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In this paper we compare the forecast performance of continuous and discrete-time

volatility models. In discrete time, we consider more than ten GARCH-type models and
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tic volatility model with mean reversion, volatility feedback and leverage. We estimate

each model by maximum likelihood and evaluate their ability to forecast the two scales

realized volatility, a nonparametric estimate of volatility based on high-frequency data

that minimizes the biases present in realized volatility caused by microstructure errors.

We find that volatility forecasts based on continuous-time models may outperform

those of GARCH-type discrete-time models so that, besides other merits of continuous-

time models, they may be used as a tool for generating reasonable volatility forecasts.

However, within the stochastic volatility family, we do not find such evidence. We show
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1 Introduction

Forecasting volatility as accurately as possible is key to asset pricing, risk management and to

efficiently manage investment portfolios. Hence, one can find in the literature many studies

comparing different models in terms of their ability to forecast volatility (see for example Amin

and Ng, 1997; Bluhm and Yu, 2002; Ederington and Guan, 2005, among others). However,

forecast performance comparisons only seem to have considered discrete-time models, leaving

aside continuous-time models. This is at odds with the extensive literature on continuous-time

modeling, which goes back to the seminal papers by Merton (1969, 1971, 1973). Quoting Sun-

daresan’s review of continuous-time methods in finance (Sundaresan, 2000):“continuous-time

methods have proved to be the most attractive way to conduct research and gain economic

intuition.”

In this paper we contribute to filling this gap between forecasting and volatility modeling

by comparing the forecast performance of continuous and discrete-time volatility models using

predictive ability tests. Johannes et al. (2009) is the only instance we are aware of that reports

results on the forecast performance of continuous-time models, although it does not report any

formal statistical test. But more importantly, we are not aware of previous work comparing

continuous and discrete-time models in terms of their predictive ability.

This may in part be due to the fact that almost all continuous-time models considered

in the literature are stochastic volatility models, i.e., they treat volatility as unobserved (but

see Brockwell et al., 2006, for continuous-time GARCH-type models). In general, including

unobserved components of this sort complicates inference, which becomes computationally

expensive. In the comparison, we consider more than ten GARCH-type models in discrete-

time, ranging from Gaussian GARCH to FIEGARCH with skew-t distributed disturbances.

Due to the computational burden, we only include one stochastic volatility specification in

continuous time and one in discrete time. In particular, we have chosen the well-known,

discrete-time Asymmetric Autoregressive Stochastic Volatility (A-ARSV) model by Harvey

and Shephard (1996); and the Log Linear One Variance Factor (LL1VF) stochastic volatility

model in continuous time considered in Chernov et al. (2003). We have based the choice of

the LL1VF model on the good results in terms of goodness of fit reported in Chernov et al.

(2003) which considered a total of ten different continuous-time specifications (including affine,

constant elasticity of variance and logarithmic models). We have chosen a one volatility factor

model, instead of a larger number of factors, in order to make fair forecasting comparisons

with the set of competitors. Moreover, the evidence regarding the inclusion of several volatility

factors is not conclusive. Chernov et al. (2003) report that including more than one factor

helps to capture the main empirical facts but Durham (2007) concludes that “a simple single-

factor stochastic volatility model appears to be sufficient to capture most of the dynamics”.

We carry out an empirical predictive ability comparison of the models. We first estimate

each model on a sample of daily stock data by maximum likelihood. For the GARCH-type

models, we maximize the likelihood numerically. For the A-ARSV and LL1VF stochastic

volatility models, we maximize the likelihood applying the iterated filtering algorithm pre-

sented in Ionides et al. (2006), which we briefly describe in Section 2. To our knowledge,

these are the first maximum likelihood fits reported for a continuous-time volatility model
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and for the A-ARSV model.1 After the estimation step, we evaluate the volatility forecast

accuracy for prediction of the Two Scales Realized Volatility (TSRV) introduced by Zhang

et al. (2005). TSRV is a nonparametric estimator of volatility based on high-frequency data

that minimizes the biases caused by microstructure errors. To obtain the TSRV for the

out-of-sample evaluation, we used additional data consisting on intra-day 10-minute return

observations. Although realized volatility has been already proposed as a candidate for mea-

suring volatility forecast performance, we are not aware of any prior study using the more

robust TSRV. We assess whether our results are unduly sensitive to a particular stock or to

a performance measure by using data for three well-known international stocks: Coca-Cola,

Disney and Microsoft; and by considering three performance measures: the mean squared

error of forecasts; the mean absolute error of forecasts; and the proportion of the variability

in TSRV explained by volatility forecasts (i.e., the R2 of a linear regression). Since these

quantities are sample statistics, we perform the formal tests of conditional and unconditional

predictive ability of Giacomini and White (2006). These tests have the advantage that they

capture the effect of parameter uncertainty on the forecast performance and they can treat

both nested and non-nested specifications in a unified framework.

In light of the predictive ability tests applied to our data, we conclude that volatility

forecasts based on continuous-time models may perform better than GARCH-type discrete-

time models. However, within the stochastic volatility family, we do not find such evidence.

Since our search needed to be limited, more work restricted to stochastic volatility models

needs to be done. These findings represent a valuable addition to the appeal and economic

intuition of continuous-time models referred to at the beginning of this introduction. They

also suggest directions in which to extend the LL1VF model, a task beyond the scope of this

paper.

The rest of the paper is organized as follows: in Section 2, we introduce the continuous-

time LL1VF stochastic volatility model and present parameter estimates for the three return

series. In Section 3, we summarize how the target to forecast (the two scales realized volatility)

is calculated and describe how we evaluate forecast performance. In Section 4, we introduce

the set of alternative, discrete-time models and review the predictive ability tests which yield

the empirical results discussed in Section 5. Finally, in Section 6, we conclude. To preserve

the flow of the main themes of the paper, we defer to the Appendix additional derivations.

