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Abstract

This paper deals with the design of fractional order PIlDm controllers, in which the orders of the integral and derivative parts, l and m,
respectively, are fractional. The purpose is to take advantage of the introduction of these two parameters and fulfill additional

specifications of design, ensuring a robust performance of the controlled system with respect to gain variations and noise. A method for

tuning the PIlDm controller is proposed in this paper to fulfill five different design specifications. Experimental results show that the

requirements are totally met for the platform to be controlled. Besides, this paper proposes an auto-tuning method for this kind of

controller. Specifications of gain crossover frequency and phase margin are fulfilled, together with the iso-damping property of the time

response of the system. Experimental results are given to illustrate the effectiveness of this method.

r 2007 Elsevier Ltd. All rights reserved.

Keywords: Auto-tuning; PID controller; Fractional order controller; Gain variations; Robust control

1. Introduction

Nowadays, the better understanding of the potential of
fractional calculus and the increasing number of studies
related to the applications of fractional order controllers in
many areas of science and engineering have led to the
importance of studying aspects such as the analysis, design,
tuning and implementation of these controllers.

Fractional calculus is a generalization of the integration
and differentiation to the non-integer (fractional) order
fundamental operator aD

a
t , where a and t are the limits and

a ða 2 RÞ is the order of the operation. Among many
different definitions, two commonly used for the general
fractional integro-differential operation are the Grünwal-
d–Letnikov (GL) definition and the Riemann–Liouville

(RL) definition (Podlubny, 1999a). The GL definition is

aD
a
t f ðtÞ ¼ lim

h!0
h�a

X½ðt�aÞ=h�

j¼0

ð�1Þj
a

j

 !
f ðt� jhÞ, (1)

where ½�� means the integer part, while the RL definition is

aD
a
t f ðtÞ ¼

1

Gðn� aÞ
dn

dtn

Z t

a

f ðtÞ

ðt� tÞa�nþ1
dt (2)

for ðn� 1oaonÞ and where Gð�Þ is Euler’s gamma

function.
For convenience, Laplace domain notion is commonly

used to describe the fractional integro-differential opera-
tion. The Laplace transform of the RL fractional
derivative/integral (2) under zero initial conditions for
order a ð0oao1Þ is given by

dfaD
�a
t f ðtÞg ¼ s�aF ðsÞ. (3)

In theory, control systems can include both the
fractional order dynamic system to be controlled and the
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fractional order controller. However, in control practice,
more common is to consider the fractional order controller.
This is due to the fact that the plant model may have been
already obtained as an integer order model in the classical
sense.

In this line, the objective of this work is to apply
fractional order control (FOC) for industrial applications,
introducing a fractional order controller to improve the
system control performance and taking the most of the
fractional orders of the controller.

It is important to realize that there is a very wide range
of control problems and consequently also a need for a
wide range of design techniques. There are already many
tuning methods available but a replacement of the
Ziegler–Nichols method is long overdue. On the research
side it appears that the development of design methods for
integer order control, and specially Proportional–Inte-
gral–Derivative ðPIDÞ control, is approaching the point of
diminishing returns. There are some difficult problems that
remain to be solved.

Therefore, this paper proposes the application of
fractional calculus as an alternative option to solve some
of the control problems that can arise when dealing with
industrial applications, as will be commented later. On the
one hand, a new method for the design of fractional order
controllers is proposed, and more concretely for the tuning
of a generalized PIlDm controller of the form:

CðsÞ ¼ kp þ
ki

sl
þ kdsm, (4)

where l and m are the fractional orders of the integral and
derivative parts of the controller, respectively. Since this
kind of controller has five parameters to tune
(kp; kd ; ki; l;m), up to five design specifications for the
controlled system can be met, that is, two more than in the
case of a conventional PID controller, where l ¼ 1 and
m ¼ 1: It is essential to study which specifications are more
interesting as far as performance and robustness are
concerned, since it is the aim to obtain a controlled system
robust to uncertainties of the plant model, load distur-
bances and high frequency noise. All these constraints will
be taken into account in the tuning technique of the
controller in order to take advantage of the introduction of
the fractional orders.

On the other hand, another approach of this work refers
to the auto-tuning of fractional order controllers. As
commented before, nowadays many research efforts related
to the applications of fractional order controllers have
concentrated on various aspects of control analysis and
synthesis. However, in practical industrial settings, a
similar auto-tuning procedure for this kind of controller
is rarely found but in strong demand. Therefore, the
ultimate goal is to develop a method to auto-tune a
generalized PIlDm controller that allows the fulfillment of
robustness constraints and whose implementation process
is simple and reliable.

The implementation and application of these fractional
order controllers for industrial purposes are other remark-
able aspects aimed in this work, showing the results
obtained when testing the controller in different experi-
mental platforms.
This paper is organized as follows. First, Section 2

shortly reviews the state of the art of FOC and introduces
some considerations on the implementation of fractional
order controllers. The tuning method proposed for
fractional order PIlDm controllers is described in
Section 3, showing the results obtained when controlling
an experimental platform with the controller designed.
Section 4 presents an auto-tuning method for this kind of
controller, whose experimental results are also shown in the
section. Finally, some relevant concluding remarks are
presented in Section 5.

2. Fractional order control

2.1. A review

Even though the idea of fractional order operators is as
old as the idea of integer order ones, it has been in the last
decades when the use of fractional order operators and
operations has become more and more popular among
many research areas. The theoretical and practical interest
of these operators is nowadays well established, and its
applicability to science and engineering can be considered
as an emerging new topic. Even if they can be thought of as
somehow ideal, they are, in fact, useful tools for both the
description of a more complex reality and the enlargement
of the practical applicability of the common integer order
operators. Among these fractional order operators and
operations, the fractional integro-differential operators
(fractional calculus) are specially interesting in automatic
control and robotics, among others, as detailed next.
Maybe the first mention of the interest of considering a

fractional integro-differential operator in a feedback loop,
though without using the term ‘‘fractional’’, was made by
Bode (1940), and next in a more comprehensive way in
Bode (1945). A key problem in the design of a feedback
amplifier was to come up with a feedback loop so that the
performance of the closed loop was invariant to changes in
the amplifier gain. Bode presented an elegant solution to
this robust design problem, which he called the ideal cutoff

characteristic, nowadays known as ideal loop transfer

function, whose Nyquist plot is a straight line through the
origin giving a phase margin invariant to gain changes.
Clearly, this ideal system is a fractional integrator with
transfer function GðsÞ ¼ ðocg=sÞa, known as Bode’s ideal

transfer function, where ocg is the gain crossover frequency
and the constant phase margin is jm ¼ p� ap=2. This
frequency characteristic is very interesting in terms of
robustness of the system to parameters changes or
uncertainties, and several design methods make use of it.
In fact, the fractional integrator can be used as an
alternative reference system for control, considering its
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own properties (Vinagre, Monje, Calderón, Chen, & Feliu,
2004).

