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Abstract

Monte Carlo simulations play an important role in positron emission
tomography (PET) imaging, as an essential tool for the research and
development of new scanners and for advanced image reconstruction.
PeneloPET, a PET-dedicated Monte Carlo tool, is presented and validated
in this work. PeneloPET is based on PENELOPE, a Monte Carlo code for
the simulation of the transport in matter of electrons, positrons and photons,
with energies from a few hundred eV to 1 GeV. PENELOPE is robust, fast
and very accurate, but it may be unfriendly to people not acquainted with the
FORTRAN programming language. PeneloPET is an easy-to-use application
which allows comprehensive simulations of PET systems within PENELOPE.
Complex and realistic simulations can be set by modifying a few simple input
text files. Different levels of output data are available for analysis, from
sinogram and lines-of-response (LORs) histogramming to fully detailed list
mode. These data can be further exploited with the preferred programming
language, including ROOT. PeneloPET simulates PET systems based on crystal
array blocks coupled to photodetectors and allows the user to define radioactive
sources, detectors, shielding and other parts of the scanner. The acquisition
chain is simulated in high level detail; for instance, the electronic processing can
include pile-up rejection mechanisms and time stamping of events, if desired.
This paper describes PeneloPET and shows the results of extensive validations
and comparisons of simulations against real measurements from commercial
acquisition systems. PeneloPET is being extensively employed to improve the
image quality of commercial PET systems and for the development of new
ones.
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1. Introduction

Monte Carlo simulations play an important role in positron emission tomography (PET)
imaging, as an essential tool for the research and development of new scanners and for
advanced image reconstruction. The availability of powerful computers has encouraged the
use of PET-dedicated simulation codes in the last few years. Examples of areas that benefit
from extensive simulations are the design of new PET scanners (Braem et al 2004, Heinrichs
et al 2003), the development and assessment of image reconstruction algorithms (Herraiz et al
2006) and of correction techniques (Levin et al 1995), among other applications (Zaidi 2000,
Ay and Zaidi 2006, Ortuño et al 2003, 2006, Torres-Espallardo et al 2008). Simulations make
it possible not only to refine the design parameters of PET scanners, but they also help to
identify bottlenecks regarding count rate, resolution, sensitivity, etc.

There are several Monte Carlo codes (for a short and recent review see Buvat and Lazaro
(2006)) that simulate the transport of radiation through matter, e.g. GEANT4 (Agostinelli
2003), MCNP (Briesmeister 1993), EGS4 (Kawrakow and Bielajew 1998) and PENELOPE
(Baró et al 1995, Salvat et al 2003). Either based upon these codes or in tables of photon
cross-sections, a number of tools for PET simulation have been developed, such as SIMSET
(Harrison et al 2003), PETSIM (Thomson et al 1992) or Eidolon (Zaidi et al 1998), based
on MCNP, and GATE, based on GEANT4 (Jan et al 2004). Probably (Buvat and Lazaro
2006), one of the most widely known is GATE which, being based in GEANT4, can include a
large variety of photon detectors and targets the large community of high energy and nuclear
physics users that have acquaintance with GEANT4. GEANT4 is powerful and flexible
enough to simulate PET scanners; however, its learning curve is both steep and long. A
superficial knowledge of C++ is insufficient to optimally use GEANT4, and the installation
process requires more than basic computer skills. This is why GATE was developed. GATE
consists of hundreds of classes that provide useful functionalities for PET simulations. No
C++ programming is involved and thus it is easier to learn and use, unless there is a need to
create new classes to address specific problems.

We have chosen PENELOPE as the core of our PET simulation tool. PENELOPE is
a Monte Carlo code for the simulation of the transport in matter of electrons, positrons and
photons with energies from a few hundred eV to 1 GeV. It is then less generally aimed as
GEANT4, but it suits well PET needs, it is fast and robust, and it is extensively used for
other medical physics applications, particularly for dosimetry and radiotherapy (Sempau and
Andreo 2006, Panettieri et al 2007). PENELOPE is written in the FORTRAN programming
language.

1.1. Why another PET simulator?

The main purpose of our PET simulator is the optimization of the design of small animal
PET scanners. Most often these scanners are made of multiple scintillator arrays read by
Anger-like logic, arranged in complex geometries with millions of lines of response (LORs).
In order to optimize the scanner design, many high-statistics simulations have to be made
and studied, each of them with different scanner settings, such as for instance geometry
(scanner diameter, crystal size), materials (scintillator, shielding and other scatter elements),
electronics (integration time, dead time, coincidence window, pile-up rejection), etc. Thus,
it is desirable to have the fastest possible simulation tool, capable of running in parallel in
clusters of computers, and able to provide an easy way of executing many simulation instances
with small changes of the scanner definition. The ample variety of detector configurations
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allowed by the combination GEANT/GATE is appealing, but it comes at the cost of increased
need for computing resources (Buvat and Lazaro 2006).