Finally, figures and tables are gathered at the end of the paper.

1Maximizing the likelihood for stochastic volatility models is not an easy task. Estimation of stochastic

volatility models has instead been tackled with alternative approaches, including indirect inference (Gouriéroux

and Monfort, 1996), the efficient method of moments (Gallant and Tauchen, 1996), Bayesian methods (Jones,

2003) and simulated maximum likelihood (Aı̈t-Sahalia and Kimmel, 2007). See Broto and Ruiz (2004) and

Ruiz and Veiga (2008) for detailed surveys on estimation methods for stochastic volatility models.
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2 The continuous-time Log Linear One Volatility Factor

(LL1VF) model

As in Chernov et al. (2003), let P (t) be a share price quote of one company at instant t and

reserve the notation U1(t) for the logarithm of P (t). Assume that the instantaneous return

of the asset at instant t, dP (t)/P (t), is approximated by dU1, which is in turn given by

dU1(t) = α10dt+ exp(β10 + β12U2(t))(ψ11dW1(t) + ψ12dW2(t))

dU2(t) = α22U2(t)dt+ (1 + β22U2(t))dW2(t).
(1)

In the first equation of model (1), α10 denotes the instantaneous expected return; σ(t) =

exp(β10 + β12U2(t)) is the instantaneous standard deviation (or instantaneous volatility),

in which β10 determines the long-run mean and β12 modulates the effect of the volatility

factor U2(t). Wi(t) with i = 1, 2, are independent Wiener processes and the corresponding

ψ1i’s are correlation coefficients that satisfy the restriction ψ11 =
√

1− ψ2
12. This restriction

guarantees that σ(t) is indeed the infinitesimal standard deviation of U1(t). As a consequence,

the instantaneous correlation between returns and changes in variance (the leverage effect) is

given by

corr (dU1(t), β12dU2(t)) = ψ12. (2)

The volatility factor U2(t) is modeled as an Ornstein-Uhlenbeck process. Its drift allows for

mean reversion if α22 is negative and γ2 = log(2)
α22

is the volatility half-live. A small value of γ2

means that the volatility factor is persistent and shocks to volatility take time to dissipate.

In this case, the volatility factor is said to be slow mean reverting.

The term β22U2(t) allows the volatility of the volatility factor to be high when the factor

itself is high and is known as volatility feedback. As pointed out in Chernov et al. (2003),

including this volatility feedback introduces a lower bound on the volatility factor. Heuristi-

cally, the infinitesimal standard deviation of the volatility factor must satisfy 0 ≤ 1+β22U2(t),

from where −1/β22 ≤ U2(t) follows. This lower bound on the volatility factor in turn implies

a positive lower bound on the infinitesimal volatility of the returns, i.e., exp
(
β10 − β12

β22

)
. As

we will show, this bound has serious implications. The lower bound implied by point esti-

mates based on a given sample may change drastically if new observations are included in the

estimation, limiting severely the forecast performance of the initial estimates. In spite of this

lower bound, the inclusion of volatility feedback into the models can be justified by the in-

crease in the estimation accuracy of the relationship between market volatility and the equity

premium (see Yang, 2011, for a very recent study on volatility feedback and risk premium in

GARCH models).

2.1 Parameter estimation

We estimate the LL1VF model using the iterated filtering algorithm of Ionides et al. (2006).

The algorithm is based on a sequence of filtering operations which have been shown to converge

to a maximum likelihood parameter estimate for general non-linear, non-Gaussian, partially-

observed state-space models. The algorithm has successfully been implemented in different
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applications (Ionides et al., 2006; King et al., 2008; Bretó et al., 2009; He et al., 2010; Ionides

et al., 2011). The first step of the algorithm consists on extending the model by letting fixed

parameters become time-varying random walks. In these extended models, it is possible to

filter these time-varying parameters using, for example, a particle filter. Particle filters are

a flexible and effective tool based on sequential Monte Carlo (see Doucet et al., 2001, for a

book-length treatment). These filtered estimates are interpreted as local estimates of the fixed

“global” parameters of interest and averaged using their precision (or inverse uncertainty) as

weights. Starting from some initial parameter estimates, this procedure is iterated reducing

the variance of the random walks at each iteration. Eventually, the filtered local estimates are

basically constant over time and, in the limit, the maximum likelihood estimates are achieved.

The appropriate choice of algorithmic parameters is key for achieving the maximum of the

likelihood.

We implement the iterated filtering algorithm using the software package POMP (King

et al., 2010) written for the R statistical computing environment (R Development Core Team,

2010). In the particle filter used in the algorithm, we have used 4,000 particles and estimation

runs typically involved 35 iterations with an exponentially cooling schedule with parameter

0.925. In order to filter efficiently, we derived an analytic expression for the distribution of

the discretely sampled returns U1n. Let

U1n = U1(n∆)− U1 ((n− 1) ∆)

σ2
n =

n∆∫
(n−1)∆

σ2(u) du. (3)

for n ≥ 1 and ∆ a time interval of interest (one day for the case of our daily data). Then,

the LL1VF model implies a state-space model where the distribution of the measurements,

conditionally on the unobserved state processes σ(t) and W2(t), is given by

U1n ∼ N

E = α10∆ + ψ12

n∆∫
(n−1)∆

σ(t) dW2t, V =
(
1− ψ2

12

)
σ2
n

 .

