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ABSTRACT

Within the last decade of the 20th century and the first few years of the 21st cen-
tury, the demand for complex software systems has increased, and therefore, the relia-
bility of software systems has become a major concern for our modern society. Soft-
ware reliability is defined as the probability of failure free software operations for a
specified period of time in a specified environment. Many current software reliability
techniques and practices are detailed by Lyu [54] and Pham [77].

From a statistical point of view, the random variables that characterize software
reliability are the epoch times in which a failure of software takes place or the times
between failures. Most of the well known models for software reliability are centered
around the interfailure times or the point processes that they generate. A software
reliability model specifies the general form of the dependence of the failure process on
the principal factors that affect it: fault introduction, fault removal, and the operational
environment.

The purpose of this thesis is threefold: (1) to study stochastic properties of times
between failures relative to independent but not identically distributed random varia-
bles; (2) to investigate properties of the epoch times of nonhomogeneous pure birth
processes as an extension of nonhomogeneous Poisson processes used in the litera-
ture in software reliability modelling and, (3) to develop a software reliability model
based on the use of covariate information such as software metrics. Firstly, proper-
ties of statistics based on heterogeneous samples will be investigated with the aid of
stochastic orders. Stochastic orders between probability distributions is a widely stu-
died concept. There are several kinds of stochastic orders that are used to compare
different aspects of probability distributions like location, variability, skewness, de-
pendence, etc. Secondly, ageing notions and stochastic orderings of the epoch times of
nonhomogeneous pure birth processes are studied. Ageing notions are another impor-
tant concepts in reliability theory. Many classes of life distributions are characterized
or defined according to their aging properties in the literature. Finally, we exhibit
a non-parametric model based on Gaussian processes to predict number of software
failures and times between failures. Gaussian processes are a flexible and attractive
method for a wide variety of supervised learning problems, such as regression and
classification in machine learning.

This thesis is organized as follows. In Chapter 1, we present some basic software
reliability measures. After providing a brief review of stochastic point processes and
models of ordered random variables, it discusses the relationship between these kind
of models and types of failure data. This is then followed by a brief review of some
stochastic orderings and ageing notions. The chapter concludes with a review of some
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well known software reliability models.
The results of Chapter 2 concern stochastic orders for spacings of the order statis-

tics of independent exponential random variables with different scale parameters.
These results on stochastic orderings and spacings are based on the relation between
the spacings and the times between successive software failures. Due to the compli-
cated expression of the distribution in the non-iid case, only limited results are found
in the literature. In the first part of this chapter, we investigate the hazard rate ordering
of simple spacings and normalized spacings of a sample of heterogeneous exponential
random variables. In the second part of this chapter, we study the two sample pro-
blem. Specifically, we compare both simple spacings and normalized spacings from
two samples of heterogeneous exponential random variables according to the likeli-
hood ratio ordering. We also show applications of these results to multiple-outlier
models.

In Chapter 3, motivated by the equality in distribution between sequential order
statistics and the first n epoch times of a nonhomogeneous pure birth process, we
consider the problem of comparing the components of sequential k-out-of-n systems
according to magnitude and location orders. In particular, this chapter discusses con-
ditions on the underlying distribution functions on which the sequential order statis-
tics are based, to obtain ageing notions and stochastic comparisons of sequential order
statistics. We also present a nonhomogeneous pure birth process approach to software
reliability modelling.

A large number of models have been proposed in the literature to predict software
failures, but a few incorporate some significant metrics data observed in software tes-
ting. In Chapter 4, we develop a new procedure to predict both interfailure times and
numbers of software failures using metrics information, from a Bayesian perspective.
In particular, we develop a hierarchical non-parametric regression model based on ex-
ponential interfailure times or Poisson failure counts, where the rates are modeled as
Gaussian processes with software metrics data as inputs, together with some illustra-
tive concrete examples.

In Chapter 5 we show some general conclusions and describe the most significant
contributions of this thesis.
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RESUMEN

En la última década del siglo 20 y en los primeros años del siglo 21, la demanda de
sistemas informáticos ha aumentado considerablemente, muestra de ello es su pre-
sencia en satélites espaciales, aviones, cadenas de montaje automatizadas, incluso
cada vez están más cercanos a nuestra vida cotidiana como en automóviles, elec-
trodomésticos o teléfonos móviles. Un sistema informático consta de dos tipos de
componentes: el hardware y el software. Entre ellos la principal diferencia es que el
software no se desgasta. Así, un programa informático podría funcionar al cabo de
años con la misma corrección con que lo hizo el primer día sin necesidad de modifi-
cación alguna.

En general, la calidad de un producto puede valorarse desde diversos puntos de
vista. El software no es una excepción, y existen por tanto diferentes enfoques para
la valoración de su calidad. Aquí nos centraremos en uno de dichos enfoques: la
fiabilidad. Por fiabilidad se entiende la probabilidad de ausencia de fallos durante la
operación de un producto de software. Existen diferentes técnicas estadísticas para
medir la fiabilidad de un programa informático, algunas de ellas son detalladas en
Lyu [54] y Pham [77].

Desde un punto de vista estadístico, las variables aleatorias que caracterizan la
fiabilidad del software son los instantes de tiempo en los que se produce un fallo
de software, así como, los tiempos entre fallos. Uno de los objetivos principales de
esta tesis es modelizar el comportamiento de dichas variables aleatorias. Resulta in-
teresante estudiar el comportamiento estocástico de dichas variables, ya que, de este
modo, podemos conocer propiedades de las mismas relacionadas con sus funciones
de supervivencia o con sus funciones de tasa de fallo. En este sentido, en el Capí-
tulo 2, presentamos resultados referidos con ordenaciones estocásticas de los tiempos
entre fallos de software, relativos a variables aleatorias independientes no idéntica-
mente distribuidas. Estos resultados se basan en la relación que liga dichos tiempos
con los espaciamientos (spacings). Tanto los estadísticos de orden como los espacia-
mientos tienen un gran interés en el contexto del Análisis de Supervivencia, así como
en la Teoría de Fiabilidad. En la mayoría de los trabajos existentes, se asume que
las variables implicadas son independientes e idénticamente distribuidas (iid). De-
bido a la complejidad analítica que conlleva relajar alguna de estas dos hipótesis, no
hay demasiadas referencias para el caso en el que las variables no sean iid. Kochar y
Korwar [43] comprobaron que, cuando el número de exponenciales que se contem-
plan son tres, los espaciamientos normalizados cumplen la ordenación de tasa de fallo
y conjeturaron lo mismo para el caso general de n variables aleatorias exponenciales
heterogéneas. En la Sección 2.2, se presentan avances relacionados con dicha conje-
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tura, así como, resultados relativos a la ordenación de tasa de fallo de espaciamientos
sin normalizar. También han sido estudiados en este capítulo problemas asociados
con espaciamientos obtenidos a partir de muestras aleatorias de dos poblaciones. En
particular, hemos obtenido condiciones suficientes para que se verifique la ordenación
de razón de verosimilitud entre espaciamientos de dos muestras de exponenciales he-
terogéneas.

Por otra parte, hemos trabajado con estadísticos de orden secuenciales, ya que
incluyen un gran número de variables aleatorias ordenadas. Además, este tipo de
estadísticos de orden son interesantes porque están ligados con los tiempos en los
que ocurre un fallo de procesos no homogéneos de nacimiento puro. Cabe destacar,
que este tipo de variables son dependientes y no idénticamente distribuidas, lo que
aumenta la complejidad del problema. Nuestro objetivo aquí, es estudiar qué condi-
ciones deben verificar las distribuciones subyacentes a partir de las cuales se definen
los estadísticos de orden secuenciales para que éstos cumplan algún tipo de orde-
nación estocástica. Los resultado obtenidos en este sentido se presentan en el Capí-
tulo 3. En este capítulo, también estudiamos otro concepto importante en fiabilidad,
la noción de envejecimiento. Los diferentes conceptos de envejecimiento describen
como una componente o un sistema mejora o empeora con la edad. En este sentido, el
envejecimiento positivo significa que las componentes tienden a empeorar debido al
desgaste. Exactamente esto es lo que le ocurre al hardware. Mientras que, cuando un
sistema supera ciertos tests y mejora, diremos que el envejecimiento es negativo, como
le sucede al software. En el segundo capítulo de la tesis, estudiamos condiciones bajo
las cuales algunas propiedades de envejecimiento verificadas por las distribuciones
subyacentes, a partir de las cuales se definen los estadísticos de orden secuenciales, se
cumplen también para los estadísticos de orden secuenciales.

Si bien es cierto que se han desarrollado en los últimos cuarenta años un gran
número de modelos de fiabilidad de software, la mayoría de ellos no tienen en consi-
deración la información proporcionada por covariables. Otra aportación de esta tesis,
la cual se encuentra en el Capítulo 4, consiste en la utilización de métricas del software
como variables independientes para predecir o bien el número de fallos de un pro-
grama informático o bien los tiempos entre sucesivos fallos del software. Una métrica
de un programa informático sirve para medir la complejidad y la calidad del mismo,
así como, la productividad de los programadores con respecto a su eficiencia y com-
petencia. En esta tesis, hacemos uso de métricas para medir la complejidad de un
programa informático a través del volumen del mismo contabilizando el número de
líneas de código. En la literatura existen algunos modelos lineales para predecir datos
de fallos del software mediante métodos de inferencia clásicos. Sin embargo, nosotros



IX

optamos por utilizar procesos gaussianos que relajan la linealidad y que han sido am-
pliamente usados en problemas de aprendizaje automático, tanto en regresión como
en clasificación.

Por último, en el Capítulo 5, resumimos las principales aportaciones de esta tesis.
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CHAPTER 1

Introduction

The central theme of this thesis is the study of reliable software systems, from a
statistical point of view, as a key element of computer systems. Today, computer sys-
tems permeate our modern society. They are embedded in air traffic control, nuclear
reactors, aircraft, real-time sensor networks, industrial process control, automotive
mechanical and safety control, and hospital health care, among others. As the func-
tionality of computing operations becomes more essential, there is a greater need for a
high reliability of the computing systems. They combine both software and hardware
that have to function together to complete various tasks.

In order to explain the interest of the topics of this dissertation, we present a real
example, the Year 2000 Problem (Y2K). An impressive list of system crashes due to
software and their cost is reported in Lyu [54] and Pham [77]. In the early 1970s, when
computers were first used in the business world, storage space was at a premium and
the use of a two-digit convention to represent the year seemed appropriate. Incorrect
software programs will assume that the maximum value of a year field is “99”and will
roll systems over to the year 1900 instead of 2000, resulting in negative date calcula-
tions and the creation of many overnight centenarians. Some consequences of the Y2k
problem verged on the serious, like the glitches that hit the Japanese nuclear power
plants and the US military satellite, but most were mundane, from broken bus ticket
machines in Tasmania to police breath-testing equipment in Hong Kong (BBC, January
4, 2001).

The year 2000 was, however, not the only date dangerous to software applica-
tions. Some systems had problems that rolled over to 2010. The most important such

1



2 CHAPTER 1. INTRODUCTION

problems occurred in Germany, where around a quarter of debit and credit cards have
been rendered unreadable by the software bug, causing chaos across the country. More
than 20 million of these banks’ cards were not working when the glitch cropped up
on New Year’s Day (Time, January 7, 2010). Another case was that of PlayStation 3
consoles. A calendar-based error afflicting older PlayStation 3 consoles has meant that
owners worldwide are hesitant to turn on their gaming machines until Sony assures
them that a fix is available. This error was due to reset its calendar to December 31,
1999 in America and the January 1, 2000 in Europe and Asia. (The Independent, March
1, 2010).

These examples highlight that the development of reliable software programs is
a necessity today. Software reliability is an important metric to assess the correct
functioning of software systems. This chapter defines software reliability models and
illustrates the prime importance of such techniques in quantifying the reliability of
repairable systems. We give a brief description of different reliability measures and
review some very well known stochastic orders, based on the comparison of these
reliability measures. Also, we provide a short introduction to counting processes and
models of ordered random variables, because these two types of models have been
applied to software reliability models in the literature.

1.1. SOFTWARE RELIABILITY MEASURES

Reliability is defined as the probability that a system will perform its intended func-
tion under specified design limits. A computer system consists of two major compo-
nents: hardware and software. In general, a system can be defined as a collection of
two or more parts which is designed to perform one or more functions. A software
system is a repairable system, i.e., it can be restored to fully satisfactory performance by
any method, other than replacement of the entire system, after failing to perform one
or more of its functions satisfactorily. It is obvious that most real world systems are
repairable systems.

Software reliability is different from hardware reliability in the sense that software
does not wear out or burn out. The software itself does not fail unless flaws within the
software result in a failure in its dependent system. Furthermore, software systems are
usually debugged during testing phase so that its reliability is improving over time.
Software reliability is an attribute and key factor in software quality (Lyu [54]) and is
defined as follows.

Definition 1.1.1. Software reliability is the probability of failure-free software operation
for a specified period of time in a specified environment.
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Three major components in the definition of software reliability are failure, time
and operational environment. The operational environment of a system is a group of runs
which typically involve similar processing.

A failure occurs when the user perceives that the program ceases to deliver the
expected service. A fault is uncovered when either a failure of the program occurs or
an internal error is detected within the program. It is noteworthy that all faults do not
necessarily cause failures, but all failures are caused by faults. The causes of software
failure are different from those of hardware failure. A consequence is that it is possible
to have software that is fault-free and so will never experience failure for any mission
time, whereas hardware experiences deterioration with use. Software fails because of
faults in the code and these faults are introduced due to human error.

Reliability quantities are defined with respect to time. We are concerned with three
types of time: (1) the execution time for a software system is the CPU time that is actua-
lly spent by the computer in executing the software; (2) the calendar time is the time
people normally experience in terms of years, months, etc; and (3) the clock time is the
elapsed time from start to end of computer execution in running the software.

Once time basis is determined, failures can be expressed in several ways: the sur-
vival function, the hazard rate function and the reversed hazard rate function. We
introduce below the definitions of these three well known reliability measures. Let X
be the random variable representing the time to a failure or the lifetime of a system
and let F denote the cumulative distribution function of X . Then F represents the
probability that a failure occurs at or before time t. The survival function of X can be
defined as follows.

Definition 1.1.2. Let X be a random variable, if F denotes the distribution function of
X , then F(t)= 1−F(t) denotes the corresponding survival function. That is,

F(t) = P(X > t).

The hazard rate function is a measure of the tendency to fail, it is also known as
the instantaneous failure rate.

Definition 1.1.3. The hazard or failure rate function, h(t), of a random variable X at t is
defined on the support of the distribution by

h(t) = lim
∆t→0

P(t < X ≤ t +∆t | X > t)
∆t

. (1.1.1)

If the density function, f (t), of X exists, then the hazard rate function can alterna-
tively be expressed as

h(t) =
f (t)

F(t)
. (1.1.2)
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As can be seen from (1.1.1), the hazard rate function measures the proneness to failure
at time t in that

h(t)∆t ≈ P(X ≤ t +∆t | X > t),

for small ∆t. The cumulative hazard rate function is denoted by H(t),

H(t) =
∫ t

0
h(z)dz =− ln

(
F(t)

)
. (1.1.3)

The well known relation

F(t) = exp
(
−H(t)

)
, (1.1.4)

establishes the link between the cumulative hazard rate function and the survival
function.

As we mentioned before, software reliability is different from hardware reliability.
This difference can be seen from their respective hazard rate function. There is a well
known bathtub curve in reliability studies for hardware products. The curve is given
in Figure 1.1a. The shape of the curve is like a bath tub. There are three phases for
the life of a hardware system. The initial phase is the burn-in phase, where the failure
rate is high. It is expected that the product is tested in industry before delivery. Due
to testing and fixing faults, the failure rate will come down initially and may stabilize
after a certain time. The second phase is the useful life phase where the failure rate
is approximately constant and is called useful life of a hardware product. After a few
years, again the failure rate will increase due to wearing out of components. This
phase is called wear out phase. We do not have this phase for the software as, clearly,
it does not wear out. The curve for software is given in Figure 1.1b, where one can
be seen that the hazard rate of a software system is generally decreasing due to the
discovery and removal of software failures.

Time
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Early life Useful life Wear-out

(a) Hardware system

Time
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te

(b) Software system

Figure 1.1: Hazard rate function for the two major components of a computer system
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Definition 1.1.4. If X is a random variable with a distribution function F then the
reversed hazard rate function of X, r(t), at the point t is defined as

r(t) = lim
∆t→0

P(t−∆t ≤ X < t | X < t)
∆t

. (1.1.5)

If F is absolutely continuous distribution function with density function f , then
the reversed hazard rate function is defined in a manner similar to the hazard rate
function in (1.1.2), but with the distribution function replacing the survival function,
that is,

r(t) =
f (t)
F(t)

. (1.1.6)

From (1.1.5), r(t)∆t can be interpreted as an approximate probability of a failure in
(t −∆t, t] given that the failure had occurred in [0, t]. It is easy to prove that the fo-
llowing analog of the exponential formula (1.1.4) takes place,

F(t) = exp
(∫ ∞

t
r(z)dz

)
. (1.1.7)

Making simple transformations we arrive at an important relation between h(t)
and r(t),

r(t) = h(t)
F(t)
F(t)

= h(t)
(

exp(H(t))−1
)−1

. (1.1.8)

For more details see Finkelstein [23].
Two types of failure data, namely, failure count data and time between failures data,

can be collected for the purpose of software reliability measurement. Failure count
data tracks the number of failures detected per unit of time and time between failures
data tracks the intervals between consecutive failures. We will see in Section 1.2 and
Section 1.3 the relationship between these types of failure data and stochastic point
processes, and models of ordered random variable, respectively, used in the literature
to model these events.

1.2. STOCHASTIC COUNTING PROCESSES

As we will see more in details in Section 1.5, the two main types of models, that
have been applied to software systems, are stochastic counting processes and models
of ordered random variables, . In this section, we will treat only counting process
models, deferring the discussion of models of ordered random variables to the next
section.

Counting process models have played a key role in the analysis of software failure
data. A counting process, {N(t), t ≥ 0}, is simply a count of the number of events that
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have occurred in any specified interval of time. In a typical case, the random variable
Si represents the times at which events of a specified character have occurred, and it
is called epoch time or waiting time, for i = 1,2, . . .. The random variables T1 = S1,T2 =

S2−S1, . . . ,Ti= Si−Si−1 are called the successive interarrival times. In the context of our
mark, Si is the i ’th software failure and Ti is the times between the i ’th software failure
and the (i− 1) ’th software failure. A typical history of a software program is given
in Figure 1.2. We assume that at time zero the program is run on the computer and
works satisfactorily until time s1, when the first failure occurs. The programmer then
repairs the program, it works satisfactorily for time t2, it is repaired again, and so on.

0
t1 t2 · · · · · · · · · · · · ti−1 ti

s1 s2 si−2 si−1 si

Figure 1.2: Typical failure history of a software program

A counting process is said to possess independent increments if the number of events
that occur in disjoint time intervals are independent. A counting process is said to
possess stationary increments if the distribution of the number of events that occur in
any interval of time depends only on the length of the time interval.

The Poisson process model is one of the simplest and perhaps the best well known
of all counting process models. These models have stationary and independent incre-
ments. This means that {N(t), t ≥ 0} is Poisson distributed with mean Λ(t) where Λ(t)
is the mean value function. Besides, Λ(t) = λ t, by stationary increments, so that Λ(t) is
directly proportional to t, with proportionality factor λ , the mean rate at which counts
are being made. In other words, the process has no memory, and hence exponential
interarrival times are to be expected.

The mean value function of a counting process is always assumed to be continuous
and is also assumed to be differentiable, with derivative denoted by λ (t), that is,

λ (t) =
d
dt

Λ(t),

which is called the intensity function. See Parzen [73] for a good review of stochastic
processes.

A Poisson process with non-stationary increments is called a nonhomogeneous
Poisson process (NHPP), and this process can be defined as follows.

Definition 1.2.1. A counting process {N(t), t ≥ 0} is a nonhomogeneous Poisson process
with intensity function λ (t) if
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a) {N(t), t ≥ 0} has the Markov property,

b) P(N(t +∆t) = n+1 | N(t) = n) = λ (t)∆t +o(∆t), n≥ 1,

c) P(N(t +∆t)> n+1 | N(t) = n) = o(∆t), n≥ 1.

Let S1,. . . ,Sn be the successive epoch times of an NHPP, where S0 ≡ 0, then the
density function of Si is,

fi(t) = λ (t)
Λi−1(t)
(i−1)!

e−Λ(t), t ≥ 0, (1.2.9)

(see (2.3) in Belzunce et al. [8] and (3) in Baxter [7]). We obtain its hazard rate function
as

hi(t) = λ (t)
Λi−1(t)

(i−1)!
i−1

∑
j=0

Λ j(t)
j!

, t ≥ 0. (1.2.10)

The nonhomogeneous Poisson process can be generalized to what can be called
a nonhomogeneous pure birth process (NHPB). As we mentioned the intensity of a
jump of a nonhomogeneous Poisson process at any time t depends only on t, and not
on any other information about the past or the present of the process. However, in a
nonhomogeneous birth process the intensity of a jump at any time t depends on both
t and the state of the process, that is, the number of previous jumps. The following
definition summarizes these conditions.

Definition 1.2.2. A counting process {N(t), t ≥ 0} is a nonhomogeneous pure, birth pro-
cess with intensity function λn(t) if

a) {N(t), t ≥ 0} has the Markov property,

b) P(N(t +∆t) = n+1 | N(t) = n) = λn(t)∆t +o(∆t), n≥ 1,

c) P(N(t +∆t)> n+1 | N(t) = n) = o(∆t), n≥ 1.

It is known in the literature the relation between the distribution of the jump times
of a NHPB process and the distributions of ordered random variables. The next section
is devoted to explain such link.

1.3. MODELS OF ORDERED RANDOM VARIABLES

Models of ordered random variables are widely used in statistical modelling and
inference. In this section we review some models of ordered random variables: or-
dinary order statistics, record values and sequential order statistics (cf. Kamps [34]
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and [35]). We also discus the relations between these models and stochastic counting
process, for more details see Lenz [52].

If the random variables X1, . . . ,Xn are arranged in ascending order of magnitude,
then the i ’th smallest of Xi’s is denoted by Xi:n. The ordered quantities

X1:n ≤ X2:n ≤ ·· · ≤ Xn:n , (1.3.11)

are called ordinary order statistics (OOS), and Xi:n is the i’th order statistic. These ran-
dom variables are of great interest in many areas of statistics, in particular, in the
characterizations of distributions (cf. Deheuvels [20]) and testing problems (see, e.g.,
Berrendero et al. [9]), among others. Specifically, there is a very interesting application
of OOS’s in reliability theory. The (n−k+1)’th OOS in a sample of size n represents the
life length of a k-out-of-n system which is an important technical structure. It consists
of n components of the same kind with independent and identically distributed life
lengths. All n components start working simultaneously, and the system works, if at
least k components function; i.e. the system fails, if (n−k+1) or more components fail.
As an example, we will look at a 2-out-of-3 system. This system can be illustrated by
the reliability block diagram shown in Figure 1.3. Special cases of k-out-of-n systems
are series and parallel systems as we show in the following examples.

1 2

1 3

2 3

Figure 1.3: A 2-out-of-3 system

Example 1.3.1 A system that is functioning if and only if each component is func-
tioning is called a series system and is represented by a n-out-of-n system. Its lifetime
is described by the smallest lifetime, X1:n. A series structure can be illustrated by the
reliability block diagram in Figure 1.4a. The survival function of this system is given
by

F1:n(t) =
n

∏
i=1

F i(t),

where the Xi’s are assumed to be independent and F i is the survival function of Xi,
for i = 1, . . . ,n. �

Example 1.3.2 A system that is functioning if and only if at least one component
is functioning is called a parallel system and is represented by a 1-out-of-n system. Its
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lifetime is described by the largest lifetime, Xn:n. The corresponding reliability block
diagram is shown in Figure 1.4b. The cumulative distribution function of this system
is given by

Fn:n(t) =
n

∏
i=1

Fi(t),

where the Xi’s are assumed to be independent and Fi is the distribution function of Xi,
for i = 1, . . . ,n. �

21 · · · n

(a) Series system

1

2

...

n

(b) Parallel System

Figure 1.4: Special cases of k-out-of-n systems

Another interesting random variables are Di:n= Xi:n−Xi−1:n, when X0:n ≡ 0, called
simple spacings. In the software reliability context they correspond to times elapsed
between successive software failures.