The FORTRAN language is highly standardized and it is available for many computer
architectures aimed to scientific computing, to which FORTRAN compilers have been adapted
and optimized for speed and accuracy. Written in FORTRAN, PENELOPE is bound to
be both fast and portable. On the other hand, while still widely used by physicists and
mathematicians, FORTRAN is not the most popular programming language among young
researchers and lacks the object-oriented structure that is appealing when writing modular
codes. On these grounds, we have developed PeneloPET, a FORTRAN package that allows
us to easily define complete simulations of PET systems within PENELOPE. PeneloPET is
capable of preparing sophisticated simulations just by editing a few simple input text files,
without requiring knowledge of FORTRAN or any other programming language. Simulations
prepared with PeneloPET are straightforward to run in parallel using clusters of computers.

1.2. Introduction to PeneloPET

The basic components of a PeneloPET simulation are detector geometry and material definition
(including non-detecting materials, like shielding), source definitions, non-active materials in
the field of view (FOV) of the scanner and electronic chain of detection. All these components
are defined with parameters in the input files. Different levels of output data are available for
analysis, from sinogram and LORs histogramming to fully detailed list mode. These data can
be further exploited with the preferred programming language, including ROOT. The detailed
list mode generates a file with all the hits, single or coincidence events and the corresponding
information about interaction coordinates, deposited energy in the detectors, and time and
type of coincidence: random, scatter, true, with pile-up, etc.

In this work we have performed several comparisons with another PET-dedicated code
(GATE) and with studies obtained from four commercial PET scanners. The agreement
between PeneloPET simulations and the results obtained in real scanners confirms PeneloPET
as a powerful tool for PET research and development as well as for quality assessment of PET
images. PeneloPET is freely available and can be obtained by request from the authors. The
reader interested can visit http://nuclear.fis.ucm.es/penelopet for details.

2. PeneloPET features

2.1. Source code

Our goal with PeneloPET has been to develop an easy-to-use program that includes all the
physical and electronic processes involved in PET. PeneloPET requires a moderate time
investment for the preparation of the simulation setup and it runs very efficiently, with
modest computational burden compared to other PET simulation tools. It can be ported
to any platform and operating system capable of compiling FORTRAN programs. We have
tried PeneloPET under Windows, Linux/Unix and Mac OS X platforms and with different
FORTRAN compilers (gnu-g774, Absoft5, Intel6) without porting problems.

The source code consists of two main modules. The first one deals with the PENELOPE
simulations and the level of detail chosen for these, and takes care of the information about
scanner detectors and materials, source and decay. This module includes the routines involved

4 http://www.gnu.org/software/fortran/fortran.html.
5 http://www.absoft.com/Absoft%20Compilers.htm.
6 http://www.intel.com/cd/software/products/asmo-na/eng/compilers.
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in the distribution of isotopes and emission of particles generated in the decay processes as
well as their interactions.

The second module post-processes the decay and interaction data generated by the first
module. It takes into account, for instance, Anger logic for positioning the interaction inside
the crystal array, detector pile-up, energy resolution in the scintillator and aspects of the
electronics, such as coincidence time window, dead time, time resolution and integration time.
No PENELOPE routines are generally involved in this second module. Energy windows can
be applied in this second module. Continuous or pixelated detectors can be managed by this
second stage of the simulation package.

In order to run the simulations on clusters of computers, a simple and portable Python7

script is provided with the code. The use of Python enables one to run the script under
Windows, Linux/Unix and Mac OS X. After configuring PeneloPET for the execution of
the desired setup in a single CPU, the Python script launches the simulation on the number
of CPUs desired, with different random seeds, and takes care of the initial activity and the
acquisition time for each sub-process, in order to simulate the same number of decay events
as the equivalent single-CPU run. In this way, the simulation time is reduced proportionally
to the number of CPUs employed.

2.2. Input files

Four input files have to be prepared by the user in order to set up a simulation. The first
input file (main.inp) contains the general parameters of the simulation, such as the acquisition
protocol and acquisition time. It also selects the simulation of secondary particles, if desired,
and controls whether the positron range and non-collinearity are taken into account. This file
also contains options for scanner rotation, energy and coincidence windows, contributions to
dead time, output format and type of study.

In the second file (scanner.inp), which contains the scanner definition, multiple rings and
layers of crystals can be specified. Although our main goal was to simulate pixelated detectors
for high-resolution small animal PET imaging, PeneloPET is also suitable for continuous
scintillator blocks or even detectors not based on scintillators (such as CZT or silicon strips)
with small or no changes.

Non-radioactive materials other than the scintillator (already defined in the file
scanner.inp), such as the surrounding materials and shielding, are defined in a third file
(object.inp). The radioactive source is defined separately in a fourth input file (source.inp),
which contains source geometry and information about activity and isotope. Keeping separated
definitions for sources and materials simplifies the comparison of simulations of ideal sources,
without scatter or attenuation, and more realistic sources. All the details about PeneloPET
input files and options can be found in the PeneloPET manual.8

Typical materials for crystals, shielding and phantoms are predefined in PeneloPET and,
if necessary, new materials can be created in a straightforward way. The visualization tools
built in PENELOPE (gview2d, gview3d (Salvat et al 2003)) are also available in PeneloPET
to display and test geometries. This is especially useful during scanner design stages (see
figure 1).

