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Abstract

The applicability aspects of power series expansions with respect to the arrival intensity, based on recursive algorithms,
when approximatingmultivariate finit time ruin probabilities will be substantially enhanced using double Laplace transforms.
We will also prove that power series methodology may be considered as an outstanding complement to diffusion approxi-

mations when the time horizon considered is not large.
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1. Introduction

Definin a classical risk process in continuous time {Zt }t≥0 with Uk claim sizes and premium c per time unit,

Zt = u + ct −
Nt∑

k=1
Uk,

where u are the initial reserves andNt the total number of claims up to time t (with d f. of the waiting times between
claims w(t)), where λ is the average number of claims in one year. Let B denote the distribution function of claim
sizes Uk with mean µ−1 and c = λµ−1(1+ θ), where θ is the premium loading factor.
Let us now defin τ = inf{w > 0 : Zw < 0} as the ruin time and Y = −Zτ as the defici at ruin time or severity

of ruin and X = Zτ− as the surplus just before ruin.
If we consider a time horizon of t years (or time units), the finit time multivariate probability of ruin with initial

reserves u, arrival intensity λ and severity of ruin less than y and surplus less than x is define as

P {τ < t, X ≤ x, Y ≤ y} = Ψt,u,x,y(λ).
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When the time horizon is infinite the multivariate ultimate ruin probability can be expressed as

P {τ < ∞, X ≤ x, Y ≤ y} = Ψu,x,y(λ).

Frey and Schmidt (1996) used the following Taylor-series expansion (1.2) for the probability of ruin with time
span t , Ψt,u,x,y when the classical case of risk theory is considered, w(t) = λ e−λt , restricted to the case when the
premium loading factor was defined

θ = 1− λµ−1

λµ−1 , θ > 0, (1.1)

Ψt,u,x,y(λ) =
∞∑

k=1

Ψ
′(k)
t,u,x,y(0)

k!
λk, λ ≥ 0, (1.2)

they proved that the function is analytic at λ = 0 and the Taylor-series expansion (1.2) has an infinit radius of
convergence. They also specifie a recursive formula to obtain the nth derivative at λ = 0 (Theorem 2 of the original
paper by Frey and Schmidt, 1996).

Theorem 1 (Frey and Schmidt). For each k ≥ 1, 0 ≤ u, t < ∞, 0 < x, y ≤ ∞, it holds that

Ψ
′(k)
t,u,x,y(0)

k!
= Ψ

′(k)
u,x,y(0)

k!
−

k∑
l=1

q
(k−l,l)
t,u,x,y , (1.3)

where the quantities q
(n,l)
t,u,x,y are given recursively by

q
(n,l)
t,u,x,y =

∫ t

0

(∫ u+s

0
q

(n−1,l)
t−s,u+s−z,x,y dB(z) − q

(n−1,l)
t−s,u+s,x,y

)
ds (1.4)

and

q
(0,l)
t,u,x,y = Ψ

′(l)
u+t,x,y(0)

l!
= Fx,y ∗ G∗(l−1)(u + t). (1.5)

They also proved (in Theorem 1 of the original paper) that

Ψ
′(l)
z,x,y(0)

l!
= Fx,y ∗ G∗(l−1)(z),

where G(w) = ∫ w

0 (1− B(z)) dz and introduce the functions

F 1
x,y(w) =

∫ max{x,w}

w

(B(z + y) − B(z)) dz =
∫ max{x,w}

w

(g(z) − g(z + y)) dz, x > 0, (1.6)

or when X = Zτ− , the surplus just before the ruin is define as u + x (x > 0),

F 2
x,y(w) =

∫ w+x

w

(B(z + y) − B(z)) dz =
∫ w+x

w

(g(z) − g(z + y)) dz, (1.7)

in this last case the above mentioned surplus should be always greater than the initial reserves u.
Using the results by Frey and Schmidt (1996), it can be proved, Usabel (1999), that
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Theorem 2 (Usábel). In the conditions stated for Theorem 1,

Ψ
′(k)
t,u,x,y(0)

k!
= Ψ

′(k)
u,x,y(0)

k!
−
(

k−1∑
l=0

(−1)l t
l

l!
Fk−l

t,u,x,y

)
, (1.8)

where

F1
t,u,x,y = Fx,y(u + t), Fk

t,u,x,y =
∫ t

0

∫ u+s

0
Fk−1

t−s,u+s−z,x,yb(z) dz ds + Fx,y ∗ G∗(k−1)(u + t),

k = 2, 3, . . . (1.9)

Other papers where power-series expansions with respect to λ, arrival intensity, have been used in approximating
probability characteristics of stochastic models driven by a Poisson process are Hooghiemstra et al. (1988), Rieman
and Simon (1988), Blanc (1991), Simon (1993) and Kroese and Schmidt (1995).
Maclaurin’s polynomial expansion (1.2) constitutes an original and alternative approach in approximating mul-

tivariate characteristics of Classical Ruin processes other than inversion of Laplace transforms for particular claim
size distributions —Gerber et al. (1987) and Dufresne and Gerber (1988) (a), (b) —or discretization of the claim
size and time —Dickson (1989), Dickson and Waters (1992), Dickson (1993) —applying the so-called Panjer’s
recursive algorithm (Panjer, 1981).
Nevertheless, the practical application of the polynomial expansion approach, implemented using formulas (1.3)

or (1.8), is quite limited due to the complexity involved in approximating the recursive double integrals stated in
formulas (1.4) and (1.9) respectively.
In the present work, we will first in Section 2, introduce an interesting result regarding the double Laplace

transform of certain families of functions generated by recursive double integrals: Theorem 3. The proof is presented
in Appendix A.
In Section 3, wewill see that the double Laplace transform of the recursive functions, see Theorem 1 or 2, involved

in the calculation of the coefficient of the Taylor expansion of the multivariate finit time ruin probability function
can be obtained easily using the results from Theorem 3.
The practical algorithm to implement this methodology is studied in Section 4. Questions regarding the computa-

