new and alternative necessary and sufficient optimality
conditions. Bearing in mind the important topics of Mathematical Finance and Actuarial Mathematics that involve the
minimization of risk measures, the discovery of new simple and practical rules seems to be a major objective.

The article’s outline is as follows. Section 2will present the general properties of the riskmeasure ρ and the optimization
problem we will deal with. Since ρ is not differentiable in general, the optimization problem is not differentiable either,
and Section 3 will be devoted to overcome this caveat. We will use the representation theorem of risk measures so as to
transform the initial optimization problem into an equivalent one that is differentiable and often linear. This goal is achieved
by following and extending an original idea of [14]. However, the new problem involves new infinite-dimensional Banach
spaces of σ -additive measures, which provokes a high degree of complexity when dealing with duality and optimality
conditions. Therefore, the mean value theorem (Lemma 4) is one of the most important results of the paper, since it will
absolutely simplify the dual problem.2 As a consequence, Theorem 5 characterizes the optimal solutions by saddle points of
a bilinear function of the feasible set and the sub-gradient of the risk measure to be optimized. This seems to be profound
finding whose proof is based on major results in functional analysis. Besides, the provided optimality conditions are quite
different if one compares them with those of previous literature. They are very general and easily apply in practice.

Section 4 presents four problems of Actuarial and Financial Mathematics that may be studied by minimizing risks. They
are optimal portfolio selection, pricing and hedging in incomplete markets, the loaded rate of equity-linked annuities and
the optimal reinsurance problem. The novelty is given by the form of some problems, the level of generality of the analysis
and the high weakness of the assumptions. The four examples are very important in practice, but this is not an exhaustive
list of the real-world issues related to the optimization of risk functions. Another interesting topic (credit or operational risk,
etc.) may be considered. The last section points out the most important conclusions.

2. Preliminaries

Consider a probability space (Ω,F , µ) composed of the set Ω of states of the word, the σ -algebra F indicating the
information available at a future date T , and the probability measure µ. Consider also p ∈ [1,∞) and q ∈ (1,∞] such that
1/p + 1/q = 1, and the corresponding Banach spaces Lp and Lq. It is known that Lq is the dual space of Lp. We will deal with
a risk function ρ : Lp −→ R such that the following condition holds.3

Assumption I. There exists ̹ ∈ R such that

∆
q

(ρ,̹) =
{

z ∈ Lq; −E (yz)− ̹ ≤ ρ (y) ∀y ∈ Lp
}

(1)

is σ (Lq, Lp)-compact.4 �

Proposition 1. (a) The sets∆
q

(ρ,̹), and∆(ρ,̹) and∆
R

(ρ,̹) given by

∆(ρ,̹) =
{

(z, k) ∈ Lq × (−∞, ̹] ; −E (yz)− k ≤ ρ (y) ,∀y ∈ Lp
}

(2)

∆R

(ρ,̹) =
{

k ∈ R; (z, k) ∈ ∆(ρ,̹) for some z ∈ Lq
}

are convex. Moreover,∆
q

(ρ,̹) and∆
R

(ρ,̹) are the projections of ∆(ρ,̹) on Lq and R.

(b) Under Assumption I, the set ∆(ρ,̹) is compact when endowed with the topology σ̃ , product topology of σ ∗ and the usual

one of R. Furthermore,∆R

(ρ,̹) is also compact and∆(ρ,̹) is included in the σ̃ -compact set ∆
q

(ρ,̹) ×∆R

(ρ,̹).

Proof. (a) is trivial, so let us prove (b). Since the inclusion ∆(ρ,̹) ⊂ ∆
q

(ρ,̹) × ∆R

(ρ,̹) is obvious, it is sufficient to show that

∆R

(ρ,̹) is closed and bounded and that∆(ρ,̹) is closed. To see that∆R

(ρ,̹) is closed, let as assume that (kn)n∈N is a sequence in

∆R

(ρ,̹) that converges to k ∈ R. Take a sequence (zn, kn)n∈N ⊂ ∆(ρ,̹). Since ∆
q

(ρ,̹) is compact, take an agglomeration point

z of (zn)n∈N. Then it is easy to see that (z, k) is an agglomeration point of (zn, kn)n∈N. Thus, −E (yzn)− kn ≤ ρ (y) for every
n ∈ N and every y ∈ Lp leads to −E (yz)− k ≤ ρ (y) for every y ∈ Lp and (z, k) ∈ ∆(ρ,̹), i.e., k ∈ ∆R

(ρ,̹).