This first step toward the application of fractional
calculus in control led to the adaptation of the FC concepts
to frequency-based methods. The frequency response and
the transient response of the non-integer integral (in fact
Bode’s ideal transfer function) and its application to
control systems were introduced by Manabe (1961), and
more recently in Barbosa, Tenreiro, and Ferreira (2003).

Going a step further in automatic control, Oustaloup
(1991) studied the fractional order algorithms for the
control of dynamic systems and demonstrated the superior
performance of the CRONE (Commande Robuste d’Ordre
Non Entier) method over the PID controller. There are
three generations of CRONE controllers, and Oustaloup,
Levron, Nanot, and Mathieu (2000) concentrate on the
third generation. Podlubny (1999b) proposed a general-
ization of the PID controller, namely the PIlDm controller,
involving an integrator of order l and a differentiator of
order m. He also demonstrated the better response of this
type of controller, in comparison with the classical PID

controller, when used for the control of fractional order
systems. A frequency domain approach by using fractional
order PID controllers was also studied in Vinagre,
Podlubny, Dorčák, and Feliu (2000).

Further research activities run in order to define new
effective tuning techniques for non-integer order control-
lers by an extension of the classical control theory. To this
respect, in Caponetto, Fortuna, and Porto (2002,2004) the
extension of derivation and integration orders from integer
to non-integer numbers provides a more flexible tuning
strategy and therefore an easier achieving of control
requirements with respect to classical controllers. In Leu,
Tsay, and Hwang (2002) an optimal fractional order PID

controller based on specified gain and phase margins with a
minimum integral squared error (ISE) criterion is designed.
Other works (Vinagre, 2001; Vinagre, Monje, & Calderón,
2002) take advantage of the fractional orders introduced in
the control action in order to design a more effective
controller to be used in real-life models (see also Chen,
2006). The tuning of integer PID controllers is addressed in
Barbosa, Tenreiro, and Ferreira (2003,2004a,2004b) by
minimizing a penalty function that reflects how far the
behavior of the PID is from that of a desired fractional
transfer function, and in Chen, Moore, Vinagre, and
Podlubny (2004) and Chen, Vinagre, and Podlubny (2004)
with a somewhat similar strategy. Another approach is the
use of a new control strategy to control first-order systems
with long time delay (Chen, Vinagre, & Monje, 2003;
Monje, Calderón, & Vinagre, 2002). A robustness con-
straint is considered in this last work, forcing the phase of
the open-loop system to be flat at the gain crossover
frequency.

Fractional calculus also extends to other kinds of control
strategies different from PID ones. In what concerns H2

and H1 controllers, for instance, Malti, Aoun, Cois,
Oustaloup, and Levron (2003) discuss the reckoning of the

H2 norm of a fractional SISO system (without applying the
result to the development of controllers), and Petráš and
Hypiusova (2002) suggest the tuning of H1 controllers for
fractional SISO systems by numerical minimization.
Applications of fractional calculus in control are

numerous. In Yago Sánchez (1999) the control of
viscoelastic damped structures is aimed. Control applica-
tions to a flexible transmission (Oustaloup, Mathieu, &
Lanusse, 1995; Valério, 2001), an active suspension
(Lanusse, Poinot, Cois, Oustaloup, & Trigeassou, 2003),
a buck converter (Calderón, 2003; Calderón, Vinagre, &
Feliu, 2003) and a hydraulic actuator (Pommier, Musset,
Lanusse, & Oustaloup, 2003) are found in the literature.
The fractional control of rigid robots is the objective in
Fonseca and Tenreiro (2003), Tenreiro and Azenha (1998),
and the fractional control of a thermal system is the
objective in Sabatier and Oustaloup (2003), Petráš and
Vinagre (2002), Petráš, Vinagre, Dorčák, and Feliu (2002),
Vinagre, Petráš, Merchán, and Dorčák (2001). Besides,
other applications such as the robust control of main
irrigation canals (Feliu, Rivas, & Sánchez, 2007) and
robustness analysis of a winding system (Laroche &
Knittel, 2005) can be found.
Regarding the implementation of fractional order

controllers, a very good review is given in Valério (2005)
referring to continuous and discrete approximations of
fractional order systems. Other related references are Chen
and Moore (2002), Monje (2006), Oustaloup et al. (2000),
Podlubny, Petráš, Vinagre, O’Leary, and Dorčák (2002),
Vinagre, Podlubny, Dorčák et al. (2000), Chen, Moore
et al. (2004), and Chen, Vinagre et al. (2004).
To sum all this up, it is clear that FOC and its

applications are becoming an important issue. Of course,
there are other published texts related to fractional
calculus. The main reason why they are not cited here is
that their subjects are not relevant for the purpose of this
work.

2.2. Implementation of fractional order controllers

Before introducing the essentials of the design method
for the fractional order PIlDm controller, some initial
considerations on its implementation have to be taken into
account.
The generalized transfer function of this controller is

given by

CðsÞ ¼ kp þ
ki

sl
þ kdsm. (5)

Next statements are important to be considered. First of
all, properly implemented, a fractional integrator of order
k þ a; k 2 N; 0oao1; is, for steady-state error cancella-
tion, as efficient as an integer order integrator of order
k þ 1 (see Axtell & Bise, 1990). However, though the final
value theorem states that the fractional system exhibits null
steady-state error if a40; the fact of being ao1 makes the
output converge to its final value more slowly than in the
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case of an integer controller. Furthermore, the fractional
effect has to be band-limited when it is implemented.
Therefore, the fractional integrator must be implemented
as 1=sa ¼ ð1=sÞs1�a; ensuring this way the effect of an
integer integrator 1=s at very low frequency.