Although the examples presented in this work deal with pre-clinical scanners, PeneloPET
is also capable of simulating clinical PET scanners.

7 http://www.python.org/.
8 http://nuclear.fis.ucm.es/penelopet/.
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Figure 1. View of the SUINSA ARGUS (Wang et al 2006) scanner obtained with the gview3d
application distributed with PENELOPE. An annulus phantom can also be observed, centered in
the FOV.

2.3. Output

Output files generated by PeneloPET can offer three different levels of detail. At the highest
level, all the information about each interaction is recorded for further analysis. At the
intermediate level, just the single events and the information needed for their analysis is
recorded. The possibility of pile-up and cross-talk is taken here into account. At the third,
and lowest, level of detail, only coincidence events are recorded in a compact LIST mode.
Information about pile-up, scatter, random and self-coincidence events obtained from the
simulation is also summarily available.

A coincidence event is labeled as pile-up when at least one of the single events has
suffered pulse pile-up. A coincidence is considered to be a scatter coincidence when at least
one of the photons that trigger the detectors has interacted before reaching the scintillator. A
coincidence is considered as a random one when the two photons in the coincidence pair come
from two different, uncorrelated, annihilation process. A self-coincidence event may arise
when the same photon, after scattering in a first detector, reaches a second detector. If the
energy deposited in each detector is above the detection threshold, it may trigger two single
events and yield a self-coincidence. The remaining coincidences are considered as true events.

PeneloPET generates several output histograms that help to understand the results of the
simulations, such as for instance sinogram projections, LOR histogram, single and coincidence
maps and energy spectrum. In order to simplify the reconstruction of simulated data, the format
of the sinograms conforms to that expected by the STIR library.9

ROOT (Brun and Rademakers 1997) is an object-oriented data analysis framework that
provides tools for the analysis of experimental data. PeneloPET LIST files can be converted
into ROOT format. As an example, figure 2 shows a two-dimensional energy histogram of the
single events that yield the coincidence events, which has been plotted with ROOT.

2.4. Geometry

The geometry of detectors and other materials of the scanner can be defined in the input files
by means of a few text lines. The scanner definition file (scanner.inp) contains the description

9 http://stir.sourceforge.net.
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Figure 2. A two-dimensional energy histogram of single events belonging to the same coincidence,
histogrammed with ROOT from the file generated with the ROOT-output option of PeneloPET.

of a multi-ring arrangement of rectangular prism-shaped detectors, often segmented into pixel
crystals and with one or more layers of scintillator in each detector. Several predefined
materials can be used in the detectors, and more materials can be defined by indicating their
energy and time resolution and light pulse rise and fall time. Thus, the scanner definition
includes the number of detectors per ring, number of rings, gap between adjacent rings,
number of pixel crystals per detector, detector material, number of scintillation layers and
material for each, pitch size and ring size. Other structures can be defined (object.inp) to
complete the geometry with shielding and other non-detecting materials.

If the user needs to simulate more complex geometries, the geometry file can be directly
created employing PENELOPE geometry syntax. Detector blocks can be displaced from
their regular positions in order to build non-regular complex geometries or to introduce
misalignments of detectors.

The distribution of radioactive sources used in the simulation is described in a third file
(source.inp). It contains the shape, location, activity, radioactive isotope and restrictions in
emission directions, if any.

2.5. Emission of annihilation photons

When annihilation photons are emitted, the direction of emission is randomly and isotropically
generated. For some simulations it may be useful to restrict the allowed solid angle for the
emission of photons, thus increasing the time efficiency of the simulation. Limits and/or
privileged directions can be selected in the input files. PeneloPET automatically adjusts the
simulation results according to the solid angle restrictions incorporated.

2.6. Isotope and source selection

Another input file (isotope.inp) contains the definition of one or several isotopes, stating the
half-life and a list of all emitted particles as the nuclide decays. For each particle in the
list, its type (electron, positron or photon), energy (Qβ, Eυ) and branching ratio are defined.
Any mixture of sources with different isotopes and activities can be used as radioactive
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Figure 3. Simulated positron spectra obtained with PeneloPET and employed in positron range
calculations. From left to right, 18F, 68Ge/68Ga, dashed lines without Coulomb correction, solid
lines with Coulomb correction. The horizontal axis represents the kinetic energy normalized to
the maximum value of each spectrum.

distribution. The isotopes most commonly used in PET are already defined and it is easy
for the user to define new ones if required. Time intervals between consecutive decays are
randomly generated following statistical distributions appropriate to initial activity and decay
time. Intrinsic activity of detectors can be included in the simulation by simply defining a
source with the geometry and activity of the scintillator crystals.