tional efficien y of this approach are answered in Section 4. Section 5 contains a numerical illustration considering
Pareto claim sizes and concluding comments are introduced in Section 6.
We also have to mention that the problem of ruin in the collective risk theory has been extensively treated in

actuarial literature using integral transforms. Since the paper by Sparre Andersen in 1955 many authors developed
approximations for the ruin probability using Laplace–Stieltjes transforms. Cramer (1955) used the Wiener–Hopf
for the classical case and Thorin (1970, 1971, 1973, 1977) introduced the generalization when epochs of claims form
a renewal process. Thorin and Wikstad (1973), Wikstad (1971, 1977) used the Piessens (1969) inversion method
of the Laplace transforms and Bohman (1971, 1974, 1975) focussed on inversions of Fourier transforms and Seal
(1971, 1974) dealt with both Laplace and Fourier numerical inversions. Seal (1977) obtained an interesting result
for the classical case and exponential claim size distribution using the Bromwich–Mellin inversion formula for
Laplace transforms. Nevertheless, the cited actuarial literature did not contemplate the multivariate case and just
focussed on the simpler and particular case when X = ∞ and Y = ∞.

2. Laplace transforms

Let us defin the so-called double Laplace transform operator of a general function Hk
t,u,x,y,

L(Hk
t,u,x,y; (m, n)) = Hk∗∗

m,n,x,y =
∫ ∞

t=0

∫ ∞

u=0
Hk

t,u,x,ye
−mt−nu dudt

3



and the simple Laplace transform

L(Dx,y(u); s) = D∗
x,y(s) =

∫ ∞

u=0
Dx,y(u)e−su du.

Subsequently, the inverse Laplace transform operators are presented as

Invd
{
L(Hk

t,u,x,y; (m, n)); (t, u)
}

= Hk
t,u,x,y, Inv

{
L(Dx,y(u); s); u

} = Dx,y(u).

Remark 1. Notice that using the notation

Hk∗
m,u,x,y =

∫ ∞

t=0
Hk

t,u,x,ye
−mt dt,

we get

Hk∗
m,u,x,y = Inv

{
Hk∗∗

m,n,x,y; u); u
}

and

Hk
t,u,x,y = Inv

{
Hk∗

m,u,x,y; t
}

.

Let us now introduce the following theorem regarding the double Laplace transform of recursive functions. The
proof is presented in Appendix A.

Theorem 3. Let us consider a certain family of functions, Dk
x,y(z) (k = 1, 2, . . . ) and b(z), with infinitel differ-

entiable Laplace transforms.
If a set of functionsHk

t,u,x,y (k = 1, 2, . . . ) can be obtained using the former family and the following recursive
expression

Hk+1
t,u,x,y =

∫ t

s=0

∫ u+s

z=0
Hk

t−s,u+s−z,x,yb(z) dz ds −
∫ t

s=0
Hk

t−s,u+s,x,y ds + Dk+1
x,y (u + t) = I1(Hk

t,u,x,y)

−I2(Hk
t,u,x,y) + Dk+1

x,y (u + t)

with initial condition

H 1
t,u,x,y = D1

x,y(u + t), (2.1)

then the double Laplace transform of this set of functions can be expressed also recursively, for n 6= m,

H(k+1)∗∗
m,n,x,y = Hk∗∗

m,n,x,y(b
∗(n) − 1) − Hk∗∗

m,m,x,y(b
∗(m) − 1)

m − n
+ D

(k+1)∗
x,y (n) − D

(k+1)∗
x,y (m)

m − n
(2.2)

with initial condition

H 1∗∗
m,n,x,y = (D1∗

x,y(n) − D1∗
x,y(m))

m − n
(2.3)

and for n = m,

Hk∗∗
m,m,x,y = Zk

k(m)

(−1)kk! , (2.4)
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where also recursively

Z
j
l (m) =

j∑
i=l−1

(
j

i

)
Zi

l−1(m)
(
b∗(m) − 1

)′(j−i) +
(

(−1)l−1j !
(j − (l − 1))!

)(
Dl∗

x,y(m)
)′(j−(l−1))

,

l = 1, 2, 3, . . . , j = l, l + 1, . . . , (2.5)

and

Z
j

1 (m) =
(
D1∗

x,y(m)
)′(j)

, j = 1, 2, . . . (2.6)

3. Maclaurin’s expansion of the multivariate ruin probability

The Maclaurin’s expansion with respect to the arrival intensity for the finit time multivariate ruin probability
(1.2) can be obtained using either Theorem 1 or 2.
Regarding Theorem 1, however, a most straightforward formula can be obtained introducing the function

Ξk
t,u,x,y =

k∑
l=1

q
(k−l,l)
t,u,x,y

then it is not hard to prove from (1.3),(1.4) and (1.5) that

Ξ1
t,u,x,y = q

(0,1)
t,u,x,y = Fx,y(u + t), Ξk

t,u,x,y =
k∑

l=1
q

(k−l,l)
t,u,x,y = I1

(
k−1∑
l=1

q
((k−1)−l+1,l)
t,u,x,y

)

−I2
(

k−1∑
l=1

q
((k−1)−l+1,l)
t,u,x,y

)
+ q

(0,k)
t,u,x,y = I1

(
Ξk−1

t,u,x,y

)
− I2

(
Ξk−1

t,u,x,y

)
+ Fx,y ∗ G∗(k−1)(u + t),

k = 2, 3, . . . (3.1)

Using Theorem 2 instead the recursive formulas unfold easier (see (1.9))

F1
t,u,x,y = Fx,y(u + t),Fk

t,u,x,y = I1
(
Fk−1

t,u,x,y

)
+ Fx,y ∗ G∗(k−1)(u + t), k = 2, 3, . . .