Since the times to software failure 0≡ S0≤ S1≤ ·· · ≤ Si≤ ·· · are ordered, they cons-
titute a natural framework for an order statistics type analysis. Note that OOS formed
from independent random variables are dependent, the act of ordering destroys inde-
pendence. When X1, . . . ,Xn are independent but not necessarily identically distributed
(inid) exponential random variables, the resulting model is called the exponential order
statistics model (EOS) in Miller [63]. A special case of the EOS model, when the ex-
ponential random variables are identically distributed (iid), is the model by Jelinski
and Moranda [33] which we will define in Section 1.5. Different forms for the com-
mon cumulative distribution function, say the Pareto, the Weibull, and so on, will lead
to different probability models for the epoch of failures. These models have been re-
ferred to by Raftery [79] as the general order statistics models (GOOS), not to be confused
with generalized order statistics models. In the GOOS model we assume that there is
an unknown number of faults N at the beginning of software testing. We model the
observed failure epochs to be the first n OOS taken from N iid observations. Kuo and
Yang [49] studied the relationship between GOOS models and NHPP processes in SR
context.
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Theorem 1.3.3 (Kuo and Yang [49]). Suppose that failure epochs are described by a GOOS
model with a distribution function F(t) and a parameter N. Let {N(t), t ≥ 0} denote the
number of epochs in time [0, t]. Assuming that N has a Poisson distribution with parameter
θ , then {N(t), t ≥ 0} can be described by a nonhomogeneous Poisson process with mean value
function Λ(t) = θ F(t).

Observe that, in this case, we have that Λ(t)<∞ as t→∞. Therefore, GOOS models
is limited to testing where no new faults are introduced at each repair. However,
record values models can incorporate the situation where new faults may be added
during repairs, because Λ(t)→ ∞ as t→ ∞.

Record values are also used in software reliability (see Kuo and Yang [49]), they are
defined as a model for successive extremes in a sequence of independent and iden-
tically distributed random variables. A good introduction can be found in Arnold
et al. [1]. Record values are closely connected with the epoch times of some corres-
ponding nonhomogeneous Poisson process often used in shock models. Gupta and
Kirmani [28] showed that the sequence of record values can be viewed as the sequence
of epoch times of some nonhomogeneous Poisson process and viceversa, if the distri-
bution function F upon which the records are based, and the mean value function Λ(t)
of the process satisfy F(t) = 1− exp

(
−Λ(t)

)
. They also gave a survey on the appli-

cation of nonhomogeneous Poisson processes in the modelling of repairable systems.
Enlarged and generalized models of record values are discussed in Kamps [34].

There are numerous analogies in the properties and the behaviour of OS’s and
record values. For example, if the exponential distribution is the underlying distri-
bution, then successive differences of OS’s and of record values are independent and
again exponentially distributed (Sukhatme [95]).

Kamps [34] introduced the concept of sequential order statistics (SOS) as an exten-
sion of OOS model. Sequential order statistics model the reliability of certain k-out-of-
n systems without the assumption of independence of the lifetime of the components.
In this model, the lifetime distribution of the remaining components in the system
may change after each failure of the components. At the beginning, the lifetimes of
the components are iid with a common distribution function F1. After the first compo-
nent fails, the distribution of the residual lifetimes of the remaining (n−1) components
changes to that of the residual lifetime distribution of a second distribution F2. If we
observe the i ’th failure at time t, the remaining (n− i) components are now supposed
to have a possibly different distribution. Proceeding in this way we obtain a triangular
scheme of random variables where the i ’th line containing n− i+1 random variables
with distribution function Fi, 1 ≤ i ≤ n, indicating that i− 1 components previously
failed. Following Cramer and Kamps [18], sequential order statistics are defined as
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follows.

Definition 1.3.4. Let F1, . . . ,Fn be distribution functions with F−1
1 (1) ≤ ·· ·F−1

n (1) and
let B1, . . . ,Bn independent random variables with Bi ∼ Beta(n− i+1,1), 1≤ i≤ n. Then
the random variables

X∗i:n = F−1
i

(
1−Bi F i(X∗i−1:n)

)
, for i = 1, . . . ,n ,

are called sequential order statistics.

Note that OOS are contained in the model of SOS by the specific choice F1 = · · ·=Fn.
In the same way that there exists a connection between OOS and the lifetimes of k-
out-of-n systems, there exists a relation between SOS and the lifetimes of sequential
k-out-of-n systems. In this case, the (n− k+1)’th SOS in a sample of size n represents
the life length of a sequential k-out-of-n system. A sequential k-out-of-n system is more
flexible than a k-out-of-n system in the sense that, after the failure of some component,
the distribution of the residual lifetime of the components at work may change.

The model of SOS is closely connected to several other models of ordered random
variables. In its general form the model coincides with Pfeifer’s record model, see e.g.
Pfeifer [76] and Kamps [34]. The specific choice of distribution functions Fi(t) = 1−
(1−F(t))αi , t ∈ℜ, 1 ≤ i ≤ n, with a distribution function F and positive real numbers
α1, . . . ,αn leads to the model of generalized order statistics with parameters γi = (n−
i+1)αi, 1≤ i≤ n.

It is noteworthy that the distribution of sequential order statistics coincides with
the distribution of the first n epoch times of a nonhomogeneous pure birth process
(NHPB) under some condition, as we show in the following proposition.

Proposition 1.3.5 (Proposition 2.1. in Zhuang and Hu [105]). Let h1, . . . ,hn be the hazard
rate functions of distribution F1, . . . ,Fn, respectively, and let X∗1,n, . . . ,X

∗
n,n be the SOS based on

{F1, . . . ,Fn}. Define
λi(t) = (n− i+1)hi(t), for i = 1, . . . ,n,

and denote by Si the i ’th epoch time of a NHPB with intensity function λi(t) for i = 1, . . . ,n.
Then (

X∗1,n, . . . ,X
∗
n,n
) st
= (S1, . . . ,Sn) ,

where st
= means equality in distribution.

We want to use this equivalence to incorporate NHPB processes in software relia-
bility. In fact, we have not seen any papers on software reliability that use neither SOS
models nor NHPB processes. NHPB processes can be appropriate for the following
reason. NHPP processes are extensively used to model failures for software systems,
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as we will see in Section 1.5, and NHPB processes are a generalization of these pro-
cesses. Then, we can consider the NHPB process as a unified framework that incorpo-
rates all of the software reliability modelling based on NHPP processes. An overview
is sketched in Figure 1.5.

Order Statistics
d
⊂

Sequential Order Statistics
d
⊃

Record Values

Nonhomogeneous
Poisson Process

lim
t→∞

Λ(t) < ∞

d
⊂ Nonhomogeneous

Pure Birth
Process

d
⊃

Nonhomogeneous
Poisson Process

lim
t→∞

Λ(t) = ∞

d
=

d
=

d
=

Figure 1.5: Overview of some models of ordered random variables

1.4. STOCHASTIC ORDERINGS AND AGEING NOTIONS

Suppose we want to compare two different distributions. What is the best way to
do that? In general, the simplest way to compare two distribution functions is by their
associated means and variances or standard deviations. However, such a comparison
is not very informative. In addition to this, the means and the variances sometimes
do not exist, as for example, for Cauchy distributions. Comparisons based on sur-
vival function, hazard rate function and reversed hazard rate function of distributions
often establish partial orders among them, which are well known as stochastic orders.
Since 1994 the theory of stochastic orders has grown significantly, see e.g. Shaked and
Shanthikumar [88]. In this thesis, we use the tool of stochastic orders to investigate
stochastic comparisons between successive spacings based on OOS from a sample of
heterogeneous exponential random variables, and between successive SOS.

Another important concept in reliability theory is the concept of ageing. By ageing
we mean “the phenomenon whereby an older system has a shorter remaining life-
time, in some statistical sense, that a newer one” (Bryson and Siddiqui [12]). Ageing
notions of epoch times and interarrival times of NHPP have been studied extensively
in the literature, see e.g. Baxter [7], Gupta and Kirmani[28] and Pellerey et al.[74].
The transmission of some ageing notions from a random sample to the corresponding
order statistics have been investigated in Nagaraja [68], Misra et al. [64] and recently
in Kundu et al. [47]. In Chapter 3, we study the preservation of some ageing notions
from the underlying distribution functions to the SOS.
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1.4.1. Definitions of stochastic orderings

Here, we give briefly a review of stochastic orders related to the location, the mag-
nitude, the dispersion and the shape of random variables, respectively. Throughout, we
shall use increasing to mean non-decreasing and decreasing to mean non-increasing. The
following definitions introduce the stochastic orders that we will consider in this the-
sis.

Definition 1.4.1. Let X and Y be univariate random variables with cumulative distri-
bution functions (cdf’s) F and G, respectively. We say that X is smaller than Y in the
usual stochastic order if F(t)≤ G(t), for all t and in this case, we write X ≤st Y or F≤stG.

Recall from (1.1.1) the definition of the hazard rate function hX of a random variable
X . Let hY be the hazard rate function of another random variable Y .

Definition 1.4.2. X is said to be smaller than Y in the hazard rate order, denoted by
X ≤hr Y or F≤hrG, if hX(t) ≥ hY (t), for all t, or if G(t)/F(t) is increasing in t for which
the ratio is well defined.

Recall from (1.1.5) the definition of the reversed hazard rate function rX of a ran-
dom variable X . Let rY be the reversed hazard rate function of another random varia-
ble Y .

Definition 1.4.3. We say that X is smaller than Y in the reversed hazard rate order if
G(t)/F(t) is increasing in t for which the ratio is well defined, or if rX(t)≤ rY (t), for all
t, denoted by X ≤rh Y or F≤rhG.

Definition 1.4.4. Let X and Y be univariate random variables with density functions
(pdf’s) f and g, respectively, such that g(t)/ f (t) is increasing in t for which the ratio is
well defined. Then X is said to be smaller than Y in the likelihood ratio order, denoted
by X ≤lr Y or F≤lrG.

The relationships among the four first orders are illustrated in the following dia-
gram.

X ≤lr Y ⇒ X ≤hr Y
⇓ ⇓

X ≤rh Y ⇒ X ≤st Y

Next, we review the dispersive order that compare the variability or the dispersion
of random variables.
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Definition 1.4.5. We say that X is smaller than Y in the dispersive order if

F−1(β )−F−1(α)≤ G−1(β )−G−1(α),

for all 0 < α < β < 1, where we write X ≤disp Y or F≤dispG.

MacGillivray and Blanda [55] defined distributions F and G to have the same
shape if for some a and b, F(t) = G(at + b), for all t. A basic concept to compare the
shape in two probability distributions is through shape order as defined below. First,
we recall the definition of a star-shaped function.

Definition 1.4.6. A function ϕ defined on [0,∞), which satisfies ϕ(0) = 0, is said to be
star-shaped (anti star-shaped) if ϕ(t)/t is increasing (decreasing) in t.

It should be noted that shape orders are preorders but not partial orders.

Definition 1.4.7. X is said to be smaller than Y in the star order, when the two random
variables are non-negative, denoted by X ≤∗ Y or F≤∗G, if G−1F(t) is star-shaped in t.

We shall also be using the concept of majorization in our discussion. Let {x(1),x(2),
. . . ,x(n)} denote the increasing arrangement of the components of the vector
x= (x1,x2, . . . ,xn).

Definition 1.4.8. The vector x is said to be majorized by the vector y, denoted by
x≤my, if

j

∑
i=1

x(i) ≥
j

∑
i=1

y(i), for j = 1, . . . ,n−1 and
n

∑
i=1

x(i) =
n

∑
i=1

y(i).

Functions that preserve the ordering of majorization are said to be Schur-convex,
as one can see in the following definition.

Definition 1.4.9. A real valued function ϕ defined on a set A ∈ℜn is said to be Schur-
convex (Schur-concave) on A if

x≤m yon A⇒ ϕ(x)≤ (≥)ϕ(y).

For extensive and comprehensive details on the theory of majorization orders and
their applications, please refer to the excellent book of Marshall and Olkin [56].

1.4.2. Notions of ageing

Concepts of ageing describe how a component or a system improves or deterio-
rate with age. To be more specific, by ageing (respectively, antiageing) we mean a
mathematical specification of degradation (respectively, upgradation) of a unit over
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time. As we mentioned in Section 1.1, the software, usually, does not wear out, i.e, it
does not ageing. However, the occurrence of software ageing in real systems has been
documented in the literature, see e.g. Grottke et al. [27] and Matias and Freitas [58].

Many classes of life distributions can be categorized according to their ageing
properties. Below, we define some of the most well known ageing notions.

Definition 1.4.10. Let X be a random variable with distribution function F and sur-
vival function F . The random variable X (or its distribution) is said to be

i) increasing (decreasing) hazard rate or IHR (DHR) if F is logconcave (logconvex);

ii) increasing (decreasing) reversed hazard rate or IRHR (DRHR) if F is logconcave
(logconvex);

iii) increasing (decreasing) hazard rate average or IHRA (DHRA) if − lnF is star-
shaped (anti star-shaped) when X is a non-negative random variable;

iv) increasing (decreasing) likelihood ratio or ILR (DLR) if f is logconcave (logcon-
vex), when X is a continuous random variable.

It is well-known (see Marshall and Olkin [57]) that if X is a random variable with
non-negative support then

logconcave density ⇒ IHR ⇒ IHRA
⇓

DRHR ⇐ concave distribution
⇑

logconvex density ⇒ DHR ⇒ DHRA

1.5. SOFTWARE RELIABILITY MODELLING

The use of statistical methods in software engineering has been increasing in the
last decades. In the context of this discipline, as we defined in Section 1.1, software
reliability measures the probability that a piece of software runs without failing under
certain operational conditions for a given time. In software testing, software is run
under an operational profile, that is certain conditions simulating real usage and after
a given test period, the software is modified in order to correct any observed faults.
Testing then proceeds until the software is judged sufficiently reliable for release.

A software reliability model (SRM) is a mathematical tool to evaluate the software
quantitatively. The SRM’s have been extensively developed in the literature. Most
SRM’s are based on stochastic counting processes, such as binomial process, pure
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birth process and nonhomogeneous Poisson process (NHPP). One may refer to two
excellent books by Singpurwalla and Wilson [91] and Pham [77] on this topic. These
stochastic models attempt to model either the times between successive failures of a
piece of software or the number of failures in fixed time periods. Our classification
scheme (see Figure 1.6) follows that of Singpurwalla and Wilson [91], and divides mo-
dels into two types: Type I and Type II.

SR models

Type I
Times between

failures

Jelinski & Moranda
(1972)

Shick & Wolverton
(1978)

Type II
Numbers of

failures

Goel & Okumoto
(1979)

Musa & Okumoto
(1984)

Figure 1.6: Classification of software reliability (SR) models

Type I models are those that model the times between successive failures. Under
these types of models, the random variables T1,T2, . . ., are modeled directly. This is of-
ten done by specifying the failure rate function for each random variable, hi, i= 1,2, . . .,
an then invoking the exponentiation formula (1.1.4) to obtain their survival function,
F i. Typically, each hi is a nondecreasing function on t, for t ≥ 0, as we mentioned
in Section 1.1, to reflect the fact that between failures the reliability of the software
increases.

Type II models are those that model the number of failures up to a given time. These
models are based on stochastic counting processes (see Section 1.2) for N(t), the num-
ber of times the software fails in an interval [0, t]. The earliest and best known Type
II models are those which assume that N(t) is described by a Poisson process whose
mean value function is based on assumptions about how the software experiences
failure.

It is remarkable that a model of either type defines a model of the other. Speci-
fically, for a sequence of interfailure times T1,T2, . . ., for which a Type I model has been
proposed, there is an implicit Type II model (cf. Kuo and Yang[49] and Singpurwalla
and Wilson [91]), because

N(t) = max

{
n|

n

∑
i=1

Ti ≤ t

}
,
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and conversely, for a Type II model there is a Type I model, because with T0 = 0, and
i = 2,3, . . .,

Ti = inf{t|N(t) = i}−Ti−1.

It is noteworthy two differences between Type I and Type II models. First, the total
number of potential failures of Type II models is assumed to be infinite, so that the
number of observed failures is a random variable having a Poisson distribution, as
opposed to a fixed number of faults N that is assumed by Type I models. Second, in
the Type II models the interfailure times are dependent whereas in the Type I models
they were typically assumed independent.

1.5.1. Type I models

The Type I group of models is used to study the program hazard rate per fault at
the failure intervals. The hazard rate function of the i ’th interfailure time of some of
these models are reported in Table 1.1.

The first model to be widely known and used is the model by Jelinski and Moranda
(JM) [33]. They assume that the software contains an unknown number, say N, of
faults and that each time the software fails, a bug is detected and perfectly corrected.
Furthermore, the failure rate of Ti is proportional to N − i+ 1, the number of faults
remaining in the code, that is, for some constant φ > 0, the hazard rate at the i ’th
failure interval is given by

hi(t) = φ (N− i+1) , i = 1, . . . ,N. (1.5.12)

The survival function is

F i(t) = eφ(N−i+1)t , i = 1, . . . ,N.

The property of this model is that the failure rate is constant and the software during
the testing stage is unchanged or frozen.

Table 1.1: Some Type I software reliability models

Jelinski-Moranda Moranda

hi(t) = φ (N− i+1) hi(t) = Dki−1

Goel-Okumoto Shick-Wolverton

hi(t) = φ (N− p(i−1)) hi(t) = φ (N− i−1) t
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The Jelinski-Moranda model belongs to the class of exponential order statistic
(EOS) model, defined in Section 1.3. The failures in a program will occur at times
X1,X2, . . ., measured from the beginning of debugging. This model assumed that all
failures are similar, so the Xi’s can be treated as identically distributed with density
function

f (t) = φ e−φ t , t ≥ 0.

Then, the order statistics X1:n,X2:n, . . . are the epoch times in which a failure of software
takes place, and the interfailures are the spacings between the order statistics. Boland
et al. in [10] demonstrated that for any independent random variables (not necessarily
identically distributed), the order statistics are ordered with respect to the hazard rate
ordering. Thus, the epoch times, Si, are ordered in the hazard rate ordering, and from
(1.5.12) it is easy to check that the interfailures, Ti, are also ordered according to the
hazard rate ordering, since hi(t) = φ (N− i+1)≥ hi+1(t) = φ (N− (i+1)+1).

A modification to the JM model is the Geometric Model developed by Moranda
[66]. He proposed a new model in which the program failure rate function is initially
a constant D and decreases geometrically at failure times. In this case, the hazard rate
function of the i ’th interfailure times is

hi(t) = Dki,

and its survival function is

F i(t) = e−t Dki
,

where D > 0 is the initial program failure rate and k is the parameter of a geometric
function (0 < k < 1).

Goel and Okumoto [25] extend the JM model by assuming that a fault is removed
with probability p whenever a failure occurs. This model is called the JM model with
imperfect debugging and the hazard rate function of time between failures when the
imperfect debugging is at the i ’th failure interval becomes

hi(t) = φ (N− p(i−1)) .

The survival function is

F i(t) = e−φ(N−p(i−1)) t , i = 1, . . . ,N.

The model by Jelinski and Moranda is a special case of the preceding when p = 1.

The model by Shick and Wolverton (SW) [86] is another modification of the JM
model. They assumed that the hazard rate of Ti is proportional to both the number
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of remaining faults in the software and the elapsed time since last failure. Thus, the
hazard rate function between the (i−1)’th and the i ’th failure can be expressed as

hi(t) = φ (N− i−1) t,

where φ and N are the same as that defined in the JM model.

1.5.2. Type II models

In this subsection we shall describe briefly some Type II software reliability mo-
dels. The models described here are only a small subset of those which appear in the
literature.

The Type II models provide another analytical framework for describing the soft-
ware failure phenomenon during testing. Recall that in this case, we look at N(t) as
the number of failures to time t. Then, N(t) is modeled by a Poisson distribution with
mean Λ(t), that is, E [N(t)] = Λ(t). Under such models the reliability of the software for
a mission of duration t is simply Pr(N(t) = 0).

The Goel-Okumoto model [26], referred to hereafter as GO, is a NHPP variant of
the JM model. The GO model assumes that the cumulative number of failures detected
by time t is a NHPP and its expectation could be described by the mean value function

Λ(t) = a(1− e−bt). (1.5.13)

The intensity function is

λ (t) =
dΛ(t)

dt
= abe−bt . (1.5.14)

Observe that ∆(t) < ∞ as t → ∞. Therefore, this model cannot be applied to situa-
tions where new faults might be introduced in the process of debugging. Some NHPP
models can incorporate the situation where new faults may be added during repairs,
these models are the infinite failures models. It means that ∆(t)→ ∞ as t→ ∞.

The Duane model [21], referred to hereafter as DU, originally devised for hardware
reliability model, is an infinite failures model. This model is a NHPP with the expected
number of failures

Λ(t) = atb, (1.5.15)

and the intensity function
λ (t) = abtb−1. (1.5.16)

This function is increasing for b > 1, decreasing for b < 1 and constant for b = 1. The
DU model could be stochastically represented as a Weibull process, allowing for sta-
tistical procedures to be used in the application of this model in reliability growth.



20 CHAPTER 1. INTRODUCTION

In particular, this model is the counting process of the record values from a Weibull
distribution.

In these NHPP models, usually parameter a represents the mean number of soft-
ware failures that will eventually be detected, and parameter b represents the proba-
bility that a failure is detected in a constant period.

Musa and Okumoto [67] proposed another model for infinite failures. This NHPP
is also called the logarithm Poisson model, referred to hereafter as MO. The mean value
function is

Λ(t) = a ln(1+bt), t > 0, (1.5.17)

and the intensity function is derived as

λ (t) =
ab

1+bt
. (1.5.18)

Let us mention an homogeneous pure birth process, referred to hereafter as HPBP,
for software reliability which is another variation of the JM model. This model, pro-
posed by Boland and Singh [11], is a birth process approach to the geometric SRM (see
Subsection 1.5.1). In this case, the cumulative number of failures detected by time t is
a HPBP with birth rates

λi = D · ki, i = 0,1, . . . .

Boland and Singh [11] showed that the mean value function is

Λ(t) = Dt +
∞

∑
i=1

(−1)i (Dt)i+1

(i+1)!

i

∏
j=1

(1− k j), (1.5.19)

and the intensity function

λ (t) = D

(
1+

∞

∑
i=1

(−1)i (Dt)i

i!

i

∏
j=1

(1− k j)

)
. (1.5.20)

Other types of mean value functions suggested by Ohba [72] and Yamada and
Osaki [104], are the hyperexponential growth model and the Yamada-Osaki exponen-
tial growth model, respectively. Some of these models are reported in Table 1.2. We
will review some well known Bayesian approaches to Type I and Type II models in
Subsection 4.2.2. For more details on software reliability models, see e.g. Pham [77]
and Singpurwalla and Wilson [91].

1.5.3. Stochastic comparisons in some well known SR models

One of the main aims of this thesis is to study stochastic properties of the times
when a software failure occurs, Si, and of the times between successive failures, Ti. Due
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Table 1.2: Some Type II software reliability models

Goel-Okumoto Musa-Okumoto

Λ(t) = a
(
1− exp(−bt)

)
Λ(t) = a ln(1+bt)

Duane Boland and Singh

Λ(t) = atb Λ(t) = Dt +
∞

∑
i=1

(−1)i (Dt)i+1

(i+1)!

i
∏
j=1

(1− k j)

Ohba Yamada-Osaki

Λ(t) =
n
∑

i=1
ai
(
1− exp(−bit)

)
Λ(t) = a

n
∑

i=1
pi
(
1− exp(−bit)

)

to the relation between this random variables and the NHPP processes (see Section 1.2)
we can apply the following results to Type II software reliability models.

Baxter [7] showed that the successive epoch times of a NHPP process are ordered
in the hazard rate ordering.