2.7. Positron range

When a positron is generated in a decay process, it has a kinetic energy that depends on the
energy shared with the neutrino created in the same process. This yields a continuum energy
spectrum distribution which is easily computed from theoretical grounds, either for allowed
or superallowed transitions, and including the Coulomb correction factor (see for instance
equation (13) in Levin and Hoffman (1999)) after Richardson and Kurie (1936). In PET
positron range simulations, this latter Coulomb correction factor is often either neglected or
only treated with a non-relativistic approach. PeneloPET uses the exact expression for the
Coulomb correction factor, which, albeit relatively close to one for light nuclei and positron
emission, it may significantly distort the beta spectrum for medium to heavy nuclei, particularly
in the case of electron emission. Figure 3 shows the normalized positron spectra corresponding
to 18F, and 68Ge/68Ga, with and without Coulomb correction.

PeneloPET offers two approaches for simulating the positron range. The first one tracks
the path and energy spectrum for each positron coming from the decay process. This leads to
accurate results, but at the expense of increased computation time. With the second approach,
the profile of the positron range in water is generated from a detailed simulation (as described
for the previous approach) only once, saving the resultant profile for later use in simulations
in which the positron annihilation point will be randomly generated from these pre-computed
profiles (Levin and Hoffman 1999, Harrison et al 1999). Positron range profiles for the β+

isotopes most widely used in PET are included with PeneloPET. Profiles for other isotopes
can be added using tools provided with PeneloPET.
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Figure 4. Histogram of time differences of the two single events in a coincidence pair. This
simulation was performed using a rat-size phantom filled with 71 MBq of 18F for the ARGUS
scanner. The vertical axis is in logarithmic scale.

2.8. Non-collinearity

When an annihilation process takes place with both positron and electron at rest, two photons
of about the same energy (511 keV) are produced. Because of energy and momentum
conservation, both photons should be emitted along the same line but in opposite directions.
However, annihilation usually takes places with thermal electrons which have a kinetic energy
of a few eV, leading to a slight non-collinearity of the two emitted photons. This non-
collinearity is modeled by a Gaussian distribution of 0.5 degrees FWHM (Harrison et al
1999).

2.9. Energy and time resolution, crystal assignment, coincidence window

Energy resolution of the detector at 511 keV is specified by the user in the scanner.inp input
file and it is linearly extrapolated for other energies. Detector time resolution is estimated
from time-blurring effects after a photon produces a trigger in a detector. Usual contributors
to this time blurring are electronic jitter and rise time of the light emitted by the crystal
detector. Furthermore, the simulations include the determination of the position of interaction
by means of Anger-like center of gravity methods. To account for further blurring effects in
the interacting pixel assignment, Gaussian blurring can be added to the final pixel assignment.
Since all the events are time stamped, software cuts (time coincidence windows) can be
applied to the listed events to select true coincidences. The list file generated by the simulation
contains detailed time information for the events, so histograms of time differences between
the two single events of a coincidence are easily created (see figure 4) and thus the efficiency
of time coincidence cuts or even the probability that a coincidence count comes from a true
or a random coincidence, given their time difference, can be readily estimated. The time
information for the recorded counts can also include the time path of the photons from the
decay point to the detectors, and thus time of flight (TOF) studies can be easily simulated. The
user can arrange the simulated counts into TOF bins and use them in TOF reconstructions.
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Figure 5. Energy spectrum for simulated acquisitions at different activity levels, with linear (top
panel) and log (bottom panel) scales. This simulation was performed for a rat-size phantom filled
with 18F in the ARGUS scanner. Counts at the right of the photopeak are due to detector pile-up
events, whose contribution is more conspicuous for larger activities. Pile-up events also fill in a
bit the region around the Compton edge.

2.10. Pulse pile-up

A pulse is generated when a photon deposits energy in a detector above a given threshold. The
shape and duration of this pulse are defined in the simulation. Due to the time response of the
scintillator, an integration of the pulse during, typically, a hundred of nanoseconds is needed
in order to measure the energy deposited by the photon and to localize the interaction. If any
other photon interacts with the same detector within this integration time, an overlap of both
pulses (detector pile-up) will result. Pile-up causes incorrect energy and crystal identification.
The time response of the detectors and the acquisition electronics are taken into account in
the simulations, and PeneloPET can also simulate mechanisms for pulse pile-up rejection.
Figure 5 shows the distortion of the energy spectrum due to pulse pile-up obtained from
PeneloPET simulations.