2.2 Estimation results

Table 4 reports point estimates and asymptotic standard errors for the three datasets. The

estimation sample is from January 2, 1991 to January 22, 2007 (4046 daily observations) and

is used to estimate all models considered in this paper. All data are adjusted for outliers.2

All estimates are in an annual scale since the time unit used in the estimation were years

with trading days of length 1
252 years. We use an Euler-Maruyama discretization scheme with

twenty four steps per trading day. The standard errors are obtained by inverting a Monte

2We replace observations larger than seven standard deviations by their standard deviations estimated using

a GARCH(1,1) model, taking into account the sign of the observations. This is particular important for the

GARCH-type models since the parameter estimates are known to be affected by outliers (see Carnero et al.,

2007).

5



Carlo approximation to Fisher’s information matrix (see Ionides et al., 2006). These standard

errors give a reasonable idea of the scale of uncertainty, rather than being a tool for testing

significance of the parameters. Confidence intervals based on profile likelihoods, much more

computationally expensive, are preferable for drawing such inferences.

Most parameters seem to be estimated with precision, since the standard errors are in

general an order of magnitude smaller than the point estimates. Coca-Cola and Disney

present very similar point estimates, at least after taking into account the approximated

standard errors. The only discrepancy is in the leverage effect which is estimated to be of

larger magnitude (−0.301) for Coca-Cola than for Disney (−0.096) and for Microsoft (−0.084).

Microsoft also differs from Coca-Cola and Disney in the volatility persistence. The estimate

of mean reversion is α̂22 = −4.511, which implies that shocks to volatility are less persistent

than those that impact the other two series since the value of this estimate is around −1 for

both series. Volatility feedbacks seem to be statistical significant for Coca-Cola and Disney.

There are also some differences in what is inferred about the way the unobserved volatility

factor affects return variability. In particular, smaller estimated baseline volatilities (β̂10)

seem to be compensated by larger impacts of the volatility factor (β̂12). The estimated

lower bounds of the volatility factor [ −1
β̂22
,∞] are −2.874, −2.028 and −27.027 for the Coca-

Cola, Disney and Microsoft return series, respectively. These imply estimated volatility lower

bounds exp
(
β̂10 − β̂12

β̂22

)
of 1.346, 4.380, and 2.440× 10−15.

Regarding previous results based on the same family of models, Chernov et al. (2003)

finds similar estimates for the mean reversion parameters and volatility feedback of the Dow

Jones return series. However, our estimates of leverage for the three series are slightly lower

(in absolute value) than those in Chernov et al. (2003), which may be explained by different

periods being analyzed.

3 Evaluating Volatility Forecast Performance

The vast majority of the existing literature on volatility forecast performance measures the

ability of a model to forecast the observed squared returns. In this paper, we differ from this

approach by measuring the ability of models to forecast the Two Scales Realized Volatility

(TSRV), which is a non-parametric estimator of the volatility obtained from an extended

data set. We are aware of some attempts of assessing forecast performance by considering

Realized Volatility (RV), defined as the sum of intra-day squared returns, as an alternative to

squared returns (Andersen and Bollerslev, 1998). Nevertheless, this is to our knowledge the

first volatility forecast evaluation corrected for the notorious effects of market microstructure.

We describe this in detail below. Note that the volatility, and not the squared returns, is the

information needed for efficient asset pricing, risk management and portfolio optimization.

3.1 Two Scales Realized Volatility

RV is only a consistent estimator of the true volatility when prices are observed continuously

and without measurement errors (see Merton, 1980). Unfortunately, these ideal conditions are

not met in general and RV is often biased due to market microstructure noises. Moreover, its
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bias tends to get worse as the sampling frequency of intra-day returns increases, (see Andreou

and Ghysels, 2002; Bai et al., 2004; Oomen, 2002). One way to minimize these biases is to

use kernel-based estimators (see Barndorff-Nielsen and Shephard, 2004; Hansen and Lunde,

2005, 2006; Zhou, 1996) or sub-sample based estimators (see Zhou, 1996; Zhang et al., 2005).

In this paper, we use the TSRV estimator by Zhang et al. (2005). Our choice is justified

by Aı̈t-Sahalia and Mancini (2008), which report evidence that TSRV largely outperforms RV

in terms of bias, variance and out-of-sample forecasting ability. Define the discretely observed

return process as:

Yt = Xt + ut, (4)

where Xt is a latent true return process evolving in continuous time and ut is an independent

disturbance around the true return that captures market microstructure effects. Since in

high frequency financial asset returns are subject to frictions, it is wise to consider that the

logarithm of the price is observed with error. Moreover, define

〈X,X〉T =

∫ T

0
σ2
t dt, (5)

as the integrated variance over the interval [0, T ] that may correspond to, for instance, a day.

The integrated volatility, also known as quadratic variation, is then given by

[Y, Y ]T
L
≈ 〈X,X〉T + 2nE

[
u2
]

+

[
4nE[u4] +

2T

n

∫ T

0
σ4
t dt

]0.5

Z, (6)

where
L
≈ denotes stable convergence in law, Z is a standard normal variable (see Aı̈t-Sahalia

and Mancini, 2008) and n is the total number of observations. The bias due to the noise is

2nE
[
u2
]
, which is of the order O(n).

Zhang et al. (2005) propose an estimator of the quadratic variation that consistently

estimates the bias due to the error. It consists on averaging the estimators obtained from

sub-samples created by splitting the original grid of observation times, G = t0, ..., tn, into

sub-samples G(k) for k = 1, ...,K. For instance, for G(1) we may start at the first observation

and take an observation every 10 minutes, for G(2), we start at the second observation and

take an observation every 10 minutes, etc. With this procedure, they construct an estimator

with smaller variation, denoted [Y, Y ]
(avg)
T = 1

K

∑K
k=1[Y, Y ]

(k)
T , that is obtained by averaging

the estimators [Y, Y ]
(k)
T obtained on the K grids. The K grids are of average size

−
n= n/K,

where n/K →∞ as n→∞. Then, the TSRV is the bias-adjusted estimator for the quadratic

variation 〈X̂,X〉T built as

〈X̂,X〉(tsrv)
T = [Y, Y ]

(avg)
T −

−
n

n
[Y, Y ]T . (7)

The second term of the right hand side is the consistent estimator for the bias.