Theorem 1.5.1 (Baxter [7]). Let {N(t), t ≥ 0} be a nonhomogeneous Poisson process with
mean function Λ(t) (that is, Λ(t) = E[N(t)], t ≥ 0). Let S1,S2, . . . be the successive epoch
times, then

Si ≤hr Si+1, for i = 1,2, . . . .

Subsequently, Kochar [39] strengthened this result from the hazard rate ordering
to the likelihood ratio ordering.

Theorem 1.5.2 (Kochar [39]). Under the same assumptions as in Theorem 1.5.1, then

Si ≤lr Si+1, for i = 1,2, . . . .

One may wonder whether the Theorems 1.5.1 and 1.5.2 can be strengthened from
the epoch times to inter-epoch times of NHPP processes. Kochar [40] asserted that
the inter-epoch times are ordered according to the hazard rate and the likelihood ratio
orders under some conditions.

Theorem 1.5.3 (Kochar [40]). Let {N(t), t ≥ 0} be a nonhomogeneous Poisson process with
mean function Λ(t). Let T1,T2, . . . be the successive inter-epoch times.

i) If λ (t) is decreasing (increasing) then Ti ≤hr (≥hr)Ti+1, for i = 1,2, . . ..

ii) If λ (t)e−Λ(t) is log-convex (log-concave) then Ti ≤lr (≥lr)Ti+1, for i = 1,2, . . ..
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In the following examples we show applications of the previous theorems on some
well known Type II software reliability models which we defined in Subsection 1.5.2.

Example 1.5.4 (Goel-Okumoto SRM). An application of Theorem 1.5.1 on the GO
software reliability model can be seen in Figure 1.7. From (1.2.10), (1.5.13) and (1.5.14),
it is easy to check that the hazard rate function of the i ’th epoch time is

hi(t) =
abe−bt

(
a
(
1− e−bt

))i−1

(i−1)!
i−1

∑
j=0

(
a
(
1− e−bt

)) j

j!

.

Note that h1(t) = λ (t).
According to (1.5.14), we know that λ ′(t) =−ab2e−bt ≤ 0, since a,b > 0, i.e., λ (t) is

decreasing. Thus, from Theorem 1.5.3(i), the times between failures of the GO model
verify Ti ≤hr Ti+1. On the other hand, λ (t)e−Λ(t) is log-convex if and only if

(
lnλ (t)−

Λ(t)
)

is convex. It is easy to check that

d2
(

lnλ (t)−Λ(t)
)

dt2 =−λ
′(t) = ab2e−bt ≥ 0,

then Ti≤lr Ti+1, for i= 1,2, . . ., from Theorem 1.5.3(ii). �
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Figure 1.7: Hazard rate function of Si of GO-SRM for i = 1,2,3 when a = 5 and b = 2

Example 1.5.5 (Musa-Okumoto SRM). It is immediately to prove that Ti ≤hr Ti+1,

since λ ′(t) =− ab2

(1+bt)2 < 0, from (1.5.18). And by (1.5.17), we get

d2
(

lnλ (t)−Λ(t)
)

dt2 =
(a+1)b2

(1+bt)2 ≥ 0,

then, again from Theorem 1.5.3(ii), Ti≤lr Ti+1, for i= 1,2, . . .. �
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Example 1.5.6 (Duane SRM). In this model, depending on the parameter b the
times between failures are ordered in increasing or in decreasing hazard rate orde-
ring. The intensity function λ (t) is increasing for b > 1 and decreasing for b < 1, as we
noted in Subsection 1.5.2. Thus, Ti ≥hr Ti+1 when b > 1 and Ti ≤hr Ti+1 when b < 1. In
the same way, as

d2
(

lnλ (t)−Λ(t)
)

dt2 = (1−b)
(

1
t2 +abtb−2

)
,

one can be proved that Ti≥lr Ti+1 when b> 1 and Ti≤lr Ti+1 when b< 1. �

1.6. STRUCTURE OF THIS THESIS

This thesis contains five chapters. Chapter 1 presents some basic definitions. After
first providing a brief review of software reliability measures, it discusses the relation-
ship between types of failure data and stochastic point processes used in the litera-
ture to model these kind of data, as well the relationship between the jumps of these
stochastic point processes and models of ordered random variables. This is then fo-
llowed by a brief review of some stochastic orderings in order to make comparisons
of failure times or interfailure times based on their survival functions and hazard rate
functions, among others. The chapter concludes with a review of some well known
software reliability models.

The theoretical contributions of this thesis are developed in Chapters 2 and 3. The
results of Chapter 2 concern stochastic orders for spacings of the order statistics of
independent exponential random variables with different scale parameters. These re-
sults on stochastic orderings and spacings are motivated by the relationship between
the spacings and the times elapsed between successive failures of a software program.
Due to the complicated expression of the distribution in the non-iid case, only limited
results are found in the literature. In Torrado et al. [97], we investigate the hazard rate
ordering of simple spacings and normalized spacings of a sample of heterogeneous
exponential random variables. These results can be found in the first part of Chapter
2. In the second part of this chapter, we study the two sample problem. Specifically,
we compare both simple spacings and normalized spacings from two samples of he-
terogeneous exponential random variables according to the likelihood ratio ordering.
We also show applications of these results to multiple-outlier models.

In Chapter 3, motivated by the equality in distribution between SOS and the first
n epoch times of a NHPB process, we consider the problem of comparing the com-
ponents of sequential k-out-of-n systems according to magnitude and location orders.
Distributional and stochastic properties of the lifetimes of sequential k-out-of-n sys-
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tems have been studied for some researchers, such as Cramer and Kamps [18], Zhuang
and Hu [105], Navarro and Burkschat [69] and recently for Torrado et al. [96]. In par-
ticular, this chapter discusses conditions on the underlying distribution functions on
which the SOS are based, to obtain ageing notions and stochastic comparisons of SOS.
We also present a NHPB process approach to software reliability modelling.

Following a Bayesian analysis approach, we develop in Chapter 4 a new proce-
dure to predict both interfailure times and numbers of software failures using metrics
information. Research on how to predict software failures accurately is of great prac-
tical importance. A large number of models have been proposed to address this topic,
but a few incorporate some significant metrics data observed in software testing. In
particular, we consider the prediction of times between software failures or numbers
of failures in a given time, when it is assumed that the software is possibly imperfectly
repaired after each failure and, that software metrics information for each version of
the software is available. Our model is a hierarchical non-parametric regression model
based on exponential interfailure times or Poisson failure counts where the rates are
modeled as Gaussian processes with software metrics data such as lines of code, com-
plexity measures or even computer execution times are used as inputs. We undertake
fully Bayesian inference based on MCMC and illustrate our approach with real soft-
ware failure data.

In Chapter 5 we show some general conclusions and describe the most significant
contributions of this thesis.



CHAPTER 2

Spacings based on order statistics

Spacings and their functions are important in statistics, in general, and in par-
ticular in the context of life testing and reliability models. In these context, as we
mentioned in the introductory chapter (see section 1.3), an n component system that
works if and only if at least k of the n components work is called a k-out-of-n system.
The lifetime of a k-out-of-n system is usually described by the (n−k+1)’th order statis-
tic from a random sample X1,X2, . . . ,Xn where the variable Xi represents the lifetime or
failure time of the i ’th component of the system, 1≤ i≤ n. The times between failures
of components in a k-out-of-n system correspond with the spacings associated with
order statistics. In the conventional modelling of these structures, the component life-
times are supposed to be independent and identically distributed random variables.
We will see in this and in the next chapter as some of these constrains can be relaxed.

A lot of work has been done in the literature on different aspects of order statistics
and spacings, see [3, 4] for a review. However most of this work has been confined
to the case when the observations are iid, but in many practical situations, like in
reliability theory, the observations are not necessarily iid. For example, in software
reliability, failure times of a software program are modeled as order statistics of inde-
pendent nonidentically distributed (inid) exponential random variables. According to
Miller [63], these models are called EOS, as we mentioned in Section 1.3. The JM, GO
and MO models are all special cases of EOS models. It is well known that OS from
heterogeneous exponential random variables are ordered with respect to the hazard
rate ordering, i.e., the failure times, S1, . . . ,Sn, of EOS-SR models verify that Si ≤hr Si+1,
for i = 1, . . . ,n−1. Thus, a natural question to ask is whether the spacings from expo-

25
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nential random variables with different scale parameters are also ordered according to
the hazard rate ordering. In Figure 2.1, we show two examples on this, when λi = abi,
a > 0, 0 < b < 1 and when λi = ai−b, a > 0, 1 < b < ∞, which are case 3 (geometric rates)
and case 4 (power rates) in Miller [63], respectively.
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(a) λi = abi, a = 3, b = 0.4
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h3:3HtL

(b) λi = ai−b, a = 3, b = 1.1

Figure 2.1: Hazard rate function of spacings for two EOS software reliability models

Specifically, Figure 2.1a and Figure 2.1b present the hazard rate function, hi:3(t), of
normalized spacings from three heterogeneous exponential random variables having
hazard rate λi = abi, a = 3, b = 0.4 and λi = ai−b, a = 3, b = 1.1, respectively. As seen
from these figures, the normalized spacings are ordered according to the hazard rate
ordering in both cases.

Let X1,X2, . . . ,Xn be independent, but not necessarily identically distributed, ran-
dom variables. Recall from Section 1.3 that

X1:n ≤ X2:n ≤ . . .≤ Xn:n

are the order statistics of these random variables and,

Di:n = Xi:n−Xi−1:n and D∗i:n = (n− i+1)(Xi:n−Xi−1:n) ,

for i = 1, . . . ,n, with X0:n ≡ 0, are respectively called simple spacings and normalized spa-
cings.

Many authors have studied the stochastic properties of spacings from independent
and identically random variables. In this context, the exponential distribution pos-
sesses a lack of ageing property, so that, the failure rate is constant and the spacings
correspond to times elapsed between successive failures of components in a system.
The following remarkable property of the exponential distribution was first demons-
trated by Sukhatme [95] in 1937.
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Theorem 2.0.1. If X1,X2, . . . ,Xn are independent and identically exponential random varia-
bles, then D1:n, . . . ,Dn,n are iid random variables having the same exponential distribution.

Such a characterization may not hold for other distributions or when the observa-
tions are not independent and identically distributed.

The objective of this chapter is first to discuss some recent results on stochastic
comparisons between spacings of heterogeneous samples and present some exten-
sions. Specifically, we study stochastic orderings between the second an the third
spacings in the one sample problem, and also, we obtain results in the two sample
problem. In this case, we show some applications to a multiple-outlier model.

The chapter is organized as follows. In Section 2.1, we introduce the probability
density function (pdf) of normalized spacings, and give two useful lemmas which
will be used in the following sections. We investigate, in Section 2.2, the hazard rate
ordering of simple spacings and normalized spacings of a sample from heterogeneous
exponential random variables. Section 2.3 is devoted to stochastic comparisons of
both simple and normalized spacings in two sample problem. Finally, conclusions
and possible extensions to this work are considered in Section 2.4.

2.1. PRELIMINARY RESULTS

For heterogeneous but independent exponential random variables, Kochar and
Korwar [43] (hereafter K&K) proved that, for i ∈ {2, . . . ,n}, the distribution of D∗i is a
mixture of independent exponential random variables with p.d.f.:

fi(t) = ∑
rn

n
∏

k=1
λk

n
∏

k=1

(
n
∑
j=k

λ (r j)

) ·


n
∑
j=i

λ (r j)

n− i+1

 · exp


−t

n
∑
j=i

λ (r j)

n− i+1

 , (2.1.1)

where rn = (r1, . . . ,rn) is a permutation of (1, . . . ,n) and λ (i) = λi. They also showed
that D∗1:n is independent of (D∗2:n, . . . ,D

∗
n:n).

Observe that in (2.1.1), the term
n
∑
j=i

λ (r j) coincides for all permutations rn that have

the same groups of λk’s in the last n− i+1 positions. This remark permits us to simplify
the notation as follows. Let

β
(i)
m j =

n
∑
`=i

λ (r`)

n− i+1
, (2.1.2)

where m j indicates a group of indices of size n− i+1. Then, (2.1.1) can be written as

fi(t) =
Mi

∑
j=1

∆(β
(i)
m j ,n)β

(i)
m j e−tβ (i)

m j , (2.1.3)
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where Mi =

(
n

n− i+1

)
and

∆(β
(i)
m j ,n) = ∑

ri−1,m j

 ∏
k∈Hm j

λk


i−1

∏
`=1


i−1

∑
u=`

ru∈Hm j

λru +(n− i+1)β (i)
m j



−1

, (2.1.4)

where Hm j = {1, . . . ,n}−m j and the outer summation is being taken over all permuta-
tions of the elements of Hm j . Note that (2.1.4) and Equation 2.3 of K&K are equivalent,
although with different notation.

Before proceeding to our main results, let us first recall two lemmas, which will be
used repeatedly in the following sections.

Lemma 2.1.1 (Lemma 3.1., in K&K [43]). Let ∆(β
(i)
m j ,n) be as defined in (2.1.4). Suppose

that m1 and m2 are two subsets of {1, . . . ,n} of size n− i+1 (1 < i≤ n) and that they have all
but one element in common. Denote the different element in m1 by a1 and that in m2 by a2.
Then

λa1∆(β
(i)
m1 ,n)≥ λa2∆(β

(i)
m2 ,n), if λa2 ≥ λa1 .

Lemma 2.1.2 (Chebyshev’s inequality, Theorem 1, in Mitrinovic [65]). Let a1 ≤ a2 ≤
. . .≤ an and b1 ≤ b2 ≤ . . .≤ bn be two increasing sequences of real numbers. Then

n
n

∑
i=1

aibi ≥

(
n

∑
i=1

ai

)(
n

∑
i=1

bi

)
.

2.2. THE ONE SAMPLE PROBLEM

Many authors have studied the stochastic properties of spacings from restricted
families of distributions. If X1,X2, . . . ,Xn is a random sample from a decreasing ha-
zard rate (DHR) distribution (see Definition 1.4.10), then it has been proved by Barlow
and Proschan [5] that the successive normalized spacings are stochastically increasing.
Kochar and Kirmani [42] strengthened this result from stochastic ordering to hazard
rate ordering, that is, for i = 1, . . . ,n−1

D∗i:n ≤hr D∗i+1:n. (2.2.5)

The corresponding problem when the random variables are not identically dis-
tributed has also been well studied. In particular, Pledger and Proschan [78] proved
that if the scale parameters of the exponential distributions are not all equal then the
i ’th normalized spacing is stochastically smaller than the (i+ 1)’th normalized spa-
cing.
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Theorem 2.2.1 (Pledger and Proschan [78]). If X1,X2, . . . ,Xn are independent exponential
random variables with Xi having hazard rate λi , i = 1, . . . ,n, then

D∗i:n ≤st D∗i+1:n ,

for i = 1, . . . ,n−1.

K&K [43] conjectured that a result similar to (2.2.5) holds in the case when X1,

X2, . . . ,Xn are independent exponential random variables with possibly unequal scale
parameters. They proved this conjecture for n = 3, and also obtained the following
result on likelihood ratio ordering between D∗1:n and D∗i:n for 1 < i≤ n.

Theorem 2.2.2 (K&K [43]). Let X1,X2, . . . ,Xn be independent exponential random variables
with Xi having hazard rate λi , i = 1, . . . ,n. Then

D∗1:n ≤lr D∗i:n ,

for i = 2, . . . ,n.

Khaledi and Kochar [37] demostrated the conjecture of K&K in the case that the
random variables X1, . . . ,Xn follow a single-outlier model with parameters λ and λ ∗,
that is, when λ1 = · · ·= λn−1 = λ and λn = λ ∗.

Theorem 2.2.3 (Khaledi and Kochar [37]). Let X1,X2, . . . ,Xn follow the single-outlier expo-
nential model with parameters λ and λ ∗. Then

D∗i:n(n−1,1)≤hr D∗i+1:n(n−1,1) ,

for i = 1, . . . ,n−1.

The reader is referred to Khaledi and Kochar [38] for a review of some further
results in the area of stochastic comparisons of order statistics and spacings.

In a multiple-outlier exponential model, Wen et al.[99] established likelihood ratio
ordering between consecutive simple spacings. In this case, X1,X2, . . . ,Xp is a random
sample of size p from an exponential distribution with failure rate λ and Xp+1, . . . ,Xn is
another independent random sample of size q from an exponential distribution with
failure rate λ ∗ where q = n− p≥ 1, p≥ 1.

Theorem 2.2.4 (Wen et al.[99]). Let X1,X2, . . . ,Xn follow the multiple-outlier exponential
model with parameters λ and λ ∗. Then

Di:n(p,q)≤lr Di+1:n(p,q),

for p≥ 1, q≥ 1 and i = 1, . . . ,n−1, where Di:n(p,q) is the i ’th simple spacing of X1,X2, . . . ,Xn.
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In a recent paper, Hu et al.[31] established a result similar to Theorem 2.2.2 for the
first and the second simple spacings of nonidentical independent exponential random
variables.

Theorem 2.2.5 (Hu et al.[31]). Let X1,X2, . . . ,Xn be independent exponential random varia-
bles with Xi having hazard rate λi , i = 1, . . . ,n. Then

D1:n ≤lr D2:n.

Furthermore, they proved that, if λi +λ j ≥ λk for all distinct i, j and k, then

Dn−1:n ≤lr Dn:n.

The purpose of this section is to investigate the hazard rate ordering of simple
spacings and normalized spacings of heterogeneous exponential random variables.
We present some new results on hazard rate ordering concerning the second and the
third simple spacings and normalized spacings of heterogeneous exponential random
variables.

Observing (2.1.3), note that, by definition, D∗i:n ≤hr D∗i+1:n if and only if

hi(t) =

Mi

∑
j=1

∆(β
(i)
m j ,n)β

(i)
m j e−tβ (i)

m j

Mi

∑
j=1

∆(β
(i)
m j ,n) e−tβ (i)

m j

≥

Mi+1

∑
j=1

∆(β
(i+1)
m j ,n)β

(i+1)
m j e−tβ (i+1)

m j

Mi+1

∑
j=1

∆(β
(i+1)
m j ,n) e−tβ (i+1)

m j

= hi+1(t),

which can be rewritten as

Mi+1

∑
j=1

Mi

∑
k=1

∆(β
(i)
mk ,n)∆(β

(i+1)
m j ,n) e−t

(
β
(i)
mk+β

(i+1)
m j

) (
β
(i)
mk −β

(i+1)
m j

)
≥ 0. (2.2.6)

Throughout this chapter we shall suppose, without loss of generality, that the λi’s
are in increasing order.

Next, we give an useful lemma which will be used later.

Lemma 2.2.6. Let β
(i)
mk be as defined in (2.1.2), then

Mi

∑
k=1

Mi+1

∑
j=1

(
β
(i)
mk −β

(i+1)
m j

)
= 0.
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PROOF.

Mi+1

∑
j=1

Mi

∑
k=1

(
β
(i)
mk −β

(i+1)
m j

)
=

Mi

∑
k=1

Mi+1 β
(i)
mk −

Mi+1

∑
j=1

Mi β
(i+1)
m j

=
n

∑
`=1

(
n

n− i

)(
n−1
n− i

)
λ`

n− i+1
−

n

∑
`=1

(
n

n− i+1

)(
n−1

n− i−1

)
λ`

n− i

=

[(
n

n− i

)(
n−1
n− i

)
1

n− i+1
−
(

n
n− i+1

)(
n−1

n− i−1

)
1

n− i

] n

∑
`=1

λ`

= 0 ,

since (
n

n− i

)(
n−1
n− i

)
1

n− i+1
=

(
n

n− i+1

)(
n−1

n− i−1

)
1

n− i
.

2.2.1. Normalized spacings

It is an open problem in the literature, as K&K pointed out in [43], whether suc-
cessive normalized spacings are ordered in the hazard rate ordering. We will partially
solve this problem here.

Our first new result shows that, in general, the second normalized spacing is
smaller than the third normalized spacing according to the hazard rate ordering.

Theorem 2.2.7. Let X1, . . . ,Xn be independent exponential random variables such that Xi has
hazard rate λi , for i = 1, . . . ,n, then

D∗2:n ≤hr D∗3:n, for all n.

PROOF. Observing equation (2.2.6), we have to show

M3

∑
j=1

M2

∑
k=1

∆(β
(2)
mk ,n)∆(β

(3)
m j ,n) e−t

(
β
(2)
mk +β

(3)
m j

) (
β
(2)
mk −β

(3)
m j

)
≥ 0. (2.2.7)

To do this, we consider those values of β
(2)
mk −β

(3)
m j which add zero for each k = 1, . . . ,M2

and j = 1, . . . ,M3. To illustrate this idea, we show in Figure 2.2 the representation of
the structure of the matrix of β

(2)
mk −β

(3)
m j up to n = 6. To simplify the notation in this

particular case (i = 2), we define

β
(3)
( j,k) =

1
n−2

n

∑
h=1

h/∈{ j,k}

λh and β
(2)
u =

1
n−1

n

∑
h=1
h6=u

λh, for u = 1, . . . ,M2.
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Figure 2.2: Representation of the matrix of β
(2)
mk −β

(3)
m j up to n = 6

There are n−1 elements in each row of these matrices that sum to zero, that is,

n

∑
k=1
k 6=u

(
β
(2)
u −β

(3)
(u,k)

)
= (n−1)β (2)

u −
n

∑
k=1
k 6=u

β
(3)
(u,k) = 0. (2.2.8)

These values correspond to the yellow squares in the Figure 2.2. We are interested in
proving that

Cu = ∆(β
(2)
u ,n) e−tβ (2)

u
n

∑
k=1
k 6=u

∆(β
(3)
(u,k),n) e−tβ (3)

(u,k)

(
β
(2)
u −β

(3)
(u,k)

)
≥ 0, (2.2.9)

for u = 1, . . . ,M2.
Notice that au,k = β

(2)
u − β

(3)
(u,k) and exp

{
−t β

(3)
(u,k)

}
are two sequences increasing in

k ∈ {1, . . . ,n}−u. It follows from Lemma 2.1.1

∆(β
(3)
(u,k),n)≥ ∆(β

(3)
(u,k′),n) for k > k′.

Then bu,k = ∆(β
(3)
(u,k),n)e−tβ (3)

(u,k) are increasing in k. Finally, by Lemma 2.1.2, we conclude
that

Cu ≥
1

n−1
∆(β

(2)
u ,n) e−tβ (2)

u

 n

∑
k=1
k 6=u

∆(β
(3)
(u,k),n) e−tβ (3)

(u,k)

 n

∑
k=1
k 6=u

(
β
(2)
u −β

(3)
(u,k)

)= 0,

since (2.2.8) holds.

We group the remaining values of β
(2)
u − β

(3)
(u,k) in

(
n
3

)
diagonals, each of them has a

different color and aspect in the Figure 2.2. We fix a combination of three elements
j < k < ` so that

au,1 = β
(2)
j −β

(3)
(k,`) ≥ au,2 = β

(2)
k −β

(3)
( j,`) ≥ au,3 = β

(2)
` −β

(3)
( j,k).



2.2. THE ONE SAMPLE PROBLEM 33

Since ∆(β
(2)
j ,n) = λ j

sn
where sn =

n
∑

h=1
λh, we have from Lemma 2.1.1 that

∆(β
(2)
j ,n)∆(β (3)

(k,`),n)≥ ∆(β
(2)
k ,n)∆(β (3)

( j,`),n)≥ ∆(β
(2)
` ,n)∆(β (3)

( j,k),n). (2.2.10)

Then, again from Lemma 2.1.2

3

∑
h=1

au,h bu,h ≥
1
3

(
3

∑
h=1

au,h

)(
3

∑
h=1

bu,h

)
, for u = 1, . . . ,

(
n
3

)
,

where

bu,1 = ∆(β
(2)
j ,n)∆(β (3)

(k,`),n)e
−t
(

β
(2)
j +β

(3)
(k,`)

)
,

bu,2 = ∆(β
(2)
k ,n)∆(β (3)

( j,`),n)e
−t
(

β
(2)
k +β

(3)
( j,`)

)
,

bu,3 = ∆(β
(2)
` ,n)∆(β (3)

( j,k),n)e
−t
(

β
(2)
` +β

(3)
( j,k)

)
.

Let Au =
3
∑

h=1
au,h and Bu =

3
∑

h=1
bu,h be. Now, we group diagonals so that,

∑
u∈group 1

Au ≥ ∑
u′∈group 2

Au′ .