Similarly to the fractional integrator, the fractional
differentiator, sm, has also to be band-limited when
implemented, ensuring this way a finite control effort and
noise rejection at high frequencies.

On the other hand, when fractional order controllers
have to be implemented or simulations have to be
performed, fractional transfer functions are usually re-
placed by integer transfer functions with a behavior close
enough to the one desired, but much easier to handle.
There are many different ways of finding such approxima-
tions but unfortunately it is not possible to say that one of
them is the best, because even though some of them are
better than others in regard to certain characteristics, the
relative merits of each approximation depend on the
differentiation order, on whether one is more interested
in an accurate frequency behavior or in accurate time
responses, on how large admissible transfer functions may
be, and other factors like these. A good review of these
approximations can be found in Valério (2005), Vinagre,
Podlubny, Hernández, and Feliu (2000).

In this work two different ways to approximate
fractional order operators to an integer transfer function
have been used: the Oustaloup continuous approximation
(Oustaloup et al., 2000; Oustaloup, 1995) and a frequency
identification method performed by the Matlab function
invfreqs (MathWorks, 2000b). With both methods a
rational transfer function is obtained whose frequency
response fits the frequency response of the original
irrational transfer function. These two methods are chosen
due to their accuracy in the frequency range of interest, and
any other of the techniques in Valério (2005), Vinagre,
Podlubny, Hernández et al. (2000) could also be suitable
for that purpose.

Once a continuous approximation of the fractional order
operator is obtained, and for the sake of implementation,
the Tustin method with prewarping (Levine, 1996) has been
applied in this work for the discretization of the resulting
approximation.

3. A tuning method for fractional order PIlDm controllers

3.1. Design specifications and tuning problem

As commented in the introduction, the objective of this
paper is to design a fractional order controller so that the
system fulfills different specifications regarding robustness
to plant uncertainties, load disturbances and high fre-
quency noise. For that reason, specifications related to
phase margins, sensitivity functions and robustness con-
straints are going to be considered in this design method,
due to their important features regarding performance,
stability and robustness. Of course, other kinds of

specifications can be met, depending on the particular
requirements of the system. Therefore, the design problem
is formulated as follows:

� Phase margin ðjmÞ and gain crossover frequency ðocgÞ

specifications: Gain and phase margins have always
served as important measures of robustness. It is known
that the phase margin is related to the damping of the
system and therefore can also serve as a performance
measure (see Franklin, Powell, & Naeini, 1986). The
equations that define the phase margin and the gain
crossover frequency are

jCðjocgÞGðjocgÞjdB ¼ 0 dB, ð6Þ

argðCðjocgÞGðjocgÞÞ ¼ �pþ jm. ð7Þ

� Robustness to variations in the gain of the plant: The next
constraint can be considered in this case (see Chen &
Moore, 2005):

dðargðF ðsÞÞÞ

do

� �
o¼ocg

¼ 0. (8)

This condition forces the phase of the open-loop system
F ðsÞ ¼ CðsÞGðsÞ to be flat at ocg and hence to be almost
constant within an interval around ocg: It means that
the system is more robust to gain changes and the
overshoot of the response is almost constant within a
gain range (iso-damping property of the time response).
It must be remarked that the interval of gains for which
the system is robust is not fixed with this condition. That
is, the user cannot force the system to be robust for a
particular gain range. This range depends on the
frequency range around ocg for which the phase of the
open-loop system keeps flat. This frequency range will
be longer or shorter, depending on the resulting
controller and the plant.
� High frequency noise rejection: A constraint on the
complementary sensitivity function T can be established:

TðjoÞ ¼
CðjoÞGðjoÞ

1þ CðjoÞGðjoÞ

����
����
dB

pAdB,

8oXot rad/s) jTðjotÞjdB ¼ AdB ð9Þ

whit A the desired noise attenuation for frequencies
oXot rad/s.
� To ensure a good output disturbance rejection: A
constraint on the sensitivity function S can be defined:

SðjoÞ ¼
1

1þ CðjoÞGðjoÞ

����
����
dB

pBdB,

8oposrad/s) jSðjosÞjdB ¼ BdB ð10Þ

with B the desired value of the sensitivity function for
frequencies opos rad/s (desired frequency range).
� Steady-state error cancellation: As stated before, the
fractional integrator s�l is, for steady-state error
cancellation, as efficient as an integer order integrator.
So, the specification of null steady state-error is fulfilled
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with the introduction of the fractional integrator,
properly implemented.

Using the fractional order PIlDm controller of Eq. (5), up
to five of these design specifications can be fulfilled, since it
has five parameters to tune. For fractional order controllers
such as a PIl or a PDm; three design specifications could be
met (one for each parameter). Therefore, for the general case
of a PIlDm controller the design problem is based on solving
the system of five nonlinear equations (given by the
corresponding design specifications) and five unknown
parameters kp, kd , ki, l, m.

However, the complexity of this set of nonlinear
equations is very significant, specially when fractional orders
of the Laplace variable s are introduced, and finding out the
solution is not trivial. In fact, a nonlinear optimization
problem must be solved, in which the best solution of a
constrained nonlinear equation has to be found.

Global optimization is the task of finding the absolutely
best set of admissible conditions to achieve an objective
under given constraints, assuming that both are formulated
in mathematical terms. Some large-scale global optimiza-
tion problems have been solved by current methods, and a
number of software packages are available that reliably
solve most global optimization problems in small (and
sometimes larger) dimensions. However, finding the global
minimum, if one exists, can be a difficult problem (very
dependant on the initial conditions). Superficially, global
optimization is a stronger version of local optimization,
whose great usefulness in practice is undisputed. Instead of
searching for a locally feasible point one wants the globally
best point in the feasible region. However, in many
practical applications finding the globally best point,
though desirable, is not essential, since any sufficiently
good feasible point is useful and usually an improvement
over what is available without optimization (this particular
case). Besides, sometimes, depending on the optimization
problem, there is no guarantee that the optimization
functions will return a global minimum, unless the global
minimum is the only minimum and the function to
minimize is continuous (Pintér, 1996). Taking all these
into account, and considering that the set of functions to
minimize in this case is continuous and can only present
one minimum in the feasible region, any of the optimiza-
tion methods available could be effective, a priori. For this
reason, and taking into account that Matlab is a very
appropriate tool for the analysis and design of control
systems, the optimization toolbox of Matlab has been used
to reach out the best solution with the minimum error. The
function used for this purpose is called FMINCON (Math-
Works, 2000a), which finds the constrained minimum of a
function of several variables. It solves problems of the form
MINXFðX Þ subject to: CðX Þ ( 0, CeqðX Þ ¼ 0,
LB( X ( UB, where F is the function to minimize; C