2.11. Dead time

Dead time occurs when new events take place while the acquisition chain is still busy analyzing
previous events. In general, there are several sources of dead time in PET detectors. First
of all, in the detection process, a trigger is activated when the energy deposited by a photon
in the detector exceeds certain energy threshold. When this happens, new events may not
be accepted during a certain amount of time. This constitutes the detector trigger (or single
event) contribution to the total dead time of the scanner and it is usually small compared
to other contributors to dead time. Some scanners (e.g. CLEARPET) work in single-mode
acquisition, that is, every single event identified is converted while coincidence sorting is
performed later. In this case, for every single event, additional dead time contributions should
be considered. These include for instance integration time, explained in previous subsection,
and also conversion time, that is, the time required to complete the analog to digital conversion
(ADC) of the detector signals and the subsequent transmission and storage of this digital
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information in a computer. In single-mode acquisition scanners, there may be no further
contribution to dead time due to the subsequent processing and sorting of coincidences, as
this can even be done off-line. On the opposite side, in many other scanners (e.g. VrPET
or INVEON), the single events identified (i.e. free from detector trigger dead time) follow
further processing (including ADC) only if they lie within a certain time coincidence window
of another single event. This can be termed as coincidence-mode acquisition. In this case, the
major contribution to total scanner dead time originates in the processing (most importantly
ADC) and sorting of the events identified as members of a coincidence pair, and it is this
‘coincidence dead time’ the main contributor to the total dead time of the scanner. All these
sources and types of dead time can be simulated in PeneloPET as it considers trigger and
coincidences dead time, as well as integration time, separately in the main.inp file.

2.12. Constraints in energy and type of particle

PeneloPET offers all the possibilities of PENELOPE for introducing constraints in energy and
kind of particle considered in the simulation (Baró et al 1995, Salvat et al 2003). Depending
on the purpose of the simulation, the user may choose to track all the photons, electrons and
positrons, including every secondary particle, or just some of them. It is also possible to track
only the particles with energy above a certain threshold or to stop tracking a particle when its
energy falls below a low energy threshold. Faster simulations can be performed by tracking
only the annihilation photons. This may constitute a good approximation as far as the mean
free path of secondary particles is short enough, as it is the case in medical imaging.

2.13. System response

Iterative reconstruction methods require knowledge of the system response matrix (SRM)
(Herraiz et al 2006). The SRM is made up of elements representing the probability of detecting
events coming from a given voxel in a given LOR. PeneloPET includes the possibility of
building the SRM for specific LORs. For this purpose, a point source of the selected isotope is
simulated in different locations along the channel of response (CHOR), defined as the region
of the space associated with the LOR, in the sense that a source located anywhere inside
the CHOR has a non-negligible probability of producing coincidence events in the detector
defining the LOR (Herraiz et al 2006). Several parameters of the simulation can be tuned to
establish a tradeoff between speed and accuracy. The SRM can also be obtained for rotating
scanners, by calculating probabilities of detection for sinogram bins instead of LORs.

3. Validation of PeneloPET

This section presents and evaluates simulations generated by PeneloPET. First, a comparison
between results obtained with PeneloPET and those provided by the GATE simulation toolkit
is shown. An axial sensitivity profile for a simple configuration based on the rPET (Vaquero
et al 2005) scanner was estimated from PeneloPET and GATE simulations. In the remainder of
this section, we compare simulated measurements with real measurements for four commercial
small-animal PET scanners: rPET (Vaquero et al 2005), ARGUS (Wang et al 2006), Raytest
CLEARPET (Heinrichs et al 2003) and Siemens INVEON (McFarland et al 2007). The
real measurements from ARGUS, CLEARPET and INVEON scanners were taken from Wang
et al (2006), Sempere Roldan et al (2007) and Blake et al (2006), respectively. The simulations
tried to reproduce as accurately as possible, with the information available to the authors, the
geometry and materials mentioned in said references.
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Figure 6. Axial sensitivity profile of the rPET scanner obtained from simulations of a low activity
18F point source. PeneloPET results agree with those obtained with GATE within error bars except
for the energy window with the lowest energy threshold, for which GATE sensitivities are larger
than PeneloPET ones by about 5%. The error bars are taken as ± the standard error obtained from
four runs of the simulations with different random seeds.

3.1. SUINSA rPET

rPET (SUINSA Medical Systems, Vaquero et al 2005) is a rotating scanner consisting of four
PMT detector modules, each coupled to a single layer array of 30 × 30 MLS (Pepin et al
2001) crystals. Pitch size is 1.6 mm, individual crystal length is 12 mm and the ring diameter
is 16 cm. A point source has been simulated at several axial positions along the axis of the
FOV. Figure 6 shows the ratio of detected coincidences to annihilations at the source for three
different energy windows. Source activity was kept low enough so that dead time, random and
pile-up effects could be considered negligible. The simulation rates, measured as the number
of positron (e+) annihilations simulated per second using an Intel Xeon X5472 3.00 GHz
quad-core processor, were 75 000 e+ s−1 and 12 000 e+ s−1, for PeneloPET and GATE codes,
respectively. In both cases, only annihilation photons of 511 keV were simulated, no angular
restrictions were imposed and neither secondary particles nor x-rays were considered. The
simulation rate depends strongly on the geometry of the scanner, shielding and surrounding
materials included in the simulation. A similar simulation of the same source done for the
other scanners studied in this work obtained 12 000 e+ s−1 for ARGUS, 12 000 e+ s−1 for
CLEARPET and 17 000 e+ s−1 for INVEON, a much lower simulation rate than the one
obtained for rPET.