To see that the set ∆R

(ρ,̹) is bounded, it is sufficient to prove that it is bounded from below, since ̹ is an obvious upper

bound. Expression (2) leads to −E (0) − k ≤ ρ (0) for every k ∈ ∆R

(ρ,̹), and E (0) = 0 implies that k ≥ −ρ (0) for every

k ∈ ∆R

(ρ,̹).

To see that the set ∆(ρ,̹) is closed, consider the net (zi, ki)i∈I ⊂ ∆(ρ,̹) and its limit (z, k). Then, −E (yzi) − ki ≤ ρ (y)
for every i ∈ I and every y ∈ Lp leads to −E (yz)− k ≤ ρ (y) for every y ∈ Lp, so (z, k) ∈ ∆(ρ,̹). �

2 Actually, Lemma 4 extends a previous mean value theorem given in [15]. The extension permits us to deal with very general risk measures.
3 Hereafter E (x)will denote the mathematical expectation of a random variable x.
4 In order to simplify the notation henceforth the σ (Lq, Lp) topology will be denoted by σ ∗ .
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Remark 1. As a consequence of the latter result and its proof, Assumption I implies that∆R

(ρ,̹) is a bounded closed interval

∆R

(ρ,̹) = [̹0, ̹] ⊂ [−ρ (0) , ̹] . (3)

Assumption II. The equality

ρ (y) = Max
{

−E (yz)− k; (z, k) ∈ ∆(ρ,̹)
}

(4)

holds for every y ∈ Lp.5 �

Proposition 2. Under Assumptions I and II, ρ is a convex function.

Proof. Take y1, y2 ∈ Lp and t ∈ [0, 1]. Take (z, k) ∈ ∆(ρ,̹) with ρ ((1 − t) y1 + ty2) = −E (((1 − t) y1 + ty2) z) − k. We
have that ρ ((1 − t) y1 + ty2) = (1 − t) (−E (y1z)− k)+ t (−E (y2z)− k) ≤ (1 − t) ρ (y1)+ tρ (y2). �

Consider nowa convex subsetX included in an arbitrary vector space and a function f : X −→ Lp such thatρ◦f : X −→ R

is convex. Possible examples arise when f is concave and ρ is decreasing (for instance, if ρ is coherent) or if f is an affine
function, i.e.,

f (tx1 + (1 − t) x2) = tf (x1)+ (1 − t) f (x2)

holds for every t ∈ [0, 1] and every x1, x2 ∈ X . We will deal with the optimization problem
{

Min ρ ◦ f (x)
x ∈ X .

(5)

3. Saddle point optimality conditions

In general, neither ρ nor f in (5) is differentiable. However, due to Assumptions I and II, and following [14], it is easy to
see that (5) is equivalent to

{

Min θ
θ + E (f (x) z)+ k ≥ 0, ∀ (z, k) ∈ ∆(ρ,̹)
θ ∈ R, x ∈ X

(6)

in the sense that x ∈ X solves (5) if and only if there exists θ ∈ R such that (x, θ) solves (6), in which case θ = ρ ◦ f (x)
holds. Notice that (x, θ) is the decision variable of (6).

The first constraint of (6) is valued in C

(

∆(ρ,̹)
)

, the Banach space of the real-valued and continuous functions on the
compact space ∆(ρ,̹). Besides, ρ ◦ f being convex, one has that (6) is a convex problem, so the dual variable must belong

to the dual space of C

(

∆(ρ,̹)
)

[13], that is, the space M

(

∆(ρ,̹)
)

of σ -additive and inner regular measures on the Borel
σ -algebra of∆(ρ,̹) [17]. Furthermore, the Lagrangian function

L : X × R × M

(

∆(ρ,̹)
)

−→ R

will be given by

L (x, θ, ν) = θ

(

1 −

∫

∆(ρ,̹)

dν (z, k)

)

−

∫

∆(ρ,̹)

E (f (x) z) dν (z, k)−

∫

∆(ρ,̹)

kdν (z, k) . (7)

According to [13], ν ∈ M

(

∆(ρ,̹)
)

is dual feasible if and only if it is non-negative and Inf(x,θ)∈X×R {L (x, θ, ν)} > −∞, in

which case this infimum is the dual objective. Thus, if νq and νR are the projections (or marginal probabilities) of ν on∆
q