Each group is formed by the (three or more) diagonals in Figure 2.2 which have the
same color. Then, it is necessary to prove that the respective Bu are also ordered. One
can see from Lemma 2.1.1 that

∑
u∈group 1

Bu ≥ ∑
u′∈group 2

Bu′ ,

holds. Thus, from Lemma 2.1.2, we have

∑
u∈group 1

AuBu+ ∑
u′∈group 2

Au′Bu′ ≥

(
∑

u∈group 1
Au + ∑

u′∈group 2
Au′

)(
∑

u∈group 1
Bu + ∑

u′∈group 2
Bu′

)
.

In this way, we can apply Lemmas 2.1.1 and 2.1.2 as many times as necessary until we
can obtain that

(n
3)

∑
u=1

3

∑
h=1

au,h bu,h ≥

 (n
3)

∑
u=1

3

∑
h=1

au,h

 (n
3)

∑
u=1

3

∑
h=1

bu,h

= 0,

since, by Lemma 2.2.6, the sums of the differences of the betas is equal to zero.

For a better understanding of the previous proof we recommend studying the
proof for n = 4 located in Appendix 2.5.
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We prove below that, for n= 4, the successive normalized spacings from heterogeneous
exponential random variables are increasing in hazard rate ordering, that is,

D∗1:4 ≤hr D∗2:4 ≤hr D∗3:4 ≤hr D∗4:4.

K&K established likelihood ratio ordering between the first normalized spacing
and the others, in particular D∗1:n ≤hr D∗2:n. And by Theorem 2.2.7 we know that, for
any n, D∗2:n ≤hr D∗3:n, so we have to show D∗3:4 ≤hr D∗4:4.

Theorem 2.2.8. Under the same assumptions as those in Theorem 2.2.7, then

D∗3:4 ≤hr D∗4:4.

PROOF. Considering i = 3 in (2.2.6), we have to show that

M4

∑
j=1

M3

∑
k=1

∆(β
(3)
mk ,4)∆(β

(4)
m j ,4) e−t

(
β
(3)
mk +β

(4)
m j

) (
β
(3)
mk −β

(4)
m j

)
≥ 0. (2.2.11)

First, examine the values of β
(3)
mk −β

(4)
m j where M3 = 6 and M4 = 4.

λ3+λ4
2 −λ1

λ3+λ4
2 −λ2

λ3+λ4
2 −λ3

λ3+λ4
2 −λ4

λ2+λ4
2 −λ1

λ2+λ4
2 −λ2

λ2+λ4
2 −λ3

λ2+λ4
2 −λ4

λ2+λ3
2 −λ1

λ2+λ3
2 −λ2

λ2+λ3
2 −λ3

λ2+λ3
2 −λ4

λ1+λ4
2 −λ1

λ1+λ4
2 −λ2

λ1+λ4
2 −λ3

λ1+λ4
2 −λ4

λ1+λ3
2 −λ1

λ1+λ3
2 −λ2

λ1+λ3
2 −λ3

λ1+λ3
2 −λ4

λ1+λ2
2 −λ1

λ1+λ2
2 −λ2

λ1+λ2
2 −λ3

λ1+λ2
2 −λ4


(2.2.12)

This construction was motivated in the proof of Theorem 3.6 of K&K. Our main idea is
to find coefficients of the matrix (2.2.12) which sum to zero. The groups of coefficients
can be divided into two types: (

λ j +λk

2
−λ j

)
+

(
λ j +λk

2
−λk

)
= 0 ,

(
λk +λ`

2
−λ j

)
+

(
λ j +λ`

2
−λk

)
+

(
λ j +λk

2
−λ`

)
= 0 ,

for j,k, `= 1, . . . ,4 and j < k < `. To simplify the notation let β
(3)
mk =

λ j+λ`

2 and β
(4)
m j = λ j

be, if mk = ( j, `) and m j = j, respectively. Then, (2.2.11) can be written as

4

∑
j=1

4

∑
k= j+1

A( j,k)+
4

∑
u=1

Bu ≥ 0 ,
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where

A( j,k) = ∆(β
(3)
( j,k),4) e

−t
(

λ j+λk
2

)
×[

∆(β
(4)
j ,4) e−tλ j

(
λ j +λk

2
−λ j

)
+∆(β

(4)
k ,4) e−tλk

(
λ j +λk

2
−λk

)]
,

and

Bu =∆(β
(3)
(k,`),4)∆(β

(4)
j ,4) e−t

(
λk+λ`

2 +λ j

)(
λk +λ`

2
−λ j

)
+∆(β

(3)
( j,`),4)∆(β

(4)
k ,4) e

−t
(

λ j+λ`
2 +λk

)(
λ j +λ`

2
−λk

)
+∆(β

(3)
( j,k),4)∆(β

(4)
` ,4) e

−t
(

λ j+λk
2 +λ`

)(
λ j +λk

2
−λ`

)
,

where u /∈ { j,k, `}. We divide the proof into two parts according to different types of
addition. First, we will show that A( j,k) are positive for all j < k. After some manipu-
lations we can see that

A( j,k) = ∆(β
(3)
( j,k),4) e

−t
(

λ j+λk
2

)(
λk−λ j

2

)[
∆(β

(4)
j ,4) e−tλ j −∆(β

(4)
k ,4) e−tλk

]
.

Lemma 2.1.1 and λ j ≤ λk imply that

1≤ λk

λ j
≤

∆(β
(4)
j ,4)

∆(β
(4)
k ,4)

.

Therefore A( j,k) ≥ 0 since ∆(β
(4)
j ,4)≥ ∆(β

(4)
k ,4) and e−tλ j ≥ e−tλk .

Next, we are interested in proving that Bu are positive for all u. Note that

au,1 =
λk +λ`

2
−λ j, au,2 =

λ j +λ`

2
−λk, au,3 =

λ j +λk

2
−λ` ,

and

e−t
(

λk+λ`
2 +λ j

)
, e

−t
(

λ j+λ`
2 +λk

)
, e

−t
(

λ j+λk
2 +λ`

)
,

are decreasing.
Now, if u = 1 or 2, using Lemma 2.5.2 in the Appendix 2.5, we find that

∆(β
(3)
(3,4),4)∆(β

(4)
u ,4)≥ ∆(β

(3)
(u,4),4)∆(β

(4)
3 ,4)≥ ∆(β

(3)
(u,3),4)∆(β

(4)
4 ,4) . (2.2.13)

From this, we conclude that

bu,1 = ∆(β
(3)
(3,4),4)∆(β

(4)
u ,4) e−t

(
λ3+λ4

2 +λu

)
,

bu,2 = ∆(β
(3)
(u,4),4)∆(β

(4)
3 ,4) e−t

(
λu+λ4

2 +λ3

)
,

bu,3 = ∆(β
(3)
(u,3),4)∆(β

(4)
4 ,4) e−t

(
λu+λ3

2 +λ4

)
,
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are decreasing in h = 1,2,3. Note that Bu can be written as
3
∑

h=1
au,hbu,h. Finally, by

Lemma 2.1.2,

Bu =
3

∑
h=1

au,h bu,h ≥
1
3

(
3

∑
h=1

au,h

)(
3

∑
h=1

bu,h

)
= 0 ,

since
3
∑

h=1
au,h = 0. Now, if u = 3 or 4, we have that

∆(β
(3)
(2,u),4)∆(β

(4)
1 ,4)≥ ∆(β

(3)
(1,2),4)∆(β

(4)
u ,4), (2.2.14)

∆(β
(3)
(1,u),4)∆(β

(4)
2 ,4)≥ ∆(β

(3)
(1,2),4)∆(β

(4)
u ,4), (2.2.15)

and if β
(3)
(1,u)−β

(4)
2 < 0 ,

∆(β
(3)
(2,u),4)∆(β

(4)
1 ,4)≥ ∆(β

(3)
(1,u),4)∆(β

(4)
2 ,4). (2.2.16)

The proofs of (2.2.14)-(2.2.16) are given in Lemma 2.5.3 in the Appendix 2.5.
It is easy to check that au,3 =−(au,1 +au,2)< 0 and if β

(3)
1,u −β

(4)
2 > 0 then

Bu =
3

∑
h=1

au,hbu,h ≥ min{bu,1, bu,2}(au,1 +au,2)+au,3 bu,3

=−au,3

(
min{bu,1, bu,2}−bu,3

)
≥ 0,

where

bu,1 = ∆(β
(3)
(2,u),4)∆(β

(4)
1 ,4) e−t

(
λ2+λu

2 +λ1

)
,

bu,2 = ∆(β
(3)
(1,u),4)∆(β

(4)
2 ,4) e−t

(
λ1+λu

2 +λ2

)
,

bu,3 = ∆(β
(3)
(1,2),4)∆(β

(4)
u ,4) e−t

(
λ1+λ2

2 +λu

)
,

and min{bu,1, bu,2} ≥ bu,3 by (2.2.14) and (2.2.15). However, if β
(3)
1,u − β

(4)
2 < 0, bu,1 ≥

bu,2 ≥ bu,3 and again by Lemma 2.1.2 Bu ≥ 0. Hence (2.2.11) holds, which implies that
D∗3:4 ≤hr D∗4:4 and the proof is complete.

2.2.2. Simple spacings

We turn to consider the simple spacings of the order statistics where now,

β
(i)
m j =

n

∑
`=i

λr` .
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From (2.1.1) one sees immediately that the p.d.f. of Di:n for 1≤ i≤ n is

fi(t) = ∑
rn

n
∏

k=1
λk

n
∏

k=1

(
n
∑
`=k

λr`

) ( n

∑
`=i

λr`

)
e
−t

n
∑
`=i

λr`
,

which can be written again as in (2.1.3). Note that the probability ∆(β
(i)
m j ,n), defined

in (2.1.4), is the same in the p.d.f. of D∗i:n and Di:n. Therefore, we can apply Lemmas
2.1.1, 2.5.2 and 2.5.3 in order to investigate the hazard rate order of successive simple
spacings. This condition is essential to the proof of the next result.

Conjecture 2.2.9. The successive simple spacings are ordered in the hazard rate ordering, that
is,

Di:n ≤hr Di+1:n ,

for i = 1, . . . ,n−1.

We give below some advances on this. Specifically, we prove that the second sim-
ple spacing is smaller than the third simple spacing according to the hazard rate orde-
ring.

Theorem 2.2.10. Let X1, . . . ,Xn be independent exponential random variables with rates λ1,. . . ,
λn, respectively. Then,

D2:n ≤hr D3:n for any n.

PROOF. We have to show that (2.2.7) holds, where β
(i)
m j =

n
∑
`=i

λr` . It is easy to see that for

each possible negative element of the matrix β
(2)
mk −β

(3)
m j , there exists another positive

element of form
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since β
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∑
h=1

h/∈{ j,k,`}

λh = β
(2)
` +β

(3)
( j,k),

then e−t
(

β
(2)
k +β

(3)
( j,`)

)
= e−t

(
β
(2)
` +β

(3)
( j,k)

)
. From equation (2.2.10) and by Lemma 2.1.2, we

know
2

∑
h=1

au,hbu,h ≥
1
2

(
2

∑
h=1

au,h

)(
2

∑
h=1

bu,h

)
= λ j

(
2

∑
h=1

bu,h

)
≥ 0 ,

where bu,1 = ∆(β
(2)
k ,n)∆(β (3)

( j,`),n) and bu,2 = ∆(β
(2)
` ,n)∆(β (3)

( j,k),n). This proves the re-
quired result.
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Next, we show that the successive simple spacings are increasing in hazard rate
ordering for n = 4. Hu et al.[31] proved that D1:n ≤lr D2:n, and by Theorem 2.2.10 we
know that D2:n ≤hr D3:n, so we have to show D3:4 ≤hr D4:4.

Theorem 2.2.11. Under the same assumptions as those in Theorem 2.2.10, then

D3:4 ≤hr D4:4.

PROOF. We have to show that (2.2.11) holds where β
(i)
m j =

n
∑
`=i

λr` . Here, the matrix of

β
(3)
mk −β

(4)
m j is

λ3 +λ4−λ1 λ3 +λ4−λ2 λ4 λ3

λ2 +λ4−λ1 λ4 λ2 +λ4−λ3 λ2

λ2 +λ3−λ1 λ3 λ2 λ2 +λ3−λ4

λ4 λ1 +λ4−λ2 λ1 +λ4−λ3 λ1

λ3 λ1 +λ3−λ2 λ1 λ1 +λ3−λ4

λ2 λ1 λ1 +λ2−λ3 λ1 +λ2−λ4


(2.2.17)

and we can use the same approach as in the proof of Theorem 2.2.10. It is easy to check
that there are only four possible negative coefficients au,2 = λ j+λk−λ` for j < k < ` and
u /∈ { j,k, `}. Now, we consider the term au,1 = λ j+λ`−λk ≥ 0 for u= 1, . . . ,4. Notice that
exp

{
−t
(

β
(3)
( j,`)+β

(4)
k

)}
= exp

{
−t
(

β
(3)
( j,k)+β

(4)
`

)}
. From equation (2.2.13)) and (2.2.15)

we have
bu,1 = ∆(β

(3)
( j,`),4)∆(β

(4)
k ,4)≥ ∆(β

(3)
( j,k),4)∆(β

(4)
` ,4) = bu,2.

Hence, by Lemma 2.1.2

2

∑
h=1

au,hbu,h ≥
1
2

(
2

∑
h=1

au,h

)(
2

∑
h=1

bu,h

)
= λ j

(
2

∑
h=1

bu,h

)
≥ 0.

This proves the required result.

The results of this part are mainly based on Torrado et al. [97].

2.3. THE TWO SAMPLE PROBLEM

Let X1, . . . ,Xn be a set of independent exponential random variables and Y1, . . . ,Yn

be another set of independent exponential random variables. As we mentioned at the
beginning of this chapter, in software reliability, failure times of a software program
are modeled as order statistics of inid exponential random variables. Then, we can
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consider that Xi:n and Yi:n are the failure times of two software programs, and Di:n

and Ci:n are the i ’th times elapsed between software failures, respectively. A natural
question is to examine whether the first software program is better than the second
one in some stochastic sense.

Many researchers have considered the problem of comparing the spacings of non-
identical independent exponential random variables with those corresponding to in-
dependent and identically distributed exponential random variables according to dif-
ferent stochastic orderings. Because of the complicated nature of the problem, not
much work has been done when the two samples are nonidentical independent expo-
nential random variables. Pledger and Proschan [78] showed that the i ’th normalized
spacing of a sample of size n from heterogeneous exponential population is stochasti-
cally larger than the i ’th normalized spacing of a sample of size n whose distribution
is the average of the distributions in the heterogeneous case.

Theorem 2.3.1 (Pledger and Proschan [78]). Let X1,X2, . . . ,Xn be independent exponential
random variables with Xi having hazard rate λi i = 1, . . . ,n. Let Y1,Y2, . . . ,Yn be a random

sample of size n from an exponential distribution with common hazard rate nλ =
n
∑

i=1
λi. Then

C∗i:n ≤st D∗i:n,

for i = 1, . . . ,n, where C∗i:n = (n− i+ 1)(Yi:n−Yi−1:n) and D∗i:n = (n− i+ 1)(Xi:n−Xi−1:n) are
the i ’th normalized spacing from Yi’s and Xi’s, respectively, with Y0:n ≡ 0 and X0:n ≡ 0.

The above result give a nice bound for the survival function of normalized spa-
cings from independent, heterogeneous exponential distributions in terms of the case
when they are iid. K& K extended this result from stochastic ordering to likelihood
ratio ordering.

Theorem 2.3.2 (K&K [43]). Under the same assumptions as those in Theorem 2.3.1, then

C∗i:n ≤lr D∗i:n,

for i = 1, . . . ,n.

Kochar and Rojo [44] further strengthened Theorem 2.3.2 to multivariate likeli-
hood ratio order.

Theorem 2.3.3 (Kochar and Rojo [44]). Under the same assumptions as those in Theorem
2.3.1, then

(C∗1:n, . . . ,C
∗
n:n)≤lr (D∗1:n, . . . ,D

∗
n:n) .
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Kochar and Xu [45] provided necessary and sufficient conditions for stochastically
comparing according to likelihood ratio ordering when Y1,Y2, . . . ,Yn is a random sam-
ple of size n from an exponential distribution with common hazard rate λ which can
differ from λ .

Theorem 2.3.4 (Kochar and Xu [45]). Let X1,X2, . . . ,Xn be independent exponential random
variables with Xi having hazard rate λi i = 1, . . . ,n. Let Y1,Y2, . . . ,Yn be a random sample of
size n from an exponential distribution with common hazard rate λ . Then, for i≥ 2,

Ci:n ≤lr Di:n⇔ (n− i+1)λ ≥
∑

j∈rn

p j

(
n
∑
j=i

λ (r j)

)2

∑
j∈rn

p j

(
n
∑
j=i

λ (r j)

) ,

for i = 1, . . . ,n, where

p j =

n
∏

k=1
λk

n
∏

k=1

(
n
∑
j=k

λ (r j)

) .

Some of these researchers have investigated the effect on the survival function, the
hazard rate function and other characteristics of the time to failure of the spacings
when we switch the vector λ = (λ1, . . . ,λn) to another vector θ = (θ1, . . . ,θn). Pledger
and Proschan [78] proved that, in general, the survival function of D∗i:n is not Schur-
convex in (λ1, . . . ,λn). Note that, from Definition 1.4.9, this means that in general, if
θ ≤m λ then C∗i:n �st D∗i:n. However, K&K [43] proved that the survival function of D∗2:n

is Schur-convex in (λ1, . . . ,λn) and, in general, its hazard rate is not Schur-concave,
although for n = 2, the hazard rate of the second normalized spacing is Schur-concave,
i.e., if θ ≤m λ then C∗2:2 ≤hr D∗2:2.

Next, we study conditions which are different to that of majorization, which was
defined in Subsection 1.4.1, under which normalized and simple spacings are ordered
in the likelihood ratio ordering. First, we need an important result and a lemma which
is a consequence of Lemma 2.1.1.

Theorem 2.3.5. Let X1, . . . ,Xn be independent exponential random variables such that Xi has
hazard rate λi for i = 1, . . . ,n, and Y1, . . . ,Yn be independent exponential random variables such
that Yi has hazard rate θi for i = 1, . . . ,n. Then,

Ci:n ≤lr Di:n⇔C∗i:n ≤lr D∗i:n,

for i = 1, . . . ,n.
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PROOF. It is easy to see that D∗i:n = ϕi(Di:n) where ϕi(x) = (n− i+ 1)x is an increasing
function. If Ci:n ≤lr Di:n, then from Theorem 1.C.8. in [88] we get that C∗i:n ≤lr D∗i:n, and
viceversa, since ϕ−1(x) is also an increasing function.

Lemma 2.3.6. Let ∆(β
(i)
m j ,n) be as defined in (2.1.4). Suppose that m1 and m2 are two subsets

of {1, . . . ,n} of size n− i+ 1 (1 < i≤ n) and having all but one element in common. Denote
the different element in m1 by a1 and that in m2 by a2. Then

β
(i)
m1 ∆(β

(i)
m1 ,n)≥ β

(i)
m2 ∆(β

(i)
m2 ,n) if λa2 ≥ λa1 .

PROOF. Let c1, . . . ,ci−1 be the common elements, then from Lemma 2.1.1, we have

β
(i)
m1 ∆(β

(i)
m1 ,n) =

(
λ (a1)+

i−1

∑
j=1

ci

)
∆(β

(i)
m1 ,n)≥

(
λ (a2)+

i−1

∑
j=1

ci

)
∆(β

(i)
m2 ,n) = β

(i)
m2 ∆(β

(i)
m2 ,n).

Now we can establish likelihood ratio ordering between simple spacings from two
heterogeneous exponential samples.

Theorem 2.3.7. Let X1, . . . ,Xn be independent exponential random variables such that Xi has
hazard rate λi for i = 1, . . . ,n, and Y1, . . . ,Yn be independent exponential random variables
such that Yi has hazard rate θi for i = 1, . . . ,n. If α

(i)
min = min

1≤m j≤Mi
α
(i)
m j ≥ (n− i+ 1)λ , where

α
(i)
m j =

n
∑
`=i

θr` and nλ =
n
∑

i=1
λi. Then

Ci:n ≤lr Di:n,

for i = 1, . . . ,n, where Di:n and Ci:n are the i ’th simple spacing from Xi’s and Yi’s, respectively.

PROOF. Observing equation (2.1.3), note that Ci:n ≤lr Di:n if and only if

fDi:n(t)
fCi:n(t)

=

Mi

∑
k=1

∆(β
(i)
mk ,n)β

(i)
mk e−tβ (i)

mk

Mi

∑
j=1

∆(α
(i)
m j ,n)α

(i)
m j e−tα(i)

m j

,

is increasing in t, where β
(i)
m j =

n
∑
`=i

λr` and α
(i)
m j =

n
∑
`=i

θr` . Differentiating this equation

with respect to t, we have to prove

Mi

∑
k=1

Mi

∑
j=1

∆(β
(i)
mk ,n)∆(α

(i)
m j ,n)β

(i)
mk α

(i)
m j e−t

(
β
(i)
mk+α

(i)
m j

) (
α
(i)
m j −β

(i)
mk

)
≥ 0. (2.3.18)
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We suppose without loss of generality that the β
(i)
mk ’s are in increasing order. By Lemma

2.3.6, we know that β
(i)
mk ∆(β

(i)
mk ,n)’s are in decreasing order, and it is easy to see that

e−tβ (i)
mk and

(
α
(i)
m j −β

(i)
mk

)
are in decreasing order also. Then, by Lemma 2.1.2, we have

Mi

∑
k=1

Mi

∑
j=1

∆(β
(i)
mk ,n)∆(α

(i)
m j ,n)β

(i)
mk α

(i)
m j e−t

(
β
(i)
mk+α

(i)
m j

) (
α
(i)
m j −β

(i)
mk

)
≥(

Mi

∑
k=1

β
(i)
mk ∆(β

(i)
mk ,n) e−tβ (i)

mk

)
Mi

∑
j=1

α
(i)
m j ∆(α

(i)
m j ,n) e−tα(i)

m j

Mi

∑
k=1

(
α
(i)
m j −β

(i)
mk

)
,

where

Mi

∑
k=1

(
α
(i)
m j −β

(i)
mk

)
= Miα

(i)
m j −

Mi

∑
k=1

β
(i)
mk =

(
n

n− i+1

)
α
(i)
m j −

(
n−1
n− i

) n

∑
i=1

λi ≥ 0,

if and only if

α
(i)
m j ≥

(
n−1
n− i

)(
n

n− i+1

)−1 n

∑
i=1

λi = (n− i+1)λ .

Hence, the required result follows since α
(i)
min ≥ (n− i+1)λ for i = 1, . . . ,n.

A natural question is to examine if the condition of Theorem 2.3.7 implies ma-
jorization and viceversa. The following examples show that, in general, this is not
true.

Example 2.3.8 If θ = (40,10,1) and λ= (40,5.5,5.5), it is easy to check that θ ≥m λ,
however, for i = 2,

α
(2)
min = min

1≤m j≤M2
α
(2)
m j = 11 < 34 = (n− i+1)λ = (n− i+1)θ .

