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RESUMEN EXTENDIDO

En este resumen se pretende dar una visión de conjunto del trabajo realizado durante

la elaboración de la presente Tesis Doctoral. Tras introducir el objetivo general de

la misma, describimos la organización y las aportaciones originales del trabajo de

investigación para por último presentar las conclusiones más relevantes.

Motivación y metodoloǵıa

El objetivo de esta Tesis Doctoral es la definición de nuevas medidas de similitud

para secuencias y conjuntos de datos, con la finalidad de servir de entrada a un

algoritmo de agrupamiento o clustering [Xu and Wunsch-II, 2005]. El agrupamiento

es una de las tareas más habituales dentro del ámbito del aprendizaje máquina (ma-

chine learning) [Mitchell, 1997]. Dicha tarea consiste en la partición de un conjunto

de datos en subconjuntos aislados (clusters), de tal forma que los datos asignados a

un mismo subconjunto sean parecidos entre śı, y distintos a los datos pertenecientes

a otros subconjuntos. Una de sus principales particularidades es que se trata de una

tarea no supervisada, lo cual implica que no requiere de un conjunto de ejemplos

etiquetados. De esta forma se reduce la interacción humana necesaria para el apren-

dizaje, haciendo del agrupamiento una herramienta ideal para el análisis exploratorio

de datos complejos. Por otro lado, es precisamente esta falta de supervisión la que

hace fundamental el disponer de una medida adecuada de similitud entre elementos,

ya que es la única gúıa durante el proceso de aprendizaje.

El agrupamiento de secuencias es una tarea cada d́ıa más importante debido

al reciente auge de este tipo de datos. Cabe destacar el ámbito multimedia, en el

que muchos contenidos presentan caracteŕısticas secuenciales: señales de voz, audio,

v́ıdeo, etc. No es un ejemplo aislado, ya que en muchos otros ámbitos se producen

casúısticas similares: desde los datos de bolsa y mercados financieros diversos al

problema del análisis de movimiento. En la mayoŕıa de estos casos la complejidad de

los datos de entrada se une a la dificultad y elevado coste del etiquetado manual de

dichos datos. Es precisamente en este tipo de escenarios en los que el agrupamiento

es especialmente útil, debido a que no requiere de un etiquetado previo.
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En muchos casos es posible prescindir de la dinámica de las secuencias sin

perjudicar el proceso de aprendizaje. Son aquellos casos en los que las carac-

teŕısticas estáticas de los datos de entrada son suficientemente discriminativas. Al

obviar la dinámica, las secuencias se transforman en conjuntos de datos, que se

interpretan como muestras (no necesariamente independientes) de unas determi-

nadas distribuciones de probabilidad subyacentes. Ejemplos prácticos de ámbitos

en los que se trabaja con conjuntos de datos incluyen el agrupamiento de locutores

[Campbell, 1997], los modelos de bolsa de palabras (bag of words) para texto/imagen

[Dance et al., 2004], etc.

En la presente Tesis propondremos métodos y, sobre todo, puntos de vista in-

novadores para la definición de similitudes entre secuencias o conjuntos de datos.

Todos los métodos propuestos han sido analizados desde un punto de vista tanto

teórico como emṕırico. Desde la perspectiva experimental se ha tratado de trabajar

con la mayor cantidad de datos reales posibles, haciendo especial hincapié en las

tareas de agrupamiento de locutores y reconocimiento de género músical.

Aportaciones originales de la Tesis

La primera parte de la Tesis se centra en el desarrollo de medidas de similitud basadas

en modelos dinámicos, mediante los cuales se pueden capturar las relaciones entre

los elementos de las secuencias. Bajo esta idea, se trabaja en dos ĺıneas principales:

• Medidas basadas en verosimilitudes: Partiendo de un marco de tra-

bajo estándar, como es el de medidas de similitud entre secuencias basadas en

una matriz de verosimilitudes [Smyth, 1997], introducimos un nuevo método

basado en una re-interpretación de dicha matriz. Dicha interpretación con-

siste en asumir la existencia de un espacio latente de modelos, y considerar

los modelos empleados para la obtención de la matriz de verosimilitud como

muestras de dicho espacio. De esta forma, es posible definir similitudes entre

secuencias trabajando sobre las probabilidades definidas por las columnas de

la matriz de verosimilitud (debidamente normalizadas). Por tanto, la medida

de similtudes entre secuencias se transforma en el problema habitual de medi-
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das de distancia entre distribuciones. El método es extremadamente flexible,

ya que permite el uso de cualquier modelo probabiĺıstico para representar las

secuencias individuales.

• Medidas basadas en trayectorias en el espacio de estados: Con el

objetivo de aliviar los problemas más notorios de los métodos basados en

verosimilitudes, se introduce una nueva v́ıa para definir medidas de simili-

tud entre secuencias. Al trabajar con modelos de espacio de estados es posible

identificar las secuencias con las trayectorias que inducen en tal espacio de

estados. De esta forma, la comparación entre secuencias se traduce en la com-

paración entre las trayectorias correspondientes. El uso de un modelo oculto

de Markov [Rabiner, 1989] común para todas las secuencias permite además

que dicha comparación sea muy sencilla, ya que toda la información acerca de

una trayectoria queda resumida en la matriz de transiciones que induce en el

modelo. Estas ideas conducen a la distancia SSD (space-state dynamics) entre

secuencias. Esta distancia permite reducir la carga computacional cuando el

número de secuencias en el conjunto de datos es elevado, sorteando la necesi-

dad de calcular la matriz de verosimilitudes. Asimismo, ofrece unas mejores

prestaciones en secuencias cortas, debido a que las probabilidades de emisión

son estimadas de forma global para todo el conjunto de datos. Como con-

traprestación, el tamaño del modelo global depende de la complejidad total del

conjunto de datos. Por tanto, este método es especialmente interesante en esce-

narios en los que hay que agrupar un gran número de secuencias pertenecientes

a un pequeño número de clases.

La segunda parte de la Tesis aborda el caso en el que se descarta la dinámica

temporal de las secuencias, que pasan a ser un conjunto de puntos o vectores. En

un buen número de escenarios es posible dar este paso sin perjudicar el aprendizaje,

ya que las caracteŕısticas estáticas (densidades de probabilidad) de los distintos con-

juntos son suficientemente informativas de cara a realizar la tarea correspondiente.

El trabajo realizado en esta parte se divide a su vez en dos ĺıneas:

• Agrupamiento de conjuntos de vectores basado en el soporte de las
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distribuciones en un espacio de caracteŕısticas: Se propone agrupar los

conjuntos tomando como noción de similitud una medida de la intersección de

sus soportes en un espacio de Hilbert. La estima del soporte es un problema

inherentemente más simple que la estima de densidades de probabilidad, ruta

habitual hacia la definición de similitudes entre distribuciones. El trabajar

en un espacio de caracteŕısticas definido por un kernel permite obtener rep-

resentaciones muy flexibles mediante modelos conceptualmente simples. Más

concretamente, la estimación del soporte se basa en hiperesferas en espacios

de dimensión potencialmente infinita [Shawe-Taylor and Cristianini, 2004]. El

agrupamiento en śı se puede realizar de manera eficiente en forma jerárquica

mediante un algoritmo de fusión de esferas basado en argumentos geométricos.

Dicho algoritmo es una aproximación “greedy” al problema de encontrar las

hiperesferas que cubren el conjunto de datos con la mı́nima suma de radios, y

puede ser aplicado en espacios de caracteŕısticas de dimensión potencialmente

infinita.

• Medidas de afinidad y divergencia basadas en clasificadores: Par-

tiendo de una interpretación de la similitud entre conjuntos de datos relativa

a la separabilidad de dichos conjuntos, se propone cuantificar esta separa-

bilidad empleando clasificadores. Esta idea se formaliza empleando el con-

cepto de riesgo del problema de clasificación binaria entre pares de conjun-

tos. Como ejemplo práctico de este paradigma, demostramos que la tasa de

error de un clasificador nearest-neighbor (NN) presenta varias caracteŕısticas

muy deseables como medida de similitud: existen algoritmos eficientes y con

sólidas garant́ıas teóricas para su estima, es un kernel definido positivo so-

bre distribuciones de probabilidad, presenta invariancia de escala, etc. La

evolución natural de las medidas basadas en riesgos de clasificación pasa por su

conexión con el concepto de divergencias entre distribuciones de probabilidad.

Para ello se definen y analizan generalizaciones de la familia de f -divergencias

[Ali and Silvey, 1966], que contiene muchas de las divergencias más habituales

en los campos de la estad́ıstica y el aprendizaje máquina. Concretamente,

proponemos dos generalizaciones: class-restricted f -divergences (CRFDs) y
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loss-induced divergences o (f, l)-divergencias. Estas generalizaciones trasladan

a la medida de divergencia las principales caracteŕısticas de una tarea práctica

de clasificación: la definición de un conjunto permisible de funciones de clasi-

ficación y la elección del coste o pérdida a optimizar.

– CRFDs: La idea detrás de las CRFDs es la sustitución de los riesgos

de Bayes por riesgos óptimos dentro de familias restringidas de funciones

de clasificación. De esta forma se generan divergencias que están inti-

mamente relacionadas con clasificadores que trabajan sobre una determi-

nada clase de funciones (por ejemplo, clasificadores lineales). Presenta-

mos resultados teóricos mostrando las propiedades más importantes de

esta familia generalizada de divergencias, y cómo dichas propiedades se

relacionan con la familia de funciones de clasificación elegida. Uno de los

resultados principales es que el conjunto de funciones lineales de clasifi-

cación define una familia de divergencias propias (en el sentido de que

cumplen el principio de identidad de los indiscernibles), que a su vez son

cotas inferiores de las divergencias f equivalentes.

– (f, l)-divergencias: Las (f, l)-divergencias nacen de la sustitución del

coste 0-1 (o error de clasificación) por costes alternativos, denominados

generalmente surrogate losses en la literatura. La conexión entre (f, l) y

f -divergencias es muy estrecha. Bajo condiciones simples y naturales en

las funciones de coste empleadas es posible demostrar que se mantienen

las propiedades más importantes de las f -divergencias. Por otra parte,

también demostramos que es posible obtener expresiones alternativas de

muchas f -divergencias estándar en forma de (f, l)-divergencias con fun-

ciones de coste distintas al error de clasificación. Estas re-expresiones

proporcionan nuevas visiones de divergencias bien conocidas, y permiten

el desarrollo de nuevos métodos de estima. Como ejemplo, tras demostrar

un resultado relacionando el error asimptótico de un clasificador NN

[Devroye et al., 1996] con el riesgo de Bayes bajo la pérdida cuadrática,

obtenemos nuevos estimadores y cotas de la divergencia de Kullback-

Leibler [Kullback and Leibler, 1951]. Dichos estimadores están basados
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únicamente en el orden de proximidad de los vecinos de cada punto en el

conjunto de datos, y resultan competitivos con el estado del arte, presen-

tando además la gran ventaja de su independencia respecto a la dimen-

sionalidad del espacio de entrada.

A pesar de que en cada caṕıtulo se realiza un trabajo experimental con datos tanto

sintéticos como reales, en el Caṕıtulo 6 se presenta una aplicación más elaborada

de los métodos desarrollados. Se trata de una tarea de reconocimiento automático

no supevisado de género musical. El uso de la divergencia KL estimada mediante

errores NN presenta un rendimiento magńıfico en este complejo escenario.

Conclusiones

A lo largo de la Tesis hemos propuesto una variedad de métodos destinados a avanzar

el estado del arte en agrupamiento de secuencias y conjuntos de datos. Hemos traba-

jado en diversos frentes: tanto métodos basados en modelos dinámicos para explotar

las relaciones entre elementos de las secuencias como métodos no paramétricos de

gran capacidad expresiva para discriminar entre conjuntos de datos.

En cuanto a los métodos basados en modelos, hemos propuesto dos alternativas,

denominadas KL-LL y SSD. El método KL-LL presenta la ventaja de su gran flex-

ibilidad, permitiendo el empleo de cualquier modelo generativo probabiĺıstico para

representar las secuencias. Como contrapartida, requiere la evaluación de un número

de verosimilitudes que es cuadrático en el número de secuencias en el conjunto de

datos. Además, el ajustar modelos a secuencias individuales puede presentar pro-

blemas de sobreajuste cuando la longitud de las secuencias es baja. La distancia

SSD alivia estos problemas, pero en principio su aplicación está limitada a modelos

ocultos de Markov. Los resultados emṕıricos en multitud de bases de datos reales y

sintéticas muestran que ambas propuestas ocupan un puesto de honor entre el estado

del arte.

Por otra parte, cuando se descartan las caracteŕısticas dinámicas de las secuen-

cias, de forma que se transforman en conjuntos de datos, es posible trabajar con

representaciones muy flexibles del espacio de entrada. De esta forma se evitan las
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fuertes asunciones que generalmente hacen los modelos dinámicos sobre las distribu-

ciones de probabilidad en el espacio de entrada para permitir que la inferencia sea

viable. Un ejemplo de esta flexibilidad es el poder emplear espacios de caracteŕısticas

inducidos por kernels, como mostramos en el Caṕıtulo 4. Tanto la combinación de

la distancia MMD [Gretton et al., 2007] con clustering espectral como nuestra pro-

puesta de fusión jerárquica de hiperesferas permiten el trabajo en dichos espacios.

Por último, hemos presentado un paradigma para la definición de afinidades en-

tre conjuntos de datos basado en riesgos de clasificación. Esta conexión intuitiva

ha sido generalizada desde el punto de vista de las divergencias entre distribuciones

de probabilidad, dando lugar a generalizaciones de la familia de f -divergencias. El

estudio de estas generalizaciones ha resultado muy fruct́ıfero desde el punto de vista

teórico, ya que los resultados obtenidos han permitido estrechar el v́ınculo entre

medidas de divergencia y clasificación. De esta forma se ha avanzado hacia la unifi-

cación de conceptos que a simple vista pueden parecer distantes. También se han

obtenido resultados relevantes en el terreno práctico, como el nuevo estimador para

la divergencia KL. Los resultados experimentales demuestran que tanto el uso de

divergencias para definir afinidades de cara a un agrupamiento como el estimador

concreto propuesto son herramientas muy útiles que constituyen una aportación rel-

evante.

Cabe resaltar que, aunque las medidas propuestas han sido inicialmente em-

pleadas para la tarea de agrupamiento, todas ellas son útiles en otras tareas. Como

ejemplo, en el Apéndice C mostramos como una pequeña variación sobre el algoritmo

de clustering espectral permite abordar la tarea de segmentación de secuencias.

Ĺıneas futuras

A continuación enunciamos algunas de las ĺıneas de investigación más prometedoras

que se derivan de los contenidos de la presente Tesis. Desde el punto de vista de

las aplicaciones de los métodos desarrollados las posibilidades son prácticamente

ilimitadas, por lo cual nos centramos en extensiones teóricas y algoŕıtmicas.

Existen varias cuestiones abiertas en el área de las medidas de afinidad basadas

en matrices de verosimilitud. Por ejemplo, la posibilidad de entrenar modelos en
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subconjuntos de secuencias (en lugar de secuencias individuales) como forma de

sortear las principales limitaciones de este tipo de métodos. También resulta de

interés el estudio del comportamiento de las afinidades basadas en verosimilitudes

cuando los modelos son muestreados de forma aleatoria, en vez de aprendidos para

representar secuencias/conjuntos de secuencias.

El trabajo del Caṕıtulo 3 puede continuarse de forma natural extendiendo la idea

de la distancia SSD a otro tipo de modelos de espacio de estados. Es de especial

interés el caso de modelos cuyo espacio de estados sea cont́ınuo en vez de discreto.

El algoritmo de agrupamiento basado en fusión de esferas está intŕınsecamente

conectado con el problema de set covering, esto es, encontrar una cubierta óptima

de un conjunto. Se trata de un problema topológico, que en los últimos años se ha

estudiado dentro del aprendizaje máquina para obtener nuevos métodos de clasifi-

cación [Marchand and Taylor, 2003]. Conectar el trabajo presentado en el Caṕıtulo

4 con la literatura relativa al set-covering ayudaŕıa a extraer nuevas conclusiones e

inspiración para trabajos futuros.

Hablemos por último de las generalizacions de la familia de f -divergencias que

se proponen en el Caṕıtulo 5. Una de las ĺıneas de investigación más obvias consiste

en lograr obtener estimadores prácticos de las CRFDs. Para ello habŕıa que encon-

trar maneras eficientes de estimar el riesgo restringido a una familia de funciones de

clasificación para todo el rango de probabilidades a priori. Esto supone un problema

de gran interés desde el punto de vista teórico, y cuya aplicación práctica es inme-

diata. En cuanto a la familia de (f, l)-divergencias, su tremenda flexibilidad abre

un amplio abanico de posibilidades. Por ejemplo, resulta sencillo definir divergen-

cias sensibles al coste, utilizando para ello funciones de pérdidas asimétricas. Para

finalizar, destacar el interés de la combinación de CRFDs y (f, l)-divergencias pre-

sentada en la Sección 5.5.6. Dicha combinación define de forma natural divergencias

basadas en clasificadores, y su estudio es muy prometedor tando desde el punto de

vista teórico como práctico.



ABSTRACT

The main object of this PhD. Thesis is the definition of new similarity measures

for data sequences, with the final purpose of clustering those sequences. Clustering

consists in the partitioning of a dataset into isolated subsets or clusters. Data within

a given cluster should be similar, and at the same different from data in other clusters.

The relevance of data sequences clustering is ever-increasing, due to the abundance

of this kind of data (multimedia sequences, movement analysis, stock market evolu-

tion, etc.) and the usefulness of clustering as an unsupervised exploratory analysis

method. It is this lack of supervision that makes similarity measures extremely

important for clustering, since it is the only guide of the learning process.

The first part of the Thesis focuses on the development of similarity measures

leveraging dynamical models, which can capture relationships between the elements

of a given sequence. Following this idea, two lines are explored:

• Likelihood-based measures: Based on the popular framework of

likelihood-matrix-based similarity measures, we present a novel method based

on a re-interpretation of such a matrix. That interpretations stems from the as-

sumption of a latent model space, so models used to build the likelihood matrix

are seen as samples from that space. The method is extremely flexible since

it allows for the use of any probabilistic model for representing the individual

sequences.

• State-space trajectories based measures: We introduce a new way of

defining affinities between sequences, addressing the main drawbacks of the

likelihood-based methods. Working with state-space models makes it possible

to identify sequences with the trajectories that they induce in the state-space.

This way, comparisons between sequences amounts to comparisons between

the corresponding trajectories. Using a common hidden Markov model for all

the sequences in the dataset makes those comparisons extremely simple, since

trajectories can be identified with transition matrices. This new paradigm

improves the scalability of the affinity measures with respect to the dataset

size, as well as the performance of those measures when the sequences are
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short.

The second part of the Thesis deals with the case where the dynamics of the

sequences are discarded, so the sequences become sets of vectors or points. This

step to be taken, without harming the learning process, when the statical features

(probability densities) of the different sets are informative enough for the task at

hand, which is true for many real scenarios. Work along this line can be further

subdivided in two areas:

• Sets-of-vectors clustering based on the support of the distributions in

a feature space: We propose clustering the sets using a notion of similarity

related to the intersection of the supports of their underlying distributions in a

Hilbert space. Such a clustering can be efficiently carried out in a hierarchical

fashion, in spite of the potentially infinite dimensionality of the feature space.

To this end, we propose an algorithm based on simple geometrical arguments.

Support estimation is inherently a simpler problem than density estimation,

which is the usual starting step for obtaining similarities between probability

distributions.

• Classifer-based affinity and divergence measures: It is quite natural to

link the notion of similarity between sets with the separability between those

sets. That separability can be quantified using binary classifiers. This intu-

itive idea is then extended via generalizations of the family of f -divergences,

which originally contains many of the best-known divergences in statistics and

machine learning. The proposed generalizations present interesting theoretical

properties, and at the same time they have promising practical applications,

such as the development of new estimators for standard divergences.
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Empezaré por lo más obvio: a mis directores Fernando y Emilio por haber con-

fiado en mi peculiar forma de hacer las cosas, lo cual muchas veces debe resultar

complicado. Fernando siempre me lo ha puesto todo fácil desde que llegué a la
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Chapter 1

Introduction and goals of the

Thesis

1.1 General aspects

1.1.1 Clustering and similarity functions

Clustering [Xu and Wunsch-II, 2005] is a core task in machine learning and statisti-

cal data analysis. Its main goal is to find a natural partition of a given dataset into

a certain number of disjoint groups or clusters. Data within a given cluster must be

similar, and at the same time different from data on other clusters. In contrast with

classification, which is arguably the best known machine learning task, clustering

is an unsupervised learning technique. By unsupervised we mean that there is no

training set, that is to say, a set of examples with labels associated to them. Instead,

a clustering algorithm receives just unlabeled samples. This minimizes human in-

teraction and the influence of domain knowledge, making clustering a very useful

technique for exploratory data analysis or, in general, to explore a pool of data in

search of interesting relationships. At the same time, the lack of supervisions makes

clustering appear as a subjective task, even an art [Guyon et al., 2009]. Having no

labels available, all information is extracted solely from the metric structure imposed

over the data. Generally speaking, a good clustering is one that generates a parti-
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tion that is smooth with respect to the underlying metric. Broadly speaking, this

can be intuitively interpreted as not assigning close points to different clusters. In a

classification setting, the dependence on the metric is not so dramatic, since labels

are the main reference used to guide the learning process towards the desired solu-

tion. However, the impact of the metric in clustering is totally crucial. It is usually

defined in terms of an affinity or similarity function w : X × X → R that assigns

a certain similarity to each pair of points in a set X . Equivalently, a dissimilarity

function could be used. Note that, for many algorithms, the affinity functions used

do not need to satisfy all the properties of a strict metric. This mainly applies to

the subadditivity or triangular inequality.

It is thus extremely important to define adequate affinity functions in order

to achieve good clustering results. In fact, the choice of the similarity measure

is often more important than the choice of the clustering algorithm itself. In the

standard case of data points living in a common vector space R
D 1, the choice of

a similarity/dissimilarity function is usually restricted to a small list of well-known

alternatives. Some of the most obvious choices are:

• Euclidean distance: dE(x,y) =

√

(x− y)T (x− y) =
√

∑D
i=1(xi − yy)2

Arguably, the most widely used metric for vectors, and the natural metric in

RD.

• Mahalanobis distance: dM (x,y) =

√

(x− y)T S−1 (x− y)

Proposed in [Mahalanobis, 1936], it can be seen as a generalization of the Eu-

clidean distance when a covariance matrix S is available. In fact, the standard

Euclidean distance can be recovered by setting S = I, where I is an identity

matrix of appropriate dimensions. If S is diagonal, it amounts to a weighted

euclidean distance. In general, Mahalanobis distance is specially useful in cases

where the amount of information provided by different dimensions is very dif-

ferent, or when there are differences in the scales.

• Gaussian affinity: wG(x,y) = exp −||x−y||2

σ2

1In fact, every finite-dimensional vector space (with dimension D)is isomorphic to R
D.
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The Gaussian affinity is a positive definite kernel function [Berg et al., 1984],

so it can be interpreted as an inner product in some Hilbert space. It can

thus be used via the kernel trick to turn a linear algorithm into its nonlinear

version, or to capture high-order correlations between data in a simple way

[Schoelkopf and Smola, 2001]. We will elaborate on this further down the road,

mainly on Chapter 4.

Things become wilder when more complex (structured) kinds of data are involved.

In these cases, there are rich relations and redundancies in the input data that need

to be accounted for. In this Thesis we will focus on defining similarity/dissimilarity

functions for sequences and sets of data. These scenarios will be clearly defined in

Section 1.1.2.

The interest on having meaningful similarity functions is not restricted to the

clustering problem. In fact, an adequate characterization of the input space is key

to obtain good-performing classifiers. This is done via an appropriate regularization

of the classification problem [Hastie et al., 2003]. This implies that the goal is not

just to get a function that correctly discriminates between classes in the training

dataset but also a function which is smooth enough. Then, good generalization

properties of the classification function when facing unseen data can be expected.

Smoothness can be enforced in several ways. A modern approach to regularization

consists in the introduction of a penalty term dependent on the Hilbertian norm of

the candidate function [Schoelkopf and Smola, 2001]. This can be efficiently done if

a positive definite kernel function on the input space is defined.

Smoothness (and, thus, similarity functions) is also specially important for semi-

supervised learning [Chapelle et al., 2006]. This learning task can be considered as a

middle-ground between clustering (unsupervised) and classification (supervised). In

semi-supervised learning we are given both labeled and unlabeled datasets, and the

goal is to find a classification function for unseen data (so it is an inductive learning

task). The typical approach is to use unlabeled data to get an idea of the marginal

distribution P (x) of the data and use that information to enforce smoothness. A

remarkable example of this idea is manifold regularization [Belkin et al., 2006].

So, even though our main focus will be clustering, the work in this Thesis will

3
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also help to leverage all these powerful methods and ideas for general learning with

sequential data. For example, in Appendix C we show how to use the proposed

affinities for segmentation purposes.

1.1.2 Sequences of data

We are interested in sequential scenarios where the smallest meaningful unit is no

longer a single data vector, but a sequenceX = {x1, . . . ,xn} of vectors. For example,

in a classification setting there would be (X, y) = ({x1, . . . ,xn} , y) pairs of sequences
and labels, instead of (x, y) pairs of vectors and labels. Analogously, in a sequential

data clustering task the goal is not to group individual vectors, but whole sequences.

Obviously, the information that a sequence conveys may not be encoded only

in the data vectors themselves, but also in the way they evolve along a certain di-

mension (usually time). Standard machine learning techniques assume individual

data points to be independent and identically distributed (i.i.d.), so accounting for

the temporal dependencies is a very important particularity for sequence-based algo-

rithms. Moreover, sequences in a given dataset can (and most surely will!) present

different lengths. This implies that different sequences can not be directly seen as

points in a common vector space, although the individual vectors forming the se-

quences actually are. It is then obvious that somewhat more involved techniques

need to be used to evaluate the relations between sequences, compared with the

standard case.

The application of machine learning techniques to sequential and general struc-

tured data is lately receiving growing attention [Dietterich, 2009], and clustering is

no exception to this trend [Liao, 2005]. Sequential data arise in many interesting and

complex scenarios where machine learning can be applied. Here we briefly present

some of them:

• Audio: Sequentiality and dynamics are utterly important for many

audio-related tasks. As a simple example, consider speech recognition

[Rabiner and Juang, 1993]. The human auditory system is much more sophis-

ticated than the best artificial system so far. However, if you take a speech

signal and randomly scrambles the time dimension, the resulting signal is com-
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pletely impossible to understand, even though it shares the exact same “stat-

ical” probability distribution as the original signal. Apart from the classical

speech recognition task, there are loads of audio-related applications. In fact,

music analysis is one of the hot topics of the last years, given the ubiquity and

size of music repositories. Efficient machine learning techniques are essential

to fully explode the potential of such repositories. Examples of this kind of ap-

plications include similarity-based search [West et al., 2006] and musical genre

recognition. We will further explore this last example in Chapter 6.

• Video/Multimedia: Multimedia material is complex and highly structured,

and also inherently sequential. Event recognition in multimedia databases

[Zelnik-Manor and Irani, 2001, Hongeng et al., 2004] is a flourishing machine

learning task, with applications in sport-related material [Xu et al., 2003] or

surveillance video [Cristani et al., 2007].

• Stock markets: On the recent years, machine learning has entered

the investment community, answering to an ever-growing interest in auto-

matic trading algorithms with solid statistical foundations [Huang et al., 2005,

Hassan and Nath, 2006]. The evolution of stocks and derivatives prices ex-

hibits highly complex dependencies, but also a strong sequential behavior. It

is thus necessary to use specific machinery for sequential data in order to obtain

good-performing algorithms (and not loose too much money!).

• Gesture recognition: Gestural communication is really important for hu-

man interaction, and it has to be cast in a sequential framework. The order

in which movements are performed is essential to grasp the conveyed concept.

Nowadays, there is a big interesting in leveraging this way of communication

for a wide range of applications. For example, sign-language gesture recognition

is an exciting example of machine learning with a social edge. It can be per-

formed using special sensors [Liang and Ouhyoung, 2002] or standard cameras

[Wu and Huang, 1999], and is a key accessibility technology. On the opposite

side of the spectrum, electronic entertainment systems (mostly video games)

are bound to take advantage of this new way of interaction with the user. A

5
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groundbreaking example is Microsoft’s Kinect [Microsoft, 2011].

• Biomedical applications: Lots of biomedical problems deal with the anal-

ysis of time-varying signal such as electroencephalography (EEG), electrocar-

diography (ECG), etc. In those cases, the temporal dimension is essential to

find interesting patterns. Applications of machine learning to this kind of data

are almost endless. Some relevant examples range from the purely medical

applications, such as epileptic seizure detection [Shoeb and Guttag, 2010], to

emerging topics such as EEG-based authentication [Marcel and Millan, 2007]

or brain-computer interfacing [Dornhege et al., 2007].

1.1.3 Dropping the dynamics

As previously stated, sequential data carry part of their information in the evolution

of the individual vectors. In fact, sometimes all the relevant information is encoded

in the dynamics. Consider two sources θ1, θ2 of binary data, so X = {0, 1}. One

of them, θ1, emits sequences of the form 101010101 . . ., while θ2 produces sequences

11001100 . . .. If we are given a dataset comprised of sequences from θ1 and θ2, they

will be indistinguishable by looking just at their probability distributions, since they

will be exactly identical: P (X = 1|θ1) = P (X = 1|θ2) = 1
2 .

However, in many practical scenarios the dynamical characteristics of the se-

quences can be discarded without severe degradation in the performance of the learn-

ing task at hand. A classical example of this is speaker recognition [Campbell, 1997].