(ρ,̹)

and [̹0, ̹], respectively, the dual problem becomes























Max Inf
(x,θ)∈X×R

{

−

∫ ̹

̹0

kdνR (k)−

∫

∆
q
(ρ,̹)

E (f (x) z) dνq (z)

}

νR = πR (ν)
νq = πq (ν)

ν ∈ P

(

∆(ρ,̹)
)

(8)

with P

(

∆(ρ,̹)
)

denoting the set of inner regular probability measures on the Borel σ -algebra of ∆(ρ,̹) and πq and πR

denoting the mentioned projections. Problems (6) and (8) might lead to the so-called ‘‘duality gap’’, since we are facing

5 Assumptions I and II frequently hold. For instance, they are always fulfilled if ρ is expectation bounded or a general deviation, in the sense of [6] (in

which case̹0 = κ = 0), and often fulfilled if ρ is coherent [2] or consistent [5]. Furthermore,many convex riskmeasures [4] also satisfy these assumptions.

Particular examples are the absolute deviation, the standard deviation, down side semi-deviations, the CVaR, the Wang measure and the dual power

transform [16].
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infinite-dimensional Banach spaces [13]. Let us see that this caveat does not apply here, along with the necessary and
sufficient optimality conditions for both problems.

Lemma 3. Suppose that Problem (6) is bounded. 6 The following assertions are fulfilled.
(a) The infimum of (6) equals the maximum of (8), and (8) attains its optimal value.
(b) If (x∗, θ∗) is (6)-feasible, then it solves (6) if and only if there exists a (8)-feasible ν∗ with



































∫ ̹

̹0

kdν∗
R
(k)+

∫

∆
q
(ρ,̹)

E (f (x) z) dν∗
q (z)

≤

∫ ̹

̹0

kdν∗
R
(k)+

∫

∆
q
(ρ,̹)

E

(

f
(

x∗
)

z
)

dν∗
q (z) , ∀x ∈ X

θ∗ +

∫ ̹

̹0

kdν∗
R
(k)+

∫

∆
q
(ρ,̹)

E

(

f
(

x∗
)

z
)

dν∗
q (z) = 0.

(9)

In such a case ν∗ solves (8).

Proof. (a) According to [13], (a) will hold if the Slater qualification holds, i.e., if there exists a (6)-feasible solution (x, θ)
such that θ + E (f (x) z) + k > 0 for every (z, k) ∈ ∆(ρ,̹). Fix x ∈ X . Since Lq × R ∋ (z, k) −→ E (f (x) z) + k ∈ R

is a σ̃ -continuous function and ∆(ρ,̹) is σ̃ -compact, the Weierstrass theorem shows that it is sufficient to take θ >

Max
{

−E (f (x) z)− k; (z, k) ∈ ∆(ρ,̹)
}

.
(b) According to [13], (x∗, θ∗) solves (6) and ν∗ solves (8) if and only if







L

(

x∗, θ∗, ν∗
)

≤ L

(

x, θ, ν∗
)

, ∀ (x, θ) ∈ X × R
∫

∆(ρ,̹)

(

θ∗ + E

(

f
(

x∗
)

z
)

+ k
)

dν∗ (z, k) = 0.

Thus, (9) immediately holds due to (7) and ν∗ ∈ P

(

∆(ρ,̹)
)

. �

Problem (8) may be complex in practice since so is the dual variable. However, we will present a ‘‘mean value theorem’’
that will allow us to simplify this dual.

Lemma 4 (Mean Value Theorem). If ν ∈ P

(

∆(ρ,̹)
)

, then there exist zν ∈ ∆
q

(ρ,̹) and kν ∈ [̹0, ̹] such that (zν, kν) ∈ ∆(ρ,̹),

∫

∆
q
(ρ,̹)

E (yz) dνq (z) = E (yzν) (10)

holds for every y ∈ Lp and
∫ ̹

̹0

kdνR (k) = kν . (11)

Proof. Consider the function Lp ∋ y −→ ψ (y) =
∫

∆
q
(ρ,̹)

E (yz) dνq (z) ∈ R. It is obvious that ψ is linear, so let us prove

that it is also continuous. If ∆
q

(ρ,̹) were bounded, then there would exist M ∈ R such that ‖z‖q ≤ M for every z ∈ ∆
q

(ρ,̹).