In this paper, we use intra-day 10-minutes return observations summing up 38 daily

observations for each series.3 Figure 2 graphs this high-frequency measure of integrated

volatility for all series for the out-of-sample period used in the forecasting evaluation (January

7, 2005 till January 22, 2007).

3The data was obtained from Price-data.com.
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3.2 Evaluation Procedure

In order to evaluate the ability of a model specification to predict TSRV one-step ahead,

we consider three performance measures: (i) mean squared error (MSE); (ii) mean absolute

error (MAE); and (iii) the proportion of the TSRV variability explained by the forecasts (i.e.,

the R2 of a linear regression with a constant term). The last measure is based on Mincer-

Zarnowitz volatility regressions in which the dependent variable is the TRSV instead of the

squared returns. The latter is often a noisy proxy of the true volatility (see Andersen et al.,

2005).

As proposed, for example, by Andersen and Bollerslev (1998) and Andersen et al. (2003),

for (iii) we estimate by OLS the regression of a transformation of the TSRV on the forecasts

for the same transformation of the volatility,√
TSRVt+1 = β0 + β1 · σt+1|model + ut+1 (8)

and

ln(TSRVt+1) = β0 + β1 · ln(σ2)t+1|model + wt+1. (9)

Then, we calculate the R2 of regressions (8) and (9). We denote by MSE the mean squared

error of the forecasts for σ and by MSE(∗) those for ln(σ2). MAE and MAE(∗) are defined

analogously.

For the LL1VF model, we propose using the one-step ahead prediction mean of these

transformations of the variance, i.e., for t ∈ {0, 1, . . .}:

σt+1|LL1V F = E

[√
σ2
t+1

∣∣∣U1,1:t

]
and

ln (σ2)t+1|LL1V F = E
[
ln (σ2

t+1)
∣∣∣U1,1:t

]
where σ2

t+1 is defined in equation (3). We could also use other summaries of the center of

the prediction distribution (median, mode, etc.) but the prediction mean has the well-known

property that, under the true model, it minimizes the MSE. Monte Carlo approximations

to these prediction means were obtained using particle filters with 50,000 particles. This

number of particles ensures that the values of the results for the MSE and MAE reported in

Tables (6)-(8), which include Monte Carlo error, can be reproduced up to the second decimal.

We implement the same evaluation procedure when considering filtering instead of fore-

casting in Table (9), where we use filtering means, like E
[√

σ2
t

∣∣∣U1,1:t

]
, instead of one-step

ahead prediction means.

4 Comparing Volatility Forecast Performance

In this section we formally define the set of discrete-time models to which we compare the

predictive ability of the continuous-time LL1VF model. But first, we describe the statistical

test which provides us with the empirical results of next section. We could directly compare

the sample MSE and the rest of sample performance measures described above. However, such
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a comparison would not take into account that these are sample statistics with an associated

sampling variability. To be able to assign (approximate) confidence and significance levels to

our results, we perform the conditional and the unconditional ability tests of Giacomini and

White (2006) to compare the predictive ability of two alternative models g and f .
The tests consist on considering a forecasting horizon h and a given loss function L. The

null hypotheses of the tests, in our particular case, are that the expected loss functions are
equal:

H0 : E
[
Lt+h

(
σt+h|model f

)
− Lt+h

(
σt+h|model g

)
|Gt

]
= E [∆Lt+h (σt+h) |Gt] = 0

H0 : E
[
Lt+h

(
ln(σ2)t+h|model f

)
− Lt+h

(
ln(σ2)t+h|model g

)
|Gt

]
= E

[
∆Lt+h

(
ln(σ2)t+h

)
|Gt

]
= 0,

almost surely. Letting Ft denote the time-t information set, the conditional test corresponds

to Gt = Ft and Gt = {∅,Ω} (the trivial σ-field) corresponds to the unconditional test.

To implement the one-step ahead tests, we conduct an artificial regression of ∆Lt+1 on

a 1 × q vector λt, denoted “test function” (see Stinchcombe and White, 1998, for more

details). The test statistic is n × R2, where n and R2 are the number of observations and

the uncentered R2 of this artificial regression. This statistic follows a χ2
q distribution with q

degrees of freedom.

For the conditional test, we follow Giacomini and White (2006) and use the 1× 2 vector

λt = (1,∆Lt) as test function. Rejection of the null hypothesis indicates that the test function

has predictive power for the loss differences ∆Lt+1 in the out-of-sample period. Once the null

is rejected, we establish a decision rule again following Giacomini and White (2006). Let β̂

denote the coefficient vector obtained by regressing ∆Lt+1 on λt. At time t, we choose the

t+ 1 predictions from model g if λ′tβ̂ > 0; and those from model f if λ′tβ̂ < 0. Moreover, for

the out-of-sample period of t1, . . . , T − 1, we calculate the proportion of times the decision

rule chooses model g. For this purpose, we build an indicator S = n−1
∑T−1

t=t1
I(λ′tβ̂ > 0). The

rejection of the null hypothesis of the conditional test leads us to conclude that it is possible

to predict which forecasting method will be more accurate in the future conditionally on the

current information.

For the unconditional test, we choose the scalar test function to be equal to a constant,

in particular λt = 1. The rejection of the null of the unconditional test leads us to conclude

that one of the forecasting methods is more accurate on average.