and Ceq represent the nonlinear inequalities and equalities,
respectively (nonlinear constraints); X is the minimum

looked for; LB and UB define a set of lower and upper
bounds on the design variables, X.
In this particular case, the specification in Eq. (6) is taken

as the main function to minimize, and the rest of
specifications ((7)–(10)) are taken as constrains for the
minimization, all of them subjected to the optimization
parameters defined within the function FMINCON. The
success of this design method depends mainly on the initial
conditions considered for the parameters of the controller.
In Section 4 a different tuning method for this kind of
controller is proposed in which only the frequency
characteristics of the plant at some frequencies of interest
is enough for the tuning purpose, without considering
initial conditions for the parameters and avoiding the
nonlinear minimization problem.
The tuning method proposed here is illustrated next with

the results obtained from an experimental platform
consisting on a liquid level system.

3.2. Experimental results by using the tuning method

The experimental platform Basic Process Rig 38-100

Feedback Unit has been used to test the fractional order
controllers designed by the optimization tuning method
proposed previously. The platform consists on a low
pressure flowing water circuit which is bench mounted and
completely self contained. The water circuit is arranged in
front of a vertical panel, as can be seen in Fig. 1.
For the characterization of the plant and implementa-

tion of the controller a data acquisition board PCL-818H,
by PC-LabCard, has been used, running on Matlab 5.3 and
using its real time toolbox ‘‘Real-Time Windows Target’’.
A computer Pentium II, 350MHz, 64M RAM, supports
the data acquisition board and the program in C

programming language (from Matlab) corresponding to
the controller.
After the characterization of the system the resulting

transfer function is

GðsÞ ¼
k

tsþ 1
e�Ls ¼

3:13

433:33sþ 1
e�50s, (11)

that is, the liquid level system is modeled by a first-order
transfer function with time delay L ¼ 50 s, gain k ¼ 3:13
and time constant t ¼ 433:33 s. The design specifications
required for the system are:

� gain crossover frequency, ocg ¼ 0:008 rad/s;
� phase margin, jm ¼ 60�;
� robustness to variations in the gain of the plant must be

fulfilled;
� sensitivity function: jSðjoÞjdBp� 20 dB, 8opos ¼

0:001 rad/s;
� noise rejection: jTðjoÞjdBp� 20 dB, 8oXot ¼ 10 rad/s.

Applying the optimization method described previously,
the fractional PIlDm controller obtained to control the
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system is

CðsÞ ¼ 0:6152þ
0:0100

s0:8968
þ 4:3867s0:4773. (12)

In this particular case the fractional integral and
derivative parts have been implemented by the Oustaloup
continuous approximation of the fractional integrator
(Oustaloup, 1995; Oustaloup et al., 2000), choosing a
frequency band from 0.001 to 100 rad/s and an order of the
approximation equal to 5 (number of poles and zeros).
Once the continuous fractional controller is obtained, it is
discretized by using the Tustin rule with a sampling time
Ts ¼ 1 s and a prewarp frequency ocg (Levine, 1996).

The Bode plots of the open-loop system F ðsÞ ¼ CðsÞGðsÞ

are shown in Fig. 2. As can be observed, specifications of
gain crossover frequency and phase margin are met.
Besides, the phase of the system is forced to be flat at ocg

and hence to be almost constant within an interval around
ocg. It means that the system is more robust to gain
changes and the overshoot of the response is almost
constant within this interval, as can be seen in Fig. 3, where
a step input of 0.47 has been applied to the closed-loop
system. Variations in the gain of the plant have been
considered from 2:75 to 3:75: The magnitudes of the
functions SðsÞ and TðsÞ for the nominal plant are shown in
Figs. 4 and 5, respectively, fulfilling the specifications.

The experimental results obtained when controlling the
liquid level plant in real time are shown next. Fig. 6 shows
the comparison between simulated and experimental levels
for the nominal gain k ¼ 3:13. In Fig. 7 the experimental
responses for different gains (set by software) are scoped,
fulfilling the robustness constraint to gain changes (within
the variation range selected). Fig. 8 shows the experimental

control laws obtained for each value of gain. As far as the
control laws are concerned, only a slight variation in the
peak value of the signal is produced when the gain changes,
which is an important feature as far as the saturation of the
actuator is concerned. In this case, the peak value is very
far from the saturation value of 10V for the servo valve.
From these results, the potential of the fractional order

controllers in practical industrial settings, regarding perfor-
mance and robustness aspects, is clear. However, the design
method proposed here involves complex equations relating
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Fig. 1. Photo of the basic process Rig 38-100 feedback unit.

Fig. 2. Bode plots of the open-loop system F ðsÞ ¼ CðsÞGðsÞ.
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the specifications of design and, sometimes, it may be
difficult to find a solution to the problem. For this reason,
the purpose now is to simplify the design method so that the
controller can be tuned very easily, with very simple
relations among its parameters, and preserving the robust-
ness characteristics regarding performance, gain variations
and noise. Besides, this new method will allow the automatic
tuning (auto-tuning) of the fractional order controller
without the need of knowing the plant model (its transfer
function). The relay test will be used for that purpose, as will
be described next.

4. Auto-tuning of fractional order controllers

Many process control problems can be adequately and
routinely solved by conventional PID-control strategies.
The reason why the PID controller is so widely accepted is
its simple structure, which has proven to be appropriate for
many commonly met control problems such as setpoint
regulation/tracking, disturbance attenuation, and the like.
However, although tuning guidelines are available, the
tuning process can still be time consuming with the result
that many control loops are often poorly tuned and full
potential of the control system is not achieved. These
methods require a fair amount of a priory knowledge as,
for instance, sampling time, dead time, model order, and
desired time response. This knowledge may either be given
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Fig. 4. Magnitude of SðjoÞ.