The kth derivative at zero of the finit time multivariate ruin probability function with respect to the arrival
intensity λ is either

Ψ
′(k)
t,u,x,y(0)

k!
= Fx,y ∗ G∗(k−1)(u) − Ξk

t,u,x,y = Fx,y ∗ G∗(k−1)(u) −
k−1∑
l=0

(−1)l t
l

l!
Fk−l

t,u,x,y, k = 1, 2, . . .

Theorem 3 can then be applied to the recursive expressions (3.1) and (1.9), and obtain also recursively the double
Laplace transforms{

Ξk∗∗
t,u,x,y

}
,

{
Fk∗∗

t,u,x,y

}
, k = 1, 2, 3, . . . ,

where in both cases

Dk(z) = Fx,y ∗ G∗(k−1)(z), Dk∗(z) = F ∗
x,y(s)(g

∗(s))k−1, k = 1, 2, 3, . . . (3.2)

are known functions presented in Section 1 along with b(z), density function of the claim sizes considered.
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Remark 2. Notice that, as long as the recursive formula for the family of functionsFk
t,u,x,y is simpler, the subsequent

recursive expressions involved in the calculation of Fk∗∗
t,u,x,y , using Theorem 3, are always performed considering

b∗(m) instead of (b∗(m) − 1). This can be easily noticed looking at the proof of Lemma 2 in Appendix A.

Finally, the finit time multivariate ruin probability can be expanded as aMaclaurin’s series using inverse Laplace
transforms

Ψt,u,x,y(λ) =
∞∑

k=1

(
Inv

{
F ∗

x,y(s)(g
∗(s))k−1; u

}
− Invd

{
Ξk∗∗

m,n,x,y; (t, u)
})

λk, (3.3)

Ψt,u,x,y(λ) =
∞∑

k=1
Inv

{
F ∗

x,y(s)(g
∗(s))k−1; u

}
λk −

∞∑
k=1

(
k−1∑
l=0

(−1)l t
l

l!
Invd

{
F (k−l)∗∗

m,n,x,y ; (t, u)
})

λk. (3.4)

4. Practical algorithm

It is clear that the main concern is to approximate the coefficient of the Taylor expansion

Ψt,u,x,y(λ) ' Ψ L
t,u,x,y(λ) =

L∑
k=1

Ψ
′(k)
t,u,x,y(0)

k!
λk (4.1)

for a truncated series of orderL. It was proved in Theorems 1 and 2 that the derivatives of the multivariate finit time
ruin probability with respect to the arrival intensity, λ, at zero can be expressed in terms of certain sets of functions,
in general

{
Hk

t,u,x,y

}
, define recursively using double integrals.

As explained in Section 3, the double Laplace transform of the mentioned sets of functions
{
Hk∗∗

t,u,x,y

}
can be

easily obtained recursively using the results of Theorem 3.
The use of (3.4) instead of (3.3) generates expressions of reduced complexity and leads us to a substantial save

in the number of computations, as it is proved in Usabel (1999).
However, in case Invd

{
Fk∗∗

m,n,x,y; (t, u)
}
is obtained numerically, using (3.4), the accuracy will be endangered

for increasing values of t and a growing number of terms in the Taylor expansion (L).
In order to obtain the coefficient we have to use a Laplace transform inversion formula twice (see Remark 1) for

k = 1, 2, . . . , L. It is easy to see that many Laplace inversion techniques have the following general formula (see
for instance Davies and Martin (1979)

Hk
t,u,x,y = Inv

{
Hk∗

m,u,x,y; t
}

'
ρ∑

i=1
Wi(t)H

k∗
Mi(t),u,x,y, (4.2)

where

Hk∗
Mi(t),u,x,y = Inv

{
Hk∗∗

Mi(t),n,x,y; u
}

'
ν∑

j=1
Yj (u)Hk∗∗

Mi(t),Nj (u),x,y . (4.3)

For each particular value ofm necessary in the inversion technique (M1(t), M2(t), . . . , Mρ(t))we should obtain

Hk∗∗
Mi(t),Nj (u),x,y, j = 1, 2, . . . , ν.

For Mi(t) 6= Nj(u) the family of functions Hk∗∗
Mi(t),Nj (u),x,y, k = 1, 2, . . . , L, can be easily obtained using

recursive expression (2.2) and initial condition (2.3) of Theorem 3:
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Fig. 1.

H
(k+1)∗∗
Mi(t),Nj (u),x,y =

Hk∗∗
Mi(t),Nj (u),x,y(b

∗(Nj (u)) − 1) − Hk∗∗
Mi(t),Mi(t),x,y(b

∗(Mi(t)) − 1)

Mi(t) − Nj(u)

+D
(k+1)∗
x,y (Nj (u)) − D

(k+1)∗
x,y (Mi(t))

Mi(t) − Nj(u)
H 1∗∗

Mi(t),Nj (u),x,y = (D1∗
x,y(Nj (u)) − D1∗

x,y(Mi(t)))

Mi(t) − Nj(u)

(where Dk∗
x,y(s) = F ∗

x,y(s)(g
∗(s))k−1, see (3.2)).

Obviously, in order to use the former expression, the following set of functions must be obtained firs using (2.4)

Hk∗∗
Mi(t),Mi(t),x,y = Zk

k(Mi(t))

(−1)mk!
, i = 1, 2, . . . , α

(and they are also the case Mi(t) = Nj(u)).
Functions Zk

k(Mi(t)) are again easily obtained by recursion using expressions (2.5) and (2.6) of Theorem 3:

Z
j
l (Mi(t)) =

j∑
i=l−1

(
j

i

)
Zi

l−1(Mi(t))
(
b∗(Mi(t)) − 1

)′(j−i) +
(

(−1)l−1j !
(j − (l − 1))!

)(
Dl∗

x,y(Mi(t))
)′(j−(l−1))

,

l = 1, 2, 3, . . . , j = l, l + 1, . . .

and

Z
j

1 (Mi(t)) =
(
D1∗

x,y(Mi(t))
)′(j)

, j = 1, 2, . . .