4.1 Discrete Time Models

Choosing which models to consider in our analysis is not an easy task. We include a good

number of models for which we have found evidence that they outperform other specifications

according to some loss function. In the context of conditional heteroscedasticity, we consider:

the GARCH, the EGARCH, the hyperbolic GARCH (HYGARCH), the FIEGARCH, and the

FIGARCH model with errors following Gaussian, t-Student and skew-t distributions. In the

context of stochastic volatility, we consider an asymmetric autoregressive stochastic volatility

(A-ARSV) model with Gaussian errors in discrete time (see Harvey and Shephard, 1996).

Stochastic volatility models clearly dominate other specifications when the objective is to

calculate value-at-risk (see Grané and Veiga, 2008). Among others, Andersen and Bollerslev

(1998), Hansen and Lunde (2005), Pagan and Schwert (1990), and West and Cho (1995) also

9



provide evidence that GARCH-type models yield accurate volatility forecasts. Additionally,

Davidson (2004) reports encouraging empirical results for the HYGARCH with respect to

Asian exchange rates and Koopman et al. (2005) shows that long memory4 models provide

the most accurate forecasts of the Standard & Poor’s 100.

4.1.1 Asymmetric autoregressive stochastic volatility model (A-ARSV)

Formally, let the return of a financial asset at time t, yt, satisfy

yt = µ+ σtεt (10)

σ2
t = σ2

∗ exp (ht) (11)

ht+1 = φht + ηt (12)

Here, µ and σ2
t are the conditional expected value and variance of yt, σ∗ denotes a scale

parameter and ht is an unobservable latent variable that is stationary for |φ| < 1. Moreover,

(εt, ηt)
′ follows the bivariate normal distribution(

εt
ηt

)
∼ NID

((
0

0

)
,

(
1 δση
δση σ2

η

))
(13)

where δ, the correlation between εt and ηt, induces correlation between returns and changes

in volatility (see Taylor, 1994; Harvey and Shephard, 1996).

As in Section 2, we estimate the model parameters using iterated filtering. The particle

filter used in the implementation uses 600 particles and estimation runs typically involved 35

iterations with an exponential variance cooling schedule with parameter 0.925. In order to

implement the algorithm, we re-write the model as a state-space model with measurements

following, conditionally on the unobserved variables σt and ηt, the distribution5

yt ∼ N
(
E = µ+ δσtηt, V =

(
1− δ2

)
σ2
t

)
.

As for the LL1VF model, we propose using for the A-ARSV model the one-step ahead

prediction mean:

σt+1|A−ARSV = E

[√
σ2
t+1

∣∣∣h1:t

]
4According to Parzen (1981), a stationary process {yt} with autocovariance γy is called a long memory

process in the covariance sense if
∑n
τ=−n γy(τ) → +∞ as n tends to +∞. Granger and Joyeux (1980)

provided a different definition of long memory. According to them, {yt} is a long memory process in the

covariance sense with speed of convergence of order 2d, 0 < d < 1/2, whenever γy(τ) = C(d)τ2d−1, as τ →∞
(here, C(d) is a function that depends on d).

5Analogously to expression (1) for the LL1VF model, we consider modeling the correlation between εt and

ηt by letting εt be distributed as (√
1− δ2

)
νt + δηt

where νt is N(0, 1) and independent of ηt.
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and

ln (σ2)t+1|A−ARSV = E
[
ln (σ2

t+1)
∣∣∣h1:t

]
,

where σ2
t is defined in equation (12). We obtain Monte Carlo approximations to these pre-

diction means using particle filters with 10,000 particles. Since discrete-time models are less

demanding in terms of particles, this number of particles ensures that the results for the MSE

and MAE reported in Tables 6-8, which contain Monte Carlo error, can be reproduced up to

the second decimal. As for the LL1VF model, we implement the same evaluation procedure

when considering filtering instead of forecasting, using E
[√

σ2
t

∣∣∣h1:t

]
instead of the one-step

ahead prediction mean.

4.1.2 GARCH-type models

Davidson (2004) proposes the HYGARCH model as an alternative to the FIGARCH since

this model is able to generate long memory without behaving oddly when d, the parameter

of fractional integration, approximates 1. Formally, let the prediction error εt satisfy

yt − µ = εt = σtεt, (14)

where σ2
t is the conditional variance of εt given information at time t− 1, σt > 0 and εt may

follow a NID(0, 1), or Student-t or a Skew-t distribution. Additionally, σ2
t is given by

σ2
t = ω + θ(L)ε2

t , (15)

for ω > 0, where

θ(L) = 1− δ(L)

β(L)

[
1 + α

(
(1− L)d − 1

)]
. (16)

In equation (16), θ(L), δ(L) and β(L) are polynomials in the lag operator L and α, d ≥ 0.

The HYGARCH model (equations (14)-(16)) simplifies to a GARCH(p, q) when α = 0 and

to a FIGARCH(p, d, q) when α = 1. For 0 < α < 1, we have a nested model that behaves as

expected in the sense that increments in the parameter of fractional integration d generates

more persistence.

If, instead of a HYGARCH, εt follows a FIEGARCH(p, d, q), then the volatility process

is given by

lnσ2
t = ω + φ(L)−1(1− L)−d [1 + ψ(L)] g(εt−1), − 1 6 d 6 1. (17)

φ(L) = 1− φ1L− . . .− φpLp and ψ(L) = 1 + θ1L+ . . .+ θqL
q are autoregressive and moving

average polynomials in the lag operator L, respectively. It is assumed that the roots of φ(L)

lie outside the unit circle and that both polynomials do not have common roots. Note that

the role of the function g(εt−1) = γ1εt−1 + γ2 (|εt−1| − E(|εt−1|)) is to introduce asymmetry

between returns and changes in the variance (see Nelson, 1991). When d is zero the model

simplifies to an EGARCH(p, q).