Fig. 5. Magnitude of TðjoÞ.

Fig. 6. Comparison between simulated and experimental levels for k ¼

3:13 and controller CðsÞ.
Fig. 3. Simulation step responses of the controlled system with controller

CðsÞ.

Fig. 7. Experimental step responses of the controlled system with

controller CðsÞ.
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by a skilled engineer or may be acquired automatically by
some kind of experimentation. The second alternative,
commonly known as auto-tuning, is preferable not only to
simplify the task of the operator but also for the sake of
robustness.

There are a wide variety of auto-tuning methods for
integer controllers. Some of them aim in someway the
robustness of the controlled system (see Tan, Huang, &
Ferdous, 2002), for example, forcing the phase of the open-
loop system to be flat around the crossover frequency so
that the system is robust to gain variations (see Chen &
Moore, 2005; Chen, Moore et al., 2004; Chen, Vinagre
et al., 2004). However, the complexity of the equations
relating the parameters of the controller increases when
some kinds of robustness constraints are required for the
controlled system. The implementation of these types of
auto-tuning methods for industrial purposes will be really
complicate since, in general, industrial devices such as a
PLC cannot solve sets of complex nonlinear equations.

For that reason, an auto-tuning method for fractional
order PIlDm controllers based on the relay test is proposed,
that allows the fulfilment of robustness constrains for the
controlled system by simple relations among the para-
meters of the controller, simplifying the later implementa-
tion process.

The final aim is to find out a method to auto-tune a
fractional order PIlDm controller formulated as

CðsÞ ¼ kcxm l1sþ 1

s

� �l l2sþ 1

xl2sþ 1

� �m

. (13)

As can be observed, this controller has two different
parts given by the following equations:

PIlðsÞ ¼
l1sþ 1

s

� �l

, (14)

PDmðsÞ ¼ kcxm l2sþ 1

xl2sþ 1

� �m

. (15)

Eq. (14) corresponds to a fractional order PIl controller
and Eq. (15) to a fractional order lead compensator that
can be identified as a PDm controller plus a noise filter. In
this method, the fractional order PIl controller will be used
to cancel the slope of the phase of the plant at the gain
crossover frequency ocg: This way, a flat phase around the
frequency of interest is ensured. Once the slope is cancelled,
the PDm controller will be designed to fulfill the design
specifications of gain crossover frequency, ocg, and phase
margin, jm, following a robustness criterion based on the
flatness of the phase curve of this compensator, as will be
explained later. This way, the resulting phase of the open-
loop system will be the flattest possible, ensuring the
maximum robustness to plant gain variations.
Let us firstly give some remarks about the relay test used

for the auto-tuning problem.

4.1. Relay test for auto-tuning

The relay auto-tuning process has been widely used in
industrial applications (see Hang, Åström, & Wang, 2002).
The choice of relay feedback to solve the design problem is
justified by the possible integration of system identification
and control into the same design strategy, giving birth to
relay auto-tuning. In this work a variation of the standard
relay test is used, shown in Fig. 9, where a delay ya is
introduced after the relay function. With this scheme, as
explained in Chen and Moore (2005), the next relations are
given:

argðGðjocÞÞ ¼ �pþ ocya, ð16Þ

jGðjocÞj ¼
pa

4d
¼

1

NðaÞ
, ð17Þ

where GðjocÞ is the transfer function of the plant at the
frequency oc; which is the frequency of the output signal y

corresponding to the delay ya, d is the relay output, a is the
amplitude of the output signal (signal ‘‘y’’ in Fig. 9), and
NðaÞ is the equivalent relay gain. This way, for each value
of ya a different point on the Nyquist curve of the plant is
obtained. Therefore, a point on the Nyquist curve of the
plant at a particular desired frequency oc can be identified,
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Fig. 9. Relay auto-tuning scheme with delay.

Fig. 8. Experimental control laws of the controlled system with cont-

roller CðsÞ.
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for example, at the gain crossover frequency required for
the controlled system (oc ¼ ocg). The problem would be
how to select the right value of ya which corresponds to a
specific frequency oc. An iterative method can be used to
solve this problem, as presented in Chen and Moore
(2005). The artificial time delay parameter can be updated
using the simple interpolation/extrapolation scheme yn ¼

ðoc � on�1Þ=ðon�1 � on�2Þðyn�1 � yn�2Þ þ yn�1, where n

represents the current iteration number. With the new yn,
after the relay test, the corresponding frequency on can be
recorded and compared with the frequency oc so that the
iteration can continue or stop. Two initial values of the
delay (y�1 and y0) and their corresponding frequencies
(o�1 and o0) are needed to start the iteration. Therefore,
first of all, a value for y�1 is selected and the relay test is
carried out, obtaining an output signal with frequency o�1.
Then, in a second iteration, another value is given for y0,
obtaining an output signal with frequency o0: With these
two pairs (y�1;o�1Þ and (y0;o0) the next value of yn is
automatically obtained by using the interpolation/extra-
polation scheme above.

Let us now concentrate on the design of the fractional
order PIl controller.

4.2. Design of the fractional order PIl controller

The fractional order PIl controller of Eq. (14) will be
used to cancel the slope of the phase of the plant in order to
obtain a flat phase around the frequency point ocg: The
value of this slope is given by expression

u ¼
fu � fn�1

ou � on�1

rad

rad/s
, (18)

where on�1 is the frequency n� 1 experimented with the
relay test and fn�1 its corresponding plant phase, and fu

the plant phase corresponding to the frequency of interest
ou ¼ ocg.