It is easy to prove, from the former recursive formula, that in order to get Z
j
l (Mi(t)) we need to obtain firs

Zl−1
l−1(Mi(t)), Z

l
l−1(Mi(t)), . . . , Z

j

l−1(Mi(t)). This fact is showed graphically in Fig 1.
As a consequence, the total number of functions Z

j
l (Mi(t)) to evaluate in order to obtain ZL

L(Mi(t)), i =
1, 2, . . . ρ, will be (L + 1)L/2, in which Zk

k(Mi(t)), k = 1, . . . , L − 1, are also included.
Moreover, it is not hard to prove either that the total number of functions Hk∗∗

Mi(t),Nj (u),x,y and Z
j
k (Mi(t)) to

evaluate with the former easy expressions of Theorem 3 are

ρ × ν × L + ρ × (L + 1)L
2

(4.4)

With the former number of calculations we will be able to approximate all the coefficient of the Taylor series
expansion of order L (4.1).
In summary, using the derivatives

(Dk∗
x,y(s))

′(j) = (F ∗
x,y(s) (g∗(s))k−1)′(j), k = 1, . . . , L, j = 0, . . . , L − k,

(b∗(s) − 1)′(i), i = 0, . . . , L, (4.5)
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where functions F ∗
x,y(s), g

∗(s) and b∗(s) are previously known and the easy recursive formulas stated in Theorem
3, we will be able to obtain the family of functions{

Ξk∗∗
t,u,x,y

}
,

{
Fk∗∗

t,u,x,y

}
, k = 1, 2, 3, . . . ,

and finall fin the coefficient of the Taylor expansion with formulas (3.3) or (3.4) respectively, inverting Laplace
transforms (single and double).

5. Efficienc of the algorithm

Once the theoretical foundations of this approach has been settled down and a practical algorithm has been
also produced, designed to calculate the coefficient of the Taylor series, the attention will be now focused on the
efficien y.
Efficien y will be clearly based upon the figur of the total number of calculations obtained in the former Section

4.4, in order to get approximations of the coefficient of the truncated Taylor series expansion (4.1).
It is important to mention that this total number of calculations does not depend at all on the magnitude of the

initial reserves considered or time span. Moreover, the recursions formulas introduced in Theorem 3 are so easy
that the evaluation of the former total number of calculations will be attained extremely fast.
The firs important issue to care about is the efficien y of methods of inverting Laplace transforms because

parameters ρ and ν will be affected by this fact. This aspect of numerical calculus is beyond the scope of this work
but we can certainly state that scientifi literature and computer languages libraries can provide us with efficien tools
in order to solve this problem. One of the most cited papers regarding comparison of numerical methods of inverting
Laplace transform is Davies andMartin (1979). In the numerical examples presented, using Gaver–Stehfest method,
Gaver (1966) and Stehfest (1970), with ρ = 14 and ν = 30, results yielded 4–5 significan digits.
We should mention that the use of numerical methods of inverting Laplace transform is not new at all in actuarial

literature. As we stated in the last paragraph of Section 1, many classical works of the 1970s Scandinavian School
(and H. Seal) were based on the inversion of double Laplace transforms as well. The results obtained by these
methods have been extensively cited later and used as the “true value” of ruin probabilities to compare with the
many approximations based on discretizations produced in the 1980s.
A fina additional consideration about the efficien y, also beyond the scope of this work but certainly an interesting

area of future research, is the number of terms of the truncated Taylor series expansion (4.1) in order to get a desired
degree of accuracywhen approximatingmultivariate finit time ruin probabilities for the classical case of risk theory.
We will see later that in the numerical illustration considered, the truncation sum limit L should be increased for
larger time horizons considered in order to guarantee a certain accuracy.

6. Numerical illustration

Using basic properties of Laplace transforms,

L(s, F 1
x,y(u)) =

∫ x

0
e−su

∫ x

u

(g(z) − g(y + z)) dz du =
(
1
s

)∫ x

0
(g(z) − g(y + z)) dz

−
(
1
s

)∫ x

0
(g(z) − g(y + z)) e−sz dz

L(s, F 2
x,y(u)) =

∫ ∞

0
e−su

∫ u+x

u

(g(z) − g(y + z)) dz du = L(s, F
′2
x,y(u)) + F 2

x,y(0)
s

(6.1)

where
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F 2
x,y(0) =

∫ x

0
(g(z) − g(y + z)) dz, x > 0,

and Leibniz’s differentiation theorem leads to

F ′2
x,y(u) = g(u + x) − g(u + x + y) + g(u + y) − g(u) (6.2)

and

L(s, F ′2
x,y(u)) = L(s, g(u + x)) − L(s, g(u + x + y)) + L(s, g(u + y)) − L(s, g(u)),

or

L(s, g(u + a)) =
∫ ∞

0
e−su g(u + a) du =

∫ ∞

0
e−su(1− B(u + a)) du = 1

s
− L(s, B(u + a))

= 1− B(a) − L(s, b(u + a))

s
. (6.3)

As an example we will consider Pareto claim size distribution

B(x) = 1−
(

α

α + x

)α+1
, x > 0, α ≥ 1, Eb(x) = µ−1 = 1

and

g(x) =
(

α

α + x

)α+1
, x > 0. (6.4)

Definin the integral following expressions (3.353.1) and (3.353.2) of Gradshteyn and Ryzhik (1994):

ϕ(σ, β, n, γ ) =
∫ γ

0

e−σx dx
(x + β)n

= 1
(n − 1)!

n−1∑
k=1

(k − 1)!(−σ)n−1−k

(
β−k − e−γ σ

(γ + β)k

)

− (−σ)n−1eβσ

(n − 1)!
(Ei(−βσ) − Ei(−(γ + β)σ)) , n ≥ 2, Re σ > 0, | arg(γ + β)| < π,

where Ei is the exponential integral

Ei(x) = −
∫ ∞

1

ext

t
dt, x < 0,

and as a particular case

ϕ(σ, β, n,+∞) = 1
(n − 1)!

n−1∑
k=1

(k − 1)!(−σ)n−1−kβ−k − (−σ)n−1eβσ

(n − 1)!
Ei(−βσ).