The one-step ahead volatility forecasts for the GARCH-type models are presented in the

appendix.
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4.1.3 Discrete-time estimation results

The benchmark models are estimated with the Ox package G@RCH 6.1 of Laurent and Peters

(2006) and MIL. We report our results in Tables 1, 2, 3 and 5. Regarding the HYGARCH

model we find that the hyperbolic parameter ln(α) is not statistically significant for any of the

three series. The asymmetric relationship between returns and volatility in FIEGARCH-type

models (with errors following a standard normal distribution, or a Student-t distribution or

a Skew-t distribution) is only significant for Microsoft. However, when we consider the short

memory exponential GARCH (denoted EGARCH), we find that the relationship between

returns and volatility is indeed statistically significant. For some data sets, as Coca-Cola

and Microsoft, we do not report estimation results since either we do not obtain convergence

or the degrees of freedom of the Student-t and/or the asymmetry parameter of the Skew-t

distribution are not statistical significant.

We also observe that GARCH model estimates of α+ β with errors following a Gaussian,

t-Student and a Skewed t-distribution are around 0.99 meaning that the implicit volatility

persistence in these models is very high for all series.

Finally, the estimation results of the autoregressive stochastic volatility model also confirm

a high degree of volatility persistence, with estimates of φ1 close to one. The estimates of δ,

the parameter that induces the correlation between the returns and changes of volatility, are

significant for all series with values that range from -0.203 up to -0.394.

5 Empirical Forecast Accuracy Comparison

5.1 Forecasting exercise

We generate a total of six one-step ahead forecast series for the LL1VF model (following

Section 2) and for each of the alternative discrete-time models (following Section 4.1.1 and

the appendix): one for the standard deviation and one for the log-variance of returns for the

three stocks (Coca-Cola, Disney and Microsoft). For the forecasting exercise, we select an

out-of-sample period from January 7, 2005 to January 22, 2007, which corresponds to the

last 512 observations of the full data set. We use a fixed window estimation procedure with

the preceding 3534 daily observations. Fixed windows have advantages over more complex,

expanding windows, e.g., a smaller computational cost and the possibility to easily use pre-

dictive ability tests that account for parameter uncertainty and that can compare both nested

and non-nested models.6

6Re-estimating the model parameters as new observations from the out-of-sample become available is fea-

sible for the GARCH-type models. However, it would escalate the computational cost of the comparison at

hand for the A-ARSV model and, mainly, for the LL1VF model. We present some results in this direction in

panel B of Tables 6–8 . There, one-step ahead forecasts are obtained updating the parameter estimates using

the additional out-of-sample observations available at each time. For GARCH-type models, we re-estimate

using every new daily observation. For the A-ARSV and LL1VF, we re-estimate just once using data up to

the middle of the out-of-sample period. Contrary to our expectations, the performance of the GARCH-type

models does not improve substantially compared to that of the stochastic volatility models, even though these

are only re-estimated once.
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For all six forecast series and for the two loss functions (squared error loss and absolute

error loss), we conduct the conditional and unconditional pairwise tests of equal predictive

ability of Giacomini and White (2006) described in Section 4. Tables 10–12 show the results

of these tests. The entries in the tables are the p-values of the conditional tests. Note that

basically all the conditional p-values are zero to the third decimal, which represents strong

evidence against the null for all pairwise comparisons. The numbers in parentheses next

to each entry are the indicators S defined in Section 4. A number in parentheses greater

than 0.5 suggests that the model in that column would have been chosen more often than

the model in that row. For some entries, the parentheses have been replaced by double

square brackets. This indicates that, regardless of the conditional test, the unconditional test

gives a p-value greater than 0.1 for that pair of models, so that the evidence against equal

unconditional ability is very weak. In these cases, the differences observed in the mean losses

shown in Table 8 are not statistically significant. We have chosen to present the results in

this way because all other unconditional p-values are extremely small and strongly support

the alternative of unequal unconditional ability (like the conditional tests do).

5.2 Empirical results

We first focus on the Microsoft results from Tables 8 and 12. A first observation is that the

LL1VF model does better than the GARCH model systematically (i.e., for all loss functions

and for both conditional and unconditional tests). We conclude from this, combined with the

higher loglikelihood of LL1VF, that the increase in forecast accuracy to be expected from the

additional complexity of the LL1VF model (i.e., an additional source of variability, volatility

feedbacks and leverage) is not overturned by low parameter estimation accuracy.

A second consideration is that the LL1VF model does better than some models that

incorporate long-memory (like FIGARCH models), fat tails (coming from a t distribution)

or skew-t distributions. However, (i) it does not outperform these models for all the loss

functions; and (ii) it sometimes outperforms them according to the conditional test but not

to the unconditional test. Regarding (i), we report different loss functions to broaden the

applicability of our conclusions. A better performance according to one function does not

imply the same outcome for a different function. In practice, the researcher should choose

a loss function before moving on to the problem of choosing the optimal forecasting scheme.

Regarding (ii), these results are not contradictory. They attest that LL1VF should be pre-

ferred to other models when past information is taken into account at the moment of choosing

a model. However, there is not evidence favoring LL1VF if the model is to be chosen with-

out taking into account such information (i.e., unconditionally). These findings suggest that

future research concerned with extending the LL1VF model to incorporate long memory, fat

tails and/or skewness may result in LL1VF systematically outperforming the other models.

On the contrary, the FIEGARCH-SK model performs systematically better than LL1VF.

In addition to the first model having long memory, the models differ in how leverage is

modeled. While LL1VF has a single leverage parameter, the FIEGARCH-SK model uses

two parameters to distinguish between the sign and the magnitude of the shocks. The fact

that the FIEGARCH-SK performs systematically better suggests that, at least for Microsoft,
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incorporating long-memory, fat tails, skewness and a two-parameter leverage effect into the

LL1VF model might improve its performance both conditionally and unconditionally.