In this field, sequences are typically modeled as mixtures of Gaussians (MoGs)

[Bishop, 2006]. Information about the dynamics is thus lost, considerably simplify-

ing the learning process while keeping a good performance. This is possible because

the “statical” probability distributions of the feature vectors of different speakers are

separable enough.

When the dynamics can be safely ignored, sequences can be seen as sets of vec-

tors coming from some underlying distributions. It is then natural to assume that

a desirable clustering solution would consist on grouping sequences according to the

similarity of their generating probability distributions. This way, the problem of

defining affinity functions for the original sequences reduces to the well-known prob-
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lem of measuring similarities or divergences between distributions. In those cases,

we talk about sets of vectors or samples instead of sequences. The classical sta-

tistical approach to quantify the dissimilarity between distributions is the use of

divergence functionals. There are lots of widely used divergences, many of which are

member of the Csiszar’s or f -divergence family [Ali and Silvey, 1966, Csiszár, 1967].

Members of this family share many interesting properties, and are closely related

to classification risks. On the other hand, some modern approaches rely on em-

beddings of probability distributions into reproducing kernel Hilbert spaces (RKHS)

[Smola et al., 2007], where high-order moments can be dealt with in a simple man-

ner.

As a last note, it is obvious that in practice we do not have access to the actual

distributions, but just to sets of samples from them. It is thus of utmost importance

to define affinities that can be efficiently estimated in an empirical setting. There is

always a trade-off between expressivity/flexibility and complexity involved.

We will discuss in depth all these aspects in Section 1.2.4 and Chapters 4 and 5.

1.2 State of the art in clustering sequential data

In this section we will briefly review the best-known techniques involved in the

clustering of sequences or sets of data. The process is typically separated in two

different stages: obtaining an adequate affinity or distance matrix and then feeding

that matrix to a similarity-based clustering algorithm. Consequently, in the following

we will present both standard clustering algorithms and state-of-the-art proposals

for measuring affinity between sequences or sets of vectors.

1.2.1 Clustering algorithms

There exists a wide body of work on clustering algorithms [Xu and Wunsch-II, 2005],

since it is one of the core machine learning tasks. Here we are specifically interested

in affinity based algorithms. By this we mean those algorithms which take as an input

an affinity matrix. This is not much of a constraint, since the best-known clustering

methods fall into this category. The complexity of those algorithms range from the

7
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simple ideas of the standard k-means algorithm [Hastie et al., 2003] to margin-based

algorithms which require costly optimization processes [Xu et al., 2004]. Amongst

all those methods, the family of algorithms collectively known as spectral clustering

[Wu and Leahy, 1993, Shi and Malik, 2000, von Luxburg, 2007] has recently stood

out in the crowd and received a lot of attention due to its good practical performance

and solid theoretical foundation. These methods share graph-theoretic roots that

results in non-parametric partitions of a dataset, in the sense that they do not

impose any parametric structure on the cluster structure of the input data. They are

based on the Laplacian matrix [Chung, 1997] induced by a given affinity function.

Analogously to the Laplacian operator in calculus, this Laplacian matrix can be

used to measure the smoothness of functions over the nodes of an undirected graph

G = (V,E). The vertices V correspond with the data points, while the weights of

the edges E denote the similarity between those points. Those weights are given

by the elements of the affinity or similarity matrix. The desired partition function

is then found by eigendecomposition of the Laplacian matrix. Another possible

interpretation of spectral clustering algorithms arise when seen as a relaxation of a

graph-cut [Chung, 1997] minimization.

There exist many flavors of spectral clustering, differing mainly on the choice

of the Laplacian: graph Laplacian, normalized Laplacian, etc. Each one of them

presents some particularities, although the underlying concept is very similar in all

cases. Since spectral clustering (specifically, normalized-cut [Shi and Malik, 2000])

will be our clustering method of choice, we devote Appendix A to a little more

in-depth explanation of this algorithm.

1.2.2 Dynamical models

Arguably, the best-known way to extract dynamical information is via dynamical

models. These are probabilistic models that do not make the usual assumption of

independence between samples. This way, the usual factorization of the probability

of a set of samples does not hold

P (x1, . . . ,xn) 6= P (x1) . . . P (xn)

8
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Instead, dynamical models make different assumptions about the relationships be-

tween points in a sequence/stochastic process. A usual assumption is Markov as-

sumption. We state it here in the discrete case:

P (xt|x1, . . . ,xt−1) = P (xt|xt−1),

that is to say, the conditional (on both past and present values) probability of future

states of the process depends only on the present state. This directly implies the

following factorization of the marginal probability of the sequence:

P (x1, . . . ,xn) = P (x1)P (x2|x1) . . . P (xn|xn−1),

There exist many different dynamical models, differing mainly on the kind of re-

lationships they account for. Most well-known dynamical models falls into the state-

space category. These are methods that assume that, at each time instant, there is

an underlying hidden (non-observable) state of the world that generates the observa-

tions. This hidden state evolves along time, possibly depending on the inputs. A very

general family of state-space models is known as dynamic Bayesian network (DBNs)

[Murphy, 2002]. DBNs extend the well-known Bayesian network [Bishop, 2006] for-

malism to handle time-based relationships. Viewed from a graphical-model perspec-

tive, this allows to easily specify the (conditional) independences that are assumed.

Out of this very general family, one of the simplest but more effective models is the

hidden Markov model (HMM) [Rabiner, 1989]. As it name conveys, it is based on a

Markov assumption. Namely, that the time evolution of the hidden state q follows a

first-order Markov chain. Moreover, the observation xt at an instant t depends only

on the hidden state qt at that same instant. This reduced set of dependencies allows

for full model specification using a small number of parameters that can be estimated

in fast and convenient ways. HMMs have been widely used in signal processing and

pattern recognition because they offer a good trade-off between complexity and ex-

pressive power, and a natural model for many phenomena. We will make extensive

use of hidden Markov models in this Thesis, so we have included all the necessary

information about this well-known models in Appendix B.

9
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1.2.3 Model-based clustering of sequences

There are two classic approaches to perform clustering of sequences with dynam-

ical models: fully-parametric and semi-parametric. Fully parametric methods

[Alon et al., 2003, Li and Biswas, 2000] assume that a sequence is generated by a

mixture of HMMs (or any other model for sequential data). This way, the likelihood

function given a dataset S = X1, . . . ,XN of N sequences can be written as

L =

N
∏

n=1

M
∑

m=1

znmp(Xn|θm),

where M is the number of mixture components, znm is the probability of sequence n

being generated by the mth element of the mixture, and p(Xn|θm) is the likelihood of

the mth model given the nth sequence. If each membership variable znm is assumed

to be binary, the problem takes the form of k-means [Hastie et al., 2003] clustering.

It implies a hard assignment of sequences to clusters at each iteration, so only the

sequences classified as being generated by a certain model affect the re-estimation of

its parameters [Li and Biswas, 2000]. Another alternative is the use of soft assign-

ments by means of an EM method [Dempster et al., 1977]. This way, each sequence

has a certain probability of being generated by each model of the mixture, so each

zn = {zn1, . . . , znM} is a vector living in the M-simplex. Each of these vectors is in-

terpreted as a collection of missing variables that are estimated by the EM algorithm

at each iteration [Alon et al., 2003]. A mixture model is a reasonable assumption

in many scenarios, but it imposes severe restrictions in the cluster structure which

limit the flexibility in the general case.

On the other hand, semi-parametric methods [Yin and Yang, 2005,

Garćıa-Garćıa et al., 2009c] assume some parametric model of the individual

sequences, define an affinity measure based on that parametric representations and

then feed the resulting similarity matrix into a non-parametric clustering algo-

rithm. These semi-parametric methods have been shown [Yin and Yang, 2005] to

outperform both fully parametric methods like mixture of HMMs [Alon et al., 2003]

or combinations of HMMs and dynamic time warping [Oates et al., 2001]. The

work in [Smyth, 1997] proposes a framework for defining model-based distances

between sequences. Specifically, it takes a likelihood-based approach: the main

10
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idea is to fit individual probabilistic models to each sequence, and then obtain a

likelihood matrix that represents the probability of each sequence being generated

by each model. Following this work, many researchers [Garćıa-Garćıa et al., 2009c,

Panuccio et al., 2002, Porikli, 2004, Yin and Yang, 2005] have proposed different

distance measures based on such a likelihood matrix. All these works share the need

to train a model on each single sequence. Besides, [Jebara et al., 2007] defines the

similarity between two sequences as the probability product kernel (PPK) between

HMMs trained on each sequence. Probability product kernels [Jebara et al., 2004]

are a kind of affinity between probability distributions that can be efficiently

calculated for many probabilistic models.

1.2.4 Affinity measures for sets of vectors

As previously stated, when the dynamics of a sequence of data is discarded, it can

be interpreted as a sample from some underlying distribution. For example, if a

sequence is generated by a hidden Markov model with Gaussian emissions, its static

probability distribution will be a mixture of Gaussians. This way, the similarity be-

tween two sequences whose dynamics are discarded can be defined as the similarity

between their corresponding probability distributions. In this section we will briefly

present two important approaches for measuring similarity between probability dis-

tributions: feature space embeddings and the family of f -divergences.

RKHS embeddings of distributions

In recent years, the methodology of kernel methods [Schoelkopf and Smola, 2001] has

been extended to deal with analysis of probability distributions [Smola et al., 2007].

Applications include the two sample problem [Gretton et al., 2007], independence

measurement, etc. A key point behind these methods is that the reproducing kernel

Hilbert space (RKHS) H induced by some kernel functions k : X × X → R are

dense in the space of continuous bounded functions CO(X ). Kernels that satisfy this

property are called universal. Examples of universal kernels include the Gaussian and

Laplacian RBF kernels. Under this condition there is a natural injective embedding

between probability distributions P (x) on X and their mean in the RKHS µP =

11
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Ex P [k(x, ·)]. This injectivity implies that, via a universal kernel, any probability

distribution P is uniquely represented by µ[P ] and µP = µQ iff P = Q. It is then

natural to define the distance between two distributions P and Q as

DH(P,Q) = ||µP − µQ||H , (1.1)

where ||·||H stands for the kernel-induced norm in H. Such a distance can also be

motivated from a different point of view. Given the reproducing property of an

RKHS, it is easy to see that DH(P,Q) = sup||f ||
H
≤1 EP [f(x)]−EQ[f(x)]. That is to

say, it coincides with the maximum mean discrepancy (MMD) [Gretton et al., 2007]

of P and Q over the class of functions given by the unit ball in H. MMD has received

widespread attention in recent years, but to the best of our knowledge it has not

been used as an affinity measure for clustering sets of vectors. We will give more

details about this measure in Chapter 4.

f -divergences

There is a wide body of work regarding divergences for probability distributions.

Most of the proposed divergences an be seen as particular instances of some

generic family, such as Bregman divergences [Bregman, 1967], integral probabil-

ity metrics (IPMs) [Sriperumbudur et al., 2009] or f -divergences (also known as

Csiszar’s divergences) [Ali and Silvey, 1966]. In particular, f -divergences encom-

pass many very well-known divergences such as the Kullback-Leibler (KL) diver-

gence [Kullback and Leibler, 1951], Pearson’s χ2 divergence [Pearson, 1900] or the

variational divergence [Devroye et al., 1996], amongst others. This is a very rel-

evant subset of divergences, specially when considering that the intersection be-

tween different families of divergences is usually extremely small. For example,

the intersection between Bregman and f -divergences comprises only the KL di-

vergence [Reid and Williamson, 2009], while the variational divergence is the only

f -divergence which is an IMP [Sriperumbudur et al., 2009].

All the instances of f -divergence admit an integral representation

[Österreicher and Vajda, 1993] in terms of statistical informations [DeGroot, 1970].

These magnitudes are closely related to Bayes classification risks, showing the deep
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connections between divergence measurement and discrimination. We will deal with

f -divergences and their integral representations in Chapter 5.

1.3 Goals, contributions and organization of the Thesis

The main goal of the present Thesis is to develop a body of principled methods for

obtaining similarity/dissimilarity measures for sequences, for the purpose of cluster-

ing. On the one hand, we will use a model-based approach for those scenarios where

the dynamics are important. On the other hand, we will tackle the “sets-of-vectors”

scenario (that is to say, sequences where the dynamics are discarded). We will fo-

cus on both theoretical and practical issues, paying special attention to real-world

scenarios.

Here we briefly summarize the main contributions of each chapter:

On Chapter 2 we present the framework proposed in [Smyth, 1997] for cluster-

ing of sequences of data, and how it has evolved into a successful semi-parametric

approach. After reviewing the most relevant works on likelihood-matrix-based dis-

tances between sequences, we present an alternative proposal based on a latent model

space-based interpretation of the likelihood matrix.

Chapter 3 aims at solving a main weakness of the kind of semi-parametric mod-

els explored in Chapter 2. The fact that each model is trained using just one se-

quence can lead to severe overfitting or non-representative models for short or noisy

sequences. In addition, the learning of a likelihood matrix as required by such meth-

ods involves the calculation of a number of likelihoods or probability product kernels

that is quadratic in the number of sequences, which hinders the scalability of the

method. To overcome these disadvantages, we propose to train a single HMM using

all the sequences in the dataset, and then cluster the sequences attending to the

transition matrices that they induce in the state-space of the common HMM. The

approach taken in this chapter is radically different from the aforementioned meth-

ods in the sense that it is not based on likelihoods, but on divergences between the

transition probabilities that each sequence induces under the common model. In

other words, we no longer evaluate the likelihoods of the sequences on some models

and then define the distance accordingly. Instead, the focus is now shifted towards

13
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the parameter space. Moreover, the identification of each sequence with a transition

matrix opens up new possibilities since the metric can be based on the short term

transitions, the long term stationary state distribution or on some middle ground.

The following chapters deal with the case where dynamics are dropped, and

thus we look at the sequences as (not strictly independent) samples from some un-

derlying probability distribution. In Chapter 4 we define a clustering procedure

based on the overlap of the distributions in a feature space. The main assump-

tion is that the underlying distributions do not overlap too much. This is usu-

ally a very strong assumption in the input space, but RKHS embedding arguments

[Gretton et al., 2007, Sriperumbudur et al., 2009] show that it is reasonable in a uni-

versal kernel (such as the Gaussian kernel) induced feature space. We leverage ideas

from support estimation in RKHS which have previously been applied to novelty-

detection [Shawe-Taylor and Cristianini, 2004]. In particular, we obtain an approx-

imation empirical support of each set consisting on hyperspheres in Hilbert spaces

induced by Gaussian kernels. Assuming that we are looking for K clusters, the final

goal is to obtain K hyperspheres with the smallest total radius that encompass all

the points sets. Sets within the same sphere will lay on the same cluster. To this

end, we propose a greedy algorithm based on a geometric sphere-merging procedure.

In Chapter 5 we introduce a new framework for defining affinity measures be-

tween sets of vectors using classification risks. The main idea is that, for clustering

purposes, it is natural to relate the similarity between sets to how hard to separate

they are, for a given family of classification functions. In many scenarios, practi-

tioners know what kind of classifier (e.g. linear classifiers, SVMs with a certain

kernel, etc.) works well with the kind of data they are trying to cluster. Then, it is

natural to use affinity measures derived from such classifiers. We choose the near-

est neighbor (NN) classifier and show how its asymptotic error rate exhibits some

very interesting properties as an affinity function. This idea may seem intuitive,

but simplistic at the same time. We address this by linking it with f -divergences,

presenting a couple of generalized families of divergences consistent with the idea

of classifier-based measures. We do this by exploiting the integral representation in

[Österreicher and Vajda, 1993], which relates f -divergences and binary classification
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error rates. On the one hand, we propose an extension of f -divergences which is

related to restrictions in the set C of allowed classification functions. Controlling

this set is equivalent to selecting the features of the distributions that we consider

relevant for each application. We show what conditions need to be imposed on C so

that the resulting divergences present key properties. On the other hand, the second

generalization deals with substitutions of the 0-1 loss (error rates) for more gen-

eral surrogate losses. Many interesting results arise, including relationships between

standard divergences and surrogate losses (under what circumstances can we express

a standard f -divergence in terms of a surrogate loss?) and between the properties

of surrogate losses and their induced divergences. We also contribute another result

linking the asymptotic error of a NN classifier and the Bayes risk under the squared

loss. Coupled with the aforementioned results, this leads to a new way of empirical

estimation or bounding of the KL divergence.

Though we present experimental results using both synthetic and real-world data

on every chapter, we present a more elaborate application of clustering of sequences

on Chapter 6, dealing with songs. Effective measures of similarity between music

pieces are very valuable for the development of tools that help users organize and

listen to their music, and can also serve to increase the effectiveness of current

recommender systems, thus improving users’ experience when using these services.

In this chapter, we specifically address the problem of musical genre recognition. This

is a complex task and a useful testbed for the methods developed in this Thesis.

Finally, in Chapter 7 we look back at the main results of the Thesis and contex-

tualize them.

As a last note, we will make a slight digression in Appendix C, where we show

how to adapt the spectral clustering methodology in order to use it for segmentation

purposes. This implies a very simple change in the algorithm, allowing the previously

presented methods to be used in segmentation scenarios. This way, a sequence can be

broken down into segments which are coherent attending to their dynamical features

(if the model-based affinities are used). The resulting segmentation can be used as-is,

or employed as a initialization point for a further generative-model-based analysis.
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Chapter 2

Clustering sequences using a

likelihood matrix: A new approach

We review the existing alternatives for defining likelihood matrix-based distances for

clustering sequences and propose a new one based on a latent model space view.

This distance is shown to be especially useful in combination with spectral clustering.

For improved performance in real-world scenarios, a model selection scheme is also

proposed.

2.1 Introduction and chapter structure

As commented on the previous chapter, an intuitive framework for defining model-

based distances for clustering sequential data consists on, first, learning adequate

models for the individual sequences in the dataset, and then use these models

to obtain a likelihood matrix, from which many different distances between se-

quences can be derived. This was originally proposed in [Smyth, 1997], and has

since proved itself a very popular framework that has spanned many related works

[Panuccio et al., 2002, Porikli, 2004, Yin and Yang, 2005], all of them being very

similar in their philosophy.

In this chapter, we will first study the existing proposals under this framework

and then explore a different approach to define a distance measure between sequences
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by looking at the likelihood matrix from a probabilistic perspective. We regard the

patterns created by the likelihoods of each of the sequences under the trained models

as samples from the conditional likelihoods of the models given the data. This

point of view differs largely from the existing distances. One of its differentiating

properties is that it embeds information from the whole dataset or a given subset of

it into each pairwise distance between sequences. This gives rise to highly structured

distance matrices, which can be exploited by spectral methods to give a very high

performance in comparison with previous proposals. Moreover, we also tackle the

issue of selecting an adequate representative subset of models, proposing a simple

method for that purpose when using spectral clustering. This greatly increase the

quality of the clustering in those scenarios where the underlying dynamics of the

sequences do not adhere well to the employed models.

This chapter is organized as follows: In Section 2.2 we review the general frame-

work for clustering sequential data, together with the most employed tools within

that framework, namely HMMs as generative models and hierarchical and spectral

clustering, whose main characteristics are briefly outlined. The existing algorithms

under this framework are also reviewed. Section 2.3 introduces our proposal of a

new distance measure between sequences . Performance comparisons are carried out

in Section 2.4, using both synthetic and real-world data. Finally, Section 2.5 col-

lects the main conclusions of this work and sketches some promising lines for future

research.

2.1.1 Related publications

This chapter is mainly based on [Garćıa-Garćıa et al., 2009c].

2.2 A Framework for Likelihood-Based Clustering Sequen-

tial Data

The seminal work of Smyth [Smyth, 1997] introduces a probabilistic model-based

framework for sequence clustering. Given a dataset S = {S1, . . . , SN} comprised of

N sequences, it assumes that each one of them is generated by a single probabilistic
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model from a discrete pool and the final aim is to cluster the sequencesa according

to those underlying models.

The main idea behind this framework is to learn a generative model θi for every

individual sequence Si and then use the resulting models θ1, . . . , θN to obtain a

length-normalized log-likelihood matrix L. The ijth element lij of such a matrix is

defined as

lij = log pij =
1

length(Sj)
log fS(Sj ; θi), 1 ≤ i, j ≤ N, (2.1)

where fS(·; θi) is the probability density function (pdf) over sequences according

to model θi. Based on this likelihood matrix, a new distance matrix D can be

obtained so that the original variable-length sequence clustering problem is reduced

to a typical similarity-based one. One of the strongest point of this approach is

that it is very flexible, in the sense that any probabilistic generative model can be

seamlessly integrated. This allows for the application of this methodology to a wide

range of problems.

The following subsections will briefly describe the most usual tools under this

framework: HMMs for the individual sequence models and hierarchical and spectral

clustering for the actual partitioning of the dataset. Then,we briefly address the

existing algorithms in the literature under this framework.

2.2.1 Hidden Markov Models

Hidden Markov models (HMMs)[Rabiner, 1989] are a type of parametric discrete

state-space model, widely employed in signal processing and pattern recognition.

Their success comes mainly from their relative low complexity compared to their

expressive power and their ability to model naturally occurring phenomena. Its

main field of application has traditionally been speech recognition [Rabiner, 1989],

but they have also found success in a wide range of areas, from bioinformatics

[Baldi et al., 1998] to video analysis [Jin et al., 2004].

In an HMM, the (possibly multidimensional) observation yt at a given time

instant t (living in a space Y) is generated according to a conditional pdf fY(yt|qt),
with qt being the hidden state at time t. These states follow a time-homogeneous

first-order Markov chain, so that P (qt|qt−1, qt−2, . . . , q0) = P (qt|qt−1). Bearing this
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in mind, an HMM θ can be completely defined by the following parameters:

• The discrete and finite set of K possible states X = {x1, x2, . . . , xK}

• The state transition matrix A = {aij}, where each aij represents the probabil-

ity of a transition between two states: aij = P (qt+1 = xj|qt = xi) , 1 ≤ i, j ≤ K

• The emission pdf fY(yt|qt)

• The initial probabilities vector π = {πi}, where 1 ≤ i ≤ K and πi = P (q0 = xi)

The parameters of an HMM are traditionally learnt using the Baum-Welch algorithm

[Rabiner, 1989], which represents a particularization of the well-known Expectation-

Maximization (EM) algorithm [Dempster et al., 1977]. Its complexity is O(K2T )

per iteration, with T being the length of the training sequence. A hidden Markov

model can be seen as a simple Dynamic Bayesian Network (DBN) [Murphy, 2002], an

interpretation which provides an alternative way of training this kind of models by

applying the standard algorithms for DBNs. This allows for a unified way of inference

in HMMs and their generalizations. A more thorough explanation of HMMs can be

found at Appendix B.

2.2.2 Hierarchical clustering

Hierarchical clustering (HC) [Xu and Wunsch-II, 2005] algorithms organize the data

into a hierarchical (tree) structure. The clustering proceeds in an iterative fashion

in the following two ways. Agglomerative methods start by assigning each datum to

a different cluster and then merging similar clusters up to arriving at a single cluster

that includes all data. Divisive methods initially consider the whole data set as a

unique cluster that is recursively partitioned in a way such that the resulting clusters

are maximally distant. In both cases, the resulting binary tree can be stopped at a

certain depth to yield the desired number of clusters.

2.2.3 Spectral clustering

Spectral clustering (SC) [Wu and Leahy, 1993] casts the clustering problem into a

graph partitioning one. Data instances form the nodes of a weighted graph whose
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edges represent the adjacency between data. The clusters are the partitions of the

graph that optimize certain criteria. These criteria include the normalized cut, that

takes into account the ratio between the cut of a partition and the total connection

of the generated clusters. To find these optimal partitions is an NP-hard problem,

that can be relaxed to a generalized eigenvalue problem on the Laplacian matrix

of the graph. The spectral techniques have the additional advantage of providing

a clear and well-founded way of determining the optimal number of clusters for a

dataset, based on the eigengap of the similarity matrix [Ng et al., 2002]. A deeper

explanation of Spectral Clustering is provided in Appendix A.

2.2.4 Existing algorithms for likelihood-based clustering of sequences

The initial proposal for model-based sequential data clustering of [Smyth, 1997] aims

at fitting a single generative model to the entire set S of sequences. The clustering

itself is part of the initialization procedure of the model. In the initialization step,

each sequence Si is modeled with a HMM θi. Then, the distance between two

sequences Si and Sj is defined based on the log-likelihood of each sequence given the

model generated for the other sequence:

dijSYM =
1

2
(lij + lji) , (2.2)

where lij represents the (length-normalized) log-likelihood of sequence Sj un-

der model θi. In fact, this is the symmetrized distance previously proposed in

[Juang and Rabiner, 1985]. Given these distances, the data is partitioned using ag-

glomerative hierarchical clustering with the “furthest-neighbor” merging heuristic.

The work in [Panuccio et al., 2002] inherits this framework for sequence cluster-

ing but introduces a new dissimilarity measure, called the BP metric:

dijBP =
1

2

{

lij − lii
lii

+
lji − ljj

ljj

}

. (2.3)

The BP metric takes into account how well a model represents the sequence it has

been trained on, so it is expected to perform better than the symmetrized distance

in cases where the quality of the models may vary along different sequences.
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Another alternative distance within this framework is proposed in [Porikli, 2004],

namely

dijPOR = |pij + pji − pii − pjj| , (2.4)

with pij as defined in eq. (2.1).

Recently, the popularity of spectral clustering has motivated work in which

these kinds of techniques are applied to the clustering of sequences. In

[Yin and Yang, 2005] the authors propose a distance measure resembling the BP

metric

dijY Y = |lii + ljj − lij − lji| , (2.5)

and then apply spectral clustering on a similarity matrix derived from the distance

matrix by means of a Gaussian kernel. They reported good results in comparison

to traditional parametric methods using initializations such as those proposed in

[Smyth, 1997] and [Oates et al., 2001], called Dynamic Time Warping (DTW).

2.3 KL-LL disimilarity

Our proposal is based on the observation that the aforementioned methods define the

distance between two sequences Si and Sj using solely the models trained on them

(θi and θj). We expect a better performance if we add into the distance some global

characteristics of the dataset. Moreover, since distances under this framework are

obtained from a likelihood matrix, it seems natural to take the probabilistic nature

of this matrix into account when selecting adequate distance measures.

Bearing this in mind, we propose a novel sequence distance measure based on the

Kullback-Leibler (KL) divergence [Kullback and Leibler, 1951], which is a standard

measure for the similarity between probability density functions.

The first step of our algorithm involves obtaining the likelihood matrix L as in

eq. (2.1) (we will assume at first that an HMM is trained for each sequence). The ith

column of L represents the likelihood of the sequence Si under each of the trained

models. These models can be regarded as a set of “intelligently” sampled points

from the model space, in the sense that they have been obtained according to the

sequences in the dataset. This way, they are expected to lie in the area of the model
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space θ surrounding the HMMs that actually span the data space. Therefore, these

trained models become a good discrete approximation θ̃ = {θ1, . . . , θN} to the model

subspace of interest. If we normalize the likelihood matrix so that each column adds

up to 1, we get a new matrix LN whose columns can be seen as the probability

density functions over the approximated model space conditioned on each of the

individual sequences:

LN =
[

fS1

θ̃
(θ), . . . , fSN

θ̃
(θ)

]

.

This interpretation leads to the familiar notion of dissimilarity measurement between

probability density functions, the KL divergence being a natural choice for this

purpose. Its formulation for the discrete case is as follows:

DKL(fP ||fQ) =
∑

i

fP (i) log
fP (i)

fQ(i)
, (2.6)

where fP and fQ are two discrete pdfs. Since the KL divergence is not a proper

distance because of its asymmetry, a symmetrized version is used

DKLSYM
(fP ||fQ) =

1

2
[DKL (fP ||fQ) +DKL (fQ||fP )] . (2.7)

This way, the distance between the sequences Si and Sj can be defined simply as

dij = DKLSYM

(

fSi

θ̃
||fSj

θ̃

)

. (2.8)

We denote this disimilarity measure as KL-LL. This definition implies a change of

focus from the probability of the sequences under the models to the likelihood of

the models given the sequences. Distances defined this way are obtained according

to the patterns created by each sequence in the probability space spanned by the

different models. With this approach, the distance measure between two sequences

Si and Sj involves information related to the rest of the data sequences, represented

by their corresponding models.

This redundancy can be used to define a representative subset Q ⊆ S of the se-

quences, so that θ̃ = {θQ1 , . . . , θQP
} , P ≤ N . In this way, instead of using the whole

dataset for the calculation of the distances, only the models trained with sequences

belonging to Q will be taken into account for that purpose. The advantage of defin-

ing such a subset is twofold: on the one hand, computational load can be reduced
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since the number of models to train is reduced to P and the posterior probability

calculations drop from NxN to PxN . On the other hand, if the dataset is prone to

outliers or the models suffer from overfitting, the stability of the distance measures

and the clustering performance can be improved if Q is carefully chosen. Examples

of both of these approaches are shown in the experiments included in Section 2.4.

Obtaining this measure involves the calculation of N(N − 1) KL divergences, with a

complexity linear in the number of elements in the representative subset. Therefore,

its time complexity is O(P ·N(N − 1)). Nevertheless, it is remarkable that the pro-

cessing time devoted to the distance calculation is minimal in comparison to those

involved in training the models and evaluating the likelihoods.

Finally, before applying a spectral clustering, the distance matrix D = {dij}
must be transformed into a similarity matrix A. A commonly used procedure is to

apply a Gaussian kernel so that aij = exp

(

−d2ij
2σ2

)

, with σ being a free parameter

representing the kernel width. Next, a standard normalized-cut algorithm is applied

to matrix A, resulting in the actual clustering of the sequences in the dataset. In

the sequel, we will refer to this combination of our proposed KL-based distance and

spectral clustering as KL+SC.

2.3.1 Model Selection

Since real-world data are inherently noisy and the sequences do not perfectly fit

a markovian generative model, the property of embedding information about the

entire set of sequences in each pairwise distance can become performance-degrading.