Then the Hölder inequality [13] would lead to |E (yz)| ≤ ‖y‖p ‖z‖q ≤ ‖y‖p M for every y ∈ Lp and every z ∈ ∆
q

(ρ,̹),

and |ψ (y)| ≤
∫

∆
q
(ρ,̹)

M ‖y‖p dνq (z) = M ‖y‖p for every y ∈ Lp. Whence ψ would be continuous [13]. Let us see now

that ∆
q

(ρ,̹) is bounded. Since it is σ ∗-compact, the set
{

E (yz) ; z ∈ ∆
q

(ρ,̹)

}

⊂ R is bounded for every y ∈ Lp because

Lq ∋ z −→ E (yz) ∈ R is σ ∗- continuous. Then the Banach–Steinhaus theorem [17] shows that∆
q

(ρ,̹) is bounded.

Since ψ is continuous, the Riesz representation theorem [17] shows the existence of zν ∈ Lq such that (10) holds.
Besides, the inequalities ̹0 ≤

∫ ̹

̹0
kdνR (k) ≤ ̹ are obvious, so the existence of kν ∈ [̹0, ̹] satisfying (11) is obvious

too.
It only remains to show that (zν, kν) ∈ ∆(ρ,̹). Indeed, (10) and (11) imply that

−E (yzν)− kν = −

∫

∆
q
(ρ,̹)

E (yz) dνq (z)−

∫ ̹

̹0

kdνR (k)

=

∫

∆(ρ,̹)

(−E (yz)− k) dν (z, k) ≤

∫

∆(ρ,̹)

ρ (y) dν (z, k) = ρ (y)

for every y ∈ Lp. �

6 (6) is bounded if and only if (5) is bounded, since the infimum of both problems coincide.
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The latter lemma enables us to significantly simplify (8). Consider Problem
{

Max Inf
x∈X

{−k − E (f (x) z)}

(z, k) ∈ ∆(ρ,̹).
(12)

It is obvious that (8) and (12) have the same optimal value and that every solution of (12) also solves (8).7 Therefore, as
stated in the saddle point theorem below, we can consider that (12) is the dual problem of (6).

Theorem 5 (Saddle Point Theorem). Suppose that Problem (5) is bounded. Then:
(a) The infimum of (5) equals the maximum of (12), and (12) is solvable.
(b) Take x∗ ∈ X. x∗ solves (5) if and only if there exists (z∗, k∗) ∈ ∆(ρ,̹) such that

E

(

f (x) z∗
)

+ k∗ ≤ E

(

f
(

x∗
)

z∗
)

+ k∗ ≤ E

(

f
(

x∗
)

z
)

+ k (13)

hold for every x ∈ X and every (z, k) ∈ ∆(ρ,̹). In the affirmative case, (z∗, k∗) solves (12) and the optimal value of both problems
equals −E (f (x∗) z∗)− k∗.

Proof. (a) Lemma 3 implies that the maximum of (8) is achieved and equals the infimum of (5). Take ν∗ solving (8) and
(z∗, k∗) ∈ ∆(ρ,̹) satisfying the conditions (10) and (11) of Lemma 4. Then, it is obvious that the Dirac delta δ(z∗,k∗) solves (8)
and therefore (z∗, k∗) solves (12). Furthermore, the objective value of (12) on (z∗, k∗) equals the objective value of (8) on ν∗

and the infimum value of (5).
(b) If x∗ ∈ X and (z∗, k∗) ∈ ∆(ρ,̹) are the solutions, then the absence of a duality gap leads to

ρ
(

f
(

x∗
))

= Inf
x∈X

{

−k∗ − E

(

f (x) z∗
)}

≤ −k∗ − E

(

f
(

x∗
)

z∗
)

.

On the other hand, (4) implies that ρ (f (x∗)) ≥ −k − E (f (x∗) z) for every (z, k) ∈ ∆(ρ,̹). Hence, k + E (f (x∗) z) ≥
k∗ + E (f (x∗) z∗). Moreover, as shown in the proof of Statement (a), δ(z∗,k∗) solves (8). If x ∈ X , the first inequality in (9)
applied to ν∗ = δ(z∗,k∗) clearly implies that k∗ + E (f (x∗) z∗) ≥ E (f (x) z∗)+ k∗.