Regarding the accuracy of the results, there are small quantitative differences (about 5%)
between the sensitivity predictions in the case of the 100–700 keV energy window. For the
GATE simulations, the GEANT4 standard electromagnetic (EM) model was chosen. Three
EM models are available in GEANT4, and thus also in GATE: the standard one, the low
energy one and the same PENELOPE model that we employ in PeneloPET. It has been found
in several works that these three models produce slightly different predictions (Poon and
Verhaegen 2005). Some authors (Chen et al 2006) have suggested that the PENELOPE model
may be more adequate for Compton interactions, the low-energy model for Rayleigh scattering
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Figure 7. Comparison of real and simulated sinograms of a water-filled cylinder plus an off-
centered rod with 18F (250 μCi) for the rPET scanner. Radial profiles at two different angular
positions are presented in the right panel with both log (bottom part of the figure) and linear vertical
scales. The two arrows in the sinogram of the left panel indicate where the radial profiles shown in
the right panel were taken. Simulated and real line profiles are scaled to coincide at their maximum
values.

and the standard EM model of GEANT4 for photoelectric absorption of photons. One must
be aware that we simulate the interaction of annihilation photons not only with biological
tissue, but also with detector materials, such as scintillator and shielding. Thus, Compton and
photoelectric absorption of photons are equally relevant for our simulations. In any case, the
differences between these three models are not large, except for the lowest energy photons,
which are of little relevance for the results of PET simulations.

Additionally, real and simulated sinograms from a mouse phantom acquisition were
compared. The real acquisition was performed at Hospital General Universitario Gregorio
Marañón, in Madrid. The mouse phantom was made of a rod filled with 18F, 1 cm off-centered
in a water cylinder of 2.5 cm of diameter and 6 cm in length. For this comparison we show
the radial profiles of coincidences for two different angles. The initial activity was 250 μCi
and no energy window was applied. Figure 7 shows that there is good agreement between real
and simulated data in both peak and background areas.

3.2. SUINSA ARGUS

The ARGUS small-animal PET scanner (Wang et al 2006) consists of 36 PMT detector
modules, each coupled to a dual layer array of 13 × 13 LYSO + GSO scintillation crystals.
Each pixel crystal has a cross-section of 1.45 × 1.45 mm2 separated by a white reflector
0.1 mm thick. The resulting pitch size is 1.55 mm and the length of the LYSO and GSO layers
is 7 mm and 8 mm, respectively. The 36 modules are arranged in two rings of 18 modules
each, with a diameter of 11.8 cm. All the measurements described in this section are taken
from Wang et al (2006) except the one regarding the annulus phantom, which was obtained at
Hospital General Universitario Gregorio Marañón, in Madrid.10

10 The Argus scanner is described in Vaquero et al (2004). eXplore VISTA is the commercial name given by GEHC
to the original SUINSA product, the ARGUS PET. These two systems are identical except for the identification logos
on the system cover. The measurement mentioned here has been done using an ARGUS SUINSA system.
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Figure 8. Comparison of the profiles of coincidence counts for crystals in the same axial row
from a 500 μCi 68Ge annulus. Different energy windows are shown: (a) 100–700 keV, (b) 250–
700 keV and (c) 400–700 keV. Real (thick solid lines) and simulated (thin solid line) results from
PeneloPET are presented. Also, for the simulations, contribution of true, random and scatter
counts, as well as counts that are affected by detector pile-up are displayed separately. The small
error bars (visible only in the simulated profiles) indicate the expected statistical error. Real and
simulated line profiles are scaled to coincide at their maximum values.

For the first measurement, an annulus phantom made of epoxy containing 68Ge was
acquired. This annulus is normally employed to perform normalizations and calibrations of
the scanner. It has an inner diameter of 6.92 cm, its walls are 2 mm thick and its total activity
is about 500 μCi. Acquisitions were obtained with three energy windows (100–700 keV,
250–700 keV and 400–700 keV). Figure 811 shows a comparison of count profiles resulting
from all coincidence events coming from crystals in the same axial row, with the ones from
the simulation. The overall shape of these profiles is well reproduced by the simulations.
The discontinuity at the center of the profile is due to the gap between the two detector rings.
Both real acquisition and simulations have a very large number of events, so that the statistical
error is negligible. The ripple observed in the real profiles may be due to a non-uniform axial
distribution of shielding and other scanner materials, combined with edge effects of the PMTs,
and with the unavoidable (although small) differences in the positions of the real crystals with
respect to their ideal locations. In the simulation, ideal geometries for the crystal arrays, PMTs
and photocathodes, as well as shielding, have been employed. It is thus reasonable to expect
a more uniform axial structure for the profile of simulated counts than that exhibited by an

11 In this work the term ‘statistical error’ denotes the variation in the measured magnitude induced by statistical
fluctuations, that is, a variation of ±√

N , with N being the number of counts accumulated for said measurement.
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Figure 9. Axial sensitivity profile of the ARGUS scanner measured with a 18F point source shifted
in small steps along the central axis of the FOV, compared to PeneloPET simulations. Data are
from Wang et al (2006). The simulations include inert material and shielding.

Table 1. Scatter fraction for the ARGUS scanner.