It is easy to prove that

b∗(s) = αα+1(α + 1)ϕ(s, α, α + 2, +∞)

g∗(s) = αα+1ϕ(s, α, α + 1, +∞), s > 0,

9



finall

L(s, F 1
x,y(u)) =

(
1
s

)∫ x

0
(g(z) − g(y + z)) dz −

(
1
s

)∫ x

0
(g(z) − g(y + z)) e−sz dz

= αα+1α−α − (α + x)−α − (α + y)−α + (α + y + x)−α

sα

−αα+1 ϕ(s, α, α + 1, x) − ϕ(s, α + y, α + 1, x)

s

and

L(s, F 2
x,y(u)) =

∫ ∞

0
e−su

∫ u+x

u

(g(z) − g(y + z)) dz du =
(
1
s

)
L(s, g(u + x)) −

(
1
s

)
L(s, g(u + x + y))

+
(
1
s

)
L(s, g(u + y)) −

(
1
s

)
L(s, g(u)) +

(
1
s

)
F 2

x,y(0)

= αα+1 ϕ(s, α + x, α + 1, +∞) − ϕ(s, α + y + x, α + 1, +∞)

s

+αα+1 ϕ(s, α + y, α + 1, +∞) − ϕ(s, α, α + 1, +∞)

s

+αα+1α−α − (α + x)−α − (α + y)−α + (α + y + x)−α

sα

As a numerical illustration we have obtained Maclaurin’s truncated approximations up to eight terms using the
algorithm presented in Section 4

Ψt,u,20,1(λ) ' Ψ L
t,u,20,1(λ) =

L∑
k=1

Ψ
(k)
t,u,20,1(0)

k!
λk, L = 1, 2, . . . , 8

for the following set of parameters:

α = 1, y = 1, x = 20, F 2
20,1(w), X = Zτ− = u + 20 (surplus prior to ruin),

u = 10, 20, t = 5, 10, 20.

Numerical inversion of double Laplace transform was performed using Gaver–Stehfest method twice with the
suitable choice of parameters (usually ρ = 14 and ν = 30, see (4.2) and (4.3)) in order to guarantee at least 4–5
significan digits accuracy; see for instance Davies and Martin (1979) or Stehfest (1970).
The coefficient of the Maclaurin’s polynomials of order eight with respect to the arrival intensity were obtained

for u = 10:

Ψ 8
5,10,20,1(λ) = 0.003642λ + 0.004123λ2 + 0.002761λ3 + 0.001037+ 0.00009681λ5 − 0.00007615λ6

−0.00002213λ7 − 0.160710−5λ8,

Ψ 8
10,10,20,1(λ) = 0.004984λ + 0.007464λ2 + 0.007282λ3 + 0.004823λ4 + 0.001762λ5 − 0.00017121λ6

−0.0005476λ7 − 0.00017790λ8,

Ψ 8
20,10,20,1(λ) = 0.005937λ + 0.01057λ2 + 0.01305λ3 + 0.01228λ4 + 0.008459λ5 + 0.003254λ6

−0.0009310λ7 − 0.002488λ8,

and for u = 20,

10



Table 1
Approximations for multivariate finit time ruin probability for Pareto distribution claim size (6.4), α = 1, u = 10, t = 5, 10, 20, Ψ L

t,10,20,1(λ) =∑L
k=1

Ψ
′(k)
t,10,20,1(0)

k! λk, (−n) ≡ 10−n, → same as the previous figur

λ L

1 2 3 4 5 6 7 8

t=5 0.10 3.642(−4) 4.054(−4) 4.082(−4) 4.083(−4) → → → →
0.25 9.105(−4) 1.168(−3) 1.211(−3) 1.215(−3) → → → →
0.50 1.821(−3) 2.852(−3) 3.197(−3) 3.261(−3) 3.265(−3) 3.263(−3) → →
0.75 2.732(−3) 5.051(−3) 6.215(−3) 6.543(−3) 6.566(−3) 6.553(−3) 6.550(−3) →
1.00 3.642(−3) 7.765(−3) 1.053(−2) 1.156(−2) 1.166(−2) 1.158(−2) 1.156(−2) →

t = 10 0.10 4.984(−4) 5.730(−4) 5.803(−4) 5.508(−4) → → → →
0.25 1.246(−3) 1.713(−3) 1.827(−3) 1.846(−3) 1.848(−3) → → →
0.50 2.492(−3) 4.358(−3) 5.268(−3) 5.569(−3) 5.624(−3) 5.621(−3) 5.617(−3) 5.616(−3)
0.75 3.738(−3) 7.937(−3) 1.101(−2) 1.254(−2) 1.296(−2) 1.293(−2) 1.286(−2) 1.284(−2)
1.00 4.984(−3) 1.245(−2) 1.973(−2) 2.455(−2) 2.631(−2) 2.614(−2) 2.559(−2) 2.541(−2)

t = 20 0.10 5.937(−4) 6.994(−4) 7.125(−4) 7.137(−4) 7.138(−4) → → →
0.25 1.484(−3) 2.145(−3) 2.349(−3) 2.397(−3) 2.405(−3) 2.406(−3) → →
0.50 2.969(−3) 5.162(−3) 7.243(−3) 8.011(−3) 8.275(−3) 8.326(−3) 8.319(−3) 8.309(−3)
0.75 4.453(−3) 1.040(−2) 1.591(−2) 1.980(−2) 2.181(−2) 2.239(−2) 2.227(−2) 2.202(−2)
1.00 5.937(−3) 1.651(−2) 2.956(−2) 4.185(−2) 5.031(−2) 5.357(−2) 5.264(−2) 5.015(−2)

Ψ 8
5,20,20,1(λ) = 0.0006219λ + 0.0006242λ2 + 0.0003745λ3 + 0.0001362λ4 + 0.00002404λ5

+0.1271× 10−5λ6 + 0.9100 × 10−6λ7 + 0.3551× 10−6λ8,
Ψ 8
10,20,20,1(λ) = 0.0009528λ + 0.001323λ2 + 0.001202λ3 + 0.0007883λ4 + 0.0003479λ5 + 0.00007517λ6

−0.6173× 10−5λ7 − 0.7448× 10−5λ8,
Ψ 8
20,20,20,1(λ) = 0.001267λ + 0.002226λ2 + 0.002694λ3 + 0.002590λ4 + 0.001988λ5 + 0.001139λ6

+0.0003723λ7 − 0.00006635λ8.