Conversely, suppose that x∗ ∈ X , (z∗, k∗) ∈ ∆(ρ,̹) and (13) holds. Then,

− E

(

f (x) z∗
)

− k∗ ≥ −E

(

f
(

x∗
)

z∗
)

− k∗ (14)

implies that the (12)-objective on (z∗, k∗) equals −E (f (x∗) z∗)− k∗, whereas

− E

(

f
(

x∗
)

z∗
)

− k∗ ≥ −E

(

f
(

x∗
)

z
)

− k (15)

implies that the (12)-objective on every (z, k) ∈ ∆(ρ,̹) is lower and (z∗, k∗) solves (12).
Finally, (14) is equivalent to the first condition in (9) for ν∗ = δ(z∗,k∗), so x∗ will solve (5) if we find θ∗ ∈ R that satisfies

the second equation in (9). It is sufficient to take θ∗ = −k∗ − E (f (x∗) z∗) because (x∗, θ∗) is (6)-feasible. Indeed, (15) leads
to θ∗ + E (f (x∗) z)+ k ≥ 0 for every (z, k) ∈ ∆(ρ,̹). �

4. Applications

This section is devoted to presenting four applications. The first two may be considered as ‘‘classical’’ in Financial
Mathematics, whereas the last two are ‘‘classical’’ in Actuarial Mathematics. All of them lead to optimization problems that
perfectly fit on (5). The four examples are very important in practice, but this is far of being an exhaustive list of the real-
world issues related to the optimization of risk functions. Another very interesting topic, such as credit risk or operational
risk, may be considered.

4.1. Portfolio choice

Optimal portfolio selection is probably the most famous optimization problem in finance. Let us assume that
y1, y2, . . . , yn ∈ Lp represent the random returns of n available assets, and denote by x = (x1, x2, . . . , xn) ∈ R

n the portfolio
composed of the percentages invested in these assets. If ρ is the risk function used by the investor then he/she will select
the strategy solving



































Min ρ

(

n
∑

i=1

xiyi

)

n
∑

i=1

xi = 1

n
∑

i=1

xiE (yi) ≥ r0

(16)

7 That is, if (z, k) solves (12) then the Dirac delta δ(z,k) concentrating the whole mass on (z, k) solves (8).
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with r0 ∈ R denoting the minimum required expected return. If some short-sale restrictions must be imposed, then
constraints such as xi ≥ 0 for some (or all) subscripts must be added. Similarly, additional equality or inequality constraints
reflecting several market-linked or agent-linked restrictions may arise. Obviously (16) is a particular case of (5).

4.2. Pricing and hedging

The valuation of new securities in an incomplete (andmaybe imperfect) financialmarket is amajor issue inMathematical
Finance. Recent literature has used coherent measures of risk to deal with this topic ([9,18], etc.). We will address this
problem by drawing on the optimization of risk functions.

Consider a time interval [0, T ]. Suppose that Y ⊂ Lp is a convex cone of final (at T ) reachable pay-offs of a given financial
market and that π : Y −→ R is a pricing rule providing the current price π (y) of every y ∈ Y . For instance, π (y)may be
the infimum initial price of those self-financing portfolios replicating the final pay-off y.8 Assume that π is convex.9 Assume
finally that a trader is interested in selling a new asset g 6∈ Y and simultaneously he/she attempts to hedge this sale. Then,
if rf ≥ 0 denotes the riskless rate, the trader will choose the hedging strategy y ∈ Y so as to solve the optimal hedging
problem







Min ρ (y − g) e−rf T + A
π (y) ≤ A
y ∈ Y , A ∈ R

(17)

with x = (y, A) being the decision variable and ρ being a risk function. If ρ may be understood as an initial capital
requirement that prevents possible negative evolutions of the market, and (y0, A0) solves (17), then y0 will be the optimal
hedging strategy and

ρ (y0 − g) e−rf T + A0 (18)

the ask price of g , composed of the ask price of y0 plus the required reserves ρ (y0 − g) e−rf T ; i.e., (18) reflects the capital
needed by the seller of g . (17) is a particular case of (5).

4.3. Equity-indexed annuities

Equity-indexed annuities are very important in the insurance industry of Canada and the USA, and they are becoming
interesting in Europe too. Their loaded rate is a very important topic closely related to the risk level of the issuer of the
product (see, for instance, [20]). We will show that this problem is also related to the minimization of risk functions studied
in this article.