Thus, it becomes interesting to select only an adequate subset C of the models for

obtaining the distance matrix. This way, we will be performing the clustering in a

reduced subspace spanned just by the chosen models.

For this purpose, we propose a simple method to determine which models to

include in the KL+SC method. Since exhaustive search of all the possible subsets is

intractable, we devise a growing procedure which sequentially adds sequences to the

pool of representative models, and propose a simple heuristic to select the optimal

pool.

• Pool building: First, we need to choose a initial sequence to represent
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via its corresponding model, yielding the initial pool C0. This can be done

randomly or using some simple criterion like the length of the sequences, since

models coming from lengthier sequences are expected to be less influenced by

outliers and to provide more information about the underlying processes. The

initial likelihood matrix L0 is then obtained by evaluating log-likelihoods of all

sequences under the model in C0. The pool is built up from there by adding at

each step tmodels corresponding to the sequences which are poorly represented

by current models. That is to say, sequences with low mass of probability as

given by
∑

θ∈Ct−1
fS(S; θ), where Ct−1 is the pool of models at step t−1. This

is proportional to the row-sum of the likelihood matrix Lt−1.

• Pool selection: For each candidate likelihood matrix, the KL-based dis-

tance is evaluated and a tentative clustering is carried out. We choose as the

optimal clustering the one with the largest eigengap. Depending on the com-

putational/time constraints, it is possible to try every candidate pool or to

use an early stopping procedure, halting the process when the eigengap stops

decreasing.

As previously stated, this is a simple method with no aspirations of being opti-

mum but developed just for illustrating that an adequate selection of models can

be advantageous, or even necessary, for attaining good clustering results in noisy

scenarios. We refer to the KL+SC method coupled with this model selection scheme

as KL+SC+MS. In the experiments below, no early stopping is used, so all the

candidate pools returned by the pool building procedure are tried out.

2.4 Experimental Results

This section presents some experimental results concerning several synthetic and

real-world sequence clustering problems. Synthetic data experiments aim at illus-

trating the performance of the different sequence clustering algorithms under tough

separability conditions but fulfilling the assumption that the sequences are gener-

ated by hidden Markov models. This way, we focus the analysis on the impact of

the distance measures as we isolate the adequateness of the modeling (except in
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(a) Spectral clustering
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(b) Hierarchical clustering

Figure 2.1: Clustering error percentage achieved by the compared methods against

different mean sequence lengths (V = 40%,N = 80)

overfitting). Besides, we also use two real-word scenarios, namely speech data and

electroencephalogram (EEG) data, to show a sample application of sequence clus-

tering in two fields where HMMs have typically been used as rough approximate

generative models.

Apart from our proposal (KL-LL), we also introduce into the comparison all the

likelihood-based measures that we have mentioned in Section 2.2.4. Namely:

SYM Symmetrized distance (eq. (2.2))

BP BP distance (eq. (2.3))

POR Porikli distance (eq. (2.4))

YY Yin - Yang distance (eq. (2.5))

KL Proposed KL-LL distance (eq. (2.8))

All of them will be paired with both an agglomerative hierarchical clustering using

the furthest-neighbor merging heuristic, as in [Smyth, 1997], and a normalized-cut

spectral clustering. For the spectral clustering algorithm, the value of parameter σ

of the Gaussian kernel is selected empirically in a completely unsupervised fashion
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as the one that maximizes the eigengap for each distance measure in each case (as

proposed in [Ng et al., 2002]). It is also remarkable that the k-means part of the

spectral clustering algorithm, due to its strong dependence on the initialization, is

run 10 times at each iteration, and we choose as the most adequate partition the one

with the minimal intra-cluster distortion, defined as:

Dcluster =
K
∑

k=1

∑

i∈Ck

||xi − ck||2,

where K is the number of clusters, Ck is the set of the indices of points belonging

to the kth cluster, ck is the centroid of that cluster and xi is the ith data point.

This distortion can be seen as the “tightness” of the resulting clusters, and it is also

well known that this minimum distortion criterion implies a maximum separation

amongst centroids [Shawe-Taylor and Cristianini, 2004].

2.4.1 Synthetic data

The first scenario under which the comparison is carried out is the original example

from [Smyth, 1997]: each sequence in the dataset is generated with equal probability

by one of two possible HMMs θ1 and θ2, each one of them having two hidden states

(m = 2). Transition matrices for the generating HMMs are given by

A1 =





0.6 0.4

0.4 0.6



 A2 =





0.4 0.6

0.6 0.4



 .

Initial states are equiprobable and emission probabilities are the same in both

models, specifically N(0, 1) in the first state and N(3, 1) in the second. This sce-

nario represents a very appropiate testbed for sequence clustering techniques, since

the only way to differentiate sequences generated by each model is to attend to their

dynamical characteristics. These, in turn, are very similar, making this a hard clus-

tering task. The length of each individual sequence is obtained by sampling a uniform

pdf in the range [µL(1− V/100) µL(1 + V/100)], where µL is the sequence’s mean

length and V is a parameter which we will refer to as the percentage of variation in

the length. All the given results are averaged over 50 randomly generated datasets.

Figure 2.1 shows the results of the performance comparison of the different dis-

tance measures and clustering methods against variations of the mean length µL of
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(b) Hierarchical clustering

Figure 2.2: Clustering error against number of sequences in the synthetic dataset

the data sequences for a fixed length variation V of 40% in a dataset comprised of

N = 80 sequences. Performance is measured in the form of clustering error, under-

stood as the percentage of incorrectly classified samples under an optimal permuta-

tion of the cluster labels. It can be seen that, as expected, the longer the sequences

the more accurate the clustering. It is also clear that our proposed distance measure

outperforms the previous proposals under both hierarchical and spectral clustering,

attaining specially good results using the latter technique. Specifically, the proposed

KL+SCmethod yields the best performance for every mean sequence length, showing

consistent improvements which are more dramatic for short mean sequence lengths

(µL < 200). Models trained with such short sequences suffer from severe overfit-

ting, not being able to adequately capture the underlying dynamics and thus giving

unrealistic results when evaluated using the sequences in the dataset. This results

into incoherent distance matrices using the typical methods which renders the use

of spectral clustering algorithms unproductive. Nonetheless, our proposal is more

resilient against this issue since it takes a global view on the dataset that allows for

the correct clustering of sequences even if the models are rather poor. Evaluating the

sequences on a large enough number of individually inadequate models can generate

patterns that our distance measure can capture, which translates into a consistent

distance matrix very suitable for applying spectral methods. This shows that our
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(b) Hierarchical clustering

Figure 2.3: Performance in a multiclass (K = 3) clustering task against different

mean sequence lengths (V=40%,N=100)

approach is efficient even when the models are poor so they cannot be expected to

correctly sample the model space. In these scenarios, the probabilistic interpretation

of the proposed distance is not clear and it takes more of a pattern matching role.

Agglomerative hierarchical clustering is more forgiving of loosely structured dis-

tance matrix, since it merges clusters based on pairwise distance comparisons instead

of taking a global view. Therefore, it seems more suitable than spectral clustering

methods for its use with the previously proposed model-based sequence distances.

On the other hand, it also implies that it cannot benefit from the use of our proposed

distance as much as spectral techniques can.

Figure 2.2 displays the evolution of the error along the number of sequences in the

dataset. As more sequences are present in the dataset, the aforementioned problems

of the previous proposals in combination with spectral clustering become clearer,

while our method manages to improve its performance. Using hierarchical clustering,

all the distances achieve stable results irrespective of the number of sequences, but

once again this comes at the expense of an inferior performance compared to the

KL+SC combination.

Figure 2.3 shows the results for a multi-class clustering with K = 3 classes. The

sequences being clustered were generated using the two previously employed HMMs
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(θ1 and θ2) and a third one θ3 that only differs from them in the transition matrix.

Specifically,

A3 =





0.7 0.3

0.3 0.7



 .

The additional class makes this a harder problem than the two-class scenario, so it is

logical to assume that lengthier sequences are required to achieve comparable results.

Nonetheless, the use of our proposed distance still shows significant improvements

over the rest of the distances, all of which give almost identical results.

2.4.2 Real-world data

In this section, different sequential-data clustering algorithms will be evaluated on

real-world scenarios. The first scenario is speaker clustering: we are given a set of

audio files, each one of them containing speech from a single speaker, and the task is

to group together files coming from the same speaker (two speakers per experiment).

We simulate spaker clustering tasks using two different datasets: the GPM PDA

and Japanese Vowels (JV) datasets (see Appendix D. The coefficient sequences were

directly fed into the different clustering algorithms without any further processing.

We use the JV dataset to simulate a 9-class speaker clustering task, while the GPM

dataset is used for a pairwise 2-class task.

The other scenario used for testing purposes is clustering of electroencephalo-

gram (EEG) signals. Given a subject, the purpose is to find clusters of sequences

representing the same activity. Concretely, we perform seven clusterings (one for

each subject) of 50 sequences (10 per mental activity, randomly chosen) into five

groups.

Table 2.1 shows the results (averaged over 15 iterations) of the compared meth-

ods in the different datasets using spectral clustering. Hierarchical clustering results

are not shown because of space restrictions, but they were clearly inferior to those

attained via spectral clustering. Agglomerative methods fail in these scenarios be-

cause the relationships among the data that must be exploited in order to obtain an

adequate partition are impossible to capture in a pairwise fashion. Results are given

under varying number of hidden states, in the range where the different methods
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perform best for each dataset.

All in all, the KL+SC+MS combination noticeably outperforms the alternatives,

specially in the speech datasets. The use of KL+SC without model selection does not

work as well as in the synthetic experiments because sequences belonging to the same

cluster are not actually drawn from a unique HMM. The clustering just relies on the

assumption that these sequences lead to similar models. In this scenario there are

no such things as “true” HMMs generating the dataset, so the interpretation of the

likelihood matrix that gives birth to our proposal loses part of its strength. However,

it can be seen that if the KL+SC combination is coupled with the proposed model

selection method it produces convincing results even in such adverse conditions.

A remarkable fact is that the previously proposed distances suffer from a severe

performance loss in the speaker clustering tasks as the number of hidden states in-

creases. This is caused by the models overfitting the sequences in these datasets

because of the high dimensionality of the data and the short mean length of the

sequences. The evaluation of likelihoods under these models produces results that

does not reflect the underlying structure of the data. This distortion severely under-

mines the performance of previously proposed distances, yielding poorly structured

distance matrices that seriously hinders the spectral clustering. The use of our pro-

posed KL distance, specially in combination with model selection, has a smoothing

effect on the distance matrices. This effect makes it less sensitive to overfit models,

resulting in an improved performance relative to the other distances as overfitting

becomes more noticeable. This robustness is a very useful property of our proposal

since, in practice, it is usually hard to determine the optimum model structure and

overfitting is likely to occur. It is also worth noting that the advantage of using

our method is clearer in the GPM-UC3M dataset, because the number of sequences

considered in each clustering task is larger. This agrees with the conclusions drawn

from the experiments with synthetic data.

The dimensionality of the data in the EEG dataset is lower than in the speaker

verification ones. This allows for an increase in the number of hidden states with-

out suffering from overfitting. The KL+SC+MS method performs best also in this

dataset, followed closely by the YY distance. It is remarkable that the improvement
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Table 2.1: Mean and standard deviation of clustering error (%) on the real datasets using HMMs with different number of

hidden states and spectral clustering: Japanese Vowels (JV), GPM-UC3M and EEG.

Dataset # of hidden states SYM BP YY POR KL KL+MS

JV

m=2 33.33% (±2.8) 14.70% (±1.0) 14.89% (±2.1) 58.99% (±1.1) 12.72 (±1.3) 9.85% (±1.7)

m=3 32.82% (±3.0) 24.66% (±3.7) 20.99% (±4.1) 54.88% (±2.3) 19.68 (±3.8) 18.86% (±4.0)

m=4 32.04% (±3.4) 21.45% (±4.8) 26.59% (±6.2) 61.49% (±1.0) 16.33 (±4.3) 14.45% (±5.4)

m=5 29.56% (±3.6) 20.23% (±4.4) 17.19% (±5.2) 58.60% (±1.3) 18.05 (±5.1) 17.70% (±5.5)

GPM

m=2 15.46 (±3.67) 12.62 (±3.97) 15.02 (±3.95) 49.91 (±0.19) 15.72 (±4.30) 9.82 (±3.45)

m=3 26.95 (±4.34) 24.07 (±5.25) 25.11 (±4.83) 49.82 (±0.29) 23.87 (±4.52) 9.65 (±2.93)

m=4 38.32 (±2.73) 38.18 (±3.44) 35.12 (±4.33) 49.74 (±0.26) 29.75 (±3.76) 10.04 (±2.50)

EEG

m=5 60.57 (±0.49) 37.01 (±0.88) 27.47 (±0.60) 51.36 (±0.70) 33.47 (±0.82) 29.89 (±0.85)

m=6 60.56 (±0.40) 34.08 (±0.90) 30.06 (±0.76) 52.75 (±0.82) 33.63 (±0.85) 28.86 (±0.89)

m=7 60.56 (±0.44) 31.62 (±0.94) 28.50 (±0.87) 54.38 (±0.71) 29.53 (±0.84) 16.79 (±0.76)
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Table 2.2: Optimal percentage of models chosen by the model selection algorithm

Dataset m=2 m=3 m=4

JAPANESE VOWELS 66.63% 72.28% 75.3%

GPM-UC3M 43.1% 58.61% 63.20%

Dataset m=5 m=6 m=7

EEG 57.14% 60.12% 64.46%

in performance due to the use of model selection is less dramatic in this scenario

because of both the absence of overfitting and the equal length of all sequences.

In Table 2.2 we show the number of models chosen for consideration by the model

selection algorithm in each of the clustering tasks. Notice how in the three cases as

the complexity of the models (in terms of number of hidden states) increases, the

model selection scheme picks a larger number of them. In general, more complex

models lead to more varying probabilities when evaluated on the different sequences.

This way, the effective dimension of the model-induced subspace where the sequences

lie grows with the complexity of the models, which agrees with the aforementioned

behavior of the model selection scheme.

2.5 Summary

We have proposed a new distance measure for sequential data clustering, based on

the Kullback-Leibler divergence. It embeds information of the whole dataset into

each element of the distance matrix, introducing a structure that makes it specially

suitable for its use in combination with spectral clustering techniques. This measure

also allows for the use of a reduced representative subset of models, which, if chosen

properly, can give an increase in performance in real-world scenarios potentially

containing outliers and misleading data.

The reported results have been obtained using HMMs as generative models for

the individual sequences, although the method is independent of this selection. In

fact, exploring more expressive models is a straightforward and promising future line

of research in order to successfully apply this clustering technique to a wider range
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of problems, such as video event detection, text mining,etc.
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Chapter 3

State Space Dynamics for

Clustering Sequences of Data

We propose a novel similarity measure for clustering sequential data. We first con-

struct a common state-space by training a single probabilistic model with all the

sequences in order to get a unified representation for the dataset. Then, distances

are obtained attending to the transition matrices induced by each sequence in that

state-space. This approach solves some of the usual overfitting and scalability issues

of the existing semi-parametric techniques, that rely on training a model for each

sequence.

3.1 Introduction and chapter structure

In the previous chapter we presented the general framework for likelihood-based

clustering of sequences. In [Jebara et al., 2007] another method for constructing the

similarity matrix in a model-based approach is proposed which avoids the calculation

of the likelihood matrix L. It is based on the definition of probability product kernels

(PPK) [Jebara et al., 2004] between two densities p(x), q(x) over X :

κPPK(p, q) =

∫

X
p(x)ρq(x)ρdx = 〈pρ, qρ〉L2

, (3.1)
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where L2 is the space of square-integrable functions and ρ is a free parameter. Again

an HMM is trained on each individual sequence, but then similarities between se-

quences are computed directly through a PPK. Specifically, the PPK with ρ = 2 of

the probability densities spanned by two HMMs in the space of the sequences of a

fixed length TPPK, which is a design parameter. This way, L is no longer necessary

because the similarities are obtained directly from parameters of the models. The

calculation of the PPK between two HMMs can be carried out in O(K2TPPK) time.

All the aforementioned semi-parametric methods share the need to train an in-

dividual HMM on each sequence in the dataset (or in a subset of it, as we did in

Chapter 2). We see this as a disadvantage for several reasons. Short sequences

are likely to lead to overfitted models, providing unrealistic results when used to

evaluate likelihoods or PPKs. Moreover, training individual models in an isolated

manner prevents the use of similar sequences to achieve more accurate represen-

tations of the states. As for the computational complexity, these methods do not

scale well with the dataset size N . Specifically, the number of likelihoods that need

to be obtained is N2 (or PN using the KL method). In the case of PPKs, N2/2

evaluations are required, since the kernel is symmetric. This quadratic number of

likelihood evaluations hinders the scalability of the methods to large datasets.

This chapter aims at overcoming these weaknesses. Specifically, we propose to

train a single HMM using all the sequences in the dataset, and then cluster the

sequences attending to the transition matrices that they induce in the state-space

of the common HMM. This approach is radically different from the aforementioned

methods in the sense that it is not based on likelihoods, but on divergences between

the transition probabilities that each sequence induces under the common model. In

other words, we no longer evaluate the likelihoods of the sequences on some models

and then define the distance accordingly. Instead, the focus is now shifted towards

parameter space. Moreover, the identification of each sequence with a transition

matrix opens up new possibilities since the metric can be based on the short term

transitions, the long term stationary state distribution or on some middle ground.

The rest of this chapter is organized as follows: Section 3.2 describes how to

cluster sequences using information about their dynamics in a common state-space.
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This new proposal is empirically evaluated in comparison with other methods in

Section 3.3. Finally, Section 3.4 draws the main conclusions of this work and sketches

some promising lines for future research.

3.1.1 Related publications

This chapter is mainly based on [Garćıa-Garćıa et al., 2011a].

3.2 State Space Dynamics (SSD) Distance

In this chapter, we propose to take a novel approach in order to overcome the need

of fitting an HMM to each sequence. To this end, we propose to train a single, large

HMM Θ of K hidden states using all the sequences in the dataset. This will allow for

a better estimation of the emission probabilities of the hidden states, compared to

the case where an HMM is trained on each sequence. Then, we use the state-space

of Θ as a common representation for the sequences. Each sequence Sn is linked to

the common state-space through the transition matrix that it induces when is fed

into the model. This matrix is denoted as Ãn =
{

ãnij

}K

i,j=1
, where

ãnij = p(qnt+1 = sj|qnt = si,Sn,Θ). (3.2)

In order to obtain each Ãn, we run the forward-backward algorithm for the

sequence Sn under the parameters Θ (including the learned transition matrix

A = {aij}) and then obtain the sequence-specific transition probabilities by using

equation (B.5):

ãnij ∝
T
∑

t′=1

αn
i (t

′)aijp(xt′+1|qt′+1 = sj)β
n
j (t

′ + 1), (3.3)

where αn
i (t) and βn

j (t
′ + 1) are the forward and backward variables for Sn, respec-

tively. This process can be seen as a projection of the dynamical characteristics of

Sn onto the state-space defined by the common model Θ. Therefore, the overall

transition matrix A of the large model Θ acts as a common, data-dependent “prior”

for the estimation of these individual transition matrices.
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When using dynamical models for sequence clustering, the use of the proposed

common set of emission distributions can be motivated as follows: if this kind of

algorithms are used, the most likely situation is that there is a high degree of state-

sharing between the models for the different classes. If that were not the case, the

“static” probability densities of the different classes would hardly overlap and the

dynamical information would not be required, so simpler models such as mixtures

of Gaussians could be used.

This procedure is somewhat equivalent to obtaining individual HMMs with

emission distributions that are shared or “clamped” amongst the different mod-

els. Clamping is a usual and useful tool when one wants to reduce the number of

free parameters of a model in order to either obtain a better estimate or reduce the

computational load. In our case, the effects of clamping the emission distributions

are two-fold: we get the usual benefit of better estimated parameters and, at the

same time, it allows for simple distance measures between hidden Markov models

using the transition distributions. This happens because the transition processes of

the different models now share a common support, namely the fixed set of emission

distributions.

As previously mentioned, running the forward-backward algorithm implies a time

complexity of O(K2T ) for a sequence of length T , which is the same complexity

required for obtaining the likelihood of an HMM. Our proposal only requires N

of these calculations, instead of N2 likelihood evaluations or N2/2 PPKs as the

methods mentioned in the previous section do. This makes the SSD algorithm a

valuable method for working with large datasets.

At this point, we have each sequence Sn represented by its induced transition

matrix Ãn. In order to define a meaningful distance measure between these matrices,

we can think of each Ãn = [an1, . . . ,anK ]T as a collection of K discrete probability

functions an1, . . . ,anK , one per row, corresponding with the transition probabilities

from each state to every other state. In this manner, the problem of determin-

ing the affinity between sequences can finally be transformed into the well-studied

problem of measuring similarity between distributions. In this work, we employ the
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Bhattacharyya affinity [Bhattacharyya, 1943], defined as:

DB(p1, p2) =
∑

x

√

p1(x)p2(x), (3.4)

where p1 and p2 are discrete probability distributions. We consider the affinity

between two transition matrices to be the mean affinity between their rows. The

distance between two sequences Si and Sj can then be written as:

dBHAT
ij = − log

1

K

K
∑

k=1

DB(pik, pjk). (3.5)

Once the distances between all the sequences are obtained, the actual clustering

can be carried out using spectral clustering (or any other typical technique). We

refer to this algorithm as state-space dynamics (SSD) clustering. It is summarized

in Alg. 1.

It is worth noting that our proposal does not include any special initialization of

the large model representing the dataset, such as imposing a block-diagonal structure

on the transition matrix to encourage the clustering [Smyth, 1997]. We do not aim to

obtain a single generative model of the complete dataset, but an adequate common

representation that allows for a subsequent successful non-parametric clustering.

An important free parameter of our method is K, the number of hidden states of

the common model. It should be chosen accordingly to the richness and complexity of

the dataset. In the worst case (that is to say, assuming that there is no state sharing

amongst different groups), it should grow linearly with the number of groups. In the

experiments included in this work, we have fixed this size a priori, but it could be

estimated using well-known criteria such as BIC or AIC [Bishop, 2006].

Nonetheless, we do not expect this parameter K to be critical for the success of

the method as long as it is within a sensible range , and we prove this point in the

experiments by trying a wide range of hidden space cardinalities. Further discussion

about this topic is provided in Sec. 3.3.3.

Recall that the forward-backward algorithm for HMMs is O(K2T ), where K is

the number of states and T the sequence length. This indicates that our proposal is

specially suitable for datasets consisting of a large number of sequences coming from

a small number of clusters, which is a usual case. In such a scenario, the number
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of hidden states required for a successful clustering is low, so the time penalty in

the FW-BW algorithm will be more than compensated by the significant computa-

tional load reduction coming from the linear complexity in the number of sequences.

If sequences coming from different clusters share some emission distributions, the

improvements will be even more notorious, because the algorithm will exploit that

sharing in a natural way.

As previously explained, dynamic model-based distance measures are specially

useful when there is a significant overlap between the emission distributions of dif-

ferent classes. Our proposal is thus very suitable for working in this interesting

scenario. If there were no such sharing, the model would have to be large enough

to accommodate the individual models for all the classes. If the emission models

for the different classes were distinct enough, a given sequence would only transition

between the states representing its class and thus the distances between sequences

belonging to different clusters would be infinite.

3.2.1 Relationships with similar methods

On some sense, the SSD distance can be seen to be similar in spirit to the Fisher

kernel [Jaakkola and Haussler, 1998]. Both methods define the affinity between se-

quences by means of some kind of “projection” of the different sequences onto a

common generative model. In the Fisher kernel, the gradients of the log-likelihoods

∇ log P (Xi|θ) around the parameters θ (called Fisher scores) are used as the feature

vector for sequence Xi. This way, there is a close link between SSD and a Fisher

kernel where only the scores for transition parameters are taking into account. One

of the main problems of the Fisher kernel is its excessive dependence on the global

model θ. Since Fisher scores are gradients around the parameters of the global model,

the meaningfulness of those scores depends heavily on the shape of the log-likelihood

at that point. This may be not too bad in a supervised scenarios, where the global

model is learned to represent one of the classes or to maximize its discriminative

power. However, in an unsupervised setting there is no simple a-priori way to know

if a given θ will result in meaningful scores. This problem is alleviated in SSD, since

the similarity is based on the transition parameters, which are re-estimated for each

40



CHAPTER 3. STATE SPACE DYNAMICS FOR CLUSTERING SEQUENCES
OF DATA

sequence. This way, the local properties of the log-likelihood are not so relevant.

Finally, we would like to comment on the relationship between our proposal

and that of [Ramoni et al., 2002]. There, the authors propose a bayesian cluster-

ing method based on transition matrices of Markov chains. They assume that the

sequences are discrete, so a Markov chain can be directly estimated via transition

counts. Our proposal, on the other hand, uses Markov chains on the latent variables

(states), what makes it far more general. Moreover, our focus is on defining a general

model-based distance between sequences, so that the SSD distance can be directly

coupled with a wide range of clustering algorithms depending on the task at hand.

3.2.2 Extensions of SSD: Diffusion and Time Warping

Other approaches could be used in order to define distances between the different

transition matrices. For example, instead of using Ãn directly, an idea similar to

diffusion distances [Szlam et al., 2008] could be applied by using different powers

of the transition matrices
(

Ãn
)t
, where t is a time index. This is equivalent to

iterating the random walk defined by the transition matrices for t time steps. The jth

row of such an iterated transition matrix encodes the probabilities of transitioning

from state j to each other state in t time steps. However, this approach would

introduce the extra parameter t, which must be set very carefully. For example,

many transition matrices converge very quickly to the stationary distribution even

for low t (specially if the number of states is small). This could be a problem in cases

where the stationary distributions for sequences in different clusters are the same.

An example of such a scenario is presented in Section 3.3.

Moreover, the SSD distance measure is very flexible. Measuring distances be-

tween sequences is highly subjective and application dependent. For example, in a

certain scenario we may not be interested in the rest time for each state, but only

in the transitions (similar to Dynamic Time Warping [Sakoe and Chiba, 1978]). To

this end, a good alternative would be to obtain the transition matrices Ãn for every

sequence, but ignore the self transitions in the distance measurement. That can be

easily done by setting all the self-transitions to 0 and then re-normalizing the rows

of the resulting transition matrices.

41



3.2. STATE SPACE DYNAMICS (SSD) DISTANCE

Algorithm 1 SSD distance for clustering sequential data

Inputs:

Dataset S = {S1, . . . ,SN}, N sequences

K: Number of hidden states

Algorithm:

Step 1: Learning the global model (Baum-Welch)

Θ = argmaxθ′ P (S1, . . . ,SN |Θ′)

Step 2: Estimating Ãn =
{

ãnij

}

(Forward/Backward)

for all Sn do

αk(t) = P (Sn(1), . . . ,Sn(t), qt = k|Θ)

βk(t) = P (Sn(t+ 1), . . . ,Sn(Tn), qt = k|Θ)

ãnij ∝
∑Tn

t=1 αi(t)aijp(Sn(t+ 1)|qt+1 = i)βj(t+ 1)

end for

Step 3: Obtaining the distance matrix D = {dij}
for all i, j do

pik ≡ kth row of Ãi

dij = − log 1
K

∑K
k,k′=1

√

pik(k′)pjk(k′)

end for

Step 4: Clustering using D
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3.3 Experimental Results

In this section we present a thorough experimental comparison between SSD and

state of the art algorithms using both synthetic and real-world data. Synthetic

data include an ideal scenario where the sequences in the dataset are actually gen-

erated using HMMs, as well as a control chart clustering task. Real data experi-

ments include different scenarios (character, gesture and speaker clustering) selected

from the UCI-ML [Frank and Asuncion, 2010] and UCI-KDD [Hettich and Bay, ]

repositories. We use the implementation of PPK available at the author’s website

http://www1.cs.columbia.edu/~jebara/code.html
1.

The compared methods for obtaining the distance matrix are: SSD,

state-space dynamics clustering with Bhattacharyya distance; PPK, Probabil-

ity Product Kernels [Jebara et al., 2007]; KL, KL-LL distance (see Chapter 2)

[Garćıa-Garćıa et al., 2009c]; BP, BP metric [Panuccio et al., 2002]; YY, Yin-Yang

distance [Yin and Yang, 2005] and SYM, Symmetrized distance [Smyth, 1997].

We denote the number of hidden states of the global model used by SSD as K,

and the number of states per model of the methods that rely on training a HMM on

each single sequence as Km.

Once a distance matrix is available, we perform the actual clustering using the

spectral algorithm described in [Ng et al., 2002]. The different distance matrices

are turned into similarity matrices by means of a Gaussian kernel whose width is

automatically selected in each case attending to the eigengap. Though more elab-

orated methods such as [Zelnik-Manor and Perona, 2004] can be used to select the

kernel width, in our experiments it is automatically selected in each case attending

to the eigengap since the experimental results are good enough. We assume that

the number of clusters is known a priori. If this is not the case, automatic deter-

mination of the number of clusters can be carried out by methods such as those in

[Sanguinetti et al., 2005, Zelnik-Manor and Perona, 2004].The PPK method directly

returns a similarity matrix, that is first converted into a distance matrix by taking

the negative logarithm of each element. Then, it is fed into the clustering algorithm

1Accessed on 26/07/2010
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with automatic kernel width selection. The final k-means step of the spectral clus-

tering algorithm is run 10 times, choosing as the final partition the one with the

minimum intra-cluster distortion. The free parameter T PPK of the PPK method is

fixed to 10 following [Jebara et al., 2007].

The results shown in the sequel are averaged over a number of iterations in order

to account for the variability coming from the EM-based training of the HMM.

3.3.1 Synthetic data

In this subsection we test the algorithms using two kinds of synthetically gen-

erated data: a mixture-of-HMMs (MoHMM) scenario as in Chapter 2, following

[Smyth, 1997, Garćıa-Garćıa et al., 2009c], and a UCI-ML dataset representing con-

trol charts.