Mouse phantom Rat phantom
Energy window
(keV) Real Simulated Real Simulated

100–700 33% 29% 48% 42%
250–700 27% 27% 37% 38%
400–700 19% 20% 29% 29%

actual machine. In any case, this ripple observed in the real acquisitions is about 5% and the
difference observed with the simulated results is of the same order.

We can notice a change in shape of the axial profiles according to the energy window
selected. From the simulations we can obtain separated contributions to the axial count
profiles from true, random and scatter counts, as well as from counts that are affected by
pile-up. According to the simulations, we can attribute the largest contribution to this change
in shape of the profiles to scatter counts. Further, there is a noticeable difference in the fraction
of scatter coincidences registered with the 100–700 keV energy window, as compared to the
narrowest one (400–700 keV).

Table 1 presents the results for the scatter fraction, real and simulated with PeneloPET.
Real values were taken from Wang et al (2006). Differences between real and simulated
values are below 5% for both the 250–700 and 400–700 keV energy windows. For the 100–
700 keV energy window, the simulated values are systematically lower (by about 10%) than
the real ones, most likely due to the fact that the simulations did not include secondary particle
emissions, such as x-rays, that can contribute at low energies. The expected relative statistical
error obtained from the simulations is ±5%.

Figure 9 shows the comparison of simulated axial sensitivity profiles against real data
from the ARGUS scanner. The agreement of the simulations with the data is very good at
the center of the scanner (they agree within 5%), while there are somewhat larger differences
(about 10%) in the relative minima of the sensitivity profile corresponding to the centers of
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Figure 10. Radial resolution of the ARGUS scanner measured with a 22Na point source placed at
different radial positions in the central axial slice.

Table 2. Peaks of the NECR curve of a rat-size phantom for three energy windows, for the ARGUS
scanner.

NECR (kcps) [activity (kBq/cc)] 100–700 keV 250–700 keV 400–700 keV

Real 120 [92] 140 [78] 145 [43]
Simulated 125 [86] 130 [74] 150 [40]

each ring. Outside these two minima, the differences between simulations and real data are
below 5%. Overall, the agreement between simulation and data is good.

Figure 10 presents a comparison of the radial resolution measured for a 22Na point source
placed at different radial distances from the scanner axis, for real and simulated data. The
resolution obtained from the simulation is in very good agreement with the experimental data
at the center of the FOV (CFOV), while for larger offsets small deviations (of no more than
7%) can be observed.

Finally, simulations to obtain the noise equivalent count rate (NECR) for a rat-size
phantom have been performed. NECR peak values obtained from real data were taken from
Wang et al (2006). NECR data simulated from PeneloPET were analyzed to find the position
of the NECR peak. Agreement of simulated and real NECR values simulated is good, as
shown in table 2. Due to the fact that a finite number of steps are employed to find the
maximum of the NECR curves, we estimate that these figures are affected by a relative error
lower than 5% in both position and value of the peak.

3.3. Raytest CLEARPET

The CLEARPET (Heinrichs et al 2003) scanner consists of 80 PMT detector modules, each
coupled to a dual layer array of 8 × 8 LYSO + LuYAP scintillation crystals. Each pixel crystal
has a cross-section of 2 × 2 mm2 and there is a 0.3 mm thick reflector between them. Pitch
size is 2.3 mm and the length of both LYSO and LuYAP layers is 1 cm. The 80 modules
are arranged in four rings of 20 modules with a diameter of 13.5 cm. Every four contiguous
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Figure 11. Axial sensitivity profile for the CLEARPET scanner. The figure shows measurements
and results from simulations for three different scanner configurations (12, 16, and 20 detectors per
ring) with a detector diameter of 13.5 cm. Real data are taken from Sempere Roldan et al (2007)
and are represented with points.

modules in the axial direction form a cassette. Every second cassette is alternatively shifted
by ±9.2 mm in the axial direction.

The axial sensitivity profile for the CLEARPET scanner was simulated for configurations
with different number of detectors. Simulations of a 22Na point source placed at many positions
along the axial direction are compared to real data taken for 18 positions. The sensitivity
was calculated as the ratio of the number of coincidence events measured inside the energy
window of 250–750 keV and the total number of decays occurred during the acquisition time.
Figure 11 shows the results of this comparison. There is good agreement in the central region
of the axial profile, where simulation and data are within few percent of each other, and a
worse agreement toward the edges of the axial FOV. This is most likely due to the fact that in
this case the simulation did not include any shielding materials. The shielding materials can
increase the number of events due to photons that first interact in the shielding and are then
back scattered into a detector.

3.4. Siemens INVEON

The INVEON (McFarland et al 2007) consists of 64 PMT detector modules, each coupled
to a single layer array of 20 × 20 LSO scintillation crystals. Each crystal has a section of
1.55 × 1.55 mm2 and are separated with a 0.05 mm thick reflector. Pitch size is 1.6 mm and
the length of LSO crystals is 1 cm. The 64 modules are arranged in four rings of 16 modules
with a diameter of 16.1 cm.