The phase of the fractional order PIl controller is given by

c ¼ argðPIlðsÞÞ ¼ lðarctanðl1oÞ � p=2Þ. (19)

In order to cancel the slope of the phase curve of the
plant, u; the derivative of the phase of PIlðsÞ at the
frequency point ocg must be equal to �u, resulting the
equation:

c0 ¼
dc
do

� �
o¼ocg

¼ l
l1

1þ ðl1ocgÞ
2
¼ �u. (20)

The parameters l and l1 must be selected so that this
expression is fulfilled. Studying the function (20) and
differentiating with respect to parameter l1 (see Eq. (21)),
it is obtained that it has a maximum at l1 ¼ 1=ocg (see
Eq. (22)), as can be observed in Fig. 10.

dc0

dl1
¼ l

ðl1ocgÞ
2
� 1

ð1þ ðl1ocgÞ
2
Þ
2

 !
, (21)

dc0

dl1
¼ 0) ðl1ocgÞ

2
� 1 ¼ 0) l1 ¼

1

ocg

. (22)

That is, choosing ocero ¼ 1=l1 ¼ ocg the slope of the
plant at the frequency ocg will be cancelled with the
maximum slope of the fractional order controller. Once
the value of l1 is fixed, the value of l is easily determined
by l ¼ ð�uð1þ ðl1ocgÞ

2
ÞÞ=l1. It is observed that the value

of l obtained will be minimum when l1 ¼ 1=ocg. Varia-
tions of the frequency ocero up or down the frequency ocg

will produce higher values of the parameter l: Therefore,
selecting ocero ¼ ocg the phase lag of the resulting PIlðsÞ

controller will be the minimum one (minimum l). This fact
is very interesting from the robustness point of view. The
less the phase lag of the controller PIlðsÞ; the less the phase
lead of the controller PDmðsÞ at the frequency ocg; favoring
the flatness of its phase curve. Then, considering this
robustness criterion, the value of l1 will be fixed to 1=ocg:
Remember that the real value of ocg to be used in the
design is ou; which is the one obtained with the relay test
and very close to ocg:

4.3. Design of the fractional order PDm controller

Defining the system GflatðsÞ ¼ GðsÞPIlðsÞ; now the
controller PDmðsÞ will be designed so that the open-loop
system F ðsÞ ¼ GflatðsÞPDmðsÞ fulfills the specifications of
gain crossover frequency, ocg, and phase margin, jm, fol-
lowing a robustness criterion based on the flatness of the
phase curve of this compensator, as will be explained next
(Monje, Calderón, Vinagre, Chen, & Feliu, 2004; Monje,
Vinagre, Calderón, Feliu, & Chen, 2005).
For a specified phase margin, jm, and gain crossover

frequency, ocg, the following relationships for the open-loop
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Fig. 10. Derivative of the phase of the PIl controller at o ¼ ocg, for l ¼ 1

and ocg ¼ 1.
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system can be given in the complex plane:

GflatðjocgÞ � k
0 jl2ocg þ 1

jxl2ocg þ 1

� �m

¼ ejð�pþjmÞ

) C0ðjocgÞ ¼
jl2ocg þ 1

jxl2ocg þ 1

� �m

¼
ejð�pþjmÞ

GflatðjocgÞ � k
0 ¼ a1 þ jb1

)
jl2ocg þ 1

jxl2ocg þ 1

� �
¼ ða1 þ jb1Þ

1=m
¼ aþ jb, ð23Þ

where k0 ¼ kcxm ¼ 1 in this case; GflatðsÞ is the plant to be
controlled, and (a1; b1) is called the ‘‘design point’’. Parameter
x sets the distance between the zero (1=l2) and pole (1=xl2)
of the PDm controller, and the value of l2 sets their position
in the frequency axis. The smaller the value of x, the longer
the distance between the zero and pole. These two values
(x; l2) depend on the value of m (see Eq. (23)). For a fixed
pair ðx; l2Þ, the higher the absolute value of m, the higher the
slope of the magnitude of the PDm controller and the higher
the maximum phase that the compensator can give. After
some simple calculations, the expressions for x and l2 can be
given by

x ¼
a� 1

aða� 1Þ þ b2
; l2 ¼

aða� 1Þ þ b2

boc

. (24)

Studying the conditions for a and b to find a solution, it
can be concluded that a lead compensator is obtained
when a41 and b40, and a lag compensator when

ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4b2

p
Þ=2oaoð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4b2

p
Þ=2 and �1=2ob

o0. Fig. 11 shows these lead and lag regions in the complex
plane for the integer order compensator C0ðjocgÞ ðm ¼ 1Þ.

Let us focus on the lead compensation. It is clear that for
the conventional lead compensator ðm ¼ 1Þ the vector aþ

jb ¼ a1 þ jb1 is perfectly known through the knowledge of
the plant GflatðjocgÞ (relay test) and the specifications of
phase margin and gain crossover frequency required for the

system, as it can be seen in (23). Knowing the pair (a; b), the
values of x and l2 are directly obtained by (24), and the
compensator design is finished.
As shown in Fig. 11, the vector 1þ j tan y defines the

borderline of the lead region. Using the polar form of this
vectorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tan2 y
p

ejy ¼
1

cos y
ejy, (25)

and expressing the vector ða1 þ jb1Þ
1=m in its polar form

ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
1 þ b2

1

q
Þ
1=mejðtan

�1ðb1=a1Þ=mÞ ¼ r1=mejðd=mÞ, (26)

where r ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
1 þ b2

1

q
Þ and d ¼ tan�1ðb1=a1Þ; the following

relationships can be established from (23), making (25)
equal to (26)

d ¼ ym, (27)

r1=m ¼
1

cos y
) 1 ¼ r cos

d
m

� �� �m
.

Then, solving numerically the function 1 ¼ r½cosðd=mÞ�m;
the lead compensation regions in the complex plane for
different positive values of m are obtained, as shown in
Fig. 12. The procedure followed to obtain the curves is the
one described next. For each value of m (a specific curve)
the pairs (a1; b1) that form the curve are obtained. Since

r ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
1 þ b2

1

q
Þ and d ¼ tan�1ðb1=a1Þ; it is clear that a1 ¼

r cosðdÞ and b1 ¼ r sinðdÞ: Besides, d and r are functions of
m; that is, d ¼ ym and r ¼ ð1= cosðd=mÞÞm. Now, a vector y is
defined with increasing values in the range 0oyop=2:
Remember that y defines the borderline of the integer lead
region and, therefore, p=2 is its maximum limit. For each
value of y a pair (d;rÞ is obtained, and then a point (a1; b1)
is defined. Repeating these steps for all the values of y, all
the points (a1; b1) forming the curve will be obtained. After
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Fig. 11. Lead and lag regions for the integer order compensator

C0ðjocgÞ ðm ¼ 1Þ.