We can easily deduce from the polynomial approximations presented above that the coefficient of the last terms
of the sums, Ψ ′(8)

t,u,20,1(0)/8!(as a measure of the truncation error), increase with time; in other words the accuracy
obtained with Maclaurin’s expansions of order 8 worsen as longer time spans (t) are considered (see Tables 1 and
2). Obviously, the desired level of accuracy will be reached using Maclaurin’s expansions of higher order.
The figure for the coefficient of the polynomials above were obtained using a simple algorithm in Maple V

Release 4 on a Pentium 120. The computation time for the eight coefficient (all of them) of any of the polynomials
ranged from 20 to 40 s. Bearing in mind that a program as Maple V performs operations 50–500 times slower than
languages as FORTRAN or C (see Char et al., 1991, p. 84), the same algorithm takes fractions of a second in one
of these languages. We can then conclude that the efficien y of the algorithm in terms of computation time is also
outstanding.

7. Concluding comments

In the presentworkwe have enhanced the practical application of power series expansionwith respect to the arrival
intensity λ in order to approximate multivariate finit time ruin probabilities. Using double Laplace transforms, the
complicated recursive formulas based on double integrals, (1.4) and (1.9), were transformed, respectively, into very
easy recursive formulas presented in Theorem 3. The algorithm presented in Section 4 can then be considered as
efficien in terms of computational times as it is explained in Sections 5 and 6.
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Table 2
Approximations formultivariate finit time ruin probability for Pareto distribution claim size (6.4),α = 1, u = 10, t = 5, 10, 20, Ψ L

t,20,20,1(λ) =∑L
k=1

Ψ
′(k)
t,20,20,1(0)

k! λk, (−n) ≡ 10−n, → same as the previous figur

λ L

1 2 3 4 5 6 7 8

t = 5 0.10 6.219(−5) 6.843(−5) 6.880(−5) 6.881(−5) → → → →
0.25 1.555(−4) 1.945(−4) 2.004(−4) 2.009(−4) → → → →
0.50 3.110(−4) 4.671(−4) 5.139(−4) 5.224(−4) 5.232(−4) → → →
0.75 4.664(−4) 8.175(−4) 9.755(−4) 1.019(−3) 1.025(−3) → → →
1.00 6.219(−4) 1.246(−3) 1.621(−3) 1.757(−3) 1.781(−3) 1.782(−3) 1.783(−3) →

t = 10 0.10 9.528(−5) 1.085(−4) 1.097(−4) 1.098(−4) → → → →
0.25 2.382(−4) 3.209(−4) 3.397(−4) 3.428(−4) 3.431(−4) → → →
0.50 4.764(−4) 8.072(−4) 9.575(−4) 1.007(−3) 1.018(−3) 1.019(−3) → →
0.75 7.146(−4) 1.459(−3) 1.966(−3) 2.215(−3) 2.298(−3) 2.311(−3) 2.310(−3) 2.309(−3)
1.00 9.528(−4) 2.276(−3) 3.478(−3) 4.266(−3) 4.614(−3) 4.689(−3) 4.683(−3) 4.676(−3)

t = 20 0.10 1.268(−4) 1.491(−4) 1.518(−4) 1.521(−4) → → → →
0.25 3.170(−4) 4.561(−4) 4.982(−4) 5.083(−4) 5.102(−4) 5.105(−4) → →
0.50 6.340(−4) 1.191(−3) 1.528(−3) 1.690(−3) 1.752(−3) 1.770(−3) 1.773(−3) →
0.75 9.510(−4) 2.203(−3) 3.340(−3) 4.160(−3) 4.632(−3) 4.835(−3) 4.885(−3) 4.887(−3)
1.00 1.268(−3) 3.494(−3) 6.188(−3) 8.778(−3) 1.077(−2) 1.191(−2) 1.228(−2) 1.221(−3)

In the example presented in Section 6, the degree of Maclaurin’s polynomials in order to guarantee a certain
desired accuracy is increasing with the time horizon (t) considered. It is easy to conclude, then, that power series
expansion will work particularly well for not large time spans because the number of terms necessary to obtain a
desired accuracy will be small.
This last fact is most important because, citing Frey and Schmidt (1996), other works in actuarial literature

based on diffusion approximations: Asmussen (1984), Grandell (1977), Igehart (1969), or Schmidli (1992) gave
reasonable accuracy for large time horizons because they were based on a limit theorem; and the Maclaurin’s
polynomial expansions may be the complement for not large time horizons.

Appendix A. Proof of Theorem 3

Let us start the proof with this simple lemma.

Lemma 1. The double Laplace transform of a general function Dx,y(u + t) can be expressed as

L(Dx,y(u + t); (m, n)) =
{

D∗
x,y (n)−D∗

x,y (m)

m−n
, n 6= m,

−dD∗
x,y(m)/dm = (D∗

x,y(m))′(1), n = m.

Proof.

L(Dx,y(u + t); (m, n)) =
∫ ∞

t=0

∫ ∞

u=0
Dx,y(u + t)e−mt−nu du dt =

∫ ∞

z=0

∫ z

t=0
Dx,y(z)e−mt−(z−t)n dz dt

=
∫ ∞

z=0
Dx,y(z)e−nz

∫ z

t=0
e−(m−n)t dt dz = D∗∗

m,n,x,y = D∗
x,y(n) − D∗

x,y(m)

m − n

with the change of variable

u + t = z, t = t
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The formula for the special case n = m is easily obtained using the definitio of derivative of a real
function. h

Expression (2.3) of Theorem 3 is then obtained using Lemma 1 in (2.1).
With the aid of the following lemma, expression (2.2) of Theorem 3 will be proved and an interesting result is

also obtained for the fina proof.