Note that, in this case, the normalized spacings are not ordered in the hazard rate
ordering (see again K&K[43]). �

Example 2.3.9 If θ = (40,10,1) and λ= (5.5,5.5,4), for i = 2 we get

α
(2)
min = 11 > 10 = (n− i+1)λ ,

and θ �m λ. �

Remark 2.3.10 Let
{

θ(1), . . . ,θ(n)
}

denote the increasing arrangement of θi for i =
1, . . . ,n. It is easy to check that

α
(i)
min =

n−i+1

∑
j=1

θ( j) , (2.3.19)
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and

θ ≥
α
(2)
min

n−1
≥ . . .≥

α
(i)
min

n− i+1
≥ . . .≥

α
(n−1)
min
2
≥ θ(1). (2.3.20)

For i = n, from Theorem 2.3.7, we know that if θ(1) ≥ λ then Cn:n ≤lr Dn:n. Now, by
equation (2.3.20) we get that if θ(1) ≥ λ then Ci:n ≤lr Di:n for i = 1, . . . ,n. Even more, if
we fix i, the condition α

(i)
min ≥ (n− i+1)λ of Theorem 2.3.7 implies not only Ci:n ≤lr Di:n

but also C j:n ≤lr D j:n for j = 1, . . . , i.
Note that for i = 1, X1:n = D1:n = D∗1:n, and from Theorem 2.3.7 we have

n

∑
i=1

θi ≥
n

∑
i=1

λi⇒ Y1:n ≤lr X1:n,

which it is well known since X1:n∼ exp(λ1+ · · ·+λn) and Y1:n∼ exp(θ1+ · · ·+θn). �

Corollary 2.3.11. Let X1, . . . ,Xn be independent exponential random variables such that Xi has
hazard rate λi for i = 1, . . . ,n, and Y1, . . . ,Yn be a random sample of size n from an exponential
distribution with common hazard rate θ . If θ ≥ λ , then

Ci:n ≤lr Di:n,

for i = 1, . . . ,n.

PROOF. It is easy to see that α
(i)
m j = (n− i+1)θ for all m j, since Y1, . . . ,Yn have the same

hazard rate. Then, (2.3.18) holds since θ ≥ λ ⇔ α
(i)
m j = (n− i+1)θ ≥ (n− i+1)λ .

Note that Theorem 2.3.2 ok K&K can be seen as a particular case of the above
Corollary, when θ = λ . In order to illustrate the performance of the above result, we
present here some interesting special cases. Let X1, . . . ,Xn be independent exponential
random variables such that Xi has hazard rate λi for i = 1, . . . ,n, and Y1, . . . ,Yn be a
random sample of size n from an exponential distribution with common hazard rate
θ . Suppose that λ1 = . . .= λn = λ , from Corollary 2.3.11, it follows that Ci:n ≤lr Di:n , if
θ ≥ λ , which is a well known result in the literature. Another interesting special case
is the following.

Proposition 2.3.12. Let X1, . . . ,Xn be independent exponential random variables such that
Xi has hazard rate λi for i = 1, . . . ,n, Y1, . . . ,Yn be a random sample of size n from an ex-
ponential distribution with common hazard rate λ(n) = max{λ1, . . . ,λn}, and Z1, . . . ,Zn be a
random sample of size n from an exponential distribution with common hazard rate λ(1) =

min{λ1, . . . ,λn} . Then
Ci:n ≤lr Di:n ≤lr Hi:n,

for i = 1, . . . ,n where Ci:n, Di:n, Hi:n denote the i ’th simple spacings of Yi’s, Xi’s and Zi’s, res-
pectively.
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PROOF. It is easy to check that λ(n) ≥ λ . Due to Corollary 2.3.11, it follows that Ci:n ≤lr

Di:n for i = 1, . . . ,n. By (2.3.20), we know that β
(i)
min ≥ (n− i+ 1)λ(1) for all i, then from

Theorem 2.3.7 we get Di:n ≤lr Hi:n for i = 1, . . . ,n.

This result is of interest because it provides upper and lower bounds for the sur-
vival and the hazard rate functions since the likelihood ratio order implies the usual
stochastic and the hazard rate orders.

Example 2.3.13 Assume that
(
λ(1),λ(2),λ(3)

)
=(0.9,1.0,4.0). Figure 2.3 gives an illus-

tration of the above result, where one can see the survival function of the second
simple spacing from a heterogeneous exponential random sample with hazard rate(
λ(1),λ(2),λ(3)

)
= (0.9,1.0,4.0). This survival function is bounded by the survival func-

tion of the second simple spacing from a exponential random sample with hazard rate
λ(1) = 0.9 and by the survival function of the second simple spacing from a exponential
random sample with hazard rate λ(3) = 4. Even more, we can consider as the lower
bound the survival function of the second simple spacing from a exponential random
sample with hazard rate λ = 1.967. �

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

HΛ1,Λ2,Λ3L=H0.9,1,4L

HΛ1,Λ2,Λ3L=H1.967,1.967,1.967L

HΛ1,Λ2,Λ3L=H0.9,0.9,0.9L

HΛ1,Λ2,Λ3L=H4,4,4L

Figure 2.3: The survival curves with different parameters.

Bagai and Kochar [2] proved that if X ≤hr Y and either F or G is DFR (decreasing
failure rate), then X ≤disp Y . It is known that spacings of independent heterogeneous
exponential random variables have DFR distributions (cf. K&K [43]) and that the like-
lihood ratio order implies the hazard rate order. Combining these observations, we
have proved the following corollary.
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Corollary 2.3.14. Under the same assumptions as those in Theorem 2.3.7,

Ci:n ≤disp Di:n,

for i = 1, . . . ,n.

Consequences of Corollary 2.3.14 are that Var(Ci:n)≤ Var(Di:n) for i = 1, . . . ,n.

2.3.1. Applications to a multiple-outlier model

By considering the multiple-outlier model as a special case in the independent and
non identically distributed framework, we present results on simple spacings from a
multiple-outlier exponential model. Note that from Theorem 2.3.5, we can apply these
results to normalized spacings from a multiple-outlier exponential model.

In this section, we consider the special case when X1, . . . ,Xn are independent ex-
ponential random variables such that Xi has hazard rate λ for i = 1, . . . , p and X j has
hazard rate λ∗ for j = p+ 1, . . . ,n, where two samples are independent. The simple
spacings and normalized spacings from a multiple-outlier exponential model are, res-
pectively, defined by

Di:n (p,q;λ ,λ∗) = Xi:n−Xi−1:n and D∗i:n (p,q;λ ,λ∗) = (n− i+1)Di:n (p,q;λ ,λ∗) ,

for i = 1, . . . ,n, with X0:n ≡ 0, q = n− p ≥ 1 and p ≥ 1. To simplify notation, we shall
write Di:n (p,q) and Di:n (λ ,λ∗) instead of Di:n (p,q;λ ,λ∗) when there is no ambiguity,
and the dependence of spacings on the parameters (p,q) and (λ ,λ∗) are emphasized,
respectively. The notation Di:n (p,q) and Di:n (λ ,λ∗) have a similar interpretation.

As we mentioned in Theorem 2.2.3 in Section 2.2, Khaledi and Kochar [37] proved
that

D∗i:n (n−1,1)≤hr D∗i+1:n (n−1,1) , for i = 1, . . . ,n−1,

in a single-outlier exponential model. Wen et al. [99] established the likelihood ratio
ordering of simple spacings from a multiple-outlier exponential model (see Theorem
2.2.4), that is,

Di:n (p,q)≤lr Di+1:n (p,q) , for p≥ 1,q≥ 1 and i = 1, . . . ,n−1.

Hu et al. [32] also investigated stochastic comparisons of simple spacings from a
multiple-outlier exponential model. They proved, for λ1 ≤ λ∗ ≤ λ2,(

D1:n(λ2,λ∗), . . . ,Dn:n(λ2,λ∗)
)
≤lr

(
D1:n(λ1,λ∗), . . . ,Dn:n(λ1,λ∗)

)
,
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with p,q ≥ 2. Since the multivariate likelihood ratio order is closed under margina-
lization (see Shaked and Shanthikumar[88]), it holds that, for λ1 ≤ λ∗ ≤ λ2,

Di:n(λ2,λ∗)≤lr Di:n(λ1,λ∗), for i = 1, . . . ,n. (2.3.21)

In the following example, we show that (2.3.21) is a special case of Theorem 2.3.7.

Example 2.3.15 Suppose that λ1 ≤ λ∗ ≤ λ2. We will show that α
(i)
min ≥ (n− i+ 1)λ ,

where

λ =
pλ1 +(n− p)λ∗

n
, and

α
(i)
min =

{
(n− i+1)λ∗, if i≥ p+1,
(n− p)λ∗+(p− i+1)λ2, if i < p+1.

(2.3.22)

Then, from Theorem 2.3.7, we get that Di:n(λ2,λ∗) ≤lr Di:n(λ1,λ∗), for i = 1, . . . ,n.
When i≥ p+1,

α
(i)
min ≥ (n− i+1)λ ⇔ nλ∗ ≥ pλ1 +(n− p)λ∗⇔ λ∗ ≥ λ1.

And, when i < p+ 1, α
(i)
min ≥ (n− i+ 1)λ ⇔ (n− p)λ∗+(p− i+ 1)λ2 ≥ (n− i+ 1)λ . As

λ2 ≥ λ∗, it is easy to see that, if i < p+1,

(n− p)λ∗+(p− i+1)λ2 = (n− i+1)λ∗ ≥ (n− i+1)λ ⇔ λ∗ ≥ λ1.

Hence, Di:n(λ2,λ∗)≤lr Di:n(λ1,λ∗), for i = 1, . . . ,n. �

Using again Theorem 2.3.7, we give below a similar result to (2.3.21) when the
number of exponential random variables with hazard rate λ1 and λ∗ can be changed.

Theorem 2.3.16. Let X1, . . . ,Xn follow the multiple-outlier model with parameters λ1 and λ∗

and let Y1, . . . ,Yn follow the multiple-outlier model with parameters λ2 and λ∗. If λ1 ≤ λ∗ ≤ λ2,
then

i) Di:n (p,q;λ2,λ∗)≤lr Di:n (p+ k1,q− k1;λ1,λ∗), with 1≤ k1 ≤ q and

ii) Di:n (p,q;λ2,λ∗)≤lr Di:n (p− k2,q+ k2;λ1,λ∗), with 1≤ k2 ≤ p,

where q = n− p≥ 1, p≥ 1.

PROOF. We have to show that α
(i)
min ≥ (n− i+1)λ and then, from Theorem 2.3.7 we will

conclude that the result follows. It is easy to see that (2.3.22) holds.
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i) In this case, nλ = (p+ k1)λ1 +(q− k1)λ∗, with 1≤ k1 ≤ q. When i≥ p+1,

α
(i)
min ≥ (n− i+1)λ ⇔ (n− i+1)λ∗ ≥ (n− i+1)λ ⇔ (λ∗−λ1)(p+k1)≥ 0⇔ λ∗ ≥ λ1.

And when i < p+1, α
(i)
min ≥ (n− i+1)λ ⇔ (n− p)λ∗+(p− i+1)λ2 ≥ (n− i+1)λ .

As λ2 ≥ λ∗, then

α
(i)
min ≥ (n− i+1)λ ⇔ (n− i+1)λ∗ ≥ (n− i+1)λ ⇔ λ∗ ≥ λ1.

ii) In this case, nλ = (p− k2)λ1 +(q+ k2)λ∗, where 1≤ k2 ≤ p. As before, it is easy to
check that

α
(i)
min ≥ (n− i+1)λ ⇔ (n− i+1)λ∗ ≥ (n− i+1)λ ⇔ (λ∗−λ1)(p−k2)≥ 0⇔ λ∗ ≥ λ1,

for i = 1, . . . ,n.

Wen et al. [99] obtained the following result.

Theorem 2.3.17 (Wen et al. [99]). Let X1, . . . ,Xn follow the multiple-outlier model with
parameters λ and λ∗. If λ ≤ λ∗, p≥ 1 and q≥ 1, then

Di:n(p,q)≤lr Di:n(p+1,q−1), for i = 1, . . . ,n.

We now state the analogue of this last result as a special case of Theorem 2.3.7,
when λ ≥ λ∗.

Theorem 2.3.18. Let X1, . . . ,Xn follow the multiple-outlier model with parameters λ and λ∗.
If λ ≥ λ∗, p≥ 1 and q≥ 1, then

Di:n(p− k2,q+ k2)≥lr Di:n(p,q)≥lr Di:n(p+ k1,q− k1),

where 1≤ k1 ≤ q, 1≤ k2 ≤ p and i = 1, . . . ,n.

PROOF. First, we will see that Di:n(p− k2,q+ k2) ≥lr Di:n(p,q), where 1 ≤ k2 ≤ p. A
trivial verification shows that

λ =
(p− k2)λ +(q+ k2)λ∗

n
, and

α
(i)
min =

{
(n− i+1)λ , if i≥ q+1,
pλ +(n− i+1− p)λ∗, if i < q+1.

It follows immediately that, if i≥ q+1,

α
(i)
min ≥ (n− i+1)λ ⇔ nλ ≥ (p− k2)λ +(q+ k2)λ∗

⇔ (λ −λ∗)(q+ k2)≥ 0⇔ λ ≥ λ∗.
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And, if i < q+1, then,

α
(i)
min ≥ (n− i+1)λ ⇔ pλ +(n− i+1− p)λ∗ ≥

n− i+1
n

(
(p− k2)λ +(q+ k2)λ∗

)
⇔ (λ −λ∗)

(
nk2 +(i−1)(p− k2)

)
≥ 0⇔ λ ≥ λ∗.

To prove that Di:n(p,q)≥lr Di:n(p+ k1,q− k1) where 1≤ k1 ≤ q, we get

λ =
pλ +qλ∗

n
, and

α
(i)
min =

{
(n− i+1)λ , if n− i+1≤ p+ k1,

(p+ k1)λ +(n− i+1− p− k1)λ∗, if n− i+1 > p+ k1.

Clearly, when n− i+1≤ p+ k1,

α
(i)
min ≥ (n− i+1)λ ⇔ nλ ≥ pλ +qλ∗⇔ q(λ −λ∗)≥ 0⇔ λ ≥ λ∗.

And when n− i+1 > p+ k1, we have

α
(i)
min ≥ (n− i+1)λ ⇔ (p+ k1)λ +(n− i+1− p− k1)λ∗ ≥

n− i+1
n

(pλ +qλ∗)

⇔ (λ −λ∗)
(

nk1 + p(i−1)
)
≥ 0⇔ λ ≥ λ∗.

Hence, we have proved that α
(i)
min ≥ (n− i+1)λ ⇔ λ ≥ λ∗, and from Theorem 2.3.7 we

get the desired result.

2.4. SUMMARY AND FUTURE WORK

This chapter is devoted to establishing stochastic comparisons of spacings from
one and two samples of heterogeneous exponential random variables.

In the first part of this chapter, we have shown, in the case n = 4, that both norma-
lized spacings and simple spacings are ordered according to the hazard rate ordering.
We have also established hazard rate ordering between the second and the third sim-
ple spacings and normalized spacings for any n and for all λi’s. As we mentioned en
Section 2.2, the results of this part are mainly based on Torrado et al. [97].

The second part of this chapter concerns stochastic comparisons between spacings
from two samples of exponential random variables with different scale parameters.
We have provided sufficient conditions under which the simple and normalized spa-
cings are ordered according to the likelihood ratio ordering. We also have shown
applications of these results to the multiple-outlier exponential model.
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When we compare spacings from one sample, our method is based on the fact that
in each row of the matrix of differences between the betas, there exist a number of
elements that sum to zero. We believe that by studying the structure of these matrices,
an adequate form of applying Chebyshev’s inequality to the general solution of the
conjecture of K&K can be found.

To end this chapter, we make the following conjectures. Let X1, . . . ,Xn be inde-
pendent exponential random variables with Xi having failure rate λi for each i. Let
∆(β

(n−1)
m j ,n) be as defined in (2.1.4). Let β

(n−1)
mk =

λ j+λ`

2 and β
(n)
m j = λ j be, if mk = ( j, `) and

m j = j, respectively. Then, we think that the following inequalities hold,

Ê ∆(β
(n−1)
(k,`) ,n)∆(β (n)

j ,n)≥ ∆(β
(n−1)
( j,k) ,n)∆(β (n)

` ,n) ,

Ë ∆(β
(n−1)
( j,`) ,n)∆(β (n)

k ,n)≥ ∆(β
(n−1)
( j,k) ,n)∆(β (n)

` ,n) ,

Ì ∆(β
(n−1)
(k,`) ,n)∆(β (n)

j ,n)≥ ∆(β
(n−1)
( j,`) ,n)∆(β (n)

k ,n) for j 6= 1 or k 6= 2,

Í ∆(β
(n−1)
(k,`) ,n)∆(β (n)

j ,n) ≥ ∆(β
(n−1)
( j,`) ,n)∆(β (n)

k ,n) if β
(n−1)
( j,`) − β

(n)
k < 0 for j = 1 and

k = 2.

Assuming that our conjectures hold, it would then be possible to prove that

D∗n−1:n ≤hr D∗n:n and Dn−1:n ≤hr Dn:n for any n.

2.5. APPENDIX: PROOFS

This appendix contains a particular case of Theorem 2.2.7 when n = 4 and also we
show here that equations (2.2.13)-(2.2.16) hold.

Theorem 2.5.1. Let X1, . . . ,Xn be independent exponential random variables such that Xi has
hazard rate λi, for i = 1, . . . ,n, then D∗2:4 ≤hr D∗3:4.

PROOF. We have to show

M3

∑
j=1

M2

∑
k=1

∆(β
(2)
mk ,4)∆(β

(3)
m j ,4) e−t

(
β
(2)
mk +β

(3)
m j

) (
β
(2)
mk −β

(3)
m j

)
≥ 0. (2.5.23)

To do this, we consider the values of β
(2)
mk − β

(3)
m j which add zero for each k = 1, . . . ,4
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and j = 1, . . . ,6 in the next matrix transpose.

λ2+λ3+λ4
3 − λ1+λ2

2
λ1+λ3+λ4

3 − λ1+λ2
2

λ1+λ2+λ4
3 − λ1+λ2

2
λ1+λ2+λ3

3 − λ1+λ2
2

λ2+λ3+λ4
3 − λ1+λ3

2
λ1+λ3+λ4

3 − λ1+λ3
2

λ1+λ2+λ4
3 − λ1+λ3

2
λ1+λ2+λ3

3 − λ1+λ3
2

λ2+λ3+λ4
3 − λ1+λ4

2
λ1+λ3+λ4

3 − λ1+λ4
2

λ1+λ2+λ4
3 − λ1+λ4

2
λ1+λ2+λ3

3 − λ1+λ4
2

λ2+λ3+λ4
3 − λ2+λ3

2
λ1+λ3+λ4

3 − λ2+λ3
2

λ1+λ2+λ4
3 − λ2+λ3

2
λ1+λ2+λ3

3 − λ2+λ3
2

λ2+λ3+λ4
3 − λ2+λ4

2
λ1+λ3+λ4

3 − λ2+λ4
2

λ1+λ2+λ4
3 − λ2+λ4

2
λ1+λ2+λ3

3 − λ2+λ4
2

λ2+λ3+λ4
3 − λ3+λ4

2
λ1+λ3+λ4

3 − λ3+λ4
2

λ1+λ2+λ4
3 − λ3+λ4

2
λ1+λ2+λ3

3 − λ3+λ4
2


(2.5.24)

To simplify the notation let β
(2)
u =

λ j+λk+λ`

3 where u /∈ { j,k, `} and β
(3)
( j,k) =

λ j+λk
2 be. There

is an addition as following in each row in the transpose of the above matrix,

(β
(2)
u −β

(3)
( j,k)) + (β

(2)
u −β

(3)
( j,`)) + (β

(2)
u −β

(3)
(k,`)) =

(
λ j+λk+λ`

3 − λ j+λ j
2

)
+

(
λ j+λk+λ`

3 − λ j+λ`

2

)
+

(
λ j+λk+λ`

3 − λk+λ`
2

)
= 0,

for j,k, `= 1, . . . ,4 and j < k < `. We are interested in proving

∆(β
(2)
u ,4) e

−t
(

λ j+λk+λ`
3

)[
∆(β

(3)
( j,k),4) e

−t
(

λ j+λk
2

)(
β
(2)
u −β

3
( j,k)

)
+

∆(β
(3)
( j,`),4) e

−t
(

λ j+λ`
2

)(
β
(2)
u −β

3
( j,`)

)
+∆(β

(3)
(k,`),4) e−t

(
λk+λ`

2

)(
β
(2)
u −β

3
(k,`)

)]
≥ 0,

(2.5.25)

for u = 1, . . . ,4.
Notice that a1 = β

(2)
u − β

(3)
( j,k), a2 = β

(2)
u − β

(3)
( j,`) and a3 = β

(2)
u − β

(3)
(k,`) are decreasing in

h = 1,2,3, and the corresponding exponentials too. It follows from Lemma 2.1.1 that

∆(β
(3)
( j,k),4)≥ ∆(β

(3)
( j,`),4)≥ ∆(β 3

(k,`),4).

Then

b1 = ∆(β
(3)
( j,k),4) e

−t
(

λ j+λk
2

)
,

b2 = ∆(β
(3)
( j,`),4) e

−t
(

λ j+λ`
2

)
,

b3 = ∆(β
(3)
(k,`),4) e−t

(
λk+λ`

2

)
,
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are decreasing in h = 1,2,3. Finally, by Lemma 2.1.2, we conclude that (2.5.25) holds

since
3
∑

h=1
ai = 0. We group twelve remaining values of the matrix (2.5.24) in four diago-

nals.

a1,2 =
λ1+λ3+λ4

3 − λ1+λ2
2 ≥ a1,3 =

λ1+λ2+λ4
3 − λ1+λ3

2 ≥ a1,4 =
λ1+λ2+λ3

3 − λ1+λ4
2

a2,1 =
λ2+λ3+λ4

3 − λ1+λ2
2 ≥ a2,3 =

λ1+λ2+λ4
3 − λ2+λ3

2 ≥ a2,4 =
λ1+λ2+λ3

3 − λ2+λ4
2

a3,1 =
λ2+λ3+λ4

3 − λ1+λ3
2 ≥ a3,2 =

λ1+λ3+λ4
3 − λ2+λ3

2 ≥ a3,4 =
λ1+λ2+λ3

3 − λ3+λ4
2

a4,1 =
λ2+λ3+λ4

3 − λ1+λ4
2 ≥ a4,2 =

λ1+λ3+λ4
3 − λ2+λ4

2 ≥ a4,3 =
λ1+λ2+λ4

3 − λ3+λ4
2

(2.5.26)

Firstly we prove that the coefficients ∆(β
(2)
mk ,4)∆(β

(3)
m j ,4) in (2.5.23) related to the four

diagonals are also ordered. We give the proof only for the first diagonal, the other
cases are similar. Again by Lemma 2.1.1,

∆(β
(2)
2 ,4)∆(β (3)

(1,2),4) ≥ ∆(β
(2)
3 ,4)∆(β (3)

(1,3),4) ≥ ∆(β
(2)
4 ,4)∆(β (3)

(1,4),4)⇔

λ2

s4
∆(β

(3)
(1,2),4) ≥ λ3

s4
∆(β

(3)
(1,3),4) ≥ λ4

s4
∆(β

(3)
(1,4),4),

where s4 =
4
∑

k=1
λk. It is easy to see that exponential are decreasing, so are

b1,2 = ∆(β
(2)
2 ,4)∆(β (3)

(1,2),4) e−t
(

λ1+λ3+λ4
3 +

λ1+λ2
2

)
,

b1,3 = ∆(β
(2)
3 ,4)∆(β (3)

(1,3),4) e−t
(

λ1+λ2+λ4
3 +

λ1+λ3
2

)
,

b1,4 = ∆(β
(2)
4 ,4)∆(β (3)

(1,4),4) e−t
(

λ1+λ2+λ3
3 +

λ1+λ4
2

)
.

Hence, by Lemma 2.1.2,

4

∑
j=1
j 6=1

a1, j b1, j ≥
1
3

 4

∑
j=1
j 6=1

a1, j

 4

∑
j=1
j 6=1

b1, j

=
1
3

a1b1.

Secondly we will verify that b1 ≥ b2 ≥ b3 ≥ b4. To do this, it sufficient to prove that the
corresponding bi, j in the array (2.5.26) are ordered by rows. We give the proof only
for the first two rows, so we will see that b1,2 ≥ b2,1, b1,3 ≥ b2,3 and b1,4 ≥ b2,4 . It is
immediate that
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e−t
(

λ1+λ3+λ4
3 +

λ1+λ2
2

)
≥e−t

(
λ2+λ3+λ4

3 +
λ1+λ2

2

)
,

e−t
(

λ1+λ2+λ4
3 +

λ1+λ3
2

)
≥e−t

(
λ1+λ2+λ4

3 +
λ2+λ3

2

)
,

e−t
(

λ1+λ2+λ3
3 +

λ1+λ4
2

)
≥e−t

(
λ1+λ2+λ3

3 +
λ2+λ4

2

)
.