Mixture of HMMs

Each sequence in this dataset is generated by a mixture of two equiprobable HMMs

θ1 and θ2. Each of these models has two hidden states, with an uniform initial

distribution, and their corresponding transition matrices are

A1 =





0.6 0.4

0.4 0.6



 A2 =





0.4 0.6

0.6 0.4



 .

Emission probabilities are the same in both models, specifically N(0, 1) in the first

state and N(3, 1) in the second. This is a deceptively simple scenario. Since both the

emission probabilities and the equilibrium distributions are identical for both models,

the only way to differentiate sequences generated by each of them is to attend to

their dynamical characteristics. These, in turn, are very similar, making this a hard

clustering task. The length of each individual sequence is uniformly distributed in

the range [0.6µL, 1.4µL], where µL is the mean length.

Figure 3.1 shows the clustering error achieved by the compared algorithms in a

dataset of N = 100 sequences, averaged over 50 runs. All the algorithms use a correct

model structure (Km = 2 hidden states per class) to fit each sequence. For SSD, this

implies using 4 hidden states for the common model (K = 4). Note that even better
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results can be obtained by selecting K = 2, but that can be considered cheating since

it implies knowing that the emission distributions are shared by the two generating

models. As expected, when the sequences follow an HMM generative model and

the representative model structure is chosen accordingly, SSD achieves impressive

performance improvements for short sequence lengths. In contrast, algorithms that

rely on training an HMM for each sequence suffer from poor model estimation when

the mean sequence length is very low (≤ 100), which in turn produces bad clus-

tering results. Our proposal overcomes this difficulty by using information from all

the sequences in order to generate the common representative HMM. Consequently,

the emission probabilities are estimated much more accurately and the distances ob-

tained are more meaningful, leading to a correct clustering. Nonetheless, when the

sequences are long (≥ 200) very accurate models can be obtained from each single

sequence and the different methods tend to converge in performance.
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Figure 3.1: Clustering error for the MoHMM case

Synthetic Control Chart

We carry out a multi-class clustering task on this dataset (see Appendix D), parti-

tioning the corpus into 6 groups which we expect to correspond with the different

classesof control charts. As explained in Sec. 3.2, the size of the state-space for the
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HMM in SSD clustering should be chosen accordingly to the number of classes, so

we employ a number of hidden states in the range 12-40. It also allows us to show

that our proposal is robust enough to produce good performance in such an extense

range. Results, averaged over 10 runs, are shown in Table 3.1.

In general, all methods obtain good results, specially taking into account the

multi-class nature of the dataset (a trivial clustering assigning all sequences to the

same cluster would attain a 16.66% accuracy / 83.33% error). However, SSD clearly

outperforms all the other compared algorithms. It is specially remarkable the very

high performance achieved in the “large-dataset” of 100 sequences per class. Such

good results are obtained because, in contrast to previous proposals, the modeling

employed by SSD distance improves as the dataset size increases. It is worth noting

how SSD provides better results than any other compared method even for the very

modest number of 12 hidden states. This implies that there is a great amount

of state-sharing between the different classes. Also of interest is the fact that the

performance gets even better as that number of states is increased. We tried to push

the limits of the method by using the largest number of hidden states that could

be handled in a reasonable time (40 states), and even in that case we obtained very

good results. This supports the idea that the size of the common model space is

not a critical parameter of the algorithm. The confusion matrix when N = 30 and

K = 20 (averaged over the 10 runs) is shown in Fig. 3.2 in the form of a Hinton

diagram.

Normal Cyclic Inc. Trend Dec. Trend Up. Shift Down. Shift

Normal

Cyclic

Inc. Trend

Dec. Trend

Up. Shift

Down. Shift

Figure 3.2: Confusion matrix for SSD clustering with 30 sequences per class and 20

hidden states
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3.3.2 Real-world data clustering experiments

We use the following datasets from the UCI ML and KDD archives:

• Character Trajectories

• AUSLAN

• Japanese Vowels

Please refer to Appendix D for a description of the different datasets.

Table 3.2 shows the numerical results, averaged over 10 runs. In the Character

Trajectories dataset, the individual sequences are fairly long and the classes are

mostly well separated, so this is an easy task. Single sequences are informative

enough to produce good representative models and, consequently, most methods

achieve very low error rates. Nonetheless, using the SSD distance outperforms the

competitors.

For the AUSLAN dataset, following [Jebara et al., 2007], we used HMMs with

Km = 2 hidden states for the methods that train a single model per sequence. The

sequences were fed directly to the different algorithms without any preprocessing. We

reproduce the results for the PPK method from [Jebara et al., 2007]. The common

model for SSD employs K = 4 hidden states (2Km), since the 2-way clustering tasks

are fairly simple in this case. It is worth noting that the bad performance in the

‘Yes’ vs ‘No’ case is due to the fact that the algorithms try to cluster the sequences

attending to the recording session instead of to the actual sign they represent. Our

proposal produces great results in this dataset, surpassing the rest of the methods

in every pairing except for the pathological ‘Yes’ vs ‘No’ case.

Finally, we carry out a 9-class speaker clustering task using the full Japanese

Vowels dataset. There are 30 sequences per class, and the trivial clustering error

baseline is 11.11%. The large number of classes and their variability demands a

large number of hidden states in the common HMM of SSD. This, in turn, means

a time penalty as the HMM training time is quadratic in the number of hidden

states. Nonetheless, the performance obtained in this dataset by our proposal is

very competitive in terms of clustering accuracy, only being surpassed by the KL
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method. It is also remarkable how the SSD-based clustering exhibits a very stable

performance in a huge range of state-space cardinalities, what once again coincides

with our intuition that an accurate determination of that parameter is not crucial

to the algorithm.

As the results confirm, using the SSD distance is very adequate in this scenario

because the number of subsequences is quite large and, at the same time, all of them

are very short. This way, we exploit both the reduced time complexity in the number

of sequences and the better estimation of the emission distributions.

3.3.3 On the number of hidden states for SSD distance

A general conclusion that can be drawn from the experimental results is that the

proposed distance measure generally increases its performance as the common state-

space grows larger. This way, the size of the initial HMM can be chosen according to

the available computational power. A performance loss is predictable at some point,

although we have not witnessed it in our experiments, since there the limiting factor

have always been the computational load. A possible way to test if the number of

hidden states is getting too large for the problem at hand is to look at the mean

occupancy (or stationary probability) of those states. If there are some of them

which are occupied only for a very small fraction of the time, this can be seen as

a sign that the common model is starting to overfit to particular characteristics of

some individual sequences. In this case, the state space is too large and should be

reduced.
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Table 3.1: Mean clustering error (standard deviation in brackets) in the Control Chart dataset. Using (a) 30 and (b) 100

sequences per class.

Km SYM YY KL BP PPK K SSD

Km = 2 23.89% (±0.1) 25.89% (±5.3) 25.33% (±5.3) 21.67% (±0.2) 53.11% (±3.3) K = 12 28.29% (±6.0)
Km=3 26.00% (±0.6) 25.33% (±0.5) 21.27% (±3.9) 24.11% (±3.6) 44.78% (±0.6) K = 16 13.72% (±6.3)
Km=4 25.22% (±0.6) 23.56% (±1.6) 20.67% (±3.1) 24.00% (±4.4) 48.78% (±4.8) K = 20 12.67% (±4.1)
Km=5 23.00% (±1.8) 20.89% (±3.2) 22.56% (±4.9) 20.22% (±1.6) 58.22% (±3.1) K = 28 11.81% (±4.7)
Km=6 25.33% (±0.3) 23.11% (±3.1) 23.78% (±2.9) 25.56% (±2.0) 59.89% (±3.5) K = 40 14.17% (±2.7)

(a)

30 sequences per class

Km SYM YY KL BP PPK K SSD

Km=2 32.34% (±4.35) 26.70% (±7.1) 29.81% (±0.08) 27.09% (±4.9) 54.21% (±1.8) K = 12 8.43% (±1.5)
Km=3 20.77% (±0.26) 14.47% (±3.2) 29.80% (±0.07) 22.67% (±0.6) 48.77% (±1.9) K = 16 7.29% (±1.8)
Km=4 20.72% (±0.7) 12.85% (±3.6) 27.77% (±3.0) 15.08% (±4.3) 46.85% (±3.7) K = 20 6.77% (±1.4)
Km=5 18.88% (±3.4) 15.34% (±4.9) 29.10% (±0.5) 17.65% (±2.5) 59.25% (±5.8) K = 28 5.93% (±1.1)
Km=6 21.37% (±5.5) 17.22% (±4.1) 16.05% (±4.5) 19.27% (±5.2) 60.85% (±1.7) K = 40 6.40% (±1.0)

(b)

100 sequences per class
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Table 3.2: Clustering error on the Character Trajectories (top), AUSLAN (middle)

and JV (bottom, 9-class clustering task) datasets. Standard deviation of the results

for the AUSLAN dataset is 0 except for ‘SPEND’ vs ‘COST’ using YY distance,

with a value of 0.8. The number of hidden states is K = 4 for SSD and Km = 2 for

the rest of methods (best case)

# hidden stat. SYM YY KL BP PPK # hidden stat. SSD

Km = 2
3.90% 2.98% 3.56% 3.43% 23.28%

K=14
2.83%

(±0.4) (±0.2) (±0.1) (±0.2) (±0.8) (±0.3)

Km = 3
3.70% 3.10% 3.55% 4.77% 22.34%

K=16
2.42%

(±0.1) (±0.2) (±0.0) (±0.3) (±0.8) (±0.2)

Km = 4
4.69% 4.47% 4.31% 16.08% 37.75%

K=20
1.77%

(±0.2) (±0.0) (±0.1) (±0.8) (±0.2) (±0.2)

Km = 5
3.72% 3.60% 3.42% 15.30% 38.61%

K=22
1.65%

(±0.3) (±0.1) (±0.1) (±0.1) (±0.2) (±0.2)

SIGNS SYM YY KL BP PPK SSD

‘HOT’ vs ‘COLD’ 0% 0% 0% 0% 0% 0%

‘EAT’ vs ‘DRINK’ 48.15% 7.41% 7.41% 7.41% 7% 4.63%

‘HAPPY’ vs ‘SAD’ 40.74% 1.85% 0% 1.85% 13% 0%

‘SPEND’ vs ‘COST’ 45.93% 0.37% 0% 0% 20% 0%

‘YES’ vs ‘NO’ 39.64% 45.45% 45.45% 45.45% 41% 45.45%

# hidden stat. SYM YY KL BP PPK # hidden stat. SSD

Km = 2
32.33% 14.89% 9.85% 14.70 % 24.52%

K=20
17.70%

(±2.8) (±2.1) (±1.7) (±1.0) (±3.7) (±3.7)

Km = 3
32.72% 20.99% 18.86% 24.56% 17.41%

K=30
14.52%

(±3.0) (±4.1) (±4.0) (±3.7) (±5.1) (±4.5)

Km = 4
32.04% 26.59% 14.45% 21.45% 20.22%

K=40
12.07%

(±3.4) (±6.2) (±5.4) (±4.8) (±3.7) (±4.4)

Km = 5
29.40% 17.19% 17.70% 20.23% 21.85%

K=50
23.63%

(±3.6) (±5.2) (±5.5) (±4.4) (±3.9) (±6.9)
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3.4 Summary

In this chapter we have presented a new distance for model-based sequence clustering

using state-space models. We learn a single model representing the whole dataset

and then obtain distances between sequences attending to their dynamics in the

common state-space that this model provides. It has been empirically shown that

the proposed approach outperforms the previous semi-parametric methods, specially

when the mean sequence length is short. Furthermore, the proposed method scales

much better with the dataset size (linearly vs quadratically). As drawback of this

method it should be mentioned that, as the number of classes grow, the common

model may need a large number of hidden states to correctly represent the dataset

(although the method is empirically shown not to be too sensitive to the accurate

determination of the model size). In the case of hidden Markov models, the time

complexity of the training procedure is quadratic in this number of states, so total

running time can be high in these cases. Consequently, we find our proposal specially

appealing for scenarios with a large number of sequences coming from a few different

classes, which is a very usual case.

Promising lines for future work include the application of this methodology to

other state-space models, both discrete and continuous, and to semi-supervised sce-

narios. We are also investigating alternative definitions of distance measures between

transition matrices in order to take into account the potential redundancy of the

state-space.
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Chapter 4

Sphere packing for clustering sets

of vectors in feature space

We propose a simple method for clustering sets of vectors by packing spheres learnt to

represent the support of the different sets. This can be done efficiently in a kernel-

induced feature space by using the kernel trick. Our main assumption is that the

supports of the distribution in that feature space present modest overlap.

4.1 Introduction and chapter structure

On previous chapters of this Thesis we have focused on using probabilistic models

to elicit the dynamical characteristics of sequences of data. This allowed us to de-

fine model-based disimilarity measures that capture those dynamics. However, there

are many scenarios where the sequences can be accurately classified or clustered

without attending to their dynamical features. Examples include bag-of-words mod-

els for image analysis [Dance et al., 2004], speech-independent speaker verification

[Reynolds, 2002],etc. In those scenarios, the statical probability distributions of the

elements belonging to the different sequences (or, in this case, sets of vectors) are

distinct enough, so a learning task can succeed without considering the dynamics.

In these cases the sequences can be viewed simply as (not strictly independent)

samples from some underlying distributions, and can thus be characterized in terms
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of the probability density functions (PDFs) of those distributions. The PDFs can

be estimated in many ways depending on the application. For example, many works

in bag-of-words modeling for topic analysis or image classification employ a simple

histogram of the visual words [Dance et al., 2004], while for general continuous dis-

tributions the most extended model is arguably the Gaussian mixture model (GMM)

[Bishop, 2006]. Probabilistic models need a fine-tuning of their parameters for them

to be effective, and in many cases that can be a hard problem in itself. Moreover, it

is well known that when the input space is high dimensional and/or the number of

samples per sequence is low, the estimation of probabilistic models is likely to be an

ill-posed problem.

In many cases the input space does not provide an adequate representation of

the data, so it is beneficial to work in an alternative feature space. Inspired by

this, some works define affinity measures between sequences in a feature space as a

combination of individual vector kernels. This idea was first presented in the field

of speaker verification in [Campbell et al., 2006], where an explicit representation of

the feature space vectors was required. In contrast, [Louradour et al., 2007] propose

a modification where the affinity can be obtained only in terms of inner products in

feature space. This allows for the use of the kernel trick [Schoelkopf and Smola, 2001]

in order to perform implicit expansions into a high (possibly infinite) dimensional

feature space via a kernel function. The drawback of this method is that it requires

a set of labeled sequences in order to learn the covariance matrices defining each

class, so it is not directly applicable in an unsupervised scenario.

In this chapter we aim at providing a direct non-parametric feature-space clus-

tering of different sets of vectors, in contrast with the usual two-stage (obtain a

distance between sets and then apply a standard clustering algorithm) approach. To

this end, we employ recent ideas in the field of support estimation for distributions

in a reproducing kernel Hilbert space (RKHS) [Shawe-Taylor and Cristianini, 2004].

Specifically, we model the support of each set of vectors via its minimum-enclosing

sphere in feature space. In essence, we substitute the usual density estimation for

the much simpler support estimation procedure. The goal of the clustering step is

two find a certain number of hyperspheres (correspoding with the desired number of
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clusters) encompassing the whole dataset with the smallest total radius. Since this

is computationally a hard problem, we use a greedy approximation carried out by

iteratively finding the smallest sphere encompassing two of the existing ones. As we

show in the paper, this procedure is very efficient due to the sparsity of the solution

to the support estimation and can work seamlessly in kernel-induced feature spaces

of arbitrary dimensions. The method can be interpreted as a hierarchical-clustering

scheme, and can naturally handle multi-class clustering.

This chapter is structured as follows: First, Section 4.2 provides a brief overview

of existing distance/affinity measures for sets of vectors. Then, Section 4.3 contains

the theoretical background of the support estimation algorithms. A detailed descrip-

tion of our proposed clustering algorithm can be found in Section 4.4. Empirical per-

formance evaluation is shown in Section 4.5, and finally Section 4.6 summarizes the

contributions presented in the chapter and sketches some lines for further research.

4.1.1 Related publications

This chapter is mainly based on [Garćıa-Garćıa and Santos-Rodŕıguez, 2011].

4.2 Distance measures for sets of vectors

Assume we are given a dataset S = {X1, . . . ,XN} of bags-of-vectors, with Xi =
[

x
(i)
1 , . . . ,x

(i)
Ni

]

. Different sequences may present different number of elements Ni.

All the individual vectors x
(i)
j of every set live in the same input space X .

4.2.1 General model-based distances

Firstly, let us make clear that the model-based approaches shown in Chapter 2 can be

directly translated to a set-of-vectors scenario by substituting the dynamical model

(HMM) for a “statical” counterpart, such as MoG models. This is also the case

with the probability product kernel (PPK) (see Chapter 3, Sec. 3.1), which is just

a generalized inner product of probability densities. Specifically, the PPK between

two Gaussian mixture models with ρ = 1 corresponds with the expected likelihood

(EL) kernel, and can be obtained in closed form [Lyu, 2005]. Assuming we have a
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pair of k-component GMMs with parameter sets θa and θb, their EL kernel can be

written as:

κEL(θa, θb) =

∫

Rd

p(z|θa)p(z|θb)dz = (2π)−d/2wT
a Γwb,

where wa is a column vector containing the weights of the different components of

θa and Γ is a k × k symmetric matrix whose ijth element is given by integration of

the product of the ith Gaussian component of θa and the jth component of θb. For a

pair of Gaussian distributions (µ1, C1) and (µ2, C2), that integration can be written

in closed form as

g(µ1, C1, µ2, C2) =
|C| 12 exp

(

1
2µ

TC−1µ
)

∏2
k=1 |Ck|

1
2 exp

(

1
2µ

T
kC

−1
k µk

)

,

where µ = C−1
1 µ1 + C−1

2 µ2 and C = (C−1
1 + C−1

2 )−1.

4.2.2 Feature space methods

In many cases, the input space does not provide an adequate representation of the

data for learning purposes. In those cases, it may be beneficial to project the input

vectors into a higher dimensional space in order to increase the separability of the

classes. This can be done via an embedding function Φ : x→ Φ(x), as shown in the

Generalized Linear Discriminant Sequence kernel (GLDS) of [Campbell et al., 2006].

This method defines a kernel between sets of vectors as a rescaled dot product

between average polynomial expansions. The scaling is given by the second-moment

matrix of the polynomial expansions, estimated on some background population.

Working with explicit feature vectors can be intractable as the size of the feature

space grows. In order to work in very high (possibly infinite) dimensional feature

spaces, the kernel trick [Schoelkopf and Smola, 2001] is usually employed. If an

algorithm can be expressed in terms of inner products of feature space vectors, the

kernel trick consists in substituting these inner products for evaluations of a kernel

function κ(x,y) on the corresponding input vectors. If this function satisfies the

Mercer conditions, it represents an inner product in an induced feature space. In

[Louradour et al., 2007], the authors modify the idea of the GLDS in a way that

it can be applied to any feature space defined in terms of a kernel function. For
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a comparative evaluation of these and other specific kernels in the field of speaker

verification, please refer to [Daoudi and Louradour, 2009].

Probabilistic distances can also be defined in feature space. In

[Zhou and Chellappa, 2006], the authors show how some of the most usual distances

between probability distributions can be obtained in the space induced by a given

kernel function. They assume that the data vectors are Gaussian-distributed in the

RKHS, and that they follow a factor analysis model. This is key in order to reduce

the effective dimension and avoid singular covariance matrices. Thus, this kind of

methods relies heavily on the right choice of the latent space dimensionality, which

is a hard problem in itself.

Some recent works have analyzed the embedding of distributions in a reproduc-

ing kernel Hilbert space (RKHS). Specifically, these embedding have been used to

define tests for checking independence [Gretton et al., 2005] or for addressing the

two-sample problem [Gretton et al., 2007]. Many of these tests use a statistic called

the maximum mean discrepancy (MMD), which is defined as follows:

Definition (Maximum Mean Discrepancy) Let F be a class of functions f : X → R

and let P and Q be two Borel probability measures defined on the domain X . The

MMD is defined as

MMD [F , P,Q] = sup
f∈F

(EP [f(x)]− EQ[f(y)])

When F is the unit ball in a reproducing kernel Hilbert space (RKHS) H, the

MMD can be computed very efficiently, as stated in the following lemma from

[Gretton et al., 2007]:

Lemma 4.2.1. Denote µP = EP [Φ(x)]. Then MMD[F , P,Q] = ||µP − µQ||H,

Moreover, if the RKHS H is universal then MMD is a metric, allowing us to

identify P = Q uniquely [Gretton et al., 2007]:

Theorem 4.2.2. Let F be a unit ball in a universal RKHS H. Then

MMD[F , P,Q] = 0 if and only if P = Q

To the best of our knowledge, the MMD has not been used as a distance measure

for clustering sets of vectors.
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4.3 Support estimation via enclosing hyperspheres

A recent algorithm for novelty detection [Shawe-Taylor and Cristianini, 2004] con-

sists in enclosing the training data in a hypersphere and then for each new point

checking whether that point is inside or outside the hypersphere. This way, the

sphere acts as an estimation of the support of the underlying distribution.

Support of a distribution Let P be a probability measure over a space X , and
Sx,ǫ the closed ball of radius ǫ centered at x. Its support is defined as the collection

of all x ∈ X with P (Sx,ǫ) > 0 for all ǫ > 0.

Assuming that points in the training set are i.i.d., the most obvious choice for such

an hypersphere would be one centered at the mean of their distribution. However,

this is not the smallest possible one. Moreover, if we are working with sequences

whose dynamics have been discarded, independence is too much of an assumption,

which further discourages the use of the sample mean.

Assume we are given a set of points X = {xi, . . . ,xj} with an associated

embedding φ into a feature space with associated positive semi-definite kernel

κ(x, z) = 〈φ(x),φ(z)〉H, where H is the corresponding Hilbert space. The prob-

lem of finding the minimum sphere that contains all the embedded points can be

written as:

min r2 s.t. ||φ(xi)− c||2 ≤ r2, i = 1, . . . , Ni, (4.1)

where c represents the center of the optimal hypersphere, and r its radius. This is a

constrained optimization problem, which can be solved by introducing a Lagrangian

involving one Lagrange multiplier αi for each constraint. Then, it is easy to solve for

those multipliers by setting the derivatives of the Lagrangian w.r.t. c and r equal to

0, yielding

n
∑

i=1

αi = 1⇒ c =
n
∑

i=1

αiφ(x), (4.2)

which shows that the center of the optimal sphere always lie on the span of the input

data points, so it can be expressed in the dual representation. Substituting back in
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Eq. (4.1) we get

L(c, r,α) =

n
∑

i=1

αiκ(xi,xi)−
n
∑

i,j=1

αiαjκ(xi,xj), (4.3)

which is a convex problem (since the matrix with entries κ(xi,xj) is positive semi-

definite for any dataset) where the optimization is subject to the non-negativity and

sum to one conditions of the Lagrangian coefficients α = [α1, . . . , αNi
]T .

By virtue of the Karush-Kuhn-Tucker (KKT) conditions

[Boyd and Vandenberghe, 2004], the only non-zero Lagrange multipliers α will be

those corresponding to points that lie on the surface of the hypersphere. This

implies the very desirable property of sparsity of the solution, in the same vein

as support vector machines (SVMs) [Shawe-Taylor and Cristianini, 2004]. Due to

this analogy, we will refer to the input points with non-zero coefficients as support

vectors (SVs).

This algorithm is very sensitive to outliers, since we are forcing the hypersphere

to enclose all the points in the dataset. To alleviate this, “soft” versions of the

support estimation procedure can be defined by using slack variables that penalizes

points outside the hypersphere. The resulting optimization problem is practically

equivalent to Eq. (4.3), but substituting the non-negativity constraint of the La-

grange multipliers for the more restrictive one 0 ≤ αi ≤ C, where C is a penalty

parameter. Since the sum-to-one constraint still holds, this means that penalties

C > 1 are meaningless.

Moreover, this restriction has a natural interpretation in terms of sparsity. Given

a penalty parameter C, the center of the optimal sphere must be be represented by at

least ⌈1/C⌉ points with strictly positive Lagrange multipliers. This way, the trade-off

between the robustness to outliers and the sparsity of the solution is made explicit.

4.4 Clustering sets of data by sphere packing

Suppose we have a dataset S = [X1, . . . ,Xm] of m sets of data (samples). We want

to divide that dataset into K disjoint groups (clusters), with samples belonging

to a given cluster being similar to each other and different from samples in other
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clusters. Obviously, this is a very subjective definition, totally dependent on the

choice of metric with which the similarity between the sequences is measured. We

propose to view each individual set Xi as an i.i.d. sample from some underlying

probability distribution Pi, and then consider the overlap between the support of the

different distributions as a measure of similarity between the corresponding sets. To

that end, we will employ the support estimation methods presented in the previous

section. This way, on the first step of the algorithm each sample Xi is associated

with an hypersphere S(i) in feature space, defined by its radius r(i) and its center c(i).

Those individual spheres can be learned using the hard or soft support estimation

procedures discussed in the previous section, depending on the scenario. If our data

is likely to present outliers, the soft formulation will yield better results because of

its robustness.

The goal of the algorithm is to obtain a set of K spheres S(1), . . . , S(K)(one per

final cluster), each one of them formed by “packing” together the original spheres.

To this end, we propose a hierarchical recursive sphere-merging mechanism. At each

step the algorithm checks what pair of spheres can be fused using a minimum-radius

sphere. The assumption behind this algorithm is that the support of different classes

do not overlap much. This may be seen as a too restrictive assumption in input space,

but is quite sensible in a rich feature space such as those induced by Gaussian kernels.

Moreover, by restricting our attention to the support of the distribution we can get

much better estimates for small sample size. Estimating a full distribution requires

a large number of samples to be accurate (specially in high dimensional settings),

while the support estimation is a much simpler problem and can thus be accurately

solved given small sample sizes.

The crucial part of the algorithm is the sphere-packing procedure. We will illus-

trate this step in the first iteration, when we have the original spheres S(1), . . . , S(m).

The goal of this step is to find the smallest (in terms of radius) sphere S∗ = S(i∗,j∗)

from all the S(i,j), where S(i,j) is the smallest sphere encompassing S(i) and S(j).

So the problem now remains how to obtain each S(i,j). Obviously, if some S(i) is

contained within another S(j), then S(i,j) = S(j). If that is not the case, S(i,j) can

be obtained in a simple geometrical way, as depicted in Fig. 4.1. The center c(i,j) of
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the sphere will be the middle point of the segment going through the two existing

centers and joining the outer edges of the spheres, and its radius r(i,j) can be simply

written as

r(i,j) =
1

2

(

di,j + r(i) + r(j)
)

. (4.4)

The most important aspect of this construction is that it can be carried out in a

kernel-induced feature space. To this end we first need to find the distance di,j

between each pair of centers c(i) and c(j). Since each center is a point in a possibly

infinite feature space, we represent them, by virtue of Eq. (4.2), by the corresponding

dual coefficients α(i) and α(j). This way, we can write:

di,j = ||c(i) − c(j)||H =
√

||c(i)||2H + ||c(j)||2H − 2
〈

c(i), c(j)
〉

H

=
√

α(i)TK(i)α(i) +α(j)TK(j)α(j) − 2α(i)TK(i,j)α(j), (4.5)

where K(i) and K(j) are the kernel matrices of the support vectors defining c(i) and

c(j), respectively, and K(i,j) is the corresponding crossed kernel matrix between the

two sets of support vectors. Since the support estimation solution is sparse, the

number of support vectors is expected to remain low in comparison with the total

number of samples, and thus these kernel calculations are computationally very

cheap. Moreover, the support set does not change in further steps, so there is no

need to re-calculate the kernel values. The radius of the corresponding encompassing

sphere can be obtained using Eq. (4.4), and thus the optimal pair (i∗, j∗) of spheres

to merge can be selected accordingly.

Now we need a way to represent the center of the new sphere for further iterations.

Noting that

c∗ = c(i
∗) −

(

r∗ − r(i
∗)
) c(i

∗) − c(j
∗)

||c(i∗) − c(j∗)|| (4.6)

and recalling Eq. (4.2), it is easy to see that c∗ lies in the span of SV ∗ = SV (i∗) ∪
SV (j∗), where SV (i) is the set of support vectors of the sphere learned on the ith

sample. The corresponding coefficients for that support vector expansion are given

by:
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α∗ =





α(i∗)

0



−
(

r∗ − r(i
∗)
)

di∗,j∗





α(i∗)

−α(j∗)



 . (4.7)

Then, S(i∗) and S(j∗) are eliminated from the pool of spheres to merge, while S∗

is added to that pool. This step will be repeated until there are only K remaining

spheres. Sets whose support have been embedded into the same sphere will belong

to the same cluster. The process, using a linear kernel, is shown in Fig. 4.2, starting

with the original samples, then performing support estimation on each individual

sample and finally packing the individual spheres until there are only as many left

as clusters we are looking for.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

C(1,2)

C(1)

C(2)

Figure 4.1: S(1,2) is the smallest encompassing sphere of (S(1), S(2))

Note that the smallest sphere encompassing S(i) and S(j) is not necessarily the

smallest sphere encompassing samples Xi and Xj . We build all the packing pro-

cedure upon the support estimates instead of on the samples because this way the

process becomes computationally much lighter, since the optimal packings can be

obtained in close form instead of having to solve a QP problem for each pair of sam-

ples at each step. Moreover, the slack introduced by this approximation has been
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empirically shown to be quite small.