Lemma 2. Let us consider a certain family of functions, Dk
x,y(z) (k = 1, 2, . . . ) and b(z), with infinitel differen-

tiable Laplace transforms.
If a set of functions Hk

t,u,x,y (k = 1, 2, . . . ) can be obtained using the mentioned family and the following
recursive expression

Hk+1
t,u,x,y =

∫ t

s=0

∫ u+s

z=0
Hk

t−s,u+s−z,x,yb(z) dz ds −
∫ t

s=0
Hk

t−s,u+s,x,y ds + Dk+1
x,y (u + t)

= I1(Hk
t,u,x,y) − I2(Hk

t,u,x,y) + Dk+1
x,y (u + t)

with initial condition

H 1
t,u,x,y = D1

x,y(u + t),

then the double Laplace transform of this set can be expressed as

H(k+1)∗∗
m,n,x,y = Hk∗∗

m,n,x,y(b
∗(n) − 1) − Hk∗∗

m,m,x,y(b
∗(m) − 1)

m − n
+ (D

(k+1)∗
x,y (n) − D

(k+1)∗
x,y (m))

m − n

with initial condition

H 1∗∗
m,n,x,y = (D1∗

x,y(n) − D1∗
x,y(m))

m − n

or

H(k+1)∗∗
m,n,x,y =

{
RH

(k+1)∗∗
m,n,x,y /(m − n)k+1, n 6= m,(

∂k+1
(
RH

(k+1)∗∗
m,n,x,y

)
n=m

/∂nk+1
) (

(−1)k+1 (k + 1)!
)−1

, n = m,
(A.1)

where functions RH
(k+1)∗∗
m,n,x,y are define also recursively

RH(k+1)∗∗
m,n,x,y = RH(k)∗∗

m,n,x,y(b
∗(n) − 1) − H(k)∗∗

m,m,x,y(b
∗(m) − 1)(m − n)k + (m − n)k(D(k+1)∗

x,y (n)

−D(k+1)∗
x,y (m)) (A.2)

with initial condition

RH 1∗∗
m,n,x,y = D1∗

x,y(n) − D1∗
x,y(m). (A.3)

Proof. Let us prove firs the following recursive expression:

H(k+1)∗∗
m,n,x,y = Hk∗∗

m,n,x,y(b
∗(n) − 1) − Hk∗∗

m,m,x,y(b
∗(m) − 1)

m − n
+ (D

(k+1)∗
x,y (n) − D

(k+1)∗
x,y (m))

m − n
.
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Using the definitio of the double Laplace transform

L(I1(H
k
t,u,x,y); (m, n)) =

∫ ∞

t=0

∫ ∞

u=0

∫ t

s=0

∫ u+s

z=0
Hk

t−s,u+s−z,x,yb(z) dz dse−mt−nu du dt

=
∫ ∞

s=0

∫ ∞

z=0

(∫ ∞

a=0

∫ ∞

b=(s−z)+
Hk

a,b,x,yb(z)e−(m−n)s−nz dz ds
)
e−ma−nb da db

=
∫ ∞

s=0

∫ ∞

z=s

(∫ ∞

a=0

∫ ∞

b=0
Hk

a,b,x,yb(z)e−(m−n)s−nz dz ds
)
e−ma−nb da db

+
∫ ∞

s=0

∫ s

z=0

(∫ ∞

a=0

∫ ∞

b=(s−z)

Hk
a,b,x,yb(z)e−(m−n)s−nz dz ds

)
e−ma−nb da db

=
∫ ∞

a=0

∫ ∞

b=0
Hk

a,b,x,ye
−ma−nb

∫ ∞

z=0
b(z)e−nz

∫ z

s=0
e−(m−n)s ds dz db da

+
∫ ∞

a=0

∫ ∞

b=0
Hk

a,b,x,ye
−ma−nb

∫ ∞

z=0
b(z)e−nz

∫ b+z

s=z

e−(m−n)s ds dz db da

=
∫ ∞

a=0

∫ ∞

b=0
Hk

a,b,x,y e
−ma−nb

∫ ∞

z=0
b(z)e−nz

∫ b+z

s=0
e−(m−n)s ds dz db da

= 1
m − n

∫ ∞

a=0

∫ ∞

b=0
Hk

a,b,x,ye
−ma−nb

∫ ∞

z=0
b(z)e−nz(1− e−(m−n)(b+z)) dz db da

= Hk∗∗
m,n,x,yb

∗(n) − Hk∗∗
m,m,x,yb

∗(m)

m − n

with the change of variables:

t − s = a, u + s − z = b, s = s, z = z,

and

L(I2(H
k
t,u,x,y); (m, n)) =

∫ ∞

t=0

∫ ∞

u=0

∫ t

s=0
Hk

t−s,u+s,x,y dse
−mt−nududt

=
∫ ∞

s=0

∫ ∞

a=0

∫ ∞

b=s

Hk
a,b,x,ye

−(m−n)s dse−ma−nb da db

=
∫ ∞

a=0

∫ ∞

b=0
Hk

a,b,x,ye
−ma−nb

∫ b

s=0
e−(m−n)s ds db da

= 1
m − n

∫ ∞

a=0

∫ ∞

b=0
Hk

a,b,x,ye
−ma−nb(1− e−(m−n)b) db da = Hk∗∗

m,n,x,y − Hk∗∗
m,m,x,y

m − n

with the change of variables:

t − s = a, u + s = b, s = s.