Finally, A-ARSV does systematically better than LL1VF, although the differences in MSE

and MAE in Table 8 are rather small. To analyze their relative performance, we focus on

the two features of the LL1VF model that differ the most from the A-ARSV model: the

leverage specification and the volatility feedback. Regarding leverage, while LL1VF considers

instantaneous correlations, A-ARSV models correlation between lagged returns and volatility

directly. To asses wether leverage could play a role in explaining the difference in performance

for the Microsoft series, we have simulated data taking the parameter estimates to be the

data generating process for both models. Figure 3 shows the numerical approximation to the

lagged correlations based on these simulations. It turns out that the estimated LL1VF model

generates substantially less leverage than the estimated A-ARSV. In light of this result, a

third conclusion is that alternative mechanisms to incorporate leverage in the LL1VF model

might improve the forecast performance. In this direction, there is evidence of the good

performance of the A-ARSV leverage specification. Yu (2005) compares it to an alternative

specification in the context of discrete-time stochastic volatility models and concludes that

the alternative is inferior from both a theoretical and empirical point of view.

On the other hand, the volatility feedback is estimated to be very small in the case

of Microsoft and we argue below that it can only play, if any, a small role. As noted in

Section 2, volatility feedbacks introduce a lower bound for the volatility in the LL1VF model.

The Microsoft instantaneous standard deviation has a lower bound implied by the in-sample

parameter estimates of 5.093 × 10−7, extremely close to its natural lower bound of zero.

However, a non-zero lower bound can be critical for out-of-sample performance if there is a

large enough drop in volatility.

Note that the out-of-sample volatility pattern differs from that of the in-sample period

(see Figure 1). Shortly before the out-of-sample period begins, there seems to be a drop in

volatility that persists over the whole out-of-sample period. A closer look at Figure 2 would

suggest that this drop is more severe for Coca-Cola and Disney, for which there seems to be

a small but constant decline in the volatility throughout the out-of-sample period.

For Coca-Cola, the LL1VF forecasting accuracy is substantially worse than that of other

discrete-time models, including the A-ARSV (see Tables 6 and 10). In particular, all discrete-

time models systematically outperform the LL1VF. As for Microsoft, we look into the factors

that might explain this worse performance of LL1VF. The LL1VF seems to produce, based on

in-sample estimates, similar cross-correlations between squared observations and past returns

to those generated by the A-ARSV (see Figure 3). This suggests checking whether, unlike

for Microsoft, the volatility feedback causes an undesired volatility lower bound that prevents

the forecasts from following the out-of-sample drop in volatility. Indeed, the lower bound on

the instantaneous standard deviation implied by the in-sample point estimates is 5.938. The

sharp effect of such lower bound can be appreciated in Figure 4. The one-step ahead forecasts

based on the in-sample parameter estimates are higher than those based on estimates using

all the available data, the latter being able to track the out-of-sample drop in volatility. The

instantaneous standard deviation lower bound obtained with parameter estimates based on
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all the data (in-sample and out-of-sample) is 1.346, much lower than the bound implied by

the in-sample point estimates.

For Disney, LL1VF does not seem to be able to reproduce the amount of leverage of

A-ARSV (as it happens for Microsoft), and the in-sample lower bound of 1.947 seems to be

more of a problem than that of Microsoft but less than that of Coca-Cola. We should not be

surprised that the LL1VF is outperformed by the A-ARSV and that its relative performance

to other discrete-time models is slightly better than the one for Coca-cola but not as good as

the one for Microsoft.

Another remark based on the Disney and, mostly, on the Coca-Cola series is that mecha-

nisms alternative to volatility feedbacks may substantially improve the forecast performance

of continuous-time models. Investigating such alternative mechanisms falls outside the scope

of this paper, where we focus on the forecast ability comparison. However, there is good

evidence supporting volatility feedbacks, including the fits reported in Chernov et al. (2003)

or in Durham (2007), besides our own Coca-Cola and Disney fits. Hence, mechanisms of a

similar nature but that avoid imposing volatility lower bounds seem to be a promising target.

Finally, a result consistent across all our investigations is that A-ARSV outperforms

LL1VF systematically. To better understand the comparison between these two models,

we evaluate them in terms of in-sample volatility filtering. Table 9 presents these results.

A-ARSV seems to do better than LL1VF for the three stocks but the differences are substan-

tially smaller than those in out-of-sample forecasting for Coca-Cola and for Disney. A more

careful analysis based on approximate standard errors shows that this difference can hardly

be taken to be statistically significant. This leads us to conclude that the in-sample filtering

accuracies of both models are similar. This is in agreement with our previous interpretation

that the volatility lower bound implied by in-sample parameter estimates, in combination

with an out-of-sample volatility drop, could be determining the worse forecast performance

of LL1VF for Coca-cola and Disney.

6 Conclusion

In this paper we have compared the forecast performance of continuous and discrete-time

volatility models using predictive ability tests for three well-known international stocks con-

sidering three performance measures. We have considered more than ten GARCH-type models

with errors following either a normal, Student-t or skew-t distribution and an asymmetric au-

toregressive stochastic volatility model with errors following a normal distribution. We have

compared these models to a continuous-time stochastic volatility model with mean reversion,

volatility feedback and leverage.

We have estimated each model by maximum likelihood using, for the two stochastic volatil-

ity models, the iterated filtering algorithm implemented using particle filters. As a proxy of

the ex-post volatility, we have chosen the two scales realized volatility by Zhang et al. (2005),

which is calculated on intra-day 10-minutes returns and minimizes the biases caused by market

microstructure noise.