The clustering procedure is summarized in Alg. 2. Note that the sphere-packing

algorithm can be easily adapted to a semi-supervised learning setting. In that sce-

nario, we are given a (usually small) set of labeled points, together with a (generally

larger) set of unlabeled points. Sphere-packing can work seamlessly on such a setting

by grouping all the points with each given label as separate sets (and then learn the

corresponding spheres), and viewing the unlabeled points as 1-element sets, so their

corresponding spheres will have a null radius and a center given by the point itself. If

this reasoning is taken to the extreme, we arrive at the standard clustering problem

of individual data points. Sphere-packing in that case reduces to an agglomerative

variant of hierarchical clustering.
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(c) Final spheres, 2 clusters

Figure 4.2: Sphere packing procedure: Each original set is represented by its smallest-

encompassing sphere, and the resulting spheres are iteratively packed until there are

only K spheres remaining.

64



CHAPTER 4. SPHERE PACKING FOR CLUSTERING SETS OF VECTORS
IN FEATURE SPACE

Algorithm 2 Hierarchical sphere-packing for clustering sets of vectors

Inputs:

Dataset {X1, . . . ,XN} of N sets of vectors

Desired number of clusters K, kernel parameters

Algorithm:

Step 1: Support estimation

S = []

for all Xi do

Si = (r(i),α(i)) : Smallest sphere containingXi, learnt using Eq. (4.3) or similar.

S← S ∪ Si

end for

Step 2: Sphere-packing

while |S| > K do

i∗, j∗ = argmini,j
1
2

(

di,j + r(i) + r(j)
)

r∗ = min 1
2

(

di,j + r(i) + r(j)
)

α∗ =





α(i∗)

0



−
(

r∗−r(i
∗)
)

di∗,j∗





α(i∗)

−α(j∗)



 .

S∗ = (r∗,α∗)

S← S ∪ S∗

S← S\(Si∗ , Sj∗)

end while
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4.5 Experimental results

In this section we evaluate the performance of the sphere-packing clustering al-

gorithm (SPH) using both synthetic and real-world datasets. We compare our

method with a two-step approach combining Maximum Mean Discrepancy (MMD)

[Gretton et al., 2007] as a distance measure between sequences/samples and a

normalized-cut spectral clustering algorithm [von Luxburg, 2007], both methods be-

ing state-of-the-art in their respective fields. Moreover, we also compare with the

KL-LL model-based approach described in Chapter 2. Taking advantage of the

flexibility of the method, we will use both a single Gaussian (KL-Gauss) or a two-

components Gaussian mixture (KL-GMM) as the generative model, apart from the

HMM case (KL-HMM). We also introduce into the comparison the Expected Likeli-

hood (EL) kernel described in Section 4.2.1, using two-components GMMs. Results

are shown in the form of clustering error, understood as the corresponding sequence-

wise classification error under an optimal permutation of the labels. All the ex-

periments use Gaussian kernels with a width parameter σ automatically selected

as the median distance between points in the dataset, which is a poular heuristic

[Schoelkopf and Smola, 2001]. For support estimation, we use the soft version of the

algorithm, with a penalty parameter C = 0.05.

In the synthetic case, we want to cluster samples from two different distributions.

Both distributions are 2-D zero-mean Gaussians, with covariance matrices C1 =




1 0

0 1



 and C2 =





1.3 0

0 1



, respectively. The dataset is comprised of 50

samples, each one of them of a size randomly selected between 80 and 120. That

conforms scenario (a). In scenario (b), the samples are contaminated with a 10% of

outliers coming from a Gaussian distribution with mean [55]T and identity covariance

matrix. Table 4.1 shows the results, averaged over 50 simulations. In absence of

outliers, the Gaussian distribution approach obtains the better results. That is

sensible, since data actually follows a Gaussian distribution. However, the non-

parametric methods are much more robust in the presence of outliers, even with

the inclusion of a second mixture component in the GMM model to account for the

outlying points. The SPH algorithm is even able to outperform the gold-standard
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Table 4.1: Clustering error for the synthetic scenarios

SPH MMD KL-Gauss KL-GMM (m=2) EL

(a) 20.05% 24.10% 16.50% 17.10% 24.20%

(b) 21.90% 25.30% 42.30% 40.00% 40.50%

Table 4.2: Clustering error for the speaker clustering tasks

Dataset SPH MMD KL-Gauss KL-GMM KL-HMM SSD EL

JV 10.00% 20.37% 16.37% 15.93% 9.85% 12.07% 18.33%

GPM 10.56% 9.57% 15.22% 10.84% 9.65% 10.71% 15.10%

combination of MMD+SC.

As an example of a real-world application, we tackle two speaker clustering tasks.

It is quite a natural choice, since it is a task where the dynamics of the sequences are

usually discarded. We have tried both the Japanese Vowels (JV) and GPM datasets

(see Appendix D). We simulate a 9-class speech-independent speaker clustering task

with the JV dataset, and a 2-class task using the GPM dataset. Results are shown

in Table 4.2, showing that SPH achieves a much better performance than the other

methods which use only “static” information in the JV dataset. It is only surpassed

by the best-performing method from previous comparisons: the KL-LL distance with

HMM as generative model. The SPH algorithm also performs at a good level in the

GPM dataset. The performance of MMD is excellent in the two-class clustering task,

but very poor in the 9-class task. A more challenging scenario will be presented in

Chapter 6.

4.6 Summary

We have presented a new approach for clustering sets of vectors, based on support

estimation in a kernel-induced feature space. Starting with the hyperspheres approx-

imating the support of each individual set, we cluster them by iteratively packing

together the pair of spheres that results in the smallest encompassing sphere. Em-

pirical results are promising and show that the method is competitive with the state

of the art.
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Chapter 5

Risk-based affinities for clustering

sets of vectors

We investigate the definition of similarity between sets of data based on their sep-

arability, as measured by the risk of some classifier. This idea is further developed

and linked with the framework of f -divergences. Two generalizations of this family

of divergences are proposed and studied: CRFDs are based on restricting the class of

allowable of classification functions and Loss-Induced divergences are based on the

use of surrogate losses instead of the 0-1 loss. As a first example of this theory,

we use loss-induced divergences to define both a new estimator and bound for the

well-known Kullback-Leibler divergence

5.1 Introduction and chapter structure

In this chapter we are once again concerned with the sets-of-vectors scenario, that

is to say, the case where the dynamics of the sequences are discarded. While in

Chapter 4 we developed a support-based approach to clustering, here we will present

more general and expressive methods. The main intuition behind our results is the

identification of the affinity of a pair of sets of vectors with how hard to separate those

sets are. Separation can be quantified with the help of binary classifiers, opening a

wide range of possibilities for defining classifier-based affinity functions.
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Intuitively, the similarity between two sets X and Y can be defined as a function

of how separated the sets are. It is quite natural to measure the amount of separation

between two sets with the help of a classifier. In the simplest case, this idea reduces

to training a a classifier that is supposed to separate the points X from Y and use

its error rate as a similarity score. Intuitively, if the sets X and Y “overlap a lot”,

then the classifier will have a high error rate, which we interpret as a high similarity.

If, on the other hand, X and Y are well separated from each other, the classifier will

achieve a low error, leading to a low similarity score. This can be understood as a

discriminative approach to measuring affinity, in contrast to the standard methods.

A particularity of error-based affinity measures is that they make no distinctions

between distributions that can be perfectly separated. Consider, for example, a

pair of uniform distributions P = U [0, 1] and Q = U [2, 3]. Any sensible classifier

will be able to separate samples from those two distributions perfectly, since their

support is disjoint, and thus their affinity will be 0. The exact same will happen

if Q = U [103, 104] or Q = U [1.01, 2], although one may intuitively assume that the

latter can be somewhat “closer” to P than the former. By restricting our affinity

measure to be risk-based, we are effectively considering that two distributions that

can be perfectly separated are totally dissimilar. This has the desirable effect of

bounding the affinity measure.

Thus, by using classifiers it is possible to obtain useful information about the

affinity of the sets of vectors without having to explicitly fit probabilistic models to

the individual sequences. Learning this kind of models in high dimensional spaces

or when a sequence is very short is an ill-posed problem, requiring very careful regu-

larization procedures. This may hinder their practical application in scenarios such

as kernel-induced high dimensional feature spaces. In contrast, learning classifiers in

such spaces is usually a straightforward procedure.

The choice of the classifier to use as a basis for defining affinities can be motivated

by domain knowledge. For example, a practitioner may know that, in his field, linear

classifiers (or SVMs with a given kernel) work well. It is then natural to use those

classifiers to induce an affinity function for clustering purposes, providing a simple

and intuitive way to leverage this knowledge. However, such an approach is clearly
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suboptimal if there is no such prior knowledge. In those cases it would benefitial to

use very flexible class of functions in order to capture all the possible information.

For example, the Nearest Neighbor (NN) rule provides a simple classifier (or, strictly,

classification rule) that exhibits many interesting properties for our purposes. The

resulting classification functions are inherently non-linear, capturing arbitrary shapes

of the distributinons, its error rate can be estimated both easily and efficiently and

it is amenable to theoretical analysis. For these reasons, we will use it as a basis for

many of the results in this chapter.

The idea of risk-based affinities can be cast naturally in the framework of f -

divergences [Ali and Silvey, 1966, Csiszár, 1967]. Many well-known divergence mea-

sures can be seen to be members of this family, which is closely related to Bayes

classification errors. There are two main paths to further generalize the concept

of f -divergences for our purposes: on the one hand, it is possible to define diver-

gences based on restricted sets of classification functions. On the other hand, losses

othar than the 0-1 loss associated to Bayes errors can be considered. Moreover,

these two paths can be combined, yielding a very general and appealing notion of

classifier-induced divergences.

This chapter is structured as follows: we start in Section 5.2 by introducing

the intuitions and some formalities regarding the notion of classifier-based affinities.

Section 5.2.1 is devoted to the analysis of the NN error as an affinity function. We

then present the foundations for more involved risk-based measures in Section 5.3,

introducing the well-known family of f -divergences. In Section 5.4 we present a first

generalization of f -divergences, based on the idea of restricting the class of permissi-

ble classification functions, and explore the most interesting theoretical properties of

these generalized divergences. Section 5.5 deals with another possible generalization,

this time related to surrogate Bayes risks. We present some theoretical results about

this loss-induced divergences, showing their most appealing properties as well as the

deep connections with standard f -divergences. Together with a result linking NN

error and a certain surrogate Bayes risk, we use the developed theory to obtain new

estimators for the Kullback-Leibler divergence.
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5.1.1 Related publications

Parts of this chapter appear in [Garćıa-Garćıa et al., 2011b].

5.2 Classifier-based affinity measures

Let us now conceptualize the classifier-based framework more abstractly. Consider

two probability distributions P,Q on the same space X and their convex combination

M := πP + (1 − π)Q for some weight parameter π ∈ [0, 1]. Assign labels +1 to all

points that have been drawn from P , and labels −1 to all points drawn from Q. The

classification task (π, P,Q, l) consists in finding the optimal classification function

ŷ : X → V, V ⊆ R, for this setting under a given loss function l : {0, 1} × V → R.

That is to say, find the function ŷ minimizing the risk under the loss l

Ll(ŷ, π, P,Q) = EM [η(x)l(1, ŷ(x)) + (1− η(x))l(0, ŷ(x))], (5.1)

where

η = P (Y = 1|X = x) = π
dP

dM
(5.2)

is the posterior class probability function. In case densities p(x), q(x) exist, η(x) =
πp(x)

πp(x)+(1−π)q(x) . We will define notions of affinity based on optimal risks

L
C
l (π, P,Q) = min

ŷ∈C
Ll(ŷ, π, P,Q) (5.3)

where C is a given set of functions. In case we allow any possible classification

function and choose the 0-1 loss

l0−1(Y, ŷ) = IY 6=ŷ, (5.4)

where I stands for the indicator function, this similarity score becomes the Bayes

error of the classification task.

L0−1(π, P,Q) = E[min(η(x), 1 − η(x))], (5.5)

We use the underline to denote an optimal risk. This approach immediately rises

a couple of questions: what is the value of π we should use, and what is the best

72



CHAPTER 5. RISK-BASED AFFINITIES FOR CLUSTERING SETS OF
VECTORS

loss function l in order to obtain a meaningful similarity score? Moreover, from a

practical perspective, using the Bayes error as a similarity measure is problematic,

since it is really hard to estimate. It requires a consistent classifier or posterior class

probability estimator, and the convergence speed is usually quite slow (in fact, it can

be arbitrary slow [Devroye et al., 1996]).

Risk estimation becomes easier if we restrict the classification function to a sim-

ple (e.g. parametric) family, like linear classifiers. However, this effectively imposes

severe limitations on the features of the distributions that are being taken into ac-

count by the similarity measures. This can be really beneficial if there is some domain

knowledge substantiating that limitations, since it allows the similarity measure to

focus on the relevant “features” of the distributions. However, if we remain agnostic

about our scenario and would like the data to speak for itself, such a rigid approach

can be detrimental. Moreover, optimizing the 0-1 loss is still a complex problem as

it cannot be handled analytically. Instead, surrogate losses [Bartlett et al., 2006] are

usually employed. They are functions that share some features of the 0-1 loss while

being well-behaved. This mainly implies being smoothness and differentiability.

A first pragmatic approach for defining risk-based affinities is to use the nearest

neighbor (NN) rule (Sec. 5.2.1). Being a non-parametric method, it can capture

arbitrary “shapes” of the distributions, making it flexible enough to define similarities

between sets of points. From a practical point of view, there exist several efficient

alternatives for obtaining training-set based error estimates with good distribution-

free performance guarantees. In this chapter we will show how the asymptotic NN

error presents a nice property for an affinity measure: it is a definite-positive kernel

over probability distributions.

5.2.1 The Nearest Neighbor Rule

The k-nearest neighbor (k-NN) rule [Devroye et al., 1996] has enjoyed great popu-

larity since its conception in the early fifties. This popularity is arguably the product

of the following factors, amongst others:

• Intuitive interpretation

73



5.2. CLASSIFIER-BASED AFFINITY MEASURES

• Good performance in real-world problems

• Lends itself well to theoretical analysis

The goal of this section is to briefly describe the aspects of the k-NN rule that

will serve as the basis for further developments in this chapter. Given a training

dataset comprised of n pairs (Xi, Yi) ∈ R
d×{0, 1}, we can formally define the k-NN

rule as the mapping gn : Rd → {0, 1} such that:

gn(x) =







1 if
∑n

i=1wniI{Yi=1} >
∑n

i=1wniI{Yi=0}

0 otherwise,
(5.6)

where wni = 1/k if Xi is among the k nearest neighbors of x and wni = 0

otherwise. A training sample Xi is said to be the k-th nearest neighbor of x (which

we denote by X(k)(x)) if the distance ||Xi − x|| is the k-th smallest among ||X1 −
x||, . . . , ||Xn−x||. If k is odd (thus avoiding voting ties), the rule can be interpreted

as classifying a sample x according to the majority vote of its k nearest neighbors in

the training set. For k = 1, this reduces to the standard NN rule, where a test point

is assigned the label of its closest point in the training set. Such a simple rule has

been widely studied in the literature for decades, and will be the one we will base

our further analyses upon.

One of the most interesting properties of the NN rule (and one that we will exten-

sively explote) is that there is a convenient closed-form expression for its asymptotic

error. Denoting by LNN
n the error rate of the NN rule on a training set of size n we

have the following theorem:

Theorem 5.2.1. For the nearest neighbor rule and any pair P,Q of distributions:

lim
n→∞

EM [LNN
n ] = EM [2η(x)(1 − η(x))] = L

NN
0−1, (5.7)

where η = πdP
dM is the posterior class probability, and M = πdP + (1 − π)dQ is the

reference measure.

This theorem, under various continuity conditions, appears in

[Cover and Hart, 1967]. In its most general form, it is due to [Stone, 1977].

It can be intuitively understood by noting that, asymptotically, the nearest neighbor
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of a point x will converge to that exact same point. This way, the probability of

error at a given point will be η(x)(1 − η(x)) + (1 − η(x))η(x) = 2η(x)(1 − η(x)),

since η(x) is the probability of the point x belonging to class 1, 1 − η(x) is the

probability of point x belonging to class 0 and, as aforementioned, those exact same

values also hold for the nearest neighbor of x.

Another interesting aspect of the NN rule is the good behaviour of its training-

set set based error estimates. Arguably the simplest possible option is the deleted

estimate or leave-one-out cross validation. For general k-NN, a simple distribution-

free finite sample performance bound of this estimate in terms of squared error is

given in [Rogers and Wagner, 1978]. Particularized for the NN case, it leads to the

following L1 bound [Devroye et al., 1996]:

E[|L̂(D)
n − Ln|] ≤

√

7

n
,

where L̂
(D)
n denotes the deleted estimate on a sample size n, and Ln is the actual

NN error on that sample. The most serious disadvantage of the deleted estimate

is its large variance. This can be alleviated by using more complex methods, like

multiple-fold cross validation (CV). In fact, the NN rule lends itself very well to

CV, making it possible to get closed-form expressions for complete cross-validation

[Mullin and Sukthankar, 2000]. Standard CV relies on resampling in order to get

train/test divisions of the original sample, obtaining the test error on those division

and then averaging to get the final estimate. On the other hand, the main idea

behind complete cross-validation is to directly obtain the expectation over all the

possible partitions of the dataset (for a fixed training set size). For the NN rule,

this can be done in closed form. Specifically, the number of train/test partitions for

which a given x in the original sample is correctly satisfied is given by:

A(x) =
n−1
∑

i=1

IYx=YX(k)(x)

(

n− i− 1

α− 1

)

,

where X(k)(x) represents the k-th nearest neighbor of x, Yx the label associated with

x and α is the chosen size for the training set. Obviously, the number of possible

partitions with such a training set size (and forcing x to be in the test set) is simply
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Aα =
(n−1

α

)

. This way, the expected error for a given point x is given by 1 − A(x)
Aα

.

Averaging over all the points in the sample gives the final estimate.

5.2.2 Properties of NN error as an affinity measure

Using NN errors L
NN
0−1(P,Q) as affinity measures between distributions P,Q is a

simple approach with good theoretical properties. In the following we present and

prove our results regarding some of the most important of those properties.

• NN risk is a non-negative, bounded similarity measure with the

supremum attained when P = Q

Obviously, these conditions are highly desirable for an affinity measure. We

make them explicit in the following theorem:

Theorem 5.2.2. 0 ≤ L
NN
0−1(P,Q) ≤ 1

2 , with L
NN
0−1(P,Q) = 1

2 iff P = Q

Proof. Non-negativity is obvious, since L
NN
0−1 (as any other error) is bounded

below by the Bayes error. The equality condition can be shown in many ways.

For the sake of interest, we will prove it based on the relation between NN and

Bayes errors. The expression for L
NN
0−1 can be bounded from above terms of

Bayes error L∗:

L
NN
0−1(P,Q) = EM [2η(x)(1 − η(x))]

= 2EM [min(η(x), 1 − η(x)) · (1−min(η(x), 1 − η(x)))]

≤ 2EM [min(η(x), 1 − η(x))]EM [1−min(η, 1 − η(x))]

= 2L∗(P,Q)(1 − L0−1(P,Q)) ≤ 2L0−1(P,Q),

where the first inequality comes from the well-known association inequality

E[f(x)g(x)] ≤ E[f(x)]E[g(x)] for f monotone increasing and g monotone de-

creasing ([Devroye et al., 1996], Theorem A.19). The next equality comes from

the definition of Bayes error as in Eq. (5.5). Since the Bayes risk has a

maximum of 1
2 when η(x) = 1

2 for all x (and thus P = Q) it follows that

L
NN
0−1(P,Q) ≤ 1

2 with equality iff P = Q.
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• NN risk as a positive-definite kernel over probability distributions

Many machine learning algorithms require affinity functions or kernels which

are positive definite (p.d.). A symmetric function κ : X ×X → R is a positive

definite (p.d.) kernel on X if

n
∑

i,j=1

κ(xi, xj)cicj ≥ 0 (5.8)

holds for any n ∈ N, x1, . . . , xn ∈ X and c1, . . . , cn ∈ R.

The reason behind the interest of p.d. similarity functions is mainly two-fold:

On the one hand, positive definiteness of affinity matrices is fundamental for en-

suring the convergence of convex optimization [Boyd and Vandenberghe, 2004]

procedures, which underlies many learning algorithms. On the other hand, and

arguably more interestingly, a positive definite kernel κ can be interpreted as

defining dot-products between feature representations in a space of sequences

l2 [Berlinet and Thomas-Agnan, 2003]. This way, any linear algorithm which

can be expressed in terms of inner products can be inmediately made non-linear

by substituting the euclidean inner products for evaluations of a kernel func-

tion. This amounts to working on the induced feature space, without needing

to perform any explicit expansion. This is known as the kernel trick.

We now proceed to establish and proof that LNN
0−1 is a positive-definite kernel

for probability distributions:

Theorem 5.2.3. The asymptotic error L
NN
0−1 of the nearest neighbor rule is a

positive definite kernel on the space of probability distributions P =M1
+(X )

Before starting with the proof, we present and prove the following intermediate

result

Lemma 5.2.4. The function f(x, y) = 1
x+y is a positive definite kernel in

R
+/{0}

Proof. Let gx(t) = e−xtIt>0 and gy(t) = e−ytIt>0. For x, y ∈ R
+/{0} we have

that gx, gy ∈ L2, that is to say, the Hilbert space of square-integrable functions.
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The standard inner product of gx and gy then yields:

< gx, gy >=

∫ ∞

0
gx(t)gy(t)dx = − 1

x+ y
e−(x+y)t

∣

∣

∣

∞

t=0
=

1

x+ y
.

So the function f(x, y) = 1
x+y for x, y ∈ R

+/{0} is the inner product of a

certain L2 embedding of x and y, and is thus p.d.

We are now in condition of proving the main theorem:

Proof. For notational simplicity, we proof the theorem for the case where π = 1
2

and assuming that densities p(x), q(x) exist. Under these conditions, we can

write the asymptotical NN error as

L
NN
0−1(P,Q) = EM [2η(x)(1 − η(x))]

= 2

∫

X
η(x)(1 − η(x)) · 1

2
(p(x) + q(x))dx

= 2

∫

X

p(x)

p(x) + q(x)
· q(x)

p(x) + q(x)
· 1
2
(p(x) + q(x))dx

=

∫

X

p(x)q(x)

p(x) + q(x)
dx =

∫

X
L(p(x), q(x))dx, (5.9)

where L(a, b) = ab
a+b . Note that if x /∈ RP,Q = Supp(P )∩Supp(Q), where Supp

denotes the support, then L(p(x), q(x)) = 0. So we can write

L
NN
0−1(P,Q) =

∫

RP,Q

L(p(x), q(x))dx.

Let us analize the integrand L(a, b). Since p(x), q(x) ≥ 0 and the integral is

restricted to RP,Q, we only need to worry about a, b ∈ R
+/{0}. Trivially, ab

is a p.d. kernel on R, since it is the standard euclidean inner product in that

space. Since, by Lemma 5.2.4, 1
a+b is p.d. in R

+/{0} then we can apply an

elementary property of p.d. functions (see, e.g., [Berg et al., 1984] Chap. 3) to

claim that L(a, b) = ab
a+b is also p.d. Finally, it is easy to show that the integral

is a p.d. function by proving that it satisfies the condition in Eq. (5.8).

n
∑

i,j=1

cjckL
NN
0−1(P,Q) =

n
∑

i,j=1

cjck

∫

RP,Q

L(p(x), q(x))dx

=

∫

RP,Q

dx

n
∑

i,j=1

cjckL(p(x), q(x)) ≥ 0,
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the second equality is due to uniform convergence, and the inequality comes

from
∑n

i,j=1 cjckL(a, b) ≥ 0 for all a, b ∈ R
+/{0}, since L is p.d.

• NN risk is a scale-invariant affinity measure

A measure between probability distributions over X is scale-invariant if it is

insensitive to scalings of X . For clustering purposes it is positive to have such

a coherent similarity measure, so that if we have scaled versions of the same

distribution in our dataset we obtain a similar scatter within the corresponding

clusters. We now proceed to state and proof that the NN risk satisfies such a

property:

Theorem 5.2.5. The NN risk L
NN
0−1 is a scale-invariant measure of affinity

between probability distributions

The result can be intuitively understood by considering the way the NN clas-

sifier works. We can also write down a very simple explicit proof:

Proof. For notational simplicity, we will once again assume that densities exist

and that X ⊆ R. The scaled densities can thus be written as p∗(x) = 1
ap(

x
a ),

q∗(x) = 1
aq(

x
a). The NN error between these scaled densities is simply:

L0−1
NN (p∗, q∗) =

∫

X

1
a2
p(xa )q(

x
a )

1
a

(

p(xa) + q(xa )
)dx

=
1

a

∫

X

p(x′)q(x′)

p(x′) + q(x′)
adx′

=

∫

X

p(x′)q(x′)

p(x′) + q(x′)
dx′ = L

NN
0−1(p, q),

where the second equality comes from the change of variable x′ = x
a , so dx =

adx′.

5.3 Generalizing risk-based affinities

Using the risk of a certain classifier as a measure of affinity between sequences for

a further clustering is a quite intuitive idea, but maybe lacking flexibility and be-

ing too simplistic. The main goal of this section is to look at risk-based measures
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from a broader perspective, trying to generalize the basic idea and, at the same time,

connecting it with the broader literature of divergences between probability distribu-

tions. Specifically, the focus will be on the connection of classifier-induced affinities

with the well-known family of f -divergences [Ali and Silvey, 1966, Csiszár, 1967].

5.3.1 f -divergences

Given a convex function f : (0,∞) → R, with f(1) = 0, we can define the corre-

sponding f -divergence between two distributions P,Q ∈ P =M1
+(X ) over an input

space X as:

If (P,Q) = EQ

[

f

(

dP

dQ

)]

=

∫

X
dQf

(

dP

dQ

)

,

if P is absolutely continuous with respect to Q, and ∞ otherwise. Many well-known

divergences can be cast into this framework by adequately choosing the generating

function f . Some important examples include

• Variational Divergence

The Variational Divergence is deeply connected with the Bayes risk of a binary

classification problem (see, e.g. [Devroye et al., 1996] Chap. 3). Its name

arises from the following variational interpretation of the divergence:

V (P,Q) = 2||P −Q||∞ = 2 sup
A⊆X

|P (A) −Q(A)|.

It can be written in the canonical f -divergence form as follows:

V (P,Q) =

∫

X
|dP − dQ|

∫

X
dQ
|dP − dQ|

dQ
=

∫

X
dQfV

(

dP

dQ

)

,

with fV (t) = |t− 1|.

• Kullback-Leibler (KL) Divergence

The KL divergence is arguably one of the best known f -divergences.

It is a very important magnitude in information theory, since it is

closely related to Shannon entropy, mutual information, cross entropy,etc.

[Cover and Thomas, 1991]. Its standard representation is given by

KL(P,Q) =

∫

X
dP log

dP

dQ

80



CHAPTER 5. RISK-BASED AFFINITIES FOR CLUSTERING SETS OF
VECTORS

which is obviously equivalent to the following expression

KL(P,Q) =

∫

X

dP

dQ
dQ log

dP

dQ
=

∫

X
dQfKL

(

dP

dQ

)

,

with fKL(t) = t log t.

Table 5.1, extracted from [Reid and Williamson, 2009], summarizes the generating

functions f and associated weights of these and several other important divergences.

Our discussion will be mainly based on a nice classic result (see for example

[Österreicher and Vajda, 1993]) that shows how f -divergences can be represented by

a weighted integral of statistical informations, which are closely related to Bayes

risks for 0-1 loss. Specifically:

If (P,Q) =

∫ 1

0
∆L0−1(π, P,Q)γf (π)dπ, (5.10)

where ∆L0−1(π, P,Q) is the statistical information defined in [DeGroot, 1970] as:

∆L0−1(π, P,Q) = L(π)− L(π, P,Q) = min(π, 1 − π)− L(π, P,Q), (5.11)

where the underline denotes a minimization and Ll represents the expected risk

under loss l (when no loss is explicitly indicated, 0-1 loss is assumed). Specifically,

L(π) stands for the prior expected risk, that is to say, the expected risk when only

the prior probability of the binary classes is known. On the other hand, L(π, P,Q)

represents the posterior expected risk, where both the prior probability and the class

densities (and thus, the posterior probability) are known. This way, the statistical

information can be intuitively interpreted as the risk reduction provided by the

knowledge of the exact posterior probability instead of just the prior probability π.