Fig. 12. Lead regions for the fractional order compensator C0ðjocÞ for

0pmp2.

C.A. Monje et al. / Control Engineering Practice 16 (2008) 798–812 807

Lead-Lag regl.oos for the compensator C'(jrncg)
.~---,-----,----r-----,-----;T-77>7/l

- -- --- -- - -----~-------, ,

--"''''''''~~:::o.~
, ,

---~-- -------.-------
~fl.:::O,3 :

Lead regi:lns lor the oompensator C'Ofllcg) lorO~~ (step:O.OS)

---------~--------

, ,
---------~----------,-----

",L",!.
o I::..:':.:--c:.--:.:'c:.--:':'L'c:.':.:--c:.':.:--c:.--:.:r:--c:.'c:.--c:.':.:--c:.':j'Lc:.c:.c:.--c:.';j'c:.c:.--c:.--:.:'c:.--:.:'.:i':.:':.:--c:.':.:--c:.--:.:'~'::'_--_'_--~
-{l.S 0 0.5 1 1.5 2 2.5

Ae[GOo.Jcg)]=a,

D.•

a.

3

2.•

f 2
"wu
~
Q. 1.5
E

1.•

---~ ------ --

D.•

R.[C'Gooc.)J~,

--:--

-0.6 0

, ,------_._------------"-, ,, ,

! !

3 -- -------.----

1 "

4 "

"



Author's personal copy

that, a new value of m is selected and the process is repeated
to obtain a new curve.

The zone to the right of each curve is the lead region, and
any design point in this zone can be fulfilled with a
fractional order compensator having a value of m equal or
bigger than the one defining the curve which passes
through the design point (mmin). For instance, for the
design point in Fig. 12, the value of mmin is 0.48. By
choosing the minimum value mmin; the distance between the
zero and the pole of the compensator will be the maximum
possible (minimum value of parameter x; a positive value
very close to zero). In this case, the phase curve of the
compensator is the flattest possible and variations in a
frequency range centered at ocg will not produce a
significant phase change, improving the robustness of the
open-loop system regarding its iso-damping property. Let
us remember that the phase of GflatðsÞ around ocg was
already flat due to the effect of the controller PIlðsÞ and,
therefore, it is the shape of the phase curve of the fractional
order lead compensator (PDm) that affects the robustness
of the system to gain variations.

Let us then sum up how the PIlDm controller is auto-
tuned. The following steps can be solved by a simple
computer, using a data acquisition system to control and
monitor the real process (as explained in the section for
experimental results in this paper). A PLC could also be
used for the determination of the parameters of the
controller, due to the simplicity of the equations involved
in the auto-tuning method.

1. Once the specifications of design are given (ocg and jm),
the relay test is applied to the plant and the resulting
pairs (yn,onÞ obtained from the n iterations of the test
are saved and used for the calculation of the phase and
magnitude of the plant at each frequency on (following
Eqs. (16) and (17)). As explained previously, these
values are used for the obtaining of the slope of the
plant phase u (18). With the value of the slope, the
parameters l and l1 of the PIl controller are directly
obtained by Eqs. (20) and (22). Then, the system
GflatðjocgÞ is obtained.

2. Once the system GflatðjocgÞ is defined, and according to
Eq. (23), the parameters of the fractional order
compensator in (15) are obtained by simple calculations
summarized next, following the robustness feature
explained in this section.

3. Select a very small initial value of m, for example, m ¼
0:05: For this initial value, calculate the value of x and
l2 using the relations in (23) and (24).

4. If the value of x obtained is negative, then the value of m
is increased a fixed step and step 2 is repeated again. The
smaller the fixed increase of m the more accurate the
selection of the parameter mmin. Repeat step 2 until the
value of x obtained is positive.

5. Once a positive value of x is obtained, the value of m
must be recorded as mmin. This value of x will be close to
zero and will ensure the maximum flatness of the phase

curve of the compensator (iso-damping constraint). The
value of l2 corresponding to this value mmin is also recorded.

Therefore, all the parameters of the PIlDm controller
have been obtained through this iterative process. Then,
the controller is implemented and starts to control the
process through the switch illustrated in Fig. 9, concluding
the auto-tuning procedure.

4.4. Formulation of the resulting PItlDm controller

Once the parameters of the fractional order PIlDm

controller of Eq. (13) are obtained by following the design
methods explained above, these parameters can be identified
with those ones of the standard PIlDm controller given by

CstdðsÞ ¼ kp 1þ
1

Tis

� �l

1þ
Tds

1þ sTd=N

� �m

. (28)

Carrying out some calculations in (28), the following
transfer function is obtained:

CstdðsÞ ¼
kp

ðTiÞ
l

Tisþ 1

s

� �l
Tdð1þ 1=NÞsþ 1

ðTd=NÞsþ 1

� �m

. (29)

Comparing expressions (13) and (28), the relations
obtained are Ti ¼ l1; kp ¼ k0=ðl1Þ

l, N ¼ ð1� xÞ=x and
Td ¼ l2ð1� xÞ:
In the next section the auto-tuning method proposed

here is illustrated by experimental examples of application.

4.5. Experimental results by using the auto-tuning method

For the implementation of the auto-tuning method
proposed the following devices have been used, showing
a connection scheme in Fig. 13:

� Data acquisition board AD 512, by Humusoft, running
on Matlab 5.3 and using the real time toolbox ‘‘Real-
Time Windows Target’’.
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Fig. 13. Connection scheme of the experimental platform.
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� A computer Pentium II, 350MHz, 64M RAM, which
supports the data acquisition board and where the
programs run for the implementation of the method
proposed.
� A servomotor 33-002 by Feedbak, in Fig. 14, that

consists of: (a) a mechanical unit 33–100, which
constitutes the servo, strictly speaking, (b) an analogue
unit 33–110, which connects to the mechanical unit
through a 34-way ribbon cable which carries all power
supplies and signals enabling the normal circuit inter-
connections to be made on the analogue unit and (c) a
power supply 01–100 for the system. The mechanical
unit has a brake whose position changes the gain of the
system, that is, the break acts like a load to the motor.
This break will be used to test the robustness of the
controlled system to gain variations.