It follows easily that

∆(β
(2)
2 ,4)∆(β (3)

(1,2),4)≥ ∆(β
(2)
1 ,4)∆(β (3)

(1,2),4)⇔ ∆(β
(2)
2 ,4) =

λ2

s4
≥ λ1

s4
= ∆(β

(2)
1 ,4),

then
b1,2 ≥ b2,1 = ∆(β

(2)
1 ,4)∆(β (3)

(1,2),4)e
−t
(

λ2+λ3+λ4
3 +

λ1+λ2
2

)
.

Now from Lemma 2.1.1

∆(β
(2)
3 ,4)∆(β (3)

(1,3),4)≥∆(β
(2)
3 ,4)∆(β (3)

(2,3),4)⇔ ∆(β
(3)
(1,3),4)≥ ∆(β

(3)
(2,3),4),

∆(β
(2)
4 ,4)∆(β (3)

(1,4),4)≥∆(β
(2)
4 ,4)∆(β (3)

(2,4),4)⇔ ∆(β
(3)
(1,4),4)≥ ∆(β

(3)
(2,4),4),

then

b1,3 ≥b2,3 = ∆(β
(2)
3 ,4)∆(β (3)

(2,3),4)e−t
(

λ1+λ2+λ4
3 +

λ2+λ3
2

)
,

b1,4 ≥b2,4 = ∆(β
(2)
4 ,4)∆(β (3)

(2,4),4)e−t
(

λ1+λ2+λ3
3 +

λ2+λ4
2

)
.

Consequently

b1 =
4

∑
j=1
j 6=1

b1, j ≥
4

∑
j=1
j 6=2

b2, j = b2.

The same reasoning applies to the other cases. Then b1 ≥ b2 ≥ b3 ≥ b4. We define

ak =
4

∑
j=1
j 6=k

ak, j ,

for k = 1, . . . ,4. Clearly, a1 ≥ a2 ≥ a3 ≥ a4. Since
4
∑

k=1
ak = 0, by Lemma 2.1.2 and (2.5.25)

we conclude that (2.5.23) holds.

Lemma 2.5.2. Let ∆(β
(i)
m j ,n) be as in (2.1.4), and m j = j and mk = ( j, `). Then

∆(β
(3)
(3,4),4)∆(β

(4)
u ,4)≥ ∆(β

(3)
(u,4),4)∆(β

(4)
3 ,4)≥ ∆(β

(3)
(u,3),4)∆(β

(4)
4 ,4) for u = 1,2.
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PROOF. We divide the proof into two parts

(a) ∆(β
(3)
(3,4),4)∆(β

(4)
u ,4)≥ ∆(β

(3)
(u,4),4)∆(β

(4)
3 ,4),

(b) ∆(β
(3)
(u,4),4)∆(β

(4)
3 ,4)≥ ∆(β

(39
(u,3),4)∆(β

(4)
4 ,4).

We give the proof only for the case u = 1, the other case is similar with 1 replaced by
2. After a few manipulations, we have

∆(β
(3)
(3,4),4)∆(β

(4)
1 ,4) =

(
λ1λ 2

2 λ3λ4

Ss4s3s2
2s1

)
s1 + s2

(λ1 +λ2)(λ1 +λ3)(λ1 +λ4)
Z1 ,

∆(β
(3)
(1,4),4)∆(β

(4)
3 ,4) =

(
λ1λ 2

2 λ3λ4

Ss4s3s2
2s1

)
s2 + s3

(λ1 +λ3)(λ2 +λ3)(λ3 +λ4)
Z2 ,

∆(β
(3)
(1,3),4)∆(β

(4)
4 ,4) =

(
λ1λ 2

2 λ3λ4

Ss4s3s2
2s1

)
s2 + s4

(λ1 +λ4)(λ2 +λ4)(λ3 +λ4)
Z3 ,

where

Z1 = s2 s3(λ1 +λ4)(s4 +λ1)+ s2 s4(λ1 +λ3)(s3 +λ1)+ s3 s4(λ1 +λ2)(s2 +λ1),

Z2 = s1 s2(λ3 +λ4)(s4 +λ3)+ s1 s4(λ2 +λ3)(s2 +λ3)+ s2 s4(λ1 +λ3)(s1 +λ3),

Z3 = s1 s2(λ3 +λ4)(s3 +λ4)+ s1 s3(λ2 +λ4)(s2 +λ4)+ s2 s3(λ1 +λ4)(s1 +λ4),

and

S = λ1 +λ2 +λ3 +λ4, si =
4

∑
j=1
j 6=i

λ j.

Then

(a) ∆(β
(3)
(3,4),4)∆(β

(4)
1 ,4)≥ ∆(β

(3)
(1,4),4)∆(β

(4)
3 ,4) if and only if

(s1 + s2)(λ2 +λ3)(λ3 +λ4)Z1− (s2 + s3)(λ1 +λ2)(λ1 +λ4)Z2 =

(λ3−λ1)
(

f1(λ1,λ2,λ3,λ4)+2λ1λ2λ
3
4 (λ4−λ1)+2λ2λ3λ

3
4 (λ4−λ2)+

λ
3
4
(
λ

2
3 λ4−λ

3
2
)
+λ

4
4
(
λ3λ4−λ

2
2
))
≥ 0,

where f1(λ1,λ2,λ3,λ4) is a polynomial with positive coefficients. Notice that the
last four terms are positive because the λk’s are increasing, even if 1 is replaced
by 2.

(b) ∆(β
(3)
(1,4),4)∆(β

(4)
3 ,4)≥ ∆(β

(3)
(1,3),4)∆(β

(4)
4 ,4) if and only if

(s2 + s3)(λ1 +λ4)(λ2 +λ4)Z2− (s2 + s4)(λ1 +λ3)(λ2 +λ3)Z3 =

(λ4−λ3)
(

f2(λ1,λ2,λ3,λ4)+2λ2λ3(λ
4
3 −λ

3
1 λ2)+2λ1λ4(λ

4
4 −λ

2
1 λ

2
2 )+

λ1(λ
5
3 −λ

3
1 λ

2
2 )+λ1(λ

5
3 −λ

2
1 λ

3
2 )
)
≥ 0,
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where f2(λ1,λ2,λ3,λ4) is a polynomial with positive coefficients. Using the orde-
ring between the λk’s, we can see that the last four terms are positive as be-
fore.

Lemma 2.5.3. Under the same assumptions as those in Lemma 2.5.2, then

(a) ∆(β
(3)
(2,u),4)∆(β

(4)
1 ,4)≥ ∆(β

(3)
(1,2),4)∆(β

(4)
u ,4),

(b) ∆(β
(3)
(1,u),4)∆(β

4
2 ,4)≥ ∆(β

(3)
(1,2),4)∆(β

(4)
u ,4),

(c) if β
(3)
(1,u)−β

(4)
2 < 0, then ∆(β

(3)
(2,u),4)∆(β

(4)
1 ,4)≥ ∆(β

(3)
(1,u),4)∆(β

(4)
2 ,4),

for u = 3,4.

PROOF. We give the proof only for the case u = 3. The case u = 4 is similar with 3
replaced by 4. After a few manipulations, we have

∆(β
(3)
(2,3),4)∆(β

(4)
1 ,4) =

(
λ1λ2λ3λ 2

4

Ss2
4s3s2s1

)
s1 + s4

(λ1 +λ2)(λ1 +λ3)(λ1 +λ4)
Y1,

∆(β
(3)
(1,3),4)∆(β

(4)
2 ,4) =

(
λ1λ2λ3λ 2

4

Ss2
4s3s2s1

)
s2 + s4

(λ1 +λ2)(λ2 +λ3)(λ2 +λ4)
Y2,

∆(β
(3)
(1,2),4)∆(β

(4)
3 ,4) =

(
λ1λ2λ3λ 2

4

Ss2
4s3s2s1

)
s3 + s4

(λ1 +λ3)(λ2 +λ3)(λ3 +λ4)
Y3,

where

Y1 = s2 s3(λ1 +λ4)(s4 +λ1)+ s2 s4(λ1 +λ3)(s3 +λ1)+ s3 s4(λ1 +λ2)(s2 +λ1),

Y2 = s1 s3(λ2 +λ4)(s4 +λ2)+ s1 s4(λ2 +λ3)(s3 +λ2)+ s3 s4(λ1 +λ2)(s1 +λ2),

Y3 = s1 s2(λ3 +λ4)(s4 +λ3)+ s1 s4(λ2 +λ3)(s2 +λ3)+ s2 s4(λ1 +λ3)(s1 +λ3).

(a) ∆(β
(3)
(2,3),4)∆(β

(4)
1 ,4)≥ ∆(β

(3)
(1,2),4)∆(β

(4)
3 ,4) if and only if

(s1 + s4)(λ2 +λ3)(λ3 +λ4)Y1− (s3 + s4)(λ1 +λ2)(λ1 +λ4)Y3 =

(λ3−λ1)
(

f3(λ1,λ2,λ3,λ4)+2λ
2
2 λ

2
4 (λ4−λ2)(λ3 +λ1)+

λ
2
4
(
λ

2
3 λ

2
4 −λ

4
2
)
+λ

3
4 (λ3λ

2
4 −λ

3
2 )
)
≥ 0,

where f3(λ1,λ2,λ3,λ4) is a polynomial with positive coefficients. The last three
terms are positive because the λk’s are increasing, even if 3 is replaced by 4.
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(b) ∆(β
(3)
(1,3),4)∆(β

(4)
2 ,4)≥ ∆(β

(3)
(1,2),4)∆(β

(4)
3 ,4) if and only if

(s2 + s4)(λ1 +λ3)(λ3 +λ4)Y2− (s3 + s4)(λ1 +λ2)(λ2 +λ4)Y3 =

(λ3−λ2)
(

f4(λ1,λ2,λ3,λ4)+λ
3
4 (λ3λ

2
4 −λ

3
1 )+λ

2
4 (λ2λ

3
4 −λ

4
1 )+

2λ
2
1 λ

2
4 (λ4−λ1)(λ2 +λ3)+λ

2
4 (λ

4
2 −λ

4
1 )+λ

3
4 (λ

3
2 −λ

3
1 )
)
≥ 0,

where f4(λ1,λ2,λ3,λ4) is a polynomial with positive coefficients. As earlier, we
can see that the last five terms are also positive.

(c) ∆(β
(3)
(2,3),4)∆(β

(4)
1 ,4)≥ ∆(β

(3)
(1,3),4)∆(β

(4)
2 ,4)⇔

(s1 + s4)(λ2 +λ3)(λ2 +λ4)Y1− (s2 + s4)(λ1 +λ3)(λ1 +λ4)Y2 =

(λ2−λ1)
(

f5(λ1,λ2,λ3,λ4)+12λ
2
4 λ

3
2 (λ3−λ2)+13λ

2
4 λ

2
2 (λ3λ4−λ

2
2 )+

λ
2
4
(
(2λ2−λ1)

3−λ
3
3
)
(2λ1 +2λ2 +λ4)+λ

2
4
(
(2λ2−λ1)

4−λ
4
3
))
≥ 0,

where f5(λ1,λ2,λ3,λ4) is a polynomial with positive coefficients. Since the λk’s
are increasing, the last two terms in the penultimate row are positive and the
final two terms are positive if 2λ2−λ1 > λ3, i.e., if β

(3)
(1,u)−β

(4)
2 < 0 for u = 3 or 4,

which is assumed.
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CHAPTER 3

Sequential order statistics

Sequential order statistics are important in reliability studies such as a modifica-
tion of k-out-of-n systems. As we pointed out, a k-out-of-n system is a system with n
independent components which functions if and only if at least k of the n components
are working. More generally, the failure of one component may influence the remai-
ning components. Thus, a more flexible model for a k-out-of-n system should take the
dependence structure into consideration. Thus, we shall suppose that, after each fai-
lure, the failure rates of the remaining, functioning components may change, so that
the underlying failure rate of the remaining components is adjusted according to the
number of preceding failures. For example, the breakdown of an aircraft’s engine will
increase the load put on the remaining engines, so that their operational lifetimes will
tend to reduce. For dealing with this type of situation, sequential order statistics (SOS)
were proposed by Kamps [34]. The SOS model is closely connected to several other
models of ordered random variables and, in particular it unifies type II censored or-
der statistics, k’th record values and kn records from nonidentical distributions, see e.g.
Cramer and Kamps [18].

Distributional and stochastic properties of ordinary order statistics have been stu-
died extensively in the literature. Since SOS models unify various models of ordered
random variables, it is interesting to study these characteristics but in relation with
SOS. Cramer and Kamps [18] give an expression for the marginal distributions of SOS
in terms of the so-called relevation transform (cf. Krakowski [46]). Zhuang and Hu
[105] present some results on multivariate stochastic comparisons of SOS models and
in particular, investigate conditions on the underlying distributions on which the SOS

57
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models are based in order to obtain stochastic comparisons of SOS models in the mul-
tivariate likelihood ratio (≤lr), the dynamic multivariate hazard rate (≤dyn−hr) and the
multivariate stochastic orders (≤st). See Shaked and Shanthikumar [88] for a review
of this multivariate orders. The multivariate ≤lr and ≤st are closed under margina-
lization. Such a closure property is very useful to establish the univariate comparison
result. The multivariate ≤dyn−hr is not closed under marginalization. Navarro and
Burkschat [69] obtain some ordering properties for sequential k-out-of-n system based
on SOS in order to study properties of the lifetimes of coherent systems based on SOS.
They note that SOS are not necessarily ordered in hazard rate and likelihood ratio
orderings.

In its general form the SOS model is linked with nonhomogeneous pure birth
(NHPB) processes. In this field, there are several papers which study ageing notions of
epoch times under conditions on the parameters of the NHPB process. Pellerey et al.
[74] give conditions for the log-concavity of the density function of epoch times and
inter-epoch times. Shaked et al. [89] highlight the relationship between l∞-spherical
densities and NHPB processes and provide applications to load sharing models, not-
ing that studying the first n epoch times of a NHPB process is equivalent to study-
ing the lifetimes of n components of a load sharing system. Results about multivari-
ate stochastic comparisons of epoch times of two NHPB process have been given by
Belzunce et al. [8]. They illustrate their results with applications to generalized Yule
processes, load-sharing models, and minimal repairs in reliability theory. The inten-
sity function λi(t) of a NHPB process can be seen, in software reliability, as the soft-
ware failures detection rate which depends on both the number of failures detected
and time. When the failures detection rate not depend on time, then the NHPB pro-
cess reduces to a homogeneous pure birth process (HPBP). Boland and Singh [11]
investigated these processes as an approach to the Moranda geometric SR model.

The main motivation of this chapter is establish ageing properties and stochastic
orderings of the epoch times of NHPB processes as an extension of the NHPP and
HPBP processes, which are extensively used in software reliability modelling. Due to
the relation between the epoch times of NHPB processes and the SOS, see Proposition
1.3.5 in Section 1.3, we study univariate stochastic comparisons of SOS and ageing
notions, such as IHR, DHR and DRHR among others, which are not as strong as log-
concavity of the density functions of a relevation counting process investigated by
Pellerey et al. [74]. Note that if X is a random variable with logconcave density, then
F is logconcave (IHR) and F is logconvex (DRHR).

The organization of this chapter is divided into seven sections. In Section 3.1, we
first introduce some basic properties and definitions of SOS. We discuss, in Section
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3.2, stochastic orderings between SOS and their underlying distribution function. In
Section 3.3, we derive sufficient conditions under which the SOS are increasing ha-
zard rate (IHR), increasing hazard rate average (IHRA) or decreasing hazard rate ave-
rage (DHRA). We investigate, in Section 3.4, conditions on the underlying distribution
functions on which the SOS are based, to obtain stochastic comparisons of SOS given
the hazard rate and likelihood ratio orders. Examples of the underlying distributions,
on which the SOS models are based, which satisfy these conditions are also given.
Applications of the main results involving nonhomogeneous pure birth processes are
given in Section 3.5. Section 3.6 is devoted to present a NHPB process approach to soft-
ware reliability modelling. Finally, conclusions and possible extensions to this work
are considered in Section 3.7. The results given in Sections 3.2-3.5 could be found in
Torrado et al. [96].

3.1. DEFINITIONS AND PROPERTIES RELATED TO SOS

Cramer and Kamps [18] inspired the following definition of SOS given by Lenz
[52].

Definition 3.1.1 (Lenz[52]). Let G1, . . . ,Gn be continuous distributions with G−1
1 (1) ≤

. . . ≤ G−1
n (1) and let X∗0,n = −∞. Suppose that Ui, i = 1, . . . ,n are independent random

variables with Ui ∼U(0,1). Then, the random variables

X∗i,n = G−1
i

(
1−UiGi(X∗i−1,n)

)
are called SOS based on {G1, . . . ,Gn}.

Note that the above definition coincides with Definition 1.3.4 choosing

Fi(t) = 1−
(
1−Gi(t)

) 1
n−i+1 , (3.1.1)

for i = 1, . . . ,n (see Lenz[52]).
The marginal distribution functions F∗,1, . . . ,F∗,n of the SOS X∗1,n, . . . ,X

∗
n,n based on

{G1, . . . , Gn} are given by,

F∗,1(t) = G1(t),

F∗,i(t) =

 F∗,i−1(t)−
∫ t

−∞

Gi(t)
Gi(z)

dF∗,i−1(z) if Gi(t)< 1,

1 if Gi(t) = 1.

(3.1.2)

From now on we shall assume that the distribution function of the i ’th SOS is
absolutely continuous with density function:

f∗,i(t) = hi(t)
(

F∗,i(t)−F∗,i−1(t)
)
, (3.1.3)
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where hi(t) =
gi(t)
Gi(t)

, for all t.
Cramer and Kamps [18] noted that the corresponding distribution functions of

SOS can be viewed as relevation transforms ( Krakowski [46] ). The relevation trans-
form F#G of the survival functions F and G is defined by the Lebesgue-Stieltjes inte-
gral (

F#G
)
(t) = F(t)−

∫ t

−∞

G(t)
G(z)

dF(z), for all t.

Assuming that the supports of F and G are positive, then the relevation transform
may be interpreted as the survival function of the time to failure of the second of
two components when the second component with life distribution G is placed in
service on the failure of the first component with life distribution F , assuming that the
replacement component has the same age as the failed component ( Lau and Prakasa
Rao [51] ). From (3.1.2), we have the representation

F∗,i(t) = F∗,i−1(t)−
∫ t

−∞

Gi(t)
Gi(z)

dF∗,i−1(z), for all t. (3.1.4)

Hence, we can write the survival function of the i-th SOS as relevation transform

F∗,i = F∗,i−1#Gi.

Let us define,

Ai(t) =
∫ t

−∞

1
Gi(z)

dF∗,i−1(z), (3.1.5)

then, from (3.1.2) and (3.1.4) we have,

F∗,i(t) = F∗,i−1(t)+Gi(t)Ai(t), (3.1.6)

and
F∗,i(t) = F∗,i−1(t)−Gi(t)Ai(t), (3.1.7)

for i = 2, . . . ,n.

3.2. STOCHASTIC ORDERINGS BETWEEN SOS AND THEIR UNDERLYING CDF

In this section, we begin by reviewing some known results on stochastic orderings.
We refer the reader to Subsection 1.4.1 for definitions of stochastic orderings used be-
low. The following lemma, regarding the preservation of the hazard rate and reversed
hazard rate orders under monotone increasing transformations, can be found in Keil-
son and Sumita [36].

Lemma 3.2.1 (Keilson and Sumita [36]). Let X and Y be two random variables. If X ≤hr

(≤rh)Y , and if φ is any increasing function, then φ(X)≤hr (≤rh)φ(Y ).
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Shaked [87] also established the following relation between star ordering and dis-
persion ordering.

Lemma 3.2.2 (Shaked [87]). Let X and Y be two non-negative random variables, then

X ≤∗ Y ⇔ ln X ≤disp ln Y.

The next lemma due to Bartoszewicz [6] lists some relations between the disper-
sion order and other orders.

Lemma 3.2.3 (Bartoszewicz [6]). Let X and Y be two random variables. Then,

i) if X and Y are non-negative and X ≤hr Y and X or Y is DHR, then X ≤disp Y ;

ii) if X ≤rh Y and X or Y is IRHR, then X ≥disp Y .

Now, we derive some preliminary results which are also of independent interest.
In the next two lemmas, we show some stochastic orderings between SOS and their
underlying distribution functions.

Lemma 3.2.4. Let X∗1,n,. . . ,X∗n,n be SOS based on absolutely continuous distribution functions
{G1, . . . ,Gn}, then

i) Gi ≤hr F∗,i ;

ii) Gi ≤rh F∗,i ;

iii) Gi ≤lr F∗,i .

PROOF.

i) By definition, Gi ≤hr F∗,i if and only if hi(t)≥ h∗,i(t) for all t. From (3.1.3) we have

h∗,i(t) = hi(t)
(

F∗,i(t)−F∗,i−1(t)
F∗,i(t)

)
.

Then, hi(t)≥ h∗,i(t)⇔ F∗,i(t)−F∗,i−1(t)≤ F∗,i(t).

ii) By definition, Gi ≤rh F∗,i if and only if ri(t) ≤ r∗,i(t) for all t. First, we write the
reversed hazard rate of the i ’th SOS

r∗,i(t) = hi(t)
(

F∗,i(t)−F∗,i−1(t)
F∗,i(t)

)
= ri(t)

Gi(t)
Gi(t)

(
F∗,i−1(t)−F∗,i(t)

F∗,i(t)

)
,
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and then, we have that ri(t)≤ r∗,i(t) if and only if

1≤
(

1−Gi(t)
Gi(t)

)(
F∗,i−1(t)−F∗,i(t)

F∗,i(t)

)
⇔ 0≤ F∗,i−1(t)−F∗,i(t)−Gi(t)F∗,i−1(t)

Gi(t)F∗,i(t)

⇔ F∗,i(t) = F∗,i−1(t)−Gi(t)Ai(t)≤ Gi(t)F∗,i−1(t)

⇔ F∗,i−1(t)(1−Gi(t))≤ Gi(t)Ai(t)

⇔ F∗,i−1(t)≤ Ai(t)

⇔ F∗,i−1(t) =
∫ t

−∞

f∗,i−1(z)dz≤
∫ t

−∞

f∗,i−1(z)
Gi(z)

dz = Ai(t).

The last condition holds since Gi(t)≤ 1 and from (3.1.5).

iii) By definition, Gi ≤lr F∗,i if and only if f∗,i(t)/gi(t) is increasing for all t. From
(3.1.3) and (3.1.5) we have

f∗,i(t) = gi(t)Ai(t)⇔
f∗,i(t)
gi(t)

= Ai(t).

Clearly Ai(t) is increasing, then Gi ≤lr F∗,i holds.

Now, we present a connection between the SOS and their underlying distribution
functions in the star ordering. First, let us define

ui(t) = t ·hi(t) and vi(t) = t · ri(t).

Lemma 3.2.5. Under the same assumptions as Lemma 3.2.4, if the support of Gi is non-
negative for all i and

i) if ui(t) is decreasing, then Gi ≤∗ F∗,i and

ii) if vi(t) is increasing, then Gi ≥∗ F∗,i .

PROOF.

i) From Lemma 3.2.4(i) and Lemma 3.2.1 we have that ln Gi ≤hr ln F∗,i. Now, the ha-
zard rate of ln Gi is decreasing in t if and only if ui(t) is decreasing (see Theorem
2.3. in Kochar [41]). From Lemma 3.2.3(i), if ln Gi is DHR and ln Gi≤hr ln F∗,i, then
ln Gi ≤disp ln F∗,i. Finally, from Lemma 3.2.2 we have ln Gi ≤disp ln F∗,i⇔Gi ≤∗ F∗,i.

ii) From Lemma 3.2.4(ii) and Lemma 3.2.1 we have that ln Gi ≤rh ln F∗,i. Now, it is
easy to check that vi(t) is increasing if and only if the reversed hazard rate of ln Gi

is increasing in t. From Lemma 3.2.3(ii), if ln Gi is IRHR and ln Gi ≤rh ln F∗,i, then
ln Gi ≥disp ln F∗,i. Finally, from Lemma 3.2.2 we have ln Gi ≥disp ln F∗,i⇔Gi ≥∗ F∗,i.
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It is worth noting that the condition that ui(t) is decreasing in Lemma 3.2.5(i) can
be rewritten in the form u′i(t) = t ·h′i(t)+hi(t) ≤ 0. Therefore, it is clear that the condi-
tion that hi(t) be decreasing is a necessary but not sufficient condition for ui(t) to be
decreasing. Similarly, the condition that vi(t) is increasing in Lemma 3.2.5(ii) can be
rewritten as v′i(t) = t · r′i(t)+ ri(t)≥ 0 and thus, it is clear that if ri(t) is increasing (i.e., X
is IRHR) then vi(t) is also increasing (i.e., ln(X) is IRHR). However, the converse is not
true as is illustrated by the following counterexample.