The weights γf (π) of the integral representation are related to the curvature of

the function f defining the divergence, showing that f -divergences are invariant to

affine transformations of the generating function f . Specifically, the weights for a

given f can be written down as follows:

γf (π) =
1

π3
f

′′

(

1− π

π

)

, (5.12)

where the derivatives are interpreted in a distributional way. Since f is a convex

function, the weights γf (π) are non-negative.
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This representation makes explicit the relationship between binary risks and f -

divergences, already hinted by the presence of the likelihood ratio in the original

definition of the divergences. Coupling our interest on defining classifier-based affin-

ity/divergence measures for sets of vectors with this convenient representation of

f -divergences we will devote this chapter to proposing interesting generalizations of

this kind of divergences. Our aim will be finding divergences that are analogous to

standard f -divergences (such as KL, Jensen-Shannon, ...) but with the particular-

ities of classifier-based measures. We will do this from two different perspectives:

restriction of the class of admissible classification functions that we want to consider

(yielding class-restricted f -divergences) and substitution of the 0-1 loss for other

kind of loss functions (obtaining loss-induced f -divergences).
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Symbol γ(π) f(t) Name

V (P,Q) 4δ(π − 1
2) |t− 1| Variational Divergence

∆(P,Q) 8 (t− 1)2/(t+ 1) Triangular Discrimination

KL(P,Q) 1
π2(1−π)

t ln t Kullback-Leibler Divergence

I(P,Q) 1
2π(1−π)

t
2 ln t− t+1

2 ln(t+ 1) + ln 2 Jensen-Shannon Divergence

J(P,Q) 1
π2(1−π)2

(t− 1) ln t Jeffreys Divergence

χ2(P,Q) 2
π3 (t− 1)2 Pearson Chi Squared Divergence

h2(P,Q) 1

2[π(1−π)]
3
2

(
√
t− 1)2 Hellinger Divergence

Table 5.1: Some well-known f -divergences with their associated weights. Extracted from [Reid and Williamson, 2009].
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5.4 Class-restricted divergences (CRFDs)

The weighted integral representation in Eq. (5.10) suggests a simple way of gener-

alizing the idea of using the risk of certain classifiers as affinity measures between

sets of vectors. Specifically, given a class C of classification functions C ⊆ {0, 1}X ,
we can use the optimal risks over C to define a “restricted” version of the statistical

information as follows:

∆L
C
0−1(π, P,Q) = L

C(π)− L
C(π, P,Q), (5.13)

so the risk minimization is performed over the functions in C instead of over the

whole set of classification functions. This way, we directly obtain the class-restricted

f -divergences (CRFDs):

I
C
f (P,Q) =

∫ 1

0
∆L

C
0−1(π, P,Q)γf (π)dπ, (5.14)

The class-restricted statistical information ∆L
C
0−1(π, P,Q) can be defined in the

following alternate form:

∆L
C
0−1(π, P,Q) = L

C(π)− L
C(π, P,Q)

= max
P ′,Q′∈P

L
C(π, P ′, Q′)− L

C(π, P,Q), (5.15)

where the restricted risk L
C(π, P,Q) can be written in terms of the posterior prob-

ability function η = πdP
dM , with M = πP + (1− π)Q, as follows

L
C(π, P,Q) = min

y∈C
EM

[

η(x)Iy(x)=0 + (1− η(x))Iy(x)=1

]

. (5.16)

This definition explicitly shows that ∆L
C
0−1(π, P,Q) is always a non-negative quan-

tity.

Equation (5.14) provides a way to define f -like divergences using optimal risks

within a predefined set of classification functions, instead of full Bayes risks. The

main points behind this idea are the following:

• Use the allowed classification functions C to select what aspects of the dis-

tributions we are interested in from the divergence measurement perspective.
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For example, in a set-of-vectors clustering scenario, practitioners may know a

priori that the kind of sets that they want to cluster can be well separated by

a linear classifier (or a SVM with some predefined kernel). This way, using

standard divergences will capture more information than the user is interested

on.

• CRFDs depend on optimal risks within a family of classification functions,

which are “easier” to estimate than full Bayes risks. This is usually known

as the trade-off between approximation and estimation errors: the smaller

the class of functions, the easier it is to get close to the optimal classification

function within the class, but the further away that function will be (in general)

from the best possible (or Bayes) classification function.

• Restricting C has a “regularizing” effect on the divergence. As we will see in the

next section, reducing the set of classification functions C compress the range of

the divergences. In practical applications, this amounts to disencouraging wide

divergence fluctuations due to peculiarities of the samples (such as outliers).

Obviously, I
C
f (P,Q) = If (P,Q) whenever C = {0, 1}X , so the standard f -

divergences can be seen as a special case of class-restricted f -divergences when the

class includes every possible classification function.

5.4.1 Properties of class-restricted divergences

In this section we will explicit the conditions that a class of functions C must satisfy

in order for some desirable properties of the resulting I
C
f divergences to hold. We

will show how many very desirable properties can be obtained using quite simple

choices for C.

1. Lower bounds of original f -divergences: I
C
f (P,Q) ≤ If (P,Q)

This is an interesting property to have if class-restriced divergences are to be

used as surrogates for standard f -divergences. Moreover, it has a natural inter-

pretation in terms of C defining the “features” of the probability distributions

that we are interested in. Taking into account more features by making C
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larger should increase the divergence, the limiting case being C = {0, 1}X and,

as previously stated, ICf (P,Q) = If (P,Q). This property can be enforced by a

very simple condition on C.

Theorem 5.4.1. If the constant functions 0,1 ∈ C, then I
C
f (P,Q) ≤ If (P,Q)

Proof. When 0,1 ∈ C, the whole input space X can be assigned to any of the

two classes and thus LC(π) = min(π, 1− π) = L(π). Obviously, LC(π, P,Q) ≥
L(π, P,Q) since the minimization is carried out over a subset of classification

functions, so ∆L
C
0−1(π, P,Q) ≥ ∆L0−1(π, P,Q). The result then follows by the

analogy between Eqs. 5.10 and 5.14.

Moreover, we can trivially get the following corollary:

Corollary 5.4.2. If 0,1 ∈ C and C ⊆ C ′, then I
C
f (P,Q) ≥ I

C′

f (P,Q)

So, if the condition holds, the CRFDs are non-increasing in C (in the order

given by inclusion).

2. Non-negativity: I
C
f (P,Q) ≥ 0 This is a basic property for a measure of di-

vergence. Here we show how it holds for any subset C of classification functions

defining the restricted divergence:

Theorem 5.4.3. For any convex f and C ⊆ {0, 1}X , ICf (P,Q) ≤ 0 ∀P,Q ∈ P

Proof. Convexity of f implies non-negativity of the weights γf (π). From pre-

vious discussion, ∆L
C
0−1(π, P,Q) ≥ 0. From the definition of class-restricted

divergences in Eq. (5.14), non-negativity of ICf (P,Q) is assured.

3. Identity of indiscernibles: I
C
f (P,Q) = 0 iff P = Q.

A divergence satisfying this property can be used for checking the equality

of two distributions, and can be thus used e.g. for solving the two-sample

problem [Gretton et al., 2007]. Together with non-negativity, this property is

essential for proper measures of difference. It is then very interesting to find

the conditions that C must satisfy in order for it to hold. In the following

theorem, we link this property with the discriminative capacity of C:
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Theorem 5.4.4. For any strictly convex f and any class of classification func-

tions C ⊆ {0, 1}X with 0,1 ∈ C such that, for some π ∈ [0, 1], LC(π, P,Q) = π

iff L(π, P,Q) = π, then I
C
f (P,Q) = 0 iff P = Q

Proof. If f is strictly convex then, by Eq. (5.12), γf (π) > 0 for all π ∈ [0, 1].

From this and Eq. (5.14), the identity of indiscernibles condition translates

into I
C
f (P,Q) = 0 iff ∆L

C
0−1(π, P,Q) = 0 ∀π ∈ [0, 1]. Given the conditions

imposed in the theorem, there is some π such that ∆L
C
0−1(π, P,Q) = 0 iff

L(π, P,Q) = π. Since the Bayes error rate L(π, P,Q) = π iff P = Q, this

completes the proof.

This theorem shows that if the class of classification functions is one that can

always improve (at least marginally) over the trivial classifier, unless that trivial

classifier is already optimal, then the resulting class-restricted f -divergence

satisfies the identity-of-indiscernibles property. The ability of improving over

the trivial classifier can be verified for many “sensible” classes of classification

functions. We cite the following lemma from [Devroye et al., 1996], Chap. 4.

Lemma 5.4.5. The optimal expected risk L
l of a linear classifier satisfies

L
l < 1

2 with equality iff the Bayes error rate L = 1
2 .

This shows that Ll(12 , P,Q) = 1
2 iff L(12 , P,Q) = 1

2 , so the conditions of Theo-

rem 5.4.4 apply and we obtain the following corollary:

Corollary 5.4.6. If Cl =
{

y : y(x) =< w, x > +b, w ∈ R
d, b ∈ R

}

is the set of

all linear classification functions, then I
Cl

f (P,Q) = 0 iff P = Q

4. Symmetry: ICf (P,Q) = ICf (Q,P ) if f(t) = f(t)∗ + c(t− 1), c ∈ R

Symmetry of an affinity / divergence function is a intuitively desirable prop-

erty. In fact, many learning algorithms require symmetric affinity functions to

work correctly. For general f -divergences it is well known (see, for example,

[Liese and Vajda, 2006]) that

If (P,Q) = If (Q,P )ifff(t) = f∗(t) + c(t− 1), (5.17)
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where f∗ is the Csiszar dual of f , defined as follows:

f∗(t) = tf

(

1

t

)

(5.18)

Our intention here is to propose an equivalent theorem for class-restricted

divergences, imposing a very simple condition on C:

Theorem 5.4.7. If C is such that f ∈ C ⇒ f ∈ C, then the symmetry

property holds.

To prove this theorem we will use a result from [Reid and Williamson, 2009],

relating the condition on f for the symmetry of an f -divergence with a condi-

tion on the corresponding weights γf (π):

Lemma 5.4.8. Suppose If is an f -divergence with weight function γf . Then

If is symmetric iff γf (π) = γf (1− π)

Now we can proceed with the proof:

Proof. Assume that f is such that If is symmetric, so γf (π) = γf (1− π). Let

us start by writing I
C
f (Q,P ):

I
C
f (Q,P ) =

∫ 1

0
∆L

C
0−1(π,Q, P )γf (π)dπ

= −
∫ 0

1
∆L

C
0−1(1− π′, Q, P )γf (1− π′)dπ′

=

∫ 1

0
∆L

C
0−1(1− π′, Q, P )γf (π

′)dπ′,

where the first equality comes from the change of variable π = 1− π′ and the

second one from the symmetry of γf . By comparison with Eq. (5.14), this

implies that I
C
f (P,Q) = I

C
f (Q,P ) ∀P,Q ∈ P if ∆L

C
0−1(π, P,Q) = ∆L

C
0−1(1 −

π,Q, P ). Changing the binary classification task from (π, P,Q) to (1−π,Q, P )

transforms the posterior from η(x) to 1 − η(x) while keeping the same base

measure M = πP + (1 − π)Q. Recalling the definition of restricted posterior

risk in Eq. (5.16) , it is easy to see that if y∗ is the minimizer within C of

L
C(π, P,Q) and the condition in the theorem holds, then y∗ is the minimizer of
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L
C(1−π,Q, P ) in C, yielding the same minimum. This way, ∆L

C
0−1(π, P,Q) =

∆L
C
0−1(1− π′, Q, P ), completing the proof.

In contrast, there are some properties of f -divergences that are intrinsically lost

when the class of functions is restricted. The best example of this is the information

processing property [Csiszár, 1967, Österreicher, 2002], which basically states that

no transformation applied to the space over which the distributions are defined can

increase the divergence. This can be easily explained in terms of equivalent results

for the Bayes risk ([Devroye et al., 1996], Chap. 2) and exploiting the integral rep-

resentation of f -divergences. Obviously, such a result can not hold in general for

restricted risks. One of the motivations for using classification functions for defining

divergence measures is that the chosen family C of functions can reflect some prior

knowledge on the kind of “features” of the distributions that we are interested on

for discrimination purposes. Thus, we are only looking at the information preserved

by C, so an information processing-like property, while very important in general, is

not interesting for our purpose.

5.4.2 Conclusions

We have introduced the concept of class-restricted f -divergences, based on the idea

of minimizing the 0-1 loss under a limited set C of classification functions. This goes

on the line of using the family of classification functions to define what features of

the distributions we are interested on. We have seen how many interesting properties

can be obtained by imposing simple conditions on C. For example, by defining C to

be the set of linear classification functions we get a divergence measure with most

interesting properties of f -divergences, but attending only to linear patterns. The

problem remains how to efficiently estimate these divergences. The formulation re-

quires finding the optimal error rate within C for every π ∈ [0, 1]. Sampling π yields

approximation of the divergences, but still requires finding a lot of optimal classi-

fiers. Moreover, the 0-1 loss is usually not easy to minimize, so classifiers usually

optimize some related measures which are better behaved (mostly, continuous and

differentiable). They are called surrogate losses. With those ideas in mind, in the
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next section we study a different generalization of f -divergences from the perspec-

tive of surrogate loss functions. Nonetheless, we consider the theoretical framework

behind CRFDs to be interesting and potentially applicable to real problems when

efficient estimation procedures appear. This constitutes a interesting line for our

future research.

5.5 Loss-induced divergences

5.5.1 Some motivation: NN error and surrogate Bayes risks

The previous section dealt with generalizations of f -divergences when the defining

0-1 risks are optimized over a subset C ⊆ {0, 1}X of binary classification functions.

However, many classification rules do not directly involve a risk minimization over

a predefined family of functions. Specifically, we are motivated here by the case of

the nearest-neighbor rule. As previously stated, this rule has many nice properties

which make it very appealing for defining risk-based measures. The problem is that

it is quite unnatural to interpret it in the framework of CRFDs. Given a training

set, the NN rule directly gives a classification function gNN (x) without any explicit

optimization over a function class. In this sense, one could consider that C = {gNN},
which is such a restricted class that it is not possible to deduce its properties using

the Theorems in Sec. 5.4.1. However, here we propose another interpretation of the

NN rule risk which directly suggests yet another way of generalizing f -divergences.

We first must introduce the square loss lSQ(y, ŷ):

lSQ(y, ŷ) =







(1− ŷ)2 , y = 1

ŷ2 , y = 0
(5.19)

This loss is well-known in the field of probability estimation. It naturally induces

the following point-wise risk

LSQ(η(x), η̂(x)) = η(x)(1 − η̂(x))2 + (1− η(x))η̂(x)2, (5.20)

where η is the posterior class probability. It is very easy to obtain the minimum on

η̂(x) of such a equation. Differentiation with respect to η̂(x) yields
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∂LSQ(η(x), η̂(x))

∂η̂(x)
= −2η(x)(1 − η̂(x)) + 2(1− η(x))η̂(x)

= 2(η̂(x)− η(x)),

so that, for a given η(x), the minimum is achieved whenever η̂(x) = η(x). Losses

that induce a point-wise risk satisfying this intuitive property are known as Fisher

consistent or proper losses [Buja et al., 2005]. The corresponding optimal point-wise

risk is obtained directly by substitution.

LSQ(η(x)) = η(x)(1 − η(x))2 + (1− η(x))η(x)2

= η(x)(1 − η(x)). (5.21)

Now recall the expression for the asymptotic NN risk under the 0-1 loss

L
NN
0−1 = E[2η(x)(1 − η(x))].

We can directly re-write that expression as follows.

L
NN
0−1(η,M) = 2Ex∼M [LSQ(x)]

= 2LSQ(η(x),M) = 2LSQ(π, P,Q), (5.22)

where the last equality is just an application of generative/discriminative duality.

So it turns out that the expected error probability for the NN rule gives us a way to

estimate the Bayes risk for the square loss. It is worth mentioning that the NN rule

is not minimizing the risk under the square loss, since there is a factor of 2 in the

formula, but nonetheless provides a univocal estimate of the optimal risk. Figure 5.1

provides a visual representation of the point-wise Bayes risks induced by both the

square and 0-1 losses, as well as the asymptotic point-wise nearest neighbor error

rate.

5.5.2 (f, l)-divergences

In this section we we define another generalization of f -divergences, called (f, l)-

divergences. This generalization provides an additional degree of freedom by allowing
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the substitution of the 0-1 loss in the original definition (Eq. (5.10)) for any loss.

This way, we can express this new generalization as follows.

If,l =

∫ 1

0
∆Ll(π, P,Q)γf (π)dπ, (5.23)

where

∆Ll(π, P,Q) = Ll(π)− Ll(π, P,Q). (5.24)

We denote this generalized family as (f, l)-divergences. Once again, the original

f -divergences can be obtained as a particular case of (f, l)-divergences by setting

l = l0−1.

Note that the idea of substituting 0-1 for more general losses is at the core of

almost every classifier. This is the idea of surrogate losses [Bartlett et al., 2006].

Since the 0-1 loss is not very well behaved and thus hard to handle, most learning

algorithms use, explicitly or implicitly, other kind of losses that approximate the 0-1

loss while being much more amenable to theoretical analysis, numerical optimization,

etc. Thus, if the goal is to define divergences that can be nicely estimated using

classification risks it is very natural to work with surrogate losses, since they are

what most practical classifiers optimize.

5.5.3 Some properties of (f, l)-divergences

Analogously to what we did with CRFDs in Sec. 5.4.1, we devote this section to study

how we can get interesting properties for (f, l)-divergences by adequately choosing

the loss l. We will implicitly assume all losses to be proper. As explained in the

previous section, a loss l(y, ŷ) is proper or Fisher-consistent if it satisfies

Ll(η(x)) = min
η̂(x)

Ll(η(x), η̂(x)) = Ll(η(x), η(x))

= η(x)l(1, η(x)) + (1− η(x))l(0, η(x)) (5.25)

that is to say, the minimum point-wise risk for a given η is attained when the estimate

η̂ = η. This is thus a very natural condition that all sensible losses satisfy.

As we will show in Sec. 5.5.4, (f, l) and f -divergences are deeply connected,

so it is natural to recover most properties of standard f -divergences with a sensible
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Figure 5.1: Point-wise Bayes risk L(η) under the square and 0-1 losses, and thenearest

neighbor asymptotic error.

election of the surrogate loss function. We now proceed to show a small representative

selection of such properties, along with the conditions that the losses must satisfy in

order for those properties to hold.

1. Non-negativity and identity of indiscernibles: If,l(P,Q) ≤ 0, with

equality iff P = Q

Theorem 5.5.1. For any convex f and any proper loss l, If,l(P,Q) ≥ 0 for

all P,Q. Moreover, if f is non-trivial (∃π ∈ (0, 1) | γf (π) > 0) and l is such

that Ll is strictly concave, then equality holds iff P = Q.

Before stating the proof, we need the following lemma from [L.J.Savage, 1971].

Lemma 5.5.2. The point-wise Bayes risks Ll induced by a proper loss l is

always a concave function.

We can now proceed to prove the theorem.
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Proof. Based on the above lemma, we can write

Ll(π, P,Q) = Ex∼M

[

Ll

(

πdP (x)

πdP (x) + (1− π)dQ(x)

)]

≤ Ll

(

Ex∼M

[

πdP (x)

πdP (x) + (1− π)dQ(x)

])

= Ll(π), (5.26)

where we have applied Jensen’s inequality and then the fact that the expec-

tation of the posterior probability coincides with the prior class probability

π. This equation direclty shows that ∆Ll(π, P,Q) = Ll(π) − Ll(π, P,Q) ≥ 0,

since Ll(π) = L(π). Given the non-negativity of the weight function γf , non-

negativity of If,l arises. Moreover, if Ll(η) is strictly concave, then Jensen’s

inequality becomes a equality iff η is constant, which implies P = Q and

If,l(P,Q) = 0 iff P = Q.

Common surrogate losses induce strictly concave point-wise Bayes risks Ll.

Here we show it for two of the best-known ones:

• Square loss

Recalling Eq. (5.21), LSQ(η) = η(1 − η). Directly,

L′
SQ(η) = 1− 2η

L′′
SQ(η) = −2,

and the point-wise Bayes risk is strictly concave.

• Log-loss

The log-loss is defined as follows: llog(y, ŷ) = −y log(ŷ)−(1−y) log(1− ŷ),

for y ∈ {0, 1} and ŷ ∈ [0, 1]. Its point-wise risk is thus given by

Llog(η(x), η̂(x)) = η(x)(− log(η̂(x))) + (1− η(x))(− log(1− η̂(x)))

It is easy to see that it is a proper loss

∂Llog(η(x), η̂(x))

∂η̂(x)
=

1− η(x)

1− η̂(x)
− η(x)

η̂(x)
,
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which equals 0 when η̂(x) = η(x). Then, the point-wise Bayes risk can be

written as

Llog(η(x)) = η(x)(− log(η(x))) + (1− η(x))(− log(1− η(x))). (5.27)

We can now obtain the derivatives

L′
log(η) = log(1− η)− log(η)

L′′
log(η) = − 1

η(1− η)
.

Since L′′
log(η) < 0 for η ∈ [0, 1], the point-wise Bayes risk is strictly con-

cave.

2. Symmetry: If,l(P,Q) = If,l(Q,P ) if f(t) = f(t)∗ + c(t− 1), c ∈ R

The following theorem shows how we can get a symmetry property analogous

to the standard f -divergence case by imposing a really simple condition on the

loss used to define the (f, l)-divergence.

Theorem 5.5.3. If l is a proper loss such that l(0, η̂) = l(1, 1 − η̂), then the

symmetry property for If,l holds

Proof. Recalling the proof of Theorem 5.4.7, given the conditions on f (or,

equivalently, γf ), symmetry holds if ∆Ll(π, P,Q) = ∆Ll(1 − π,Q, P ) for π ∈
[0, 1]. Recalling the definition of statistical information in Eq. (5.24), this

is equivalent to the condition Ll(π, P,Q) = Ll(1 − π,Q, P ) or, equivalently,

Ll(η,M) = Ll(1 − η,M). This holds if Ll(η) = Ll(1 − η). Finally, writing Ll

in terms of l we get

Ll(η) = ηl(1, η) + (1− η)l(0, η)

Ll(1− η) = (1− η)l(1, 1 − η) + ηl(0, 1 − η).

If l(0, η) = l(1, 1− η) both expressions coincide, and thus symmetry holds.

Once again, standard surrogate losses satisfy this simple and natural condition.

Note that the condition can be expressed in the alternative form l(y, η̂) =

l(|y − η̂|).
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3. Information processing: If,l(P,Q) ≥ If,l(Φ(P ),Φ(Q)), where Φ is any

transformation.

In contrast with the CRFD case, (f, l)-divergences always preserve the informa-

tion processing property of f -divergences. By simple inspection of the defini-

tion of (f, l)-divergences in Eq. (5.23) and non-negativity of the weights γf , the

information processing property holds if ∆Ll(π, P,Q) ≥ ∆Ll(π,Φ(P ),Φ(Q)).

This implies L(π, P,Q) ≤ L(π,Φ(P ),Φ(Q)), which is an intrinsic property of

Bayes risks.

4. Generalized Blackwell’s Theorem:

Blackwell’s theorem [Blackwell, 1951] is a well-known result from statistics,

which in machine learning terms basically says that if a pair (P,Q) of distribu-

tions presents a larger f -divergence than another pair (T,Z), then there exists

some prior probabilities for the class labels such that the classification error is

smaller for the former pair [X.L. Nguyen and Jordan, 2009]. Although this is

usually proved using complex arguments, we argue that the integral represen-

tation of f -divergences in Eq. (5.10) makes the proof trivial. Analogously, the

definition of (f, l)-divergences in Eq. (5.23) implies the generalized version of

the theorem that we provide.

Theorem 5.5.4. Let (P,Q) and (T,Z) be two pairs of probability distributions.

For any (f, l)-divergence, if If,l(P,Q) > If,l(T,Z) then ∃π ∈ [0, 1] such that

Ll(π, P,Q) < Ll(π, T, Z)

Proof. Recalling Eq. (5.23), since γf (π) ≥ 0 for all π, If,l(P,Q) > If,l(T,Z)

implies that there is at least some π such that ∆Ll(π, P,Q) > ∆Ll(π, T, Z),

which from the the definition of statistical information (Eq. (5.24)) in turn

implies Ll(π, P,Q) < Ll(π, T, Z).

5.5.4 Connecting f and (f, l)-divergences

In this section we will take a look at the connections between (f, l)-divergences

and standard f -divergences. Specifically, we will study if we can represent a given
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(f, l)-divergence as an equivalent f -divergence. This will provide great insight into

the effect of using a surrogate loss for divergence definition, as well as motivating

surprising ways of estimating some well-known divergences.

As shown in [Österreicher and Vajda, 1993], statistical informations and f -

divergences are in a one-to-one relationship. This is formalized in a constructive

way in the following theorem:

Theorem 5.5.5 (Österreicher and Vajda 1993, Thm. 2).

Given an arbitrary loss l, then defining

fπ
l (t) = L(π)− (πt+ 1− π)L

(

πt

πt+ 1− π

)

. (5.28)

for π ∈ [0, 1] implies fπ
l is convex and fπ

l (1) = 0, and

∆Ll(π, P,Q) = Ifπ
l
(P,Q) (5.29)

for all distributions P and Q.

Exploiting this representation of statistical information for arbitrary losses, Eq.

(5.23) can be rewritten as follows:

If,l =

∫ 1

0
Ifπ

l
(P,Q)γf (π)dπ (5.30)

Now we can leverage the weighted integral representation of Ifπ
l

(Eq. (5.10)),

yielding:

If,l =

∫ 1

0

(
∫ 1

0
∆L0−1(π

′, P,Q)ϕl,π(π
′)dπ′

)

γf (π)dπ

=

∫ 1

0
∆L0−1(π

′, P,Q)

(
∫ 1

0
ϕl,π(π

′)γf (π)dπ

)

dπ′

=

∫ 1

0
∆L0−1(π, P,Q)γf,l(π)dπ, (5.31)

where ϕl,π(π
′) is the weight function corresponding to fπ

l , as given by Eq. (5.12)

ϕl,π(π
′) =

1

π′3
fπ
l
′′

(

1− π′

π′

)

(5.32)
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This way, the (f, l)-divergence has now the aspect of a standard f -divergence in

integral form, with a new weight function γf,l(π). This function is obtained by a

linear integral operator Tl acting on the original weights γf (π):

γf,l(π) =

∫ 1

0
ϕl(π, π

′)γf (π
′)dπ′ = (Tlγf ) (π), (5.33)

where ϕl(π, π
′) acts as the kernel of the transformation. We have written it as an

explicit function of two variables for consistency with the usual nomenclature for

integral operators, and will keep this convention in the following.

Whenever the integral in Eq. (5.33) converges, we obtain an equivalent f -

divergence representation of the (f, l)-divergence, so both divergences are intrin-

sically the same one, but expressed on different bases. This allows estimation of

some standard f -divergences by using statistical informations under adequate sur-

rogate losses. These surrogate statistical informations can be then obtained using

classifiers. In the next section we delve deeper into this aspect, showing how the

Nearest Neighbor classifier can be used to estimate KL divergences.

Note that [X.L. Nguyen and Jordan, 2009] and [Reid and Williamson, 2009] con-

nect losses and f -divergences by associating a loss l with a divergence with f = f
1
2
l .

That can be seen to be a particular case of (f, l)-divergences when f is chosen to

represent the variational divergence V , since γV ∝ δ(π − 1
2 ).

5.5.5 Leveraging the NN rule for divergence estimation

Given the nice properties of the NN rule, in this section we study its applicability to

divergence estimation. Recall from above the close relationship between the NN error

rate and the Bayes risk under the square loss. This way, we can study the viability

of NN-based divergence estimation by analizing the (f, l)-divergences induced by the

square loss.

Using Eq. (5.28) we can get the f function associated to the statistical informa-

tion under the square loss:
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fπ
SQ(t) = LSQ(π)− (πt+ 1− π)LSQ

(

πt

πt+ 1− π

)

= π(1− π)− (πt+ 1− π)
πt

πt+ 1− π

1− π

πt+ 1− π
(5.34)

= π(1− π)− π(1− π)t

πt+ 1− π
(5.35)

The weight function of the integral representation of Ifπ
SQ

can be obtained by

plugging in the above result into Eq. (5.32):

ϕSQ(π, π
′) =

1

π′3
fπ
SQ

′′

(

1− π′

π′

)

= 2(1 − π′)2π′2 1

(π′(1− 2π) + π)3
(5.36)

Let us now apply this operator to find the f -divergence equivalent of some square

loss-induced divergences. With some hindsight, we start with Jeffreys (J) divergence,

which is a symmetrized version of the KL divergence. According to Table 5.1, the

weight function corresponding to the J divergence is given by

γJ(π) =
1

π2(1− π)2
. (5.37)

We then get this very simple and interesting expression for the final weights

γJ,SQ(π) = (TSQγJ)(π) =

∫ 1

0
ϕSQ(π, π

′)γJ(π
′)dπ′

= 2

∫ 1

0

1

(π′(1− 2π) + π)3
dπ′

= 2
1

2(2π − 1)

1

(π′ + π − 2ππ′)2

∣

∣

∣

∣

1

π′=0

=
1

π2(1− π)2
= γJ(π), (5.38)

that is to say, the weight function associated with the f -divergence equivalent of

the (J, SQ)-divergence is exactly the same weight function of the standard Jeffrey’s

divergence:

IJ(P,Q) =

∫ 1

0
∆L0−1(π, P,Q)γJ (π)dπ =

∫ 1

0
∆LSQ(π, P,Q)γJ (π)dπ = IJ,SQ(P,Q)
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An analogous result holds for the KL divergence, whose weights are given by

γKL(π) =
1

π2(1− π)
, (5.39)

and the corresponding weights for the (KL,SQ)-divergence are

γKL,SQ(π) = (TSQγKL)(π) =

∫ 1

0
ϕSQ(π, π

′)γKL(π
′)dπ′

= 2

∫ 1

0

1− π

(π′(1− 2π) + π)3
dπ′ =

1

π2(1− π)
= γKL(π), (5.40)

These results imply that the weight functions for both KL and Jeffrey’s diver-

gences are eigenfunctions of the integral operator TSQ with eigenvalue 1. We say

that both KL and Jeffrey’s are eigendivergences of the square loss. The result may

seem quite counterintuitive, which adds to its interest. The square loss has been

previously linked to triangular discrimination [Reid and Williamson, 2009], since it

coincides (up to scaling) with the divergence I
f

1
2
SQ

associated to ∆LSQ(
1
2 , P,Q). We

can recover the link between triangular discrimination and square loss as a particular

instance of our general loss-induced divergences framework by using the variational

divergence under the squared loss IV,SQ. Applying the integral operator associated

to the square loss to the weight function of the variational divergence γv = 4δ(π− 1
2 )

we get:

γV,SQ(π) = (TSQγV )(π) = 4

(

TSQδ(π −
1

2
)

)

(π)

= 4ϕSQ(π,
1

2
).

Using the value of ϕSQ from Eq. (5.36) yields:

γV,SQ(π) = 4 · 1 = 4,

which is a scaled version of the integral weight function for the triangular discrimi-

nation divergence γ∆(π) = 8 (see Table 5.1).