Our empirical analysis shows that (i) continuous-time models may provide better volatil-
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ity forecasts than simpler discrete-time models, like GARCH; (ii) for more sophisticated

discrete-time alternatives, including long memory or leverage, continuous-time models may

also do better; but (iii) within the stochastic volatility family, there is no evidence that a

continuous-time model can outperform a discrete-time model. Due to the computational bur-

den, the comparison has been unequal, giving much more weight to GARCH-type models

than to stochastic volatility models. More work focusing on the latter would complement our

investigations.

This work should be considered a first attempt in the literature to evaluate the volatility

forecast performance of continuous-time compared to discrete-time. Nevertheless, we interpret

(i) and (ii) as evidence that, besides other merits of continuous-time models, they may be

used as a tool for generating reasonable volatility forecasts.

Also, the discrete-time models that have performed better in the empirical forecast com-

parison indicate directions in which it seems advisable to extend the continuous-time specifi-

cation. In particular, the volatility feedback may have serious drawbacks if there is a drop in

volatility that fall below the volatility lower bound implied by the model. Another direction

that could provide a substantial improvement in forecast accuracy is including an asymmetric,

possibly with heavy tails, distribution for the noises. Finally, modifying the way the lever-

age is modeled could also improve the performance of continuous-time models. Investigating

extensions along these lines falls outside the scope of this paper.
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Appendix: Forecasting volatility with the GARCH-type models

Unlike for the A-ARSV and LL1VF models, the one-step ahead prediction and filter means

coincide for the GARCH-type models, since for these models volatility is assumed to be ob-

served one-step ahead, i.e. E
[
σ2
t

∣∣∣U1,1:t

]
= E

[
σ2
t

∣∣∣U1,1:t−1

]
. This assumption also implies

that either the prediction or filtering mean of any transformation of the volatility is sim-

ply the transformation of the mean of the volatility, i.e. for example E
[
ln (σ2

t )
∣∣∣U1,1:t−1

]
=

ln
(
E
[
σ2
t

∣∣∣U1,1:t−1

])
. Therefore, in the remainder of this section we only describe how the

volatility forecasts were obtained.

GARCH(1, 1): Using recursive substitutions, the GARCH(1, 1) model can be written as

an ARCH(∞); that is,

σ2
t = ω(1− β)−1 + α

+∞∑
i=1

βi−1ε2
t−i. (I)

The one-step ahead forecast of the conditional variance based upon the available informa-

tion is given by

σ2
t+1|GARCH = ω(1− β)−1 + α

+∞∑
i=1

βi−1ε2
t−i. (II)

EGARCH(1, 1): The EGARCH model parameterizes the conditional variance in terms

of logarithms, that is

ln(σ2)t+1|EGARCH = ω + γ1 (|εt| − E(|εt|)) + γεt + γ2 ln(σ2)t|EGARCH , (III)

where εt = εtσ
−1
t|EGARCH . As pointed out by Andersen et al. (2005), the EGARCH delivers

the smallest mean square error forecasts for the future logarithmic conditional variances.

FIGARCH(1, d, 1): If we consider a FIGARCH(1, d, 1), then the one-step ahead condi-

tional variance forecast is given by

σ2
t+1|FIGARCH = ω(1− β)−1 + λ(L)σ2

t|FIGARCH , (IV)

where the coefficients of λ(L) = 1 − (1 − βL)−1(1 − αL − βL)(1 − L)d are computed from

expressions λ1 = α+ d and

λj = βλj−1 + [(j − 1− d)j−1 − (α+ β)]δj−1, with δj ≡ δj−1(j − 1− d)j−1. (V)

for j > 1. Note that the δj ’s are the coefficients in the Maclaurin series expansion of (1−L)d

(see Andersen et al., 2005).
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Figure 1: Return series corrected for outliers.
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Figure 2: Out-of-sample two scales realized volatility.
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Figure 3: Cross correlations between simulated squared returns and past simulated returns

for the Coca-cola (first row) and Disney (second row) fits. (a) A-ARSV and (b) LL1VF.
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LL1VF model. We only show the in-sample volatilities for which we had TSRV data. The

title of the plot shows the MSE and MAE in the out-of-sample period and in the in-sample

period for which TSRV data was available. The solid line uses point estimates obtained with

the in-sample data (3534 observations). The dashed line uses point estimates obtained using

all the available data (4046 observations).
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Table 4: LL1VF models’ estimation results

Final LL1VF parameter estimates along with standard errors. The data covers

the period January 2, 1991 till January 22, 2007.

Model/Series α10 β10 β12 α22 β22 ψ12 loglik

COCA-COLA -6938.765

Estimates 15.125 3.346 1.061 -0.893 0.348 -0.301

Std. Errors (5.434) (0.115) (0.088) (0.379) (0.047) (0.077)

DISNEY -7937.604

Estimates 13.838 3.467 0.981 -1.365 0.493 -0.096

Std. Errors (6.253) (0.135) (0.186) (0.508) (0.055) (0.070)

MICROSOFT -8319.219

Estimates 22.765 3.245 1.365 -4.511 0.037 -0.084

Std. Errors (7.600) (0.062) (0.105) (1.011) (0.118) (0.062)

Table 5: A-ARSV models’ estimation results

Final A-ARSV parameter estimates along with standard errors. The data

covers the period January 2, 1991 till January 22, 2007.

Model/Series µ σ∗ φ1 rh δ loglik

COCA-COLA -6930.252

Estimates 0.048 1.490 0.990 0.130 -0.394

Std. Errors (0.017) (0.062) (0.004) (0.009) (0.022)

DISNEY -7931.720

Estimates 0.061 1.532 0.990 0.116 -0.290

Std. Errors (0.022) (0.070) (0.004) (0.009) (0.022)

MICROSOFT -8312.881

Estimates 0.047 1.711 0.983 0.157 -0.203

Std. Errors (0.024) (0.073) (0.005) (0.011) (0.036)
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