Specifications of gain crossover frequency, phase margin
and robustness to plant gain variations are given. In this
case, the desired gain crossover frequency is
ocg ¼ 2:3 rad/s. The relay has an output amplitude of
d ¼ 6, without hysteresis, � ¼ 0. The two initial values (y�1
and y0) of the delay used to reach the frequency specified
are 0.1 and 0.04 s, respectively. After several iterations the
output signal shown in Fig. 15 is obtained.

The value of the delay ya obtained for the selection of
the frequency specified is ya ¼ 0:2326 s, and the corre-
sponding frequency is ou ¼ 2:2789 rad/s. The amplitude
and period of this oscillatory signal are a ¼ 1:8701 and
Tu ¼ 2:7571 s, respectively. Therefore, the magnitude and
phase of the plant estimated through the relay experiment
at the frequency ou ¼ 2:2789 rad/s are jGðjouÞjdB ¼

�12:2239 dB and argðGðjouÞÞ ¼ �149:6328
�, respectively.

Measuring experimentally the frequency response of the
system in order to validate these values, a magnitude of
�11:8556 dB and a phase of �150:2001� are obtained. So,
only a slight error is committed in the estimation. Next, a
fractional order PIlDm controller is designed with the
proposed tuning method to obtain a phase margin jm ¼

60� at the gain crossover frequency ou ¼ 2:2789 rad/s.
The gain of the controller will be fixed to 1, that is, k0 ¼

kcx
a ¼ 1:
The first step is the design of the fractional order PIl

part, in Eq. (14). For that purpose the slope of the phase of
the plant, u, is estimated by using the expression (18). The
slope obtained in this case is u ¼ �0:2568 rad=ðrad/sÞ. With
the value of the slope and applying the criterion described
for the fractional order PIl controller (see Eqs. (20) and
(22)), the controller that cancels the slope of the phase
curve of the plant is

PIlðsÞ ¼
0:4348sþ 1

s

� �0:8468

. (30)

At the frequency ou this fractional order PIl controller
has a magnitude of �3:5429 dB, a phase of �38:3291� and
a phase slope of 0.2568. Therefore, the estimated system
GflatðsÞ has a magnitude of �15:7668 dB and a phase of
�187:9619�: These values can be easily obtained through
the values of the magnitude and phase of the plant
estimated by the relay test at the frequency ou and the
magnitude and phase of the controller PIlðsÞ at the same
frequency. Next, the controller PDmðsÞ is designed to fulfill
the specifications of phase margin and gain crossover
frequency required for the controlled system. Following
the iterative process described previously, the resulting
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Fig. 14. Photo of the experimental platform used for the implementation of the auto-tuning method.
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controller is given by

PDmðsÞ ¼
4:0350sþ 1

0:0039sþ 1

� �0:8160

. (31)

At the frequency ou ¼ 2:2789 rad/s the controller PDmðsÞ

has a magnitude of 15.7668 dB and a phase of 67:9619�.
Then, the resulting total controller CðsÞ is the following

one

CðsÞ ¼
0:4348sþ 1

s

� �0:8468
4:0350sþ 1

0:0039sþ 1

� �0:8160

. (32)

The Bode plots of CðsÞ are shown in Fig. 16. The
magnitude and phase of this controller at the frequency ou

are 12.2239 dB and 29:6328�, respectively. Therefore, the
open-loop system F ðsÞ has a phase margin of 60� and a
magnitude of 0 dB at the gain crossover frequency
ou ¼ 2:2789 rad/s, fulfilling the design specifications.
For the implementation of the resulting fractional order

controller CðsÞ, the frequency domain identification tech-
nique using Matlab function invfreqs is applied again. An
integer-order transfer function is obtained which fits the
frequency response of the fractional order controller in the
range o 2 ð10�2; 102Þ; with 3 poles/zeros for the PIl part
and 3 poles/zeros for the PDm part. Later, the discretization
of this continuous approximation is made by using the
Tustin rule with prewarping, with a sampling time Ts ¼

0:01 s and prewarp frequency ocg. With this controller the

ARTICLE IN PRESS

Fig. 15. Output signal of the relay test.

Fig. 16. Bode plots of the fractional order controller CðsÞ.

Fig. 17. Step responses of the system with controller CðsÞ.
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phase of the open-loop system F ðsÞ is the flattest possible,
ensuring the maximum robustness to variations in the gain
of the plant, as can be seen in the step responses of the
controlled system for k ¼ knom (nominal gain), k ¼ 2knom

and k ¼ 0:5knom (Fig. 17). The gain variations are
provoked by changing the position of the motor brake.
Fig. 18 shows the control laws of the system for the
different gains. It can be observed that for this gain range
this control strategy is very suitable, since the peak of the
control laws is much lower than 10V, the saturation
voltage of the motor. Comparing the step responses with
the ones obtained (in simulation) with the PID controller
CZN ðsÞ ¼ 22:1010ð1þ 1

0:55s
þ 0:1375sÞ designed by the sec-

ond method of Ziegler–Nichols (Fig. 19), the better
performance of the system with the fractional order
controller CðsÞ can be observed.

5. Conclusions

First of all, a synthesis method for fractional order
PIlDm controllers has been developed to fulfill five different
design specifications for the closed-loop system, that is, two
more specifications than in the case of a conventional PID

controller. An optimization method to tune the controller
has been used for that purpose, based on a nonlinear
function minimization subject to some given nonlinear
constraints. Experimental results show that the require-
ments are totally fulfilled for the platform to be controlled.
Thus, advantage has been taken of the fractional orders l
and m to fulfill additional specifications of design, ensuring
a robust performance of the controlled system to gain
changes and noise.

Besides, an auto-tuning method for the fractional order
PIlDm controller using the relay test has been proposed.
This method allows a flexible and direct selection of the

parameters of the controller through the knowledge of the
magnitude and phase of the plant at the frequency of
interest, obtained with the relay test. Specifications of gain
crossover frequency, ocg, and phase margin, jm, can be
fulfilled with a robustness property based on the flatness of
the phase curve of the open-loop system, guaranteeing the
iso-damping property of the time response of the system to
gain variations. Again, the experimental results illustrate
the effectiveness of this method.
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