On the contrary, many (f, SQ)-divergences can not be realized as standard f -

divergences. Consider for example the (χ2, SQ)-divergence. Since γχ2(π) = 1
π3 ,

applying the integral operator to try to express it as an f -divergence yields
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γχ2,SQ(π) = (TSQγχ2)(π) =

∫ 1

0
ϕSQ(π, π

′)
1

π′3
dπ′

= 2

∫ 1

0

(1− π′)2

π′

1

(π′(1− 2π) + π)3
dπ′,

which diverges, showing that the (χ2, SQ)-divergence is not an f -divergence. This

also shows that the (f, l)-divergence family is strictly larger than the f -divergence

family.

The above results relating the (KL,SQ)-divergence with the standard KL-

divergence is actually telling us that it is possible to estimate KL divergences using

nearest-neighbor risks. Without this result, the obvious way of using the integral

representation to estimate an f -divergence would be to plug-in a consistent clas-

sifier (such as k-NN with an adequate election of k) to estimate full 0-1 Bayes

risks. Most recent proposals for KL divergence estimation [Nguyen et al., 2008,

Wang et al., 2009, Suzuki et al., 2009] rely on direct estimation of the likelihood

ratio [Nguyen et al., 2008, Wang et al., 2009, Suzuki et al., 2009], and thus of the

posterior class probabilities, avoiding individual density estimations. Our proposal

avoids any explicit density and likelihood ratio or posterior estimation. Instead, we

have shown that it is possible to use the risk of a simple, non-consistent classifier

such as NN to obtain an error-rate based exact expression for the KL divergence

(and, even funnier, using the exact same weight function as we would use with the

full Bayes risks).

Estimating the NN error

Now that we have a expression relating the Bayes risk under the square loss (and thus,

the NN error rate) with the KL and Jeffreys divergences we are close to proposing

a novel way of estimating those divergences in a non-parametric way. From an

empirical estimation point of view, the problem remains to obtain good estimates

of the NN error rate for the whole range of prior probabilities π ∈ [0, 1]. If the

sample size for each class is really large, a hold-out set could be used to evaluate

the risks, with the precaution of maintaining the correct proportions for each π.

Since data is usually scarce, in practice it is usually required to perform training
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set error estimation, that is to say, estimate the error without explicitly separating

the samples into training and hold-out sets. A standard way to do so would be to

perform empirical resampling of the different sequences as in the standard cross-

validation (CV) procedure, but with additional constraints. These constraints must

force the ratio of points from each sequence in the training and test sets to comply

with the desired π. This is called stratified cross-validation [Kohavi, 1995].

However, the particularities of the NN rule can be exploited to obtain closed-

form estimates of the error rate. We will now show a couple of alternatives to

carry out that estimation in an efficient manner. The first alternative is to perform

complete stratified cross validation [Mullin and Sukthankar, 2000]. As mentioned

in Section 5.2.1, the idea behind complete cross-validation is to average over all

the possible test/train partitions of data. That is to say, instead of resorting to

empirical resampling, and approximating the expectation over the partitions by the

average over the actual sampled partitions, obtain a closed-form expression for the

expectation. This can be done because of the nature of the NN rule, which makes it

relatively easy to know how many of the potential partitions will result in a correct

or incorrect classification of a given point. Nonetheless, running this process for a

dense enough set of π’s is a very time consuming process.

To speed things up we have devised a simple “closed-form sampling scheme”,

specially tailored for the task of estimating risks over the whole range of prior prob-

abilities, which we now sketch. The main idea is to subsample just one of the sets,

depending on π. Assume we are given two sets X and Y, with nX and nY elements,

so the estimated prior probability is just π0 = nX

nX+nY
. The error for π = π0 can be

estimated using standard methods such as deleted estimate ([Devroye et al., 1996]

Chap. 24), yielding error estimates in {0, 1} for each point z ∈ (X ∪Y). In order

to obtain error estimates for π 6= π0, our proposal is to calculate the expectation of

the probability of error at each point z given that we are subsampling X if π < π0

or Y if π > π0. We can obtain such expectation just by knowing the order of the

closest point to z in both X and Y and calculating the ratio of partitions that result

in the point changing its label with respect to case π = π0. For example, consider

the case of a point z ∈ X which is correctly classified for π = π0, and whose closest
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point in Y occupies the kY (z) position in the ordered list of neighbors. Let ns(π)

be the number of points from X that must be taken away for the desired π to hold.

Point z will become incorrectly classified whenever its nearest neighbor after sub-

sampling belongs to Y. That is to say, whenever the kY (z) − 1 first neighbors of

z are taken away from X. This is a typical sampling-without-replacement scenario,

and the probability of such an event is given by the hypergeometric distribution,

yielding

Pe(z;π) =

( nx−(kY (z)−1)
ns(π)−(kY (z)−1)

)

( nx

ns(π)

) . (5.41)

The reasoning is similar for points which are originally incorrectly classified: they

can become correctly classified if we take away from the adversarial class its closest

neighbors. Note that this method is based solely on the order of the neighbors of

each point.

Figure 5.2 displays some different error estimates for P = N (0, 1) and Q =

N (1, 1) and a sample size of 1000 instances per class. Specifically, we compare our

closed-form sampling (CFS) with two different empirical sampling schemes: Scheme

A randomly selects subsets of a fixed size maintaining the proportions imposed by

each π. Scheme B is the empirical analogue of our closed-form estimator: it enforces

the desired proportion between the two classes by subsampling from the minority

class. We also include the theoretical NN error rate for that sample. The graphic

summarizes well the usual behaviour: all the estimates behave very similarly and are

quite close to the theoretical error for reasonable sample sizes, so the election is a

matter of computational efficiency. In this aspect, our proposed closed-form sampling

scheme has been empirically shown to perform much faster than both stratified CV

or empirical resampling.

Risk-based bounds of KL and Jeffreys divergences

Finally, upper bounds on the NN error rate can be used to obtain lower bounds

on the estimated divergences. For example, consider the following result from

[Devijver and Kittler, 1982]

Lemma 5.5.6 (Devijver and Kittler (1982, p.166)). For all distributions P,Q over
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Figure 5.2: L
NN
0−1(P,Q) estimates as a function of π ∈ [0.05, 0.95], P = N (0, 1) and

Q = N (1, 1).

X with finite second moment we have

L
NN
0−1(π, P,Q) ≤ 2π(1 − π)

1 + π(1− π)∆2(π, P,Q)
,

where ∆ stands for the Mahalanobis distance between P and Q with mixture param-

eter π

∆(π, P,Q) =
√

(µp − µq)TΣ−1(µp − µq),

with Σ(π, P,Q) = πΣp + (1 − π)Σq, Σp = E[(x − µp)(x − µp)
T ] and analogously for

Σq.

Recalling the connection between NN error rate and square loss we can trivially

get the following corollary:

Corollary 5.5.7. For all distributions P,Q over X with finite second moment we

have

LSQ(π, P,Q) ≤
LSQ(π)

1 + LSQ(π)∆
2(π, P,Q)

,

and

∆LSQ(π, P,Q) ≥ LSQ(π)

[

1− 1

1 + LSQ(π)∆
2(π, P,Q)

]

,
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where LSQ(π) = π(1 − π) is the prior Bayes risk under the square loss.

We can plug this result into Eq. (5.23) to get a lower bound for the KL divergence

in terms of the Mahalanobis distance:

IKL(P,Q) = IKL,SQ(P,Q) =

∫ 1

0
∆LSQ(π, P,Q)γKL(π)dπ

≥
∫ 1

0
(π(1 − π))

[

1− 1

1 + π(1− π)∆2(π, P,Q)

]

1

π2(1− π)
dπ

=

∫ 1

0

(1− π)∆2(π, P,Q)

1 + π(1− π)∆2(π, P,Q)
dπ, (5.42)

and an analogue lower bound for the Jeffreys divergence:

IJ (P,Q) = IJ,SQ(P,Q) =

∫ 1

0
∆LSQ(π, P,Q)γJ (π)dπ

≥
∫ 1

0
(π(1− π))

[

1− 1

1 + π(1− π)∆2(π, P,Q)

]

1

π2(1− π)2
dπ

=

∫ 1

0

∆2(π, P,Q)

1 + π(1− π)∆2(π, P,Q)
dπ. (5.43)

5.5.6 Further generalization: Classifier-induced divergences

Putting together the class-restricted and loss-induced divergences, we get to a very

general expression which can encompass divergences induced by classifiers. Most

classifiers can be interpreted as minimizing a surrogate loss [Bartlett et al., 2006]

over a family of classification functions, so the natural f -like divergence induced by

the risks of such classifiers can be defined as follows:

I
C
f,l =

∫ 1

0
∆L

C
l (π, P,Q)γf (π)dπ, (5.44)

where l stands for the surrogate loss minimized by the chosen classifier, and C

represents the subset of functions over which the minimization is carried out. For

example, a Support Vector Machine (SVM) classifier would induce such a divergence

with C being the set of linear classifiers in some kernel-induced feature space, and l

being the hinge loss. The study of such expressions is quite complex, and stands as

a very promising work in progress.
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5.5.7 Experimental results

To bridge the gap between theory and practice, in this section we will study the

square loss-based divergence measures in both synthetic and real-world applications.

Given the enormous flexibility of the (f, l)-divergence framework, we have to restrict

ourselves to some particular case. Specifically, we will focus on using the Nearest

Neighbor classifier to estimate KL divergences, since that is one of the most straight-

forward application of the theoretical results. Moreover, given a KL estimation

procedure it is straightforward to extend it to mutual information, cross entropy

and other information-theoretic magnitudes estimation.

Starting from the expression of the KL divergence in terms of NN risk:

IKL(P,Q) =

∫ 1

0
∆LSQ(π, P,Q)γKL(π)dπ

=
1

2

∫ 1

0
∆L

NN
0−1(π, P,Q)γKL(π)dπ

=
1

2

∫ 1

0

(

2π(1 − π)− L
NN
0−1(π, P,Q)

)

γKL(π)dπ, (5.45)

we have devised a näıve estimation procedure, consisting on quadrature integration

with uniform sampling of π ∈ [πmin, πmax]. A more sophisticated approach could be

taken by using some kind of importance sampling depending on the weight function

γKL. The error rates L
NN
0−1 at each π are estimated using our procedure described in

Section 5.5.5. The thresholds on π can be used in a way akin to the usual assumption

in divergence estimation that the likelihood ratio is bounded and do not fall below

a given threshold. Statistical informations outside these thresholds are assumed to

be 0, effectively regularizing the divergence estimate. In our experiments we fix

πmin = 10−3, πmax = 1 − 10−3. We denote this non-parametric estimator NN-KL.

The same approach has been used for obtaining an estimator of the bound in Eq.

(5.42), yielding algorithm NNbound-KL.

KL divergence estimation

Our benchmark for divergence estimation is the proposal in [Wang et al., 2009],

which is arguably the state-of-the-art in non-parametric estimators for KL diver-

gences. It is mainly based on direct estimation of the likelihood ratio dP
dQ at each
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point using nearest-neighbor distances. Assume we have a sampleX = {x1, . . . , xnX
}

coming from the distibution P and another sample Y = {y1, . . . , ynY
} coming from

Q. The estimator can be written as

ÎKL(P,Q) =
d

n

nX
∑

i=1

log
νk(xi)

ρk(xi)
+ log

nY

nX − 1
,

where νk(x) and ρk(x) are the distances from x to its k-th nearest neighbor in Y and

X respectively, and d is the dimension of the data. This algorithm was shown to

outperform previous proposals, like divergence estimation based on data-dependent

partitions [Wang et al., 2005] or direct kernel plug-in estimates. In our experiments

we haves used k = 1. For more details and convergence results please refer to

[Wang et al., 2009] and [Perez-Cruz, 2008].

We have run the algorithms in synthetic datasets comprised of samples from

Gaussian distributions of different dimensionalities and separations, with unit co-

variance matrices. Figures 5.5.7 and 5.5.7 show plots of mean divergence and nor-

malized mean square error (NMSE) (both averaged over 100 runs) using a separation

of 0.5eD (where eD is the unit vector in R
D) and 0.75eD for different dimensionalites

D = {1, 5, 10}. The NN-KL estimator improves its performance in comparison with

both the Wang estimator and the risk-based lower bound as the dimensionality in-

creases. It coincides with the intuition that, in high-dimensional settings, it may be

easier to estimate classification risks than likelihood ratios. The abrupt change in

MSE slope of the NN-KL estimator in Fig.5.4f is due to the thresholds on π limiting

the divergence estimate.

Figure 5.5 shows the results for KL divergence estimation between samples from

Gaussian distribution N (0, I3) and a uniform distribution Unif[−3, 3]3. In this case,

the Mahalanobis-based bound for the KL divergence is totally useless, since both

distributions have the same mean. The Wang estimator achieves an impressive

performance in this scenario. Nonetheless, the NN-error based estimator remains

competitive, specially in terms of MSE.

In general terms, our proposed estimator appears to be very competitive with

the state of the art, showing that risk-based estimation of divergence measures is a

promising line to explore in depth.
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Figure 5.3: NMSE and bias of the different estimators of KL(P,Q) divergence, P =

N (0, ID) , Q = N (12eD, ID).
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Figure 5.4: ]

NMSE and bias of the different estimators of KL(P,Q) divergence, P = N (0, ID) ,

Q = N (0.75eD , ID).
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Figure 5.5: NMSE and bias of the different estimators of KL(P,Q) divergence, P =

N (0, I3) , Q = Unif[−3, 3]3.

Speaker clustering

Here we are interested in knowing whether the use of risk-based divergences can

improve clustering performance by providing a more flexible representation of the

input space, even though the dynamics are discarded. Since spectral clustering

works with symmetric affinity matrices, a natural choice for the divergence is Jeffreys

(or symmetric KL) divergence. Moreover, we also introduce into the comparison

the maximum mean discrepancy (algorithm MMD) [Gretton et al., 2007], which was

discussed in Section 4.2.2 and is a widely known measure of disimilarity based on

RKHS embeddings of distributions. We use Gaussian kernels for those embeddings.

As for the width parameter of the kernel, we sweep it within a sensible range and

report the best performance. Finally, we also report clustering results using an

affinity matrix based on simple nearest neighbor risks (algorithm NN). We obtain the

risks running a complete cross-validation procedure [Mullin and Sukthankar, 2000]

with a training set size parameter of 50%. The result from the sphere-packing (SPH)

algorithm of Chapter 4 is also reproduced.

We simulate a 9-class speaker clustering scenario using the UCI Japanese Vowels

dataset [Hettich and Bay, ], and a 2-class task using the GPM PDA dataset. Ta-

ble 5.2 holds the results of these tasks. Please refer to Appendix D for details on

these datasets. Japanese Vowels is an easy dataset, and most algorithms perform

quite well. It is remarkable how the three NN-error based algorithms give the best
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KL-LL SSD NN NN-J Wang-J NN Bound-J MMD SPH

JV 9.85% 12.07% 8.15% 10.00% 16.30% 7.41% 20.37% 10.00%

GPM 9.65% 10.71% 16.67% 9.38% 18.22% 7.15% 9.57% 10.56%

Table 5.2: Clustering error for the speaker clustering tasks on the Japanese

Vowels (JV, 9-class) and GPM (2-class) datasets

performance. In this particular case, the added expresiveness of KL divergence does

not compensate the more complex (and noisier) estimation procedure, as can be

seen by the Mahalanobis-based bound achieving the highest performance, followed

by the simple NN risk. On the GPM dataset, the performance of the NN-based

bound of the Jeffreys divergence is once again excellent, notably improving over

the best-performing method from previous comparisons. The NN-based estimator

also perfoms optimally, beating all previous approaches. All in all, our proposed

estimator and bound perform impressively in the speaker clustering tasks.

We will evaluate our proposals in a more challenging scenario in Chapter 6.

5.5.8 Summary

The framework of (f, l)-divergences allows the generalization of standard f -

divergences by substituting the 0-1 loss for any other loss l. If a sensible l is chosen,

most properties of f -divergences are preserved. We have made explicit how some

(f, l)-divergences are equivalent to f -divergences where the integral weights have un-

dergone a transformation defined by the chosen l. Specifically, when the square loss

is used, KL and Jeffreys divergences are equivalent to their standard counterparts,

since their weight functions are eigenfunctions of the corresponding integral trans-

form. Together with a result relating Nearest-Neighbor classification error and Bayes

risk under the square loss, this allows for a new way of estimating or bounding these

important divergences. Estimators based on this idea have proven to be useful in

practice, but there is still a lot of room for improvement in terms of speed. On a more

theoretical standpoint, analysis of the integral operators induced by several losses

must be performed in order, for example, to determine what standard f -divergences

can be estimated using a given surrogate loss. This is related to the inversion of the
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integral operator.
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Chapter 6

Musical genre recognition

We present an exciting real-world application of the affinity measures that we have

developed during this Thesis: musical genre recognition. It is a quite complex scenario

(high dimensions, scarce samples per sequence, etc.), making it a very hard and

interesting testbed for the developed affinity measures.

6.1 Introduction and chapter structure

Nowadays, there exists an increasing interest on automatic methods for organiza-

tion and navigation of music collections, which is mainly motivated by the extensive

availability of music in digital format. Music distribution is no longer limited to

physical media, and many users have become frequent clients of on-line services such

as Amazon or iTunes, and download music titles using standard encoding formats

such as MP3 or AAC. Furthermore, the capacity of current portable players allows

users to store their personal music collections, and carry them everywhere. In this

context, automatic methods that infer similarity between music pieces are very valu-

able for the development of tools that help users organize and share their music.

They can also serve to increase the effectiveness of current recommender systems,

thus improving users’ experience when using these services.

It is obvious that music similarity can be defined in many different ways: For

instance, we may be interested on extracting beat, instrumental or genre information,
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just to name a few examples. We may expect that different similarities lie at different

time scales. For instance, perceptual features such as the beat can be studied directly

from short windows, while extraction of the genre information will typically require

the examination of the whole music piece. In this paper, we are interested on the

latter case, and will propose and analyze different metrics to be exploited in a genre

classification task.

A typical approach to implement genre classifiers (see

[Tzanetakis and Cook, 2002, Meng et al., 2007, Guaus, 2009], among others)

is splitting the audio signal into several (typically overlapping) windows of short

duration (10-50 miliseconds), from which the so-called short-time audio features are

extracted. Some examples of such features are Mel Frequency Cepstral Coefficients

(MFCCs) or the Zero Crossing Rate (ZCR) [Müller, 2007]. However, in spite of

being related to perceptual characteristics of the audio signal, short-time features

do not contain much valuable information about the genre. Therefore, in order

to obtain a better classification accuracy, a temporal feature integration process

is carried out [Meng et al., 2007, McKinney and Breebart, 2003], summarizing all

short-time features extracted in longer windows of about one second. The new

features obtained at this larger time scale, which are more correlated with the

music genre information, are then feeded into a supervised classifier, and the

genre is extracted via majority or weighted voting among all classifier outputs for

the segments in one song. In spite of considering to some extent the temporal

structure of the music, the previous procedure fails at capturing the whole dynamics

characterizing each song, which include not just one or several seconds, but the

whole piece of music. The idea behind this is that songs are characterized not only

by the musical motifs present in them, but also by the way these motifs evolve along

time.

In this Chapter we use this interesting problem to further evaluate the methods

proposed in this Thesis. We work from a fully unsupervised perspective, so our

methods do not require any intermediate segment classification step. Moreover, we

consider songs as a whole, so there is no voting of the individual segments: the

algorithms directly produce a single label for each sequence/song.
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Specifically, we want to find out if high-level dynamics can be leveraged to im-

prove the genre recognition procedure. To this end, we will compare the performance

of the SSD distance (Chapter 3) with a statical counterpart. We are also interested in

testing the non-parametric methods presented in the second half of the Thesis (Chap-

ters 4 and 5). Those methods discard the dynamics, but are much more expressive

in input space. Is that added expresiveness more important than the dynamics?

Which method will finally get the best performance in this challenging scenario?

6.1.1 Related publications

Some of the results in this paper appeared originally in [Garćıa-Garćıa et al., 2010].

6.2 Song modelling

We use the song representation introduced in [Meng et al., 2007]. Previous to the

classification phase, each song is pre-processed, extracting audio features at two

different time levels:

• Short-time feature extraction: First, MFCCs are extracted in overlapped win-

dows of short duration. These parameters were originally developed for auto-

matic speech recognition tasks, but they have also been extensively applied in

Music Information Retrieval (MIR) tasks [Sigurdsson et al., 2006] with gener-

ally good results. These features are inspired by the auditory perception of

humans, and contain information about the variations in the spectral envelope

of the audio signal.

For this work, we have used the MFCC implementation of

[Sigurdsson et al., 2006], using a bank with 30 filters, and keeping just

the initial 6 coefficients (however, the first coefficient, which is associated to

perceptual dimension of loudness, is discarded). The window size and hopsize

have been fixed to 30 and 15 ms, respectively. Thus, a fragment of 60 seconds

of music would be represented by a matrix of size 4000×6 after MFCC feature

extraction.
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• Temporal feature integration: It is well-known that the direct use of MFCCs

does not provide an adequate song representation for music genre recognition

tasks. Thus, a time integration process is needed in order to recover more

relevant information. As an alternative to simpler procedures, such as using

the mean and variance of the MFCCs, [Meng et al., 2007] proposed to adjust

a Multivariate Autoregressive (MAR) model. To be more specific, for a set

of consecutive MFCCs vectors, a MAR model of lag P is adjusted using the

formula zj =
∑P

p=1Bpzj−p + ej , where zj are the MFCCs extracted at the

jth window, ej is the prediction error, and Bp are the model parameters. The

values of matrices Bp, p = 1, . . . , P , together with the mean and covariance of

the residuals ej are concatenated into a single feature vector (MAR vector).

In this paper, we have considered MAR models of order P = 3, resulting

in MAR vectors of size 135. For this temporal integration phase, we have

considered a window size and a hopsize of 2 and 1 seconds, respectively. Thus,

an audio fragment of 60 seconds is represented by a matrix of size 60 × 135

after time integration.

Previous works have carried out classification at the time scale resulting from the

temporal integration, using weighted or majority voting to obtain the final classifi-

cation of each song. Following a different direction, in this paper we propose metrics

which deal with the songs as a whole. Thus, no postprocessing is needed to obtain

the final label for each song.

6.2.1 Dataset description

We use a subset of the garageband dataset described in [Arenas-Garćıa et al., 2007].

The data set consists of snippets of around 60s of 4412 songs downloaded from the

online music site http://www.garageband.com1. The songs are in MP3 format,

and belong to different music genres. For the experiments we consider a simplified

problem where the goal is to discriminate between four different genres: “Punk”,

“Heavy Metal”, “Classical”, and “Reggae”. In our opinion this selection is a good

1Downloaded in November, 2005.
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representation of the dataset, since it includes both genres that are a priori hard to

distinguish from one another (Punk and Heavy Metal) and others which are easily

separated. Each genre is represented by 100 songs. MFCC and MAR extraction

settings are as described in Subsection 6.2.

6.3 Influence of high-level dynamics: SSD vs SSD-ST

To check if paying attention to coarse time dynamics can be beneficial for genre clas-

sification, we will compare the standard SSD distance with its steady-state version,

which we will denote by SSD-ST. The SSD-ST measure is obtained by letting the

markov chains defined by the transition matrices induced by the different sequences

reach their equilibrium. It can be interpreted as an extreme example of the diffusion

process that we explain in Chapter 3, Section 3.2.2. Note that we do not introduce

likelihood-based methods in the comparison since they are not useful for this task.

This is due to the number of sequences being high and individual sequences being

short and high-dimensional, which implies poor individual models.

The first experiment consists in performing 1vs1 clustering tasks between the

selected subset of genres. Results are shown in Table 6.1, where performance is

measured in the form of clustering error, understood as the percentage of incorrectly

classified samples under an optimal permutation of the cluster labels. For the sake

of comparison, the table also shows results obtained using the mean of all MAR

vectors of each song as a representative vector. In all cases, the affinity matrices are

generated using a gaussian kernel whose width is automatically selected attending to

the eigengap [Ng et al., 2002]. The poor performance of the mean-vector approach

shows the benefit of using mixture models to represent the individual songs. The

stationary distance SSD-ST performs better for classes which are easily separated.

The intuition is that for these classes, taking into account the dynamics do not im-

prove the already high separability, while the higher number of parameters involved

results in less stable distances and slightly poorer results. However, the hardest

pairing (“Punk” vs “Heavy Metal”) benefits from using the dynamics, due to the

additional discriminative power.

Results of the 4-way clustering are displayed in Table 6.2, using K = 30 hidden
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Table 6.1: 1 vs 1 clustering error for the chosen genres using K=20 states

H.M. Classical Reggae

Punk 38.1% 9.0% 14.1%

H.M. - 6.0% 12.7%

Classical - - 5.9%

a) SSD distance

H.M. Classical Reggae

Punk 44.7% 8.1% 12.6%

H.M. - 5.5% 11.7%

Classical - - 5.1%

b) SSD-ST distance

H.M. Classical Reggae

Punk 45% 19% 35.5%

H.M. - 7.5% 49%

Classical - - 8.5%

c) Mean vectors

Table 6.2: 4-way clustering error for the chosen genres, SSD vs SST

K SSD SSD-SST

25 38.25% 45.75%

30 36.75% 46.00%

40 33.25% 44.25%

states. A clear improvement is obtained in this case when taking into account the

dynamics. The presence of classes with high overlap limits the performance of the

multi-way clustering, and this overlap is bigger when using stationary distances.

This comes to show that while for simpler problems it is enough to look at the

probability distribution of the AR coefficients for the different sequences, the added

discriminative power of dynamics-based distances comes in handy when handling

complex scenarios.
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6.4 Input space expressivity: Non-parametric methods

On the second part of the Thesis (Chapters 4 and 5) we have focused on developing

non-parametric affinities for sets of vectors. This has the potential drawback of not

taking into account the dynamics of the sequences, and the advantage of allowing

for a much more flexible view of input space. In this section we apply these methods

to the music genre recognition task.

We introduce into the comparison the sphere-packing algorithm (SPH) from

Chapter 4, the NN-based estimator (NN-J) and bound (NN Bound-J) of the Jef-

freys divergence from Chapter 5, as well as a Jeffreys-divergence estimator based

on [Wang et al., 2009] (Wang-J), the MMD distance [Gretton et al., 2007] and the

Nearest-Neighbor risk, estimated using complete CV with a training set size of 50%

(NN). Both MMD and SPH use Gaussian kernels. The width of those kernels is

determined using the same heuristic as in Chapter 4: it is chosen to be the median

distance between points in the dataset.

Figure 6.4 provides a graphical view (in the form of Hinton diagrams) of the

confusion matrices, and Table 6.3 holds the clustering error of the non-parametric

methods, in comparison with the best-performing method of the previous section.

There is a clear winner: the best performance is obtained by far when our proposed

NN-risk based estimator of the Jeffreys divergence is used. It is remarkable how

the other estimator of Jeffreys divergence (Wang-J) produces much worse results.

This is likely due to the high dimensionality of the feature vectors, coupled with

small sample size. This kind of data is likely to present a manifold structure, so

the explicit dependance of the Wang estimator on the data dimensionality hinders

its performance, since the actual intrinsic dimensionality is surely much lower than

the ambient space dimension. The poor performance of the NN-based bound on the

divergence can be explained by noting the complexity of the data, which renders the

second-order moments not informative enough. The sphere-packing algorithm also

performs poorly, specially in comparison with the MMD distance.
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SSD NN NN-J Wang-J NN Bound-J MMD SPH

Clustering error 33.25% 39.50% 21.25% 48.75% 46.00% 31.50% 48.50%

Table 6.3: Clustering error for the 4-way music genre clustering task

Punk Heavy Metal Classical Reggae

Punk

Heavy Metal

Classical

Reggae

(a) NN

Punk Heavy Metal Classical Reggae

Punk

Heavy Metal

Classical

Reggae

(b) WANG

Punk Heavy Metal Classical Reggae

Punk

Heavy Metal

Classical

Reggae

(c) NN-J

Punk Heavy Metal Classical Reggae

Punk

Heavy Metal

Classical

Reggae

(d) NN Bound-J

Punk Heavy Metal Classical Reggae

Punk

Heavy Metal

Classical

Reggae

(e) MMD

Punk Heavy Metal Classical Reggae

Punk

Heavy Metal

Classical

Reggae

(f) SPH

Figure 6.1: Confusion matrices for the different algorithms
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6.5 Summary

This chapter focuses on the application of affinity measures for sequences of data to

the musical genre recognition task. Standard methods work individually on segments

of songs, and then make a final decission by voting. Alternatively, sequence-based

affinities view the songs as a whole, and do not need such post-processing steps.

We evaluate whether the high-level dynamics of songs can be leveraged for the

recognition procedure, by comparing the SSD distance with a statical counterpart.

Experiments show that the dynamics can improve the performance in similar genres,

where the instrumentation is similar so the low-level features of the genres overlap

a lot.

Besides, we evaluate the non-parametric affinities we have proposed on the sec-

ond half of the Thesis. The NN-based divergence estimator achieves an impressive

performance, showing that it is very appropriate for complex scenarios with high-

dimensional data.
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Chapter 7

Conclusions

In this Thesis we have presented a set of ideas and methods for defining convenient

and meaningful notions of similarity/dissimilarity between sequences of data. We

have proposed model-based measures that use dynamical models for capturing the

relationships between elements in a sequence, in order to introduce that structure

in the similarity function. When the dynamics of the sequences are discarded, they

become sets of vectors. We propose affinity measures for sets of vectors related to

the overlap of their estimated supports in a high-dimensional feature space, and also

a variety of classification-risk-based measures.

Regarding the model-based methods, we have presented two different alter-

natives, namely KL-LL and SSD (Chapters 2 and 3, respectively). KL-LL is a

likelihood-based method, originating on a novel look at the likelihood matrix from

a model-space perspective. One of the particularities of this method is that it in-

cludes information from the whole dataset in every pair-wise distance. We have

also proposed a simple scheme to choose a good subset of the pool of models, for

improved performance in practical and noisy scenarios. The benefits of KL-LL with

this model-selection scheme in comparison with previous likelihood-based approaches

are evident based on the empirical comparisons.