An estimation of sensitivity of this scanner was made by means of a line source 14 cm long
filled with 1.3 MBq of 18F placed along the central axis of the scanner. The simulation included
all the materials in the line source in order to take into account attenuation effects at the source.
The sensitivity obtained for the line source activity was converted to equivalent sensitivity for
a centered point source, as explained in Kemp et al (2006). The sensitivity estimated from
real measurements by Kemp et al (2006) was 52.0 cps kBq−1. The sensitivity estimated from
the simulations was 52.7 cps kBq−1, in good agreement with the real measurements.
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Figure 12. NECR curve for a mouse-size phantom acquired with the INVEON scanner. Simulated
results are compared to the measurements of reference Kemp et al (2006). Total coincidence rates
and true, scatter and random counts contribution are also shown for the simulation.

Figure 12 shows the NECR obtained from a simulation of a mouse size phantom of plastic
material with a 3.6 mm hole, 1 cm off-centered. A line source filled with FDG is introduced
in the hole and an acquisition with an energy window from 350 to 650 keV is performed. This
simulation mimics the setup described by Kemp et al (2006) to measure the INVEON NECR
curve. We have taken the acquisition performance parameters (time and energy coincidence
window, etc) according to the values quoted by Kemp et al (2006). Figure 12 shows the
components of NECR obtained from the simulation and the simulated NECR compared to the
real measurements. Good agreement for the position of the NEC peak and the maximum NEC
counts is found. Agreement is worse at higher rates, probably due to differences in dead time
and pile-up rejection mechanisms of the real scanner and the ones included in the simulation.

4. Advanced use of simulations

Beyond the common uses of simulations for the determination of optimal scanner parameters
and to obtain the system response, the availability of realistic and detailed simulations in
reasonable computing time makes it possible to analyze the structure of the coincidence
events registered by each scanner, estimating the reliability of each count, on an event by event
basis. Indeed, with the help of detailed simulations, it is possible to establish a correlation
between the parameters recorded by the scanner for each count, such as rate of coincidences
and, if available, of singles too, XY-positioning of the interaction as provided by standard
Anger algorithms, energy deposited in the detectors and the likelihood of the count acquired
of being assigned to the correct crystal of first interaction. Details of this procedure have been
given in España et al (2007b). Due to detector pile-up, coincidences acquired at high rates will
suffer, more often than the ones at low rates, of wrong crystal positioning. Thus, the reliability
of the crystal identification will not be the same for counts with low or high energy deposited
in the detector. Similarly, counts with XY position information lying in the region between
neighboring crystals will correspond more often to multicrystal events than counts with XY
coordinates corresponding to the center of a crystal. A histogram of reliability (or percentage
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Figure 13. Radial resolution versus absolute sensitivity at the CFOV (ACS) obtained from a
PeneloPET simulation of the INVEON scanner (see the text). The curve spans different reliability
thresholds for the counts included in the reconstruction.

of counts assigned to the crystal of first interaction) as a function of XY-positioning
information, time difference of the event pairs, singles and coincidence rates, energy deposited
in each detector and other variables recorded by the scanner, can be built from simulations.
Advanced acquisition and reconstruction systems could decide to process (or not) each count
depending on the estimates of reliability. It could discard those counts whose reliability, for
instance, falls below a certain threshold. This implies a loss of sensitivity, but it increases
the ratio of counts correctly assigned to the crystal of first interaction, thus yielding better
resolution. Simulations can be employed to produce diagrams of resolution versus sensitivity
at the CFOV. Figure 13 shows a resolution versus sensitivity (the former estimated from FBP
reconstructions of simulated acquisitions) curve for a point source in the center of the Inveon
scanner. The curve is obtained changing the reliability threshold for the events accepted in the
reconstruction. In one extreme, a very small threshold is employed so that essentially all events
are accepted, in the high sensitivity (near 11%) end of the curve. In this case, simulations
show that only 40% of the events are correctly assigned to the crystal of first interaction. In
the other end of the curve, a very high reliability is required before accepting an event. This
translates into more than 95% of accepted events being correctly assigned to the crystal of first
interaction. In this case, the resolution is much better, but at the expense of using less than
30% of the counts. This causes the sensitivity to fall below 3%. The user could decide how to
reconstruct a particular acquisition based on the resolution versus sensitivity trade-off of each
scanner.

5. Conclusions

In this work, we present PeneloPET, an easy-to-use package for PET simulations. For its
versatility, good simulation speed and easy-to-analyze outputs, PeneloPET is a useful tool
for scanner design, system response calculations, development of corrections methods and
other applications. We have also compared simulations of PeneloPET to real measurements
from four different small-animal PET scanners. We have compared both integral or extensive
properties of scanners, such as sensitivity, axial profile of counts, scatter fraction and NEC
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rates, and intensive ones, namely sinogram profiles and spatial resolution, finding in general
good agreement between simulated and real data. Simulations with PeneloPET differed from
those of GATE by only a few percent and were considerably faster.
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