Counterexample 3.2.6 The reversed hazard rate of the uniform distribution on [−1,1]
is given by

r(t) =
1

1+ t
, t ∈ [−1,1].

As one can see from Figure 3.1, r is decreasing but the corresponding reversed
hazard rate of the logarithm is

rlnX(t) = e t r
(
e t)= e t

1+ e t , for all t,

and it is easy to verify that rlnX is increasing. �
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Figure 3.1: Reversed hazard rate function

3.3. AGEING NOTIONS

Concepts of ageing, which were defined in Subsection 1.4.2, describe how a com-
ponent or a system improves or deteriorate with age. Many classes of life distributions
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can be categorized according to their ageing properties (see Marshall and Olkin [57]) .
Below, we prove the following relationship between IRHR and IHR.

Lemma 3.3.1. Let X be a random variable. Then,

i) if X is IRHR, then its distribution function is convex,

ii) if X has a convex distribution function, then X is IHR.

PROOF. This proof comes from simple reasoning using the fact that f (t) = r(t)F(t).
Hence, it is clear that if r(t) is increasing, then the density function is also increasing
so that X has a convex distribution function. Now, if f (t) is increasing, its hazard rate
h(t) = f (t)/F(t) is increasing. Analyzing the following relation

h(t) = r(t)
F(t)
F(t)

,

one finds that if r(t) is increasing, then h(t) is also increasing.

From Remark F.6. (pg. 179) in Marshall and Olkin [57], non-negative random varia-
bles cannot have distributions with increasing reversed hazard rate function. Thus,
these random variables cannot satisfy Lemma 3.3.1(i).

Next, we study the preservation of some ageing notions through conditions on
the underlying distribution function to the SOS. We begin by establishing a closure
theorem for the convexity.

Theorem 3.3.2. Let X∗1,n,. . . ,X∗n,n be SOS based on absolutely continuous distribution func-
tions {G1, . . . ,Gn}. If Gi is convex, then F∗,i is convex for all i.

PROOF. Note that, if Gi is convex, then gi is increasing and from (3.1.3) we have

f∗,i(t) = gi(t)Ai(t),

where Ai(t) is defined in (3.1.5), and is also increasing, so that F∗,i is convex.

The previous theorem also provides a further result, namely that F∗,i is IHR from
Lemma 3.3.1(ii). It is also closely related to Theorem 4.5. in [18] where a particular
choice of distribution functions, that is Gi = 1− (1−F(t))γi , such that γ1,. . . ,γn > 0 were
considered and it was demonstrated that in this case, if F is IHR then F∗,i is also IHR.
It is noteworthy that, in this specific setup, SOS can be viewed as generalized order
statistics and vice versa (Kamps [35], p. 56).

As noted in Shaked and Shanthikumar [88] the definition of the order ≤∗ is proper
when the comparisons apply to distributions of non-negative random variables. This
order can be used to characterize IHRA random variables as follows.
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Lemma 3.3.3 (Shaked and Shanthikumar [88]). Let Exp denote an exponential random
variable and let X be a non-negative random variable. Then,

X is IHRA (DHRA)⇔ X ≤∗ (≥∗)Exp.

By using this characterization we find conditions that imply that the SOS are IHRA
and DHRA.

Theorem 3.3.4. Let X∗1,n,. . . ,X∗n,n be SOS based on absolutely continuous distribution func-
tions {G1, . . . ,Gn}. If the support of Gi is non-negative, ui(t) is decreasing and Gi is DHRA,
then F∗,i is DHRA.

PROOF. This proof depends on two lemmas. From Lemma 3.2.5(i) we know that Gi≤∗
F∗,i. Now, Gi is DHRA if and only if Gi ≥∗ Exp by the previous Lemma. Hence, Exp≤∗
Gi ≤∗ F∗,i.

Theorem 3.3.5. Under the same assumptions as in Theorem 3.3.4, if vi(t) is increasing and
Gi is IHRA, then F∗,i is IHRA.

PROOF. Now we apply the same method as in Theorem 3.3.4. By Lemma 3.2.5(ii) we
know that Gi ≥∗ F∗,i, and Gi is IHRA if and only if Exp≥∗ Gi by the foregoing Lemma.
Hence, Exp≥∗ Gi ≥∗ F∗,i .

The above theorems immediately lead to the following result because of the rela-
tion between SOS and generalized order statistics, when Gi(t) = 1− (1−F(t))γi and
γ1,. . . ,γn are positive numbers.

Corollary 3.3.6. Let X∗1,n,. . . ,X∗n,n be generalized order statistics based on an absolutely con-
tinuous distribution function F with hazard rate h and reversed hazard rate r and positive
parameters γ1,. . . ,γn.

i) If t ·h(t) is decreasing and F is DHRA, then F∗,i is DHRA,

ii) If t · r(t) is increasing and F is IHRA, then F∗,i is IHRA.

Below, we provide two examples in which the conditions of the previous theorems
hold.

Example 3.3.7 (Pareto distributions) If the underlying distribution function of SOS
is

Gi(t) = 1−
( t

c

)−αi

, t ≥ c and αi > 1,
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then, ui(t) is decreasing in t (see Example 2.2. in Kochar [41]). On the other hand, it is
well-known that Pareto distribution is DHR. Therefore, Gi is DHRA and also concave.
Hence the conclusions of Corollary 3.3.6(i) hold for this distribution. �

Example 3.3.8 (Power function distributions) If the underlying distribution func-
tion of SOS is

Gi(t) =
( t

c

)αi

, 0≤ t ≤ c and αi > 0,

then, the reversed hazard rate of the logarithm of Gi verifies the condition of Theorem
3.3.5 (see Example 2.1. in [41]). Also,

− ln Gi(t)
t

=−1
t

ln
(

1−
( t

c

)αi
)
,

for 0≤ t < c is increasing if αi ≥ 1. Furthermore, Gi is convex when αi ≥ 1. Therefore,
the conclusions of Theorems 3.3.2 and 3.3.5 hold. �

3.4. STOCHASTIC ORDERINGS

In this section, we investigate conditions on the underlying distribution functions
on which the SOS are based, in order to obtain stochastic comparisons of SOS with
various other univariate orders. Zhuang and Hu [105] presented some results on mul-
tivariate stochastic comparisons of SOS. They showed in their Theorem 3.7. that if the
underlying distribution functions are ordered in the univariate hazard rate order, i.e.,
G1 ≤hr G2 ≤hr · · · ≤hr Gn, then(

X∗1,n, . . . ,X
∗
n−1,n

)
≤st
(
X∗2,n, . . . ,X

∗
n,n
)
. (3.4.8)

Since the usual multivariate stochastic order is closed under marginalization, we can
get univariate comparisons of SOS from (3.4.8). However, in the univariate case, these
results can be given without conditions, as Navarro and Burkschat [69] notice from
Theorem 1.A.1. in [88], that is,

X∗1,n ≤st X∗2,n ≤st · · ·X∗n,n. (3.4.9)

They also obtain sufficient conditions to get the hazard rate order.

Theorem 3.4.1 (Navarro and Burkschat [69]). Let X∗1,n,. . . ,X∗n,n be SOS based on {G1, . . . ,Gn}.
Let hi denote the hazard rate function of Gi for i = 1, . . . ,n. If hk/hk+1 is increasing for
k = 2, . . . , i, then

X∗i,n ≤hr X∗i+1,n for i = 1, . . . ,n−1.
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We now proceed to stochastic comparisons of the first SOS and the others in the
univariate hazard rate and likelihood ratio ordering.

Theorem 3.4.2. Let X∗1,n,. . . ,X∗n,n be SOS based on absolutely continuous distribution func-
tions {G1, . . . ,Gn}, if G1 ≤hr(lr) Gi for i≥ 2, then

i) X∗1,n ≤hr X∗i,n and

ii) X∗1,n ≤lr X∗i,n,

for i = 2, . . . ,n.

PROOF.

i) By definition we know that X∗1,n ≤hr X∗i,n⇔ F∗,i(t)/F∗,1(t) is increasing in t. To do
this we will use induction. It is immediately that F∗,1 ≤hr F∗,2 since from Lemma
3.2.4 we know that G2 ≤hr F∗,2 and by the assumptions F∗,1 = G1 ≤hr G2. We
assume that F∗,1 ≤hr F∗,i−1, so we need to show that it is true for i. We get from
(3.1.6) that

F∗,i(t)
F∗,1(t)

=
F∗,i−1(t)
F∗,1(t)

+
Gi(t)Ai(t)

F∗,1(t)
,

which is increasing in t since Ai(t) and Gi(t)/F∗,1(t) are increasing.

ii) In this case, X∗1,n ≤lr X∗i,n⇔ f∗,i(t)/ f∗,1(t) is increasing in t. We have, from (3.1.3),
that

f∗,i(t)
f∗,1(t)

=
g∗,i(t)
f∗,1(t)

Ai(t),

which is increasing in t since Ai(t) and gi(t)/ f∗,1(t) are increasing.

Now, we discuss the likelihood ratio order. Navarro and Burkschat [69] show with
the help of an example that the conditions in Theorem 3.4.1 for the hazard rate order
are not sufficient conditions for the likelihood ratio order. Zhuang and Hu [105] give
sufficient conditions for the likelihood ratio order.

Theorem 3.4.3 (Zhuang and Hu [105]). Let X∗1,n,. . . ,X∗n,n be SOS based on {G1, . . . ,Gn}. Let
hi denote the hazard rate function of Gi for i = 1, . . . ,n. If Gi ≤lr Gi+1, and hi+2 + hi ≥ 2hi+1

for k = 1, . . . ,n−2 when n≥ 3, then

X∗i,n ≤lr X∗i+1,n for i = 1, . . . ,n−1.

We can now obtain alternative sufficient conditions for the likelihood ratio order
of SOS. First, let us recall the definition of a TP2 function. A nonnegative function h
of two variables, x and y, say, is called TP2 if h(x ′,y)/h(x,y) is increasing in y whenever
x≤ x ′.
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Lemma 3.4.4. Let X∗1,n,. . . ,X∗n,n be SOS based on {G1, . . . ,Gn}, if gi−1(t)
gi(t)

and hi(t) are TP2 in
(i, t), and Gi−1 ≤hr Gi for all i, then Ai(t) is TP2 in (i, t) for i = 3, . . . ,n.

PROOF. We will see, by induction on i≥ 3, that

Ai(t) =
∫ t

−∞

1
Gi(z)

dF∗,i−1(z) =
∫ t

−∞

gi−1(z)
gi(z)

hi(z)Ai−1(z)dz =
∫ t

−∞

qi(z)hi(z)Ai−1(z)dz,

is TP2 in (i, t), where qi(z) =
gi−1(z)
gi(z)

. For i = 3, by the assumptions, we have

q3(t)
q2(t)

h3(t)
h2(t)

A2(t),

is increasing in t, which implies that A3(t)/A2(t) is increasing in t. Let now i≥ 4. Again

qi(t)hi(t)Ai−1(t)
qi−1(t)hi−1(t)Ai−2(t)

,

is increasing in t, by the assumptions and by the induction hypothesis, which implies
that Ai(t)/Ai−1(t) is increasing in t. Hence, Ai(t) is TP2 in (i, t).

The following result gives conditions under which the SOS are comparable in the
univariate likelihood ratio order.

Theorem 3.4.5. Under the same assumptions than in Lemma 3.4.4, then

X∗i−1,n ≤lr X∗i,n,

for i = 3, . . . ,n.

PROOF. By definition and from (3.1.3) we know that X∗i−1,n ≤lr X∗i,n iff

f∗,i(t)
f∗,i−1(t)

=
gi(t)Ai(t)

gi−1(t)Ai−1(t)
, (3.4.10)

is increasing in t. From the previous Lemma we know that Ai(t) is TP2 in (i, t), and
from Theorem 1.C.4(a) in [88] we get that Gi−1≤lr Gi, then, it follows that f∗,i(t)/ f∗,i−1(t)
is increasing in t for i = 3, . . . ,n.

Note that gi−1(t)/gi(t) is TP2 in (i, t) can be written as

(gi−1(t))
2

gi(t)gi−2(t)
, (3.4.11)
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is increasing in t, and the condition hi+2 +hi ≥ 2hi+1 in Theorem 3.4.3 is equivalent to(
Gi−1(t)

)2

Gi(t)Gi−2(t)
, (3.4.12)

is increasing in t for i = 1, . . . ,n− 2. Our previous result, Theorem 3.4.5, is equivalent
to Theorem 3.4.3 in the sense that both have the same result and almost the same as-
sumptions, except condition (3.4.11) and (3.4.12), respectively. Note that the condition
(3.4.11) is useful when we have not an analytical expression of the survival functions.

When Gi(t) = 1− (1−F(t))γi for some distribution function F and γi are positive
numbers for i = 1, . . . ,n, then Gi−1 ≤hr Gi if and only if γi−1 ≥ γi, and the condition
(3.4.11) holds if and only if 2γi−1 ≤ γi + γi−2.

It is worth noting that the (i−1)’th SOS is not greater than the i ’th SOS in the ha-
zard rate and reversed hazard rate ordering as we will show in the following theorem.
From (3.1.6) and (3.1.7), we get that

F∗,i(t)
F∗,i−1(t)

= 1− Gi(t)Ai(t)
F∗,i−1(t)

, (3.4.13)

and
F∗,i(t)

F∗,i−1(t)
= 1+

Gi(t)Ai(t)
F∗,i−1(t)

, (3.4.14)

for i = 2, . . . ,n.

Theorem 3.4.6. Let X∗1,n,. . . ,X∗n,n be SOS based on absolutely continuous distribution func-
tions {G1, . . . ,Gn}, then

i) X∗i−1,n �hr X∗i,n and

ii) X∗i−1,n �rh X∗i,n,

for i = 2, . . . ,n.

PROOF.

i) Suppose that X∗i−1,n ≥hr X∗i,n. By definition we know

X∗i−1,n ≥hr X∗i,n⇔
F∗,i(t)

F∗,i−1(t)
is decreasing in t,

and from (3.4.14), we have

X∗i−1,n ≥hr X∗i,n⇔
Gi(t)Ai(t)
F∗,i−1(t)

is decreasing in t.
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Note that
Gi(t)Ai(t)
F∗,i−1(t)

=
Gi(t)Ai(t)
F∗,i−1(t)

F∗,i−1(t)
F∗,i−1(t)

,

which is decreasing in t when Gi(t)Ai(t)
F∗,i−1(t)

is decreasing in t, since F∗,i−1(t)
F∗,i−1(t)

is decreasing
in t. Now, from (3.4.13)

Gi(t)Ai(t)
F∗,i−1(t)

is decreasing in t⇔ X∗i−1,n ≤rh X∗i,n ,

i.e., if X∗i−1,n ≥hr X∗i,n then X∗i−1,n ≤rh X∗i,n. Thus, X∗i−1,n =
st X∗i,n, which is a contradic-

tion, since X∗i−1,n ≤st X∗i,n from (3.4.9). Hence X∗i−1,n �hr X∗i,n.

ii) Suppose that X∗i−1,n ≥rh X∗i,n. By definition we know

X∗i−1,n ≥rh X∗i,n⇔
F∗,i(t)

F∗,i−1(t)
is decreasing in t,

and from (3.4.13), we have

X∗i−1,n ≥rh X∗i,n⇔
Gi(t)Ai(t)
F∗,i−1(t)

is increasing in t.

Note that
Gi(t)Ai(t)
F∗,i−1(t)

=
Gi(t)Ai(t)
F∗,i−1(t)

F∗,i−1(t)
F∗,i−1(t)

,

which is increasing in t when Gi(t)Ai(t)
F∗,i−1(t)

is increasing in t, since F∗,i−1(t)
F∗,i−1(t)

is increasing
in t. Now, from (3.4.14)

Gi(t)Ai(t)
F∗,i−1(t)

is increasing in t⇔ X∗i−1,n ≤hr X∗i,n ,

i.e., if X∗i−1,n ≥rh X∗i,n then X∗i−1,n ≤hr X∗i,n. Thus, X∗i−1,n =st X∗i,n, which is again a
contradiction. Hence X∗i−1,n �rh X∗i,n.

A consequence of Theorem 3.4.6 is that X∗i−1,n �lr X∗i,n for i = 2, . . . ,n.

3.5. SOS AND NHBP PROCESSES

In this section, some applications of the main results in Sections 3.3 and 3.4 are
presented. Specifically we give an application related to nonhomogeneous pure birth
processes.

Nonhomogeneous pure birth processes are called relevation counting processes in
Pellerey et al. [74], where some applications of them in reliability theory are described.
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Another interpretation of these processes in reliability theory, by means of load sha-
ring, is described in [89]. Recall the definition of a (NHPB) given in 1.2.2. A counting
process {N(t), t ≥ 0} is a nonhomogeneous pure birth process with intensity functions
{λi(t), i≥ 0} and mean value functions {Λi(t), i≥ 0}, if the following hold

i) N(t), t ≥ 0 has the Markov property;

ii) P{N(t +∆t) = i+1|N(t) = i}= λi(t)∆t +◦(∆t) for i≥ 1;

iii) P{N(t +∆t)> i+1|N(t) = i}= ◦(∆t) for i≥ 1,

where the λi’s are non-negative functions that satisfy∫
∞

t
λi(x)dx = ∞, for all t ≥ 0, (3.5.15)

and

Λi(t) =
∫ t

0
λi(x)dx.

Condition (3.5.15) ensures that, with probability 1, the process has a jump after any
time point t. When all the λi are identical, a nonhomogeneous pure birth process re-
duces to a nonhomogeneous Poisson process. We are especially interested in the coin-
cidence (in distribution) of the epoch times of pure birth processes with certain models
of ordered random variables such as record values, order statistics, generalized order
statistics, Pfeifer record values (see Pfeifer [75]), and SOS. In a distributional theoreti-
cal sense, there is one-to-one correspondence between SOS and the first n epoch times
of a NHPB process, which is stated in the following proposition.

Proposition 3.5.1 (Corollary 3.3.4. in Lenz [52]). Let G1, . . . ,Gn be continuous distribu-
tion functions with Gi(0) = 0 and G−1

i (1) = ci ∈ (0,∞), ci ≤ ci+1 and X∗1,n, . . . ,X
∗
n,n the corres-

ponding SOS. Let {N(t), t ≥ 0} be a NHPB process with mean value function Λi(t) and denote
the epoch times by Si, i = 1, . . . ,n. Then Si and X∗i,n coincide in distribution if and only if

Λi(t) =−ln Gi(t), for all t ∈ [0,ci).

Note that the above proposition coincides with Proposition 1.3.5 choosing Fi as in
(3.1.1). Given this relationship, from Theorems 3.3.4, 3.3.5 and 3.4.2 and (3.4.9), it is
possible to derive the following result.

Corollary 3.5.2. Let Si, i≥ 1 denote the epoch times of a NHPB process {N(t), t ≥ 0} with
intensity functions λi(t) and mean value function Λi(t). Then:

i) if Λi(t) is antistarshaped and t ·λi(t) is decreasing, then Si is DHRA,
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ii) if Λi(t) is starshaped and t ·λi(t)
(
e−Λi(t)/1− e−Λi(t)

)
is increasing, then Si is IHRA,

iii) Si−1 ≤st Si, for i = 2, . . . ,n,

iv) if λ1(t)≥ λi(t) for all t and for i = 2, . . . ,n, then S1 ≤hr Si, for i = 2, . . . ,n,

v) if λ1(t)≥ λi(t) and λi(t)
λ1(t)

is increasing in t for i = 2, . . . ,n, then S1 ≤lr Si, for i = 2, . . . ,n.

PROOF. Define

hi(t) = λi(t) for i = 1, . . . ,n.

Since (3.5.15) holds, hi(t) can be regarded as the hazard rate function of some distri-
bution Gi. Let X∗1,n, . . . ,X

∗
n,n be the SOS based on distributions {G1, . . . ,Gn}. Then, the

result follows from Proposition 3.5.1 and Theorems 3.3.4–3.3.5 and 3.4.2 and equation
(3.4.9).

Note that, if we construct NHPB processes based on the distributions functions Gi

of the Examples 3.3.7 and 3.3.8, then we get examples of NHPB processes which verify
the conditions (i) and (ii) of the previous corollary, respectively.

3.6. APPLICATIONS IN SOFTWARE RELIABILITY MODELLING

In the context of software reliability, in our introductory chapter, we defined a soft-
ware reliability model (SRM) as a mathematical tool to evaluate the software quantita-
tively. These stochastic models attempt to model either the times between successive
failures of a piece of software or the number of failures in fixed time periods. The
SRMs have been extensively developed in the literature. Most of them are based on
stochastic counting processes, such as binomial process, pure birth process and non-
homogeneous Poisson process (NHPP). We shall describe briefly two of them, speci-
fically the model by Duane and a SRM based on a pure birth process. See Subsection
1.5.3 for a review on this models.

The Duane model [21] (DU) originally devised for hardware reliability model, is a
infinite failures model. This model is a NHPP with the expected number of failures
Λ(t) = atb. The DU model could be stochastically represented as a Weibull process,
in particular, this model is the counting process of the record values from a Weibull
distribution.

Let us mention an homogeneous pure birth process (HPBP) for software reliability
which is another variation of the Jelinski-Moranda model. This model is a birth pro-
cess approach to the Moranda geometric SRM of Boland and Singh [11]. In this case,
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the cumulative number of failures detected by time t is a HPBP with failure rates
λi = D · ki, for i = 0,1, . . ., where D > 0 and 0 < k < 1.

We present below a new model that incorporates all of these processes using the
relationship between NHPB processes and SOS. We assume that, N(t), the number of
software failures in (0, t] is a nonhomogeneous pure birth process. For any t ≥ 0, define
N(0) = 0 and Pi(t)≡ Pr{N(t) = i} for i = 1,2, . . .. The Kolmogorov differential equations
for a NHPB become (see, e.g., Parzen [73])

dP1(t)
dt

= P′1(t) =−λ1(t) ·P1(t),

dPi(t)
dt

= P′i (t) =−λi(t) ·Pi(t)+λi−1(t) ·Pi−1(t), for i = 2,3, . . .

and the probability generating function of Pi(t) is

P(s, t) =
∞

∑
i=1

Pi(t) · si, for any t > 0 and s ∈ [0,1].

Assumption 3.6.1. In the following, we restrict ourselves to a particular choice of the distri-
butions G1, . . . ,Gn, namely

Gi(t) = 1− (1−F(t))γi , 1≤ i≤ n, (3.6.16)

with some absolutely continuos and strictly increasing distribution function F and positive
real numbers γ1,. . . ,γn. Let f be the corresponding density function.

Although this setting seems to be very restrictive, many models of ordered random
variables are included in this distribution theoretic sense (see e.g. Cramer and Kamps
[18]) and also, this model is discussed in Cramer and Kamps [15, 16, 17].

From (3.6.16) we have
hi(t) = γi h(t), (3.6.17)

where h(·) is the hazard rate function of F . From Proposition 3.5.1 and (3.6.17), N(t) is
a NHPB process with birth rates

λi(t) = γi h(t), i = 1, . . . ,n.

In order to reduce the model uncertainty to the parameters γ1,. . . ,γn we use specific
distributions functions F . We start with a simple exponential family. Let F be given
by

F(t) = 1− e−λg(t), t ≥ 0, (3.6.18)

with λ > 0 unknown and some increasing and differentiable function g on [0,∞) satis-
fying g(0) = 0 and lim

t→∞
g(t) = ∞. The particular cases g(t) = tβ , β > 0, and g(t) = ln(tα),
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α > 0, correspond to standard Weibull (exponential, β = 1) and Pareto distributions,
respectively. If g(t) = t, then the distribution function in (3.6.18) corresponds to an
exponential distribution.