The SSD distance (Chapter 3) aims at alleviating the main problems of the

likelihood-based methods: poor performance on short sequences due to overfitted

models, and a number of required likelihood evaluations that is quadratic on the
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dataset size. It works by assuming a common set of emission distributions in a

global hidden Markov model for all the sequences in the dataset. Then, different se-

quences are compared according to the transition matrices that they induce in that

model. This way, there are no likelihood evaluations involved. The computational

complexity of learning a transition matrix is analogous to that of a likelihood eval-

uation for an HMM, and the number of matrices to learn is linear in the number of

sequences.

We also present two different approaches for the sets-of-vectors scenario. The

first of them, in Chapter 4, provides a way to work in a kernel-induced feature space.

We provide a geometrical approach consisting on merging spheres learnt to represent

the support of the distributions. This procedure can be carried out regardless of the

(potentially infinite) dimensionality of the feature space. Estimating the supports is

a much simpler problem than estimating the actual distributions. This makes the

proposed recursive sphere-packing algorithm very useful in those settings where the

overlap between the distributions in the feature space is modest.

Our other approach is based on the observation that the affinity between two sets

of vectors can be linked with how hard to separate the elements of the two sets are.

Moreover, that separation can be measured via classification risks. We present some

results showing that the error rate of a simple nearest-neighbor classifier provides

a convenient similarity measure. In fact, we show that it induces a scale-invariant,

positive-definite kernel over probability distributions.

We then connect the idea of classification-risk based similarities with the well-

known family of f -divergences. Specifically, we develop two natural generalizations

of that family which are related to the two parameters that mainly defines a classifier:

the choice of a set of allowable classification functions and a loss function. The first

of those generalizations, the CRFD family, deals with the former aspect. It defines

divergence measures which look at certain features of the distributions, implictly de-

fined by the choice of the set C of classification functions. We prove some interesting

properties of CRFDs, under mild conditions on C: they lower-bound standard diver-

gences, they are monotonous non-decreasing on C and they can satisfy the identity

of indiscernibles property.
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In spite of their theoretical interest, the practical application of CRFDs is hin-

dered by the complexity of estimating classification risks for the whole range of prior

probabilities. In principle this approach is only practical for some specific classifiers,

like the nearest neighbor rule. We have shown that the NN asymptotic error is in a

1-1 correspondence with the Bayes risk for the square loss. Inspired by this result,

we have presented the loss-induced divergences or (f, l)-divergences, which are an-

other generalization of f -divergences where the 0-1 loss is substituted by a surrogate

loss. The loss-induced divergences share most of the properties of f -divergences,

while being a more flexible family. They also provide alternative representations

of standard divergences. Exploiting these alternative representations, we provide a

new estimator of the KL divergence in terms of NN classification errors, as well as a

lower-bound on that divergence. This estimator is not only theoretically interesting,

but also of practical importance, as evidenced by the empirical results. One of its

main assets is that it is independent of the input space dimensionality, unlike the cur-

rent state-of-the-art methods. This makes it specially interested in high-dimensional

settings, where the actual data is likely to lie on a lower-dimensional manifold.

Finally, in Appendix C we have shown how a simple modification of spectral

clustering allows the use of any of the proposed affinity measures for tackling the

segmentation problem.

Even though each chapter includes experimental results on both synthetic and

real datasets, we have also tried the different methods out in a more complex task

in Chapter 6. Specifically, we have addressed the unsupervised music genre recogni-

tion problem. The NN-based divergence estimator of the Jeffreys divergence clearly

outperforms the rest of the methods, showing that the proposed estimator is really

useful for defining disimilarities in complex data sets.

Future lines

Here we sketch some of the most promising future lines arising from the work in

this Thesis. From the point of view of the applications of the different methods, the

possibilities are endless, so we will focus on theoretical and algorithmical extensions.

There are many exciting open issues in the area of model-based similarities.
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Let us consider first the likelihood-based methods. Training models on subsets of

sequences is a feasible way of overcoming their main limitations. Moreover, the

performance of such similarity measures under random sampling of models is a nice

object of study from a theoretical point of view.

Extending the SSD idea to other kind of state-space models is quite a natural

continuation for the work in Chapter 3. Specifically, working with continuous state

space models is a promising path for exploration.

Regarding the sphere-packing clustering algorithm, studying alternative ap-

proaches for finding the optimal K-cover (where K is the desired number of clus-

ters/spheres) of the dataset is a worthy research line. Further connections with the

set-covering literature are likely to exist and yield interesting conclusions.

Regarding the generalizations of f -divergences, devising efficient methods for

estimating CRFDs is a very interesting line of work. That could be done by, for

example, finding clever ways to estimate the risks of linear classifiers for the whole

range of prior probabilities. The (f, l) family of divergences can be used to define

cost-sensitive divergences, by using adequate non-symmetric losses as the building

blocks of the divergences. Finally, the proposed combination of CRFDs and (f, l)-

divergences in Section 5.5.6 is a very promising line to explore. It naturally defines

classifier-based affinities, and is an exciting research topic from both theoretical and

practical viewpoints.
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Spectral clustering
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Clustering [Xu and Wunsch-II, 2005] consists in partitioning a dataset S com-

prised of N elements into C disjoint groups called clusters. Data assigned to the

same cluster must be similar and, at the same time, distinct from data assigned to

the rest of clusters. It is an unsupervised learning problem, meaning that it does not

require any prior labeling of the data, and thus it is very appropriate for exploratory

data analysis or scenarios where obtaining such a labeling is costly.

Algebraically, a clustering problem can be formulated in the following way. Given

a dataset S, one forms a N ×N similarity matrix W, whose ijth element wij repre-

sents the similarity between the ith and jth instances. The clustering problem then

consists in obtaining a N×C clustering matrix Z, where zic = 1 if instance i belongs

to cluster c and zic = 0 otherwise, which is optimal under some criteria.

Spectral clustering (SC) algorithms [von Luxburg, 2007] approach the cluster-

ing task from a graph-theoretic perspective. Data instances form the nodes V of a

weighted graph G = (V,E) whose edges E represent the similarity or adjacency be-

tween data, defined by the matrix W. This way, the clustering problem is cast into a

graph partitioning one. The clusters are given by the partition of G in C groups that

optimize certain criteria such as the normalized cut [Shi and Malik, 2000]. Finding

such an optimal partition is an NP-hard problem, but it can be relaxed into a (gen-

eralized) eigenvalue problem on the Laplacian matrix L = D −W, where D is the

diagonal matrix with elements dii =
∑N

j=1wij , or one of its normalized versions,

followed by k-means [Bishop, 2006] or any other clustering algorithm on the rows of

the matrix of selected eigenvectors. Specifically, if the optimization criterion is the

normalized cut, the corresponding eigenvalue problem is:

Lφ = Dφλ, (A.1)

where φ = {φ1, . . . , φN} is the matrix whose columns corresponds with the gen-

eralized eigenvectors and λ is a diagonal matrix whose iith entry corresponds

with λi, the ith eigenvalue, which are assumed to be sorted by increasing mag-

nitude. Then, the actual partitions are found by clustering the rows of φ̃ =

{φ2, . . . , φK ′}[Shi and Malik, 2000]. The first eigenvector (associated with an eigen-

value 0) is not included because it is constant, assuming that the graph is connected

[von Luxburg, 2007]. The number of selected eigenvectors is usually equal to the
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number of clusters K ′ = K, but it can also be chosen more carefully, looking for

the number of eigenvectors that provides a partition of the space in as many clus-

ters as desired. More generally, if the number of clusters is unknown, it can be

chosen attending to the eigengap, which is the difference in magnitude between

two consecutive eigenvalues. From matrix perturbation theory, a large eigengap be-

tween the ith and (i+1)th eigenvalue implies a stable principal subspace {φ1, . . . , φi}
[Stewart and Sun, 1990].

In recent years, many authors have analyzed spectral clustering algorithms from

several new viewpoints. Specifically, in [Belkin and Niyogi, 2001] the authors show

that the eigenvalue problem coming from the relaxation of the normalized-cut crite-

rion clustering corresponds with a structure-preserving low-dimensional embedding

of the original data, so the use of euclidean distances between the rows of φ̃ is justi-

fied. This embedding is called Laplacian Eigenmap. Attending to this interpretation,

the number of eigenvectors K ′ selected according to the eigengap can be seen in some

sense as the effective dimension of the manifold where the original data live.

The time complexity for the spectral clustering is dominated by the eigendecom-

position of the normalized Laplacian, which in general is O(N3). However, if the

affinity matrix is sparse (e.g. if only the affinities between the nearest neighbors

of a given node are considered), there exist efficient iterative methods that notably

reduce this complexity, such as the Lanczos method [Golub and Van Loan, 1989],

which makes it feasible even for large datasets [von Luxburg, 2007].
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Hidden Markov models (HMMs)
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Hidden Markov models (HMMs) [Rabiner, 1989] are a type of parametric, dis-

crete state-space model. They provide a convenient model for many real-life phe-

nomena, while allowing for low-complexity algorithms for inference and learning.

Their main assumptions are the independence of the observations given the hidden

states and that these states follow a Markov chain.

Assume a sequence S of T observation vectors S = {x1, . . . ,xT }. The HMM

assumes that xt, the tth observation of the sequence, is generated according to

the conditional emission density p(xt|qt), with qt being the hidden state at time

t. The state qt can take values from a discrete set {s1, . . . , sK} of size K. The

hidden states evolve following a time-homogeneous first-order Markov chain, so that

p(qt|qt−1, qt−2, . . . , q0) = p(qt|qt−1).

In this manner, the parameter set θ that defines an HMM consists of the following

distributions:

• The initial probabilities vector π = {πi}Ki=1, where πi = p(q0 = si).

• The state transition probability, encoded in a matrix A = {aij}Ki,j=1 with

aij = p(qt+1 = sj|qt = si), 1 ≤ i, j ≤ K.

• The emission pdf for each hidden state p(xt|qt = si), 1 ≤ i ≤ K.

From these definitions, the likelihood of a sequence S = {x1, . . . ,xT } can be

written in the following factorized way:

p(S|θ) =
∑

q0,...,qT

πq0p(x0|q0)
T
∏

t=1

p(xt|qt)aqt−1,qt. (B.1)

The training of this kind of models in a maximum likelihood setting is usually

accomplished using the Baum-Welch method [Rabiner, 1989, Bilmes, 1997], which is

a particularization of the well-known EM algorithm. The E-step finds the expected

state occupancy and transition probabilities, which can be done efficiently using the

forward-backward algorithm [Rabiner, 1989]. This algorithm implies the calculation

of both the forward α and backward β variables that are defined as follows:

αk(t) = p(x1, . . . ,xt, qt = sk) (B.2)

βk(t) = p(xt+1, . . . ,xT |qt = sk). (B.3)
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These variables can be obtained in O(K2T ) time through a recursive procedure and

can be used to rewrite the likelihood from Eq. (B.1) in the following manner:

p(S|θ) =
K
∑

k=1

αk(t)βk(t), (B.4)

which holds for all values of t ∈ {1, . . . , T}.
Given a previously estimated A, the state transition probabilities can be updated

using the forward/backward variables and that previous estimation, yielding:

ãij ∝
T
∑

t′=1

αi(t
′)aijp(xt′+1|qt′+1 = sj)βj(t

′ + 1). (B.5)

Then, the M-step updates the parameters in order to maximize the likelihood given

the expected hidden states sequence. These two steps are then iterated until conver-

gence. It is worth noting that the likelihood function can have many local maxima,

and this algorithm does not guarantee convergence to the global optimum. Due to

this, it is common practice to repeat the training several times using different ini-

tializations and then select as the correct run the one providing a larger likelihood.

The extension of this training procedure to multiple input sequences is straight-

forward. The interested reader is referred to [Rabiner, 1989] for a complete descrip-

tion.
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Appendix C

From spectral clustering to

segmentation for sequences of

data

Motivated by an interpretation of segmentation as clustering with additional con-

straints, we propose a new algorithm for sequence segmentation based on the meth-

ods developed in previous chapters. This approach implies the use of model-based

distance measures between sequences, as well as a variant of spectral clustering spe-

cially tailored for segmentation.

C.1 Introduction

As we have previously emphasized, clustering is a very useful data exploration tech-

nique, consisting in finding a partition of a dataset resulting in meaningful disjoint

groups. When the data we want to partition is actually a sequence, it is usually

quite natural to look for temporally (or spatially) contiguous clusters. This way, the

clustering task is turned into a segmentation task´. Arguably, the best-known ap-

proach to segmentation is the dynamic programming technique [Bellman, 1961]. In

its most basic form, it looks for an optimal piecewise-constant approximation to the
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original sequence, usually in terms of the L2 norm of the approximation error. Hid-

den Markov models are also usually employed for sequeece segmentation purposes.

Recall that this family of models assumes a discrete latent variable zt following a

Markov chain with a certain transition matrix A = {aij} , aij = P (zt = j|zt−1 = i)

and a observable variable yt. In a segmentation scenario, each block of contiguous

data vectors assigned to a given latent variable value is considered a segment.

Note that these techniques treat data inside each segment as independent,

identically-distributed samples. However, many times it is interesting to take into ac-

count the dynamical characteristics of the individual segments. This can be achieved

by the use of Hierarchical Hidden Markov Models (HHMMs) [Fine et al., 1998], a

multi-layered probabilistic model in which each layer form an HMM, or in general

any kind of hierarchical dynamic bayesian network [Murphy, 2002]. The drawback

of this approach is that the learning of such models is very computationally demand-

ing and, even more importantly, usually requires very careful model selection and

initialization procedures in order to produce adequate results.

In this brief chapter we propose to use the framework of semi-parametric model-

based sequence clustering in order to achieve segmentations which take into account

the dynamical characteristics of the individual segments. If a full generative char-

acterization of the dataset is desired (e.g. an HHMM), the resulting segmentation

can be used as an initialization for the learning procedure of the actual generative

model.

The rest of this chapter is organized as follows: Section C.2 focus on defining the

segmentation problem from a clustering perspective, and provide an

C.1.1 Related publications

This appendix is mainly based on publications [Garćıa-Garćıa et al., 2009b] and

[Garćıa-Garćıa et al., 2009a].
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C.2 Segmentation as a clustering problem

Data segmentation can, in many cases, be naturally interpreted as a clustering prob-

lem with additional connectivity constraints. In the case of sequential data, these

constraints imply that the points belonging to a given cluster must be compact in

the temporal dimension. This means that every node between the leftmost and the

rightmost ones of a given cluster must belong to that cluster. With this in mind, we

propose to extend the successful framework of semi-parametric sequence clustering

to sequence segmentation. To this end, the original sequence S is divided into N

sub-sequences S = S1, . . . , SN which are then clustered while enforcing the afore-

mentioned constraints. The length of the sub-sequences is called the window size,

and it determines the temporal resolution of the segmentation. It is worth noting

that if a high time resolution is required for the segment boundaries, it can be easily

and progressively refined by focusing on the sub-sequences which define a boundary

and analyzing them using a smaller window size.

If the KL-based method from Chap. 2 is used for defining affinities, then any

probabilistic model can be used for the individual sub-sequences. If the state-

space dynamics method from Chap. 3 is used, then HMMs will be the model of

choice. If a dynamical model is used, the usual assumption of i.i.d. data can be

avoided, thus taking into account the temporal evolution of the data within each

subsequence. This is one of the main strengths of this proposal. For the actual

clustering stage, we once again propose the use of spectral clustering algorithms,

given their good performance, as reported in the model-based sequence clustering

literature [Garćıa-Garćıa et al., 2009c, Yin and Yang, 2005] and the strength of its

interpretation as a low-dimensional embedding, which we will use when defining our

algorithm.

As previously stated, the problem of minimizing the normalized cut of a given

affinity matrix is NP-hard. Nonetheless, the restriction of the clusters being com-

pact in time allows for the development of a particular dynamic programming

(DP) algorithm that find the optimal partition in K segments in polynomial time

[Malioutov and Barzilay, 2006]. However, in this paper we propose to carry out the

usual spectral decomposition of the affinity matrix and then obtain the actual seg-
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mentation on the resulting eigenvectors using standard DP with L2 norm. This

way, the implementation of a specific DP algorithm for solving the normalized cut

is avoided, and we can resort to the standard spectral clustering literature in or-

der to intelligently select the kernel width if the number of sources is known a priori

[Garćıa-Garćıa et al., 2009c, Ng et al., 2002]. As previously commented, this param-

eter has dramatic effects on the clustering/segmentation performance and should be

chosen carefully. Working on selected eigenvectors also has a denoising effect, com-

ing from the dimensionality reduction. The drawback of this alternative is the need

for a (partial) eigendecomposition of the N ×N affinity matrix. The time complex-

ity for this decomposition, assuming the matrix is full, is O(N3). However, if the

affinity matrix is sparse (e.g. if only the affinities between the nearest neighbors of

a given node are considered), there exist efficient iterative methods that reduce this

complexity, such as the Lanczos method [Golub and Van Loan, 1989].

C.2.1 Segmenting the eigenvectors

As explained in Appendix A, the normalized-cut spectral clustering algorithm can

be interpreted as an embedding of the original data into a low-dimensional space

followed by a typical clustering applied on the embedded data. The low-dimensional

embedding correspond with the rows of a subset of the eigenvectors of the normal-

ized Laplacian of the affinity matrix. We can obtain a segmentation based on this

paradigm by just substituting the clustering on the eigenvectors by a procedure

which preserves the time-continuity of the clusters. If we know the number MSRC of

individual “sources” of the data (e.g. number of different speakers in a speaker seg-

mentation task or number of mixture components in a mixture model segmentation

scenario), that number should be the number of clusters that arise naturally from

W . Thus, a large eigengap is expected between λMSRC
and λMSRC+1 and we can

interpret φ̃ =
{

φ2, . . . ,φMSRC

}

as a good MSRC− 1 dimensional embedding for clus-

tering purposes. In fact, if MSRC is unknown, we can simply choose as the dimension

of the embedding the one that provides a larger eigengap.

As mentioned in Appendix A, euclidean distances between the rows of φ̃ are

meaningful from the clustering point of view. Moreover, the resulting eigenvectors
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approximate the desired piecewise-constant solution to the clustering problem. Thus,

in order to obtain the actual segmentation, it is very natural to apply the well-known

k-segmentation algorithm based on dynamic programming [Bellman, 1961] which, as

previously stated, assume a piecewise-constant behavior of the sequence.

If we are also interested in simultaneous clustering of the segments according to

their source, an inexpensive alternative would be to perform k-means clustering on

the eigenspace to find as many clusters as sources are present, and then assign each

segment to the same cluster of the majority of the subsequences within it.

C.3 Experimental Results

In this section we evaluate the performance of the proposed method for sequence-

clustering-based segmentation. We focus on using dynamical models for the sub-

sequences, since this is one of the main advantages of our proposal. To this end,

we present results using both synthetic and real-world datasets, namely a speaker

segmentation task. For the sake of simplicity we have assumed a known number of

sources and segments in the experiments. If these parameters are unknown, they

can be effectively estimated using well-known criteria. In order to determine the

number of sources (or the effective dimension of the embedded space), as previously

commented we can resort to eigengap-based heuristics [Ng et al., 2002]. Addition-

ally, if the number of segments is unknown, the Bayes information criterion (BIC)

[Bishop, 2006] could be used together with dynamic programming in order to obtain

an optimal partition. The kernel width is automatically selected as the one that

provides the largest eigengap between the Kth and (K+1)th eigenvalues. We report

the results obtained applying KL-distance (see Chapter 2) based spectral clustering

(KL-SC) as well as the proposed segmentation algorithm (KL-SS), and the same for

the SSD distance from Chapter 3 (yielding SSD-SC and SSD-SS). Clustering error

is defined as the percentage of incorrectly classified samples under an optimal per-

mutation of the cluster labels. Note that when clustering the subsequences, our aim

is to group them according to their source. On the other hand, segmentation error

is naturally the percentage of subsequences assigned to the wrong segment. If we

perform a further clustering of the estimated segments, such as the one mentioned
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in the previous section, the resulting clustering error would be equal to the reported

segmentation error if each segment is correctly clustered (as is always the case in the

present experiments).

Since the segment size may not be an exact multiple of the window size, the

ground-truth label of a given window for error calculation purposes is set as the

label of the majority of the data points falling inside that window.

C.3.1 Synthetic Data: Segmenting a Mixture of HMMs

We adopt the scenario suggested in [Smyth, 1997] which we already used in Chapters

2 and 3, but adapted to the segmentation task. The data sequence is comprised of

segments coming from a equiprobable mixture of two HMMs θ1 and θ2. Each of

these models has two hidden states, with an uniform initial distribution, and their

corresponding transition matrices are

A1 =





0.6 0.4

0.4 0.6



 A2 =





0.4 0.6

0.6 0.4



 .

Emission probabilities are the same in both models, specifically N (0, 1) in the

first state and N (3, 1) in the second.

We generate random sequences consisting of 20 segments, 10 of them coming

from each one of the aforementioned sources. The length of each segment is chosen

accordingly to a uniform random variable in the range [350, 2000]. This experiment is

repeated for different window lengths, and for each one of them 50 runs are executed

and averaged. Since there are less sources than segments, we need to assign each

segment to the corresponding source. This can be done by simply running a k-means

algorithm on the selected eigenvectors to cluster individual nodes of the graph in as

many groups as different sources exist (in this case, 2) and then assign each segment

to the source corresponding to the majority of its nodes. We compare clustering

and segmentation results are shown in Table C.1. As expected, enforcing the con-

tiguity constraint turns the KL-SC clustering method into a powerful segmentation

algorithm. This additional constraints greatly simplifies the original problem, since

dynamic programming corrects isolated clustering errors inside a segment, resulting

in very low segmentation error rates. However, when the window size is very short
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Table C.1: Clustering and Segmentation error (mean and standard deviation) in the

synthetic scenario (2 sources, 8 segments)

Window length KL-SC KL-SS

m=100 19.63% (±13.05) % 15.91% (±16.38)
m=125 7.25% (±6.30) % 4.23% (±7.63)
m=150 3.81% (±2.50) % 1.06% (±1.76)

(according to the complexity of the task), the affinity matrix does not reflect well

the structure of the dataset, so the eigenvectors of the Laplacian matrix are not very

informative from a clustering perspective and dynamic programming can not get a

proper segmentation.

C.3.2 Speaker Segmentation

In order to show the real-world effectiveness of the proposed method, we carry out a

speaker segmentation task on the UCI Japanese Vowels dataset (see Appendix D).

Recall that it is comprised of utterances from 9 different speakers. We concatenate

all the individual sequences to form the long sequence which we would like to divide

into 9 segments. We use a windows of lengths ranging from 10 to 15 samples, which

corresponds with time resolutions from 64 to 128ms. Each subsequence is modeled

using a 2-state HMM.

Fig.C.1 shows the evolution of the eigenvectors along the subsequences. Their

behavior is approximately piecewise-constant, as expected, so dynamic programming

is able to find a very good segmentation of the original sequence. Note that, for the

shake of clarity, there are just 5 eigenvectors in the plot and they clearly define the

segment boundaries, showing that many times the dimensionality of the embedding

can be lesser than the number of clusters while allowing for a clear partition. Table

C.2 compares clustering and segmentation results for the likelihood-based methods,

averaged over 50 runs. It is worth noting that the dynamic programming on the

eigenvectors greatly alleviates the fluctuations amongst runs, giving extremely stable

segmentation results in each execution as well as very good performance. On Table

C.3 we compare the segmentation performance of KL and SSD measures.
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Table C.2: Clustering and segmentation error (mean and standard deviation) in the

Japanese Vowels dataset (9 sources and segments)

Window length KL-SC KL-SS

m=10 21.68% (±4.75) 1.0% (±0.22)
m=15 10.21% (±3.18) 3.5% (±0)
m=20 5.19% (±2.00) 1.4% (±0)
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Figure C.1: Plot of the eigenmap and the segment boundaries found by DP for the

speaker segmentation task
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Table C.3: Segmentation error (mean and standard deviation) in the Japanese Vowels dataset (9 sources and segments) using

KL and SSD distances

KL-SS SSD-SS

Window length Km=2 K=18 K=24 K=32 K=40

W=10 1.0% (±0.22) 1.61% (±0) 1.0% (±0.29) 0.82% (±0.35) 0.72% (±0.33)
W=15 3.5% (±0) 2.39% (±0) 1.12% (±0.39) 0.95% (±0.29) 0.98% (±0.27)
W=20 1.4% (±0) 2.66% (±0) 1.26% (±0.44) 1.03% (±0.53) 0.75% (±0.45)
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D.1 EEG Data

This database was recorded by Zak Keirn at Purdue University, and can be found

at http://www.cs.colostate.edu/eeg/eegSoftware.html. It consists of EEG

recordings of seven subjects performing five different mental tasks, namely: base-

line (rest), math calculations, composing a letter, rotating a geometrical figure and

counting. Each recording comprises measures taken from seven channels at 250Hz

for 10 seconds. We divide them into subsequences of l25 samples, and the only

preprocessing applied to them is a first order derivative so they adjust better to a

Markov model.

D.2 Japanese Vowels

To construct this dataset, nine male speakers uttered two Japanese vowels /ae/

consecutively. The actual data is comprised of the 12-dimensional time-series

of LPC cepstrum coefficients for each utterance, captured at a sampling rate

of 10KHz using a sliding window of 25.6ms with a 6.4ms shift. The number

of samples per sequence varies in the range 7-29 and there are 30 sequences

per user. This dataset can be downloaded from the UCI ML repository at

http://archive.ics.uci.edu/ml/datasets/Japanese+Vowels.

D.3 GPM PDA speech data

This database was recorded at the Multimedia Processing Group of

the University Carlos III of Madrid using a PDA. It is available at

http://www.tsc.uc3m.es/~dggarcia/code.html. The dataset consists of

speech coming from 30 differente speakers. Each speaker recorded 50 isolated words

(each one of them being an individual sequence), yielding recordings with a mean

length around 1.3 seconds. The audio files were processed using the freely available

HTK software1, using a standard parametrization consisting of 12 Mel-frequency

cepstral coefficients (MFCCs) [Müller, 2007], an energy term and their respective

1http://htk.eng.cam.ac.uk
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increments (δ), giving a total of 26 parameters. These parameters were obtained

every 10ms with a 25ms analysis window. This dataset can be used to obtain 1176

2-speaker clustering tasks.

D.4 Synthetic Control Chart data

This dataset contains unidimensional time series representing six different classes

of control charts: normal, cyclic, increasing trend, decreasing trend, upward

shift and downward shift. The sequences are synthetically generated using the

process in [Alcock and Manolopoulos, 1999]. There are 100 instances of each class,

with a fixed length of 60 samples per instance. A sample of each class is plot-

ted in Fig. D.1. The dataset is part of the UCI KDD repository, and can be found at

http://archive.ics.uci.edu/ml/datasets/Synthetic+Control+Chart+Time+Series.
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D.5. CHARACTER TRAJECTORIES
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Figure D.1: Some samples from the Synthetic Control Chart dataset

D.5 Character Trajectories

This dataset consists of trajectories captured by a digitizing tablet when writ-

ing 20 different characters. Each sample is a 3-dimensional vector containing

the x and y coordinates as well as the pen tip force. There are 2858 sequences

in the dataset, which are already normalized, differentiated and smoothed us-

ing a Gaussian kernel. We use this dataset for carrying out two-class clus-

terings between all the possible combinations, giving a total of 190 experi-

ments. The average length of the sequences in this dataset is around 170

samples. The dataset can be downloaded from the UCI ML repository at

http://archive.ics.uci.edu/ml/datasets/Character+Trajectories.

D.6 AUSLAN

The Australian Sign Language dataset is comprised of 22-dimensional time series

representing different sign-language gestures. The gestures belong to a single

signer, and were collected in different sessions over a period of nine weeks. There

are 27 instances per gesture, with an average length of 57 samples. Follow-

ing [Jebara et al., 2007], we perform 2-class clustering tasks using semantically

related concepts. These concepts are assumed to be represented by similar ges-
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tures and thus provide a difficult scenario. The AUSLAN dataset can be found at

http://archive.ics.uci.edu/ml/datasets/Australian+Sign+Language+signs+(High+Quality).
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Appendix E

Code

MATLAB implementations of the different methods mentioned in this Thesis can be

found at http://www.tsc.uc3m.es/~dggarcia/code.html.
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[Österreicher and Vajda, 1993] Österreicher, F. and Vajda, I. (1993). Statistical

information and discrimination. IEEE Transactions on Information Theory,

39(3):1036–1039.

[Stewart and Sun, 1990] Stewart, G. and Sun, J. (1990). Matrix Perturbation The-

ory. Academic Press.

[Stone, 1977] Stone, C. (1977). Consistent nonparametric regression. Annals of

Statistics, 5:595–645.

[Suzuki et al., 2009] Suzuki, T., Sugiyama, M., and Tanaka, T. (2009). Mutual

information approximation via maximum likelihood estimation of density ratio.

In Proceedings of 2009 IEEE International Symposium on Information Theory

(ISIT2009), pages 463–467, Seoul, Korea.

[Szlam et al., 2008] Szlam, A., Coifman, R., and Maggioni, M. (2008). A general

framework for adaptive regularization based on diffusion processes. Journal of

Machine Learning Research (JMLR), 9(9):1711–1739.

[Tzanetakis and Cook, 2002] Tzanetakis, G. and Cook, P. (2002). Musical genre

classification of audio signals. IEEE Trans. Speech and Audio Process., 10:293–

302.

[von Luxburg, 2007] von Luxburg, U. (2007). A Tutorial on Spectral Clustering.

Statistics and Computing, 17(4).

[Wang et al., 2009] Wang, Q., Kulkarni, S., and Verdú, S. (2009). Divergence es-
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