Finally,

L(Hk+1
t,u,x,y; (m, n)) = H(k+1)∗∗

m,n,x,y = L(I1(H
k
t,u,x,y); (m, n)) − L(I2(H

k
t,u,x,y); (m, n))

= Hk∗∗
m,n,x,y(b

∗(n) − 1) − Hk∗∗
m,m,x,y(b

∗(m) − 1)
m − n

+ (D
(k+1)∗
x,y (n) − D

(k+1)∗
x,y (m))

m − n
(A.5)
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and

H 1∗∗
m,n,x,y = (D1∗

x,y(n) − D1∗
x,y(m))

m − n

using Lemma 1 for the last term and the initial function.
Let us now suppose that

H(k)∗∗
m,n,x,y = RH

(k)∗∗
m,n,x,y

(m − n)k
, n 6= m, (A.6)

where RH
(k)∗∗
m,n,x,y is define recursively with expression (A.2).

Proceeding by complete induction with (A.5):

H(k+1)∗∗
m,n,x,y = Hk∗∗

m,n,x,y(b
∗(n) − 1) − Hk∗∗

m,m,x,y(b
∗(m) − 1)

m − n
+ (D

(k+1)∗
x,y (n) − D

(k+1)∗
x,y (m))

m − n

= (
RH

(k)∗∗
m,n,x,y/(m − n)k)(b∗(n) − 1) − Hk∗∗

m,m,x,y(b
∗(m) − 1)

m − n
+ (D

(k+1)∗
x,y (n) − D

(k+1)∗
x,y (m))

m − n

= RH
(k)∗∗
m,n,x,y(b

∗(n) − 1) − Hk∗∗
m,m,x,y(b

∗(m) − 1)(m − n)k

(m − n)k+1 + (m − n)k(D
(k+1)∗
x,y (n) − D

(k+1)∗
x,y (m))

(m − n)k+1

= RH
(k+1)∗∗
m,n,x,y

(m − n)k+1 ,

and obviously, using L’Hospital’s rule,

lim
n→m

H(k+1)∗∗
m,n,x,y =

∂k+1
(
RH

(k+1)∗∗
m,n,x,y

)
n=m

∂nk+1(−1)k+1(k + 1)!
. (A.7)

�

We need to prove now expressions (2.4)–(2.6) of Theorem 3.
The following expression is easy to prove:

∂j
(
(m − n)k+1)

n=m

∂nj
=
{
0, j = 1, 2, . . . , k,

(−1)k+1(k + 1)!, j = k + 1. (A.8)

If we use L’Hospital’s rule in (A.1) (n 6= m), because H
(k+1)∗∗
m,m,x,y must be a finit function it is clear that

∂j
(
RH

(k+1)∗∗
m,n,x,y

)
n=m

∂nj
= 0, j = 1, 2, . . . , k.

Let us introduce now the following family of functions:

Z
j
l (m) =

∂j
(
RHl∗∗

m,n,x,y

)
n=m

∂nj
, l = 1, 2, . . . , j = l, l + 1, l + 2, . . . (A.9)

It is clear from the former paragraph that

Z
j
l (m) = 0, j = 1, 2, . . . , l − 1 (A.10)
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and

Hl∗∗
m,m,x,y = Z

j
l (m)

(−1)l l! , l = 1, 2, . . .

proving expression (2.4) of Theorem 3.
Also for l = 1, using (A.3),

Z
j

1 (m) =
∂j
(
RH 1∗∗

m,n,x,y

)
n=m

∂nj
=
(
D1∗(m)

)′(j)

, j = 1, 2, . . . ,

expression (2.6) of the statement of Theorem 3 is obtained.
Nevertheless, we still have to prove the recursive formula (2.5).
Now, if we substitute expression (A.2) in (A.9),

Z
j
l (m) =

∂j
(
RHl∗∗

m,n,x,y

)
n=m

∂nj
=

∂j
(
RH

(l−1)∗∗
m,n,x,y (b∗(n) − 1)

)
n=m

∂nj

−
∂j
(
H

(l−1)∗∗
m,m,x,y(b

∗(m) − 1)(m − n)l−1
)

n=m

∂nj

+
∂j
(
(m − n)l−1(Dl∗

x,y(n) − Dl∗
x,y(m))

)
n=m

∂nj
, j = l, l + 1, . . . (A.11)

Using Leibniz’s theorem for differentiation of a product in (A.11), for j = l, l + 1, . . . ,

∂j
(
RH

(l−1)∗∗
m,n,x,y (b∗(n) − 1)

)
n=m

∂nj

=
j∑

i=0

(
j

i

) ∂i
(
RH

(l−1)∗∗
m,n,x,y

)
n=m

∂ni
(b∗(m) − 1)

′(j−i)

=
j∑

i=l−1

(
j

i

) ∂i
(
RH

(l−1)∗∗
m,n,x,y

)
n=m

∂ni
(b∗(m) − 1)

′(j−i)
∂j
(
(m − n)l−1(Dl∗

x,y(n) − Dl∗
x,y(m))

)
n=m

∂nj

=
(

j

l − 1

) ∂(j−(l−1))
(
Dl∗

x,y(n)
)

n=m

∂n(j−(l−1))i (−1)l−1(l − 1)!

because of (A.8); and also in (A.11):

∂j
(
H

(l−1)∗∗
m,m,x,y(b

∗(m) − 1)(m − n)l−1
)

n=m

∂nj
= 0

Finally, we obtain (2.5) of Theorem 3
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Z
j
l (m) =

∂j
(
RHl∗∗

m,n,x,y

)
n=m

∂nj
=

j∑
i=l−1

(
j

i

) ∂i
(
RH

(l−1)∗∗
m,n,x,y

)
n=m

∂ni
(b∗(m) − 1)

′(l−1−i)

+
(

j

l − 1

)(
Dl∗

x,y(m)
)′(j−(l−1))

(−1)l−1(l − 1)!

=
j∑

i=l−1

(
j

i

)
Z

j

l−1(m)(b∗(m) − 1)
′(l−1−i)+

(
(−1)l−1j !

(j − (l − 1))!

)(
Dl∗

x,y(m)
)′(j−(l−1))

, j = l, l + 1, . . .
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