To apply this birth process to the reliability of a software program, we assume that
software failures follow a nonhomogeneous pure birth process with birth rates

λi(t) = D · ki h(t), i = 1, . . . ,n, (3.6.19)

where h(·) is the hazard rate function of a exponential family of distributions. Note
that if g(t) = t, then our model reduces to the HPBP model and if g(t) = tβ and k = 1
then it reduces to de DU model.

We consider two-parameter Weibull distributions with g(t) = tβ in (3.6.18) and we
shall give an explicit expression for the mean value function and intensity function of
the process N(t), but first we obtain the probability generating function.

Lemma 3.6.2. For any t ≥ 0 and s ∈ [0,1],

P(s, t) = 1−Dt h(t)(1− s)+
∞

∑
i=2

(−1)i (Dt h(t))i ·

[
i

∏
j=1

(
1− sk j−1)] ·[ i−1

∏
j=1

( jβ +1)

]−1

.

(3.6.20)

PROOF. This proof is based on Boland and Singh [11].

dP(s, t)
dt

=
∞

∑
i=1

dPi(t)
dt

si

= −sλ1(t)P1(t)+
∞

∑
i=2

si(−λi(t)Pi(t)+λi−1(t)Pi−1(t)
)

= (s−1)
∞

∑
i=1

si
λi(t)Pi(t)

= −Dh(t)(1− s) ·P(ks, t).

This differential equation yields the integral equation

P(s, t) = 1−Dh(t)(1− s)
∫ t

0
P(ks, t1)dt1.

Iterating this equation we have

P(s, t) = 1−Dt h(t)(1− s)

+
n

∑
i=2

(−1)i (Dt h(t))i ·

[
i

∏
j=1

(
1− sk j−1)] ·[ i−1

∏
j=1

( jβ +1)

]−1

+(−1)n+1Dn+1h(t)

[
n

∏
j=1

(
1− sk j−1)]×

∫ t

0
h(t1)

∫ t1

0
h(t2) · · ·

∫ tn

0
P(kn+1s, tn+1)dtn+1dtn · · ·dt1 . (3.6.21)
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One can check that the absolute value of the last term of (3.6.21) is ≤

Dn+1 h(t)
∫ t

0
h(t1)

∫ t1

0
h(t2) · · ·

∫ tn

0
P(kn+1s, tn+1)dtn+1dtn · · ·dt1 .

Integrating, we have that this term is equal to(
Dt h(t)

)n+1

n
∏
i=1

(iβ +1)
=

β
(
Dtβ

)n+1

n
∏
i=1

(
i+ 1

β

) <
β
(
Dtβ

)n+1

n!
,

which tends to 0 as n→ ∞ for any fixed t ≥ 0, since β > 0 and h(t) is the hazard rate of
the Weibull distribution.

The following theorem establishes an explicit expression for the mean value func-
tion and intensity function of the birth process.

Theorem 3.6.3. Let {N(t), t ≥ 0} be the NHPB process with birth rates as in (3.6.19), then

Λ(t) = Dt h(t)+
n

∑
i=2

(−1)i−1 (Dt h(t))i ·

[
i−1

∏
j=1

(
1− sk j

)
( jβ +1)

]
, (3.6.22)

and

λ (t) = Dh(t) ·

(
β +

∞

∑
i=2

(−1)i−1 (Dt h(t))i−1 jβ

[
i−1

∏
j=1

(
1− sk j

)
( jβ +1)

])
. (3.6.23)

PROOF. Differentiating (3.6.20) with respect to s for 0 < s < 1, we have

dP(s, t)
ds

=−
∞

∑
i=1

(−1)i(Dt h(t)
)i

(
i−1

∏
j=0

1− sk j

jβ +1

)(
i−1

∑
j=0

k j

1− sk j

)
.

Then, the mean value function is

E[N(t)] = lim
s→1

dP(s, t)
ds

= Dt h(t)+
∞

∑
i=2

(−1) j−1(Dt h(t)
)i

(
i−1

∏
j=1

1− k j

jβ +1

)
.

Finally, we obtain (3.6.23) by differentiating (3.6.22).

Note that (3.6.22) and (3.6.23) are similar to (1.5.19) and (1.5.20), the mean value
function and the intensity function, respectively, of the SR model of Boland and Singh
[11].

Next, we show expressions to estimate the parameters of the new model. Cramer
and Kamps [15, 16, 17] are concerned with statistical inference for sequential k-out-of-
n systems based on the distribution functions as defined in (3.6.16). In order to ob-
tain the maximum likelihood estimators (MLE) of the parameters of the NHPB-based
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software reliability model it is helpful to recognize that NHPB processes are closely
connected to sequential order statistics. In particular, the joint density of (X∗1 , . . . ,X

∗
n )

is given by

fX∗1 ,...,X
∗
n
(x) = n!

[
n−1

∏
i=1

(
F i(xi)

F i+1(xi)

)n−i

fi(xi)

]
fn(xn), (3.6.24)

where x1 < x2 < · · · < xn and Fi = 1− (1−Gi)
1

n−i+1 (see Lenz [52]). Choosing Gi as in
(3.6.16) and F as in (3.6.18), then the joint density of (X∗1 , . . . ,X

∗
n ) can be written as

fX∗1 ,...,X
∗
n
(x) = n!

(
n

∏
i=1

γi

n− i+1

)(
n−1

∏
i=1

(
F(xi)

)mi fi(xi)

)(
F(xn)

) γi
n−i+1−1 fn(xn) , (3.6.25)

with mi = γi− γi+1−1. Recall from (1.1.2) the definition of the hazard rate function h(t)
and from (1.1.3) the definition of the cumulative hazard rate function H(t). Then we
have the logarithm of the likelihood function of the NHPB-SR model

lnL(γi,F) = lnn!+
n

∑
i=1

ln
(

γi

n− i+1

)
− γ1H(x1)−

n

∑
i=2

γi

(
H(xi)−H(xi−1)

)
+

n

∑
i=1

ln(h(xi)) .

(3.6.26)
Choosing γi = Dki with D > 0 and 0 < k ≤ 1, we get

lnL(γi,F) = lnn!+n lnD+
n(n+1)

2
lnk−

n

∑
i=1

ln(n− i+1)−DkH(x1)

−
n

∑
i=2

Dki
(

H(xi)−H(xi−1)
)
+

n

∑
i=1

ln(h(xi)) . (3.6.27)

Maximizing equation (3.6.27) with respect to D and β , we have their maximum likeli-
hood estimator

D =
n

kH(x1)+
n
∑

i=2
ki
(

H(xi)−H(xi−1)
) , (3.6.28)

n

∑
i=1

d
dβ

ln(h(xi)) = D

(
k

dH(x1)

dβ
+

n

∑
i=2

ki
(

dH(xi)

dβ
− dH(xi−1)

dβ

))
. (3.6.29)

Substituting equation (3.6.28) in (3.6.29), we get

n

∑
i=1

d
dβ

ln(h(xi)) =n
k dH(x1)

dβ
+

n
∑

i=2
ki
(

dH(xi)
dβ
− dH(xi−1)

dβ

)
kH(x1)+

n
∑

i=2
ki
(

H(xi)−H(xi−1)
)

=n
d

dβ
ln

(
kH(x1)+

n

∑
i=2

ki
(

H(xi)−H(xi−1)
))

.
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Thus, integrating the above equation, we have

n

∑
i=1

ln(h(xi)) = n ln

(
kH(x1)+

n

∑
i=2

ki
(

H(xi)−H(xi−1)
))

. (3.6.30)

Next, substituting equation (3.6.28) and (3.6.30) in (3.6.27), the logarithm of the likeli-
hood function, and reducing the resultant expression, we have

lnL(γi,F) = lnn!+n lnn+
n(n+1)

2
lnk−

n

∑
i=1

ln(n− i+1)−n.

Then, it is easy to see that

d
dk

lnL(γi,F) =
n(n+1)

2
1
k
>

1
k
> 0,

that is, the logarithm of the likelihood function in increasing in k. Thus, since 0 < k≤ 1,
the logarithm of the likelihood function reaches the maximum when k = 1. Therefore,
the NHPB process reduces to a NHPP.

3.7. CONCLUDING REMARKS AND FURTHER WORK

In this chapter, we have studied ageing and ordering properties for the sequential
order statistics which, as we have already mentioned, represent the lifetimes of a k-
out-of-n systems with component lifetimes having a particular dependence model.
We have investigated sufficient conditions on the underlying distribution functions
on which the SOS are based, to obtain stochastic comparisons of SOS given the hazard
rate and likelihood ratio orders. Also, we have derived conditions under which the
SOS are increasing hazard rate, increasing hazard rate average or decreasing hazard
rate average. Applications in software reliability involving nonhomogeneous pure
birth processes are also given. Some results of this chapter are based on Torrado et al.
[96].

There are many directions in which this research might be continued. Belzunce et
al. [8] describe various conditions on the parameters of pairs of NHPB processes under
which the corresponding epoch times or interepoch intervals are ordered in various
senses. One possibility would be to identify conditions that enable one to compare
spacings based on SOS from one sample. The other option would be to consider a
Bayesian approach for incorporating additional prior information about the model
parameters γ1, . . . ,γn when choosing the underlying distributions of SOS according to
Gi = 1− (1−F)γi , for 1 ≤ i ≤ n. To our knowledge, there exists only one reference in
this topic, namely Burkschat et al. [13].
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CHAPTER 4

Models with software metrics as covariate

As it was pointed out in Chapter 1, Section 1.5, a number of analytical models have
been proposed for software reliability assessment. Most of these models are based on
the assumption that the software is possibly imperfectly corrected after each failure or
after various fixed time periods. In such cases, it is typically assumed that covariate
information, in the form of software metrics such as code length and code complexity
(McCabe [60]), will be generated each time the software is corrected. See Fenton and
Pfleeger [22] for a good review of the main ideas.

Most software reliability models follow a non-Bayesian statistical point of view,
in which the model parameters are considered to be fixed unknowns. When a large
sample size of failure data is available, the parameters can be properly estimated using
for example the maximum likelihood method (ML). However with a limited budget
and little time for software development, it is difficult to obtain adequate sample data
to accurately predict software reliability. In such situations, Bayesian approaches are
used to determine parameters by incorporating prior information into the model, such
as expert knowledge and past failure data. We shall here adopt a Bayesian approach
to predict software failure data. For good reviews on this topic, see e.g. Singpurwalla
and Wilson [91], Kuo and Yang [49] and Wiper [100].

The main purpose of this chapter is to present a novel software reliability model,
which is a non-parametric regression model where software metrics data are used as
covariate.

This chapter is organized as follows. We give, in Section 4.1, a brief description
of software metrics and review software reliability models with software metrics in-

79
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formation. In Section 4.2, we briefly outline some well known Bayesian methods in
order to predict numbers of software failures and times between failures. Section 4.3
then describes our proposed model which can be seen as a non-parametric regression
model based on Poisson failure counts and on exponentially distributed times be-
tween failures. In Subsection 4.3.4, we present the analysis of three real data sets and
Section 4.4 finishes the chapter with some conclusions and possible extensions of our
approach.

4.1. SOFTWARE METRICS INFORMATION

As we mentioned in Chapter 1, software development is a complicated process in
which software faults are inserted in code by mistakes on the part of program deve-
lopers. Some software programs are easy to modify, and therefore, they represent a
small expense in developing computer systems. However, other programs are nearly
impossible to modify without inserting multiple faults. Between these extremes lies a
range of programs of intermediate complexity. Then, it would be reasonable to think
that complex software programs are those likely to have a high fault count. Therefore,
measures of software complexity can be used as good predictors of software quality.
There are many software metrics, but here we only give a brief introduction, for more
details on this topic see Fenton and Pfleeger [22] or Lyu [54].

The most used measure of source code program length is the number of lines of code
(LOC). However without a careful definition of lines of code there will be many ways
in which this measure may be calculated. To stress the fact that a line of code is actually
a non-comment line we shall use the abbreviation (NCLOC). To derive NCLOC from
a given software program you have to remove comments and blank lines. If CLOC is
the number of comments and blank lines of program text, then it is useful to measure
both NCLOC and CLOC and define total length, LOC, as

LOC = NCLOC+CLOC.

This way, we can immediately define some useful indirect measures like

CLOC
LOC

,

as a measure of the density of comments in a program.
It is also worth mentioning another commonly used software metrics developed by

Halstead [29]. These metrics are now known as the software science metrics, and they are
sensitive to program size but not to program control flow. That is, software programs
with vastly different control flow structure can have identical Halstead metric values.
Thus, Halstead’s metric do not measure complexity due to control flow.
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On the other hand, McCabe [60] developed a software metric, the cyclomatic num-
ber, which measures some aspects of control flow complexity. This metric is not ne-
cessarily related to program size, that is, software programs with vastly different LOC
can have identical cyclomatic number. Thus, Halstead’s metric and McCabe’s metric
measure two distinct program attributes. Each of these program attributes represents
a source of variation underlying the measured complexity metrics.

4.1.1. Software reliability models using software metrics

As we mentioned, it is natural to suppose that software reliability can be related
to software metrics information. However, the great majority of software reliability
models do not take this covariate information into account. Important exceptions are
Wiper and Rodríguez-Bernal [103] who modified the JM model to take account of
software metrics information, Rinsaka et al. [82] who use a proportional hazard type
approach, Ray et al. [81] who consider an approach based on estimating the number
of bugs by a regression type model, and Wiper et al. [101] who use Bayesian neural
networks.

Rinsaka et al. [82] and Ray et al. [81] consider a Type II software reliability model
where the number of failures, Ni = ni, detected by time ti is modeled by a NHPP, for
i = 1, . . . ,M. A natural model which incorporates software metrics is the following
logistic regression model,

Ni | λi ∼ P(λi)

lnλi = β0 +
k

∑
j=1

β j xi j ,

where xi = (xi1, . . . ,xik) are the software metrics data. Wiper and Rodríguez-Bernal
[103] consider a Bayesian approach to estimate the unknown parameters β = (β0,β1,

. . . ,βk)
T of this model.

Rinsaka et al. [82] assume that the intensity function of the NHPP is

λ (ti ;θ,β | xi) = λ0(ti ;θ) exp(xiβ),

where β = (β1, . . . ,βk)
T are coefficient parameters, and the function λ0(ti ;θ) is called

the baseline intensity function. They consider three kinds of baseline intensity func-
tions: exponential λ0(ti ;a,b) = abexp(−bt), S-shaped λ0(ti ;a,b) = ab2 exp(−bt) and
Rayleigh λ0(ti ;a,b) = atb−2 exp(−t2/2b2).

Ray et al. [81] consider that the mean value function of the NHPP is

Λ(ti+1) = r j

(
1− exp(−β j(t j+1− t j))

)
,
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where r j denotes the expected number of defects remaining at time t j and the formu-
lation for β j consists of a loglinear model with

lnβ j = γ0 +
k

∑
j=1

γ j xi j .

They use a Bayesian approach to estimate the parameters of the model.
Recently, Wiper et al. [101] develop a unified approach to Type I and Type II soft-

ware reliability models in the presence of metrics information. They assume that
Ni | λi ∼ P(λi) for the Type II models and that Ti | λi ∼ E(λi) for the Type I models,
where Ti is the time between the i ’th and the (i−1)’th software failures. In both cases,
the failure rate λi follows a neural network model.

4.2. BAYESIAN INFERENCE

In this thesis we undertake Bayesian methods to predict software failures. The
Bayesian approach may have an advantage over the non-Bayesian method when the
parameters are unknown or difficult to estimate. It is well known that the main diffe-
rence between the classical statistical theory and the Bayesian approach is that the
latter considers parameters as random variables that characterized by a prior distribu-
tion. This prior distribution expresses the information available to the researcher before
any data are involved in the statistical analysis. Interest lies in calculation of the poste-
rior distribution p(θ |D) of the parameters θ given the observed data D. According to
the Bayes theorem, the posterior distribution can be written as

p(θ |D) ∝ likelihood x prior = p(D | θ) p(θ).

Specification of the prior distribution is important in Bayesian inference since it
influences the posterior distribution. When no prior information of the parameters
is available, we need to let the data “speak” for themselves. Such distributions are
called noninformative prior distribution. Another nice property of a prior distribution is
when the resulting posterior distribution is a member of the distributional family of
the prior density. In this case, the prior distribution is called conjugate prior distribution.

This section provides a short introduction concerning the use of Markov chain
Monte Carlo (MCMC) methods that are widely used in Bayesian inference and also,
we review some well known Bayesian approaches to software reliability models.

4.2.1. Markov chain Monte Carlo algorithms

The focus of this subsection is on the most popular Markov chain simulation or
MCMC methods. The most common application of these algorithms is the numerical
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evaluation of high dimensional integrals. In particular, from the Bayesian point of
view these methods are very useful in simulation from posterior distributions. There
exits some software tools such as WinBUGS software, which use MCMC techniques
to generate samples from posterior distribution of complicated models, providing an
effective way to evaluate Bayesian models, see e.g., Ntzoufras [71].

MCMC methods are a class of algorithms for sampling from probability distribu-
tions, based on constructing a Markov chain that has the desired distribution as its
equilibrium distribution. A Markov chain is a stochastic process such that the distribu-
tion at sequence i+1 given all the preceding values depends only on the value of the
previous sequence i.

Markov chain simulation is a general method based on drawing values of the pa-
rameters θ from approximate distributions and then, correcting those values to better
approximate the target posterior distribution p(θ | D). The key to the method’s suc-
cess is that the approximate distributions are improved at each step in the simulation,
in the sense of converging to the target distribution. Extensive details of the use of
MCMC methods can be found in Robert and Casella [83].

The key to Markov chain simulation is to create a Markov process whose statio-
nary distribution is the specified p(θ |D) and run the simulation sufficiently long that
the distribution of the current values is close enough to this stationary distribution.
Once the simulation algorithm has been implemented and the simulation drawn, it is
necessary to check the convergence of the simulated sequences. In this thesis, we will
apply two main types of MCMC algorithm: the Metropolis-Hastings algorithm and
the Gibbs sampler.

The result of the Metropolis-Hastings algorithm will be the simulation of an objec-
tive or target density. In the Bayesian framework, this target density is the posterior
distribution, from which we wish to generate a sample of size M. The Metropolis-
Hastings algorithm can be described by the following iterative steps, where θ(i) are
the parameters of interest of generated values in i iteration of the algorithm:

1. Set initial values θ(0).

2. For i = 1, . . . ,M, repeat the following steps:

a. Set θ = θ(i−1).

b. Generate new candidate parameter values θ′ from a proposal

distribution q(θ′ | θ).

c. Calculate

α = min
{

1,
p(θ′ |D)q(θ | θ′)
p(θ |D)q(θ′ | θ)

}
.
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d. Update θ(i) = θ′ with probability α, otherwise set θ(i) = θ.

The Metropolis-Hastings algorithm will converge to its equilibrium distribution
regardless of whatever proposal distribution q is selected. Another important charac-
teristic of this algorithm is that we do not need to evaluate the normalizing constant
p(D) involved in p(θ |D) since it cancels out in α .

The Gibbs sampler is a special case of Metropolis-Hastings sampling where the ac-
ceptance probability, α , is equal to 1, and therefore the generated parameter is ac-
cepted in all iterations. One advantage of the Gibbs sampler is that, in each step, ran-
dom values must be generated from unidimensional distributions for which a wide
variety of computational tools exists. Frequently, these conditional distributions have
a known form and, thus, random numbers can be easily simulated using standard
functions.

The algorithm can be summarized by the following steps:

1. Set initial values θ(0).

2. For i = 1, . . . ,M, repeat the following steps:

a. Set θ = θ(i−1).

b. For j = 1, . . . ,k, update θ j from θ j ∼ p(θ j | θ1, . . .θ j−1,θ j+1, . . . ,θk,D).

c. Set θ(i) = θ and save it as the generated set of values at i ite-

ration of the algorithm.

4.2.2. Bayesian approaches to software reliability modelling

Due to the large number of software reliability models which were developed from
the Jelinski-Moranda model, some authors have attempted to unify these models from
different perspectives. The advantage of unification is the availability of a common
structure under which the problem of reliability growth or decay can be studied. A
unifying perspective on the many software reliability models can hopefully simplify
the task of model selection that user faces. One of the attempts at unifying the soft-
ware reliability models is adopting a Bayesian point of view (see, e.g. Langberg and
Singpurwalla [50]). Here, we review Bayesian approach to Type I and Type II SR mo-
dels, some of them are Bayesian versions of the SR models presented in Section 1.5.

Recall that the Jelinski-Moranda (JM) model, which we defined in Chapter 1, su-
pposes that the distribution of the i ′th interfailure times is given by

Ti | N,φ ∼ E
(
(N− i+1)φ

)
, (4.2.1)

an exponential distribution with mean 1/
(
(N− i+1)φ

)
.
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The first Bayesian software reliability model is due to Littlewood and Verrall (LV)
[53]. They proposed a model to relax the assumption of perfect repair in the JM model.
Here, the (N− i+1)φ of (4.2.1) is replaced by an unknown parameter λi. They consider
λi ∼ G(α,ψ(i)), a Gamma distribution as the prior of λi, where ψ(i) is an increasing
function of i to reflect that repairs tend to make the software more reliable. Little-
wood and Verrall [53] considered ψ(i) to be completely specified, and also, methods
of estimation.

A particular form, ψ(i) = β0 +β1i, was proposed by Mazzuchi and Soyer [59]. This
form ensures that α

ψ(i) , the expected value of λi, decreases in i. Both α and ψ(i) are
treated as unknown. The prior distributions are as following,

α ∼ U[0, w], an Uniform distribution with w > 0,

β1 ∼ G(u1,v1), a Gamma distribution independent of α, and

β0 | β1 ∼ SG(u0,v0;β1),

a shifted Gamma distribution with β1 being the extend of the shift. This model has
been extended by Kuo and Yang [48] who take ψ(i) to be a polynomial of degree k,
and by Soyer [92] who lets λi have expectation αiβ .

Bayesian inference for the JM model has also been examined in, e.g., Meinhold
and Singpurwalla [62] and Wiper et al. [102], among others. Here we just give a brief
introduction. We shall consider the following prior distribution for N and φ ,

N ∼ P(λ ), a Poisson distribution with mean λ , and

φ ∼ G(α,β ), a Gamma distribution.

Given the observation of n failures, then the conditional posterior distribution are,

N−n |D ∼ P
(
λ exp(−ntφ)

)
, where t =

1
n

n

∑
i=1

ti ,

φ |D ∼ G

(
α +n, β +

n

∑
i=1

(N− i+1)ti

)
.

It is useful to note that even though N and φ were a priori independent, once the data
D are at hand, they are a posteriori dependent. This is to be expected because posterior
inference for both parameter is based on the same set of data.

In Section 1.5.2 we introduced a Type II model by Goel and Okumoto (GO), called
a time dependent error detection model. Recall that software failures are encountered
as a nonhomogeneous Poisson process (NHPP), {N(t), t ≥ 0}, with mean value func-
tion Λ(t) = a(1− e−bt), where a and b are unknown parameters. McDaid and Wilson
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[61] proposed a Bayesian analysis of the GO model by assuming independent gamma
priors on a and b as following,

N(t) | a,b∼ P
(
a(1− e−bt)

)
,

a∼ G(αa,βa),

b∼ G(αb,βb).

A model which provides an unification of the GO model and LV model is due to
Rodrigues [84]. He formulated the following hierarchical Bayes SR model.

Ti | N,φ ∼ E
(
(N− i+1)φ

)
,

N | µ ∼ P(µ),

µ ∼ G(αµ ,βµ),

φ ∼ G(αφ ,βφ ).

Assume that µ and φ are known values, then we have the GO model. If N and µ are
known values, then we get the LV model, and when µ is a known value, then the
model by Rodrigues [84] is a combination of the GO and LV models.

Many other Bayesian SR models have been developed. Kuo and Yang [49] gave
the Gibbs algorithms incorporating Metropolis-Hasting methods to 8 kinds of NHPP-
based SR models. More recently, Ruggeri and Soyer [85] propose a model based on a
hidden Markov chains