Suppose for instance that T = 1 year is an initial horizon,10 and consider n clients of the insurer. The ith client will pay
the premium Pi at t = 0 and will receive the pay-off

gi =

{

Hi, if he/she is not alive at T
αPig otherwise,

where 0 < α ≤ 1, and g denotes the (annual) realized return of a chosen index. The insurer is obviously facing a risky
investment since g is random and the survival of the clients also reflects uncertainty. It may be worth pointing out that the
pay-off gi above is just a possible one, but many other expressions for gi are also usual in practice. For instance, there may
be guarantees, i.e., gi may be substituted by g∗

i = Min
{

gi, g̃i
}

, g̃i being a fixed amount known at t = 0. Anyway, the general
form of our optimization problem will not depend on the expression of gi.

In order to determine the optimal loaded rate notice that this problem may be a particular case of the ‘‘optimal hedging
problem’’ studied in the subsection above. We will suppose that we are pricing in an incomplete market. Thus, if Y ⊂ Lp is
the convex cone of those final pay-offs that are attainable at T , and π : Y −→ R is the convex pricing rule that permits us
to price those securities in Y , then the insurer will solve















Min ρ

(

y −

n
∑

i=1

gi

)

e−rf T + A

π (y) ≤ A
y ∈ Y , A ∈ R

(19)

8 If there are no imperfections then the absence of arbitrage implies that every self-financing strategy replicating y will have the same initial price.
9 According to [19], amongst others, π must usually satisfy more restrictive assumptions, since it often has to be sub-additive and positively

homogeneous.
10 We are assuming that the loaded rate is computed once a year.
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with x = (y, A) being the decision variable, rf ≥ 0 denoting the risk-free annual rate and ρ being a risk function. It is
obvious that (19) is a particular case of (17) and, consequently, a particular case of (5). If (y0, A0) solves (19), then y0 will be
the optimal hedging strategy andρ

(

y0 −
∑n

i=1 gi
)

e−rf T +A0 the price of the global portfolio of annuities, which is composed

of the price of y0 plus the capital requirement ρ
(

y0 −
∑n

i=1 gi
)

e−rf T . The global loaded rate

R = ρ

(

y0 −

n
∑

i=1

gi

)

e−rf T + A0 −

n
∑

i=1

Pi.

may be decomposed into individual loaded rates R =
∑n

i=1 Ri by using the mortality table and other actuarial methods.
Notice that computing first a global loaded rate will significantly reduce the value of the individual ones.

4.4. Optimal reinsurance

The ‘‘optimal reinsurance problem’’ is classical in Actuarial Mathematics. Many authors have dealt with it by using
different ‘‘premium principles’’, and a quite general approach may be found in [21], where the author uses even some
coherent measures of risk to price the insurance. However, the minimized risk functions are usually classical deviations
(standard deviation or absolute deviation) or classical down side semi-deviations. More recently, [10] minimize the Value at
Risk and the Conditional Tail Expectation [2] for a very particular case, since they only deal with the Expected Value Principle
and, more importantly, stop–loss reinsurance contracts. We will show below that the general approach of this paper may
apply to minimize general risk functions in the optimal reinsurance problem and we do not need to be constrained by any
kind of reinsurance contract.

Consider that an insurance company receives the fixed amount S0 (premium) and will have to pay the random variable
y0 ∈ Lp within a given period [0, T ] (claims). Suppose that a reinsurance contract is signed in such a way that the company
will only pay x ∈ Lp, whereas the reinsurer will pay y0 − x. If the reinsurer premium is given by the convex function,11

π : Lp −→ R, ρ is the risk function, and S1 is the highest amount to pay for the contract, then the insurer will chose x
(optimal retention) so as to solve

{

Min ρ (S0 − x − π (y0 − x))
π (y0 − x) ≤ S1
0 ≤ x ≤ y0.

(20)

x −→ S0 − x − π (y0 − x) is a concave function, so (20) is included in (5).

5. Conclusions

Theminimization of risk functions is becoming very important inMathematical Programming,Mathematical Finance and
Actuarial Mathematics, which provokes a growing interest in this topic that is becoming the focus of many researchers.

Since risk functions are not differentiable, there are significant difficulties when they are involved in minimization
problems. Convex programming and duality methods have been proposed, and this paper has also followed this line of
research, though the provided necessary and sufficient optimality conditions are quite different if one compares themwith
previous literature. Indeed, they are related to the saddle point properties of a bilinear function of the feasible set and the sub-
gradient of the risk-involved measure. This seems to be profound finding, whose proof is based on the weak∗-compactness
of the sub-gradient, the duality theory in general Banach spaces, and a given mean value theorem for risk measures that
permits us to simplify many expressions. The yielded optimality conditions easily apply in practice. Four applications in
finance and insurance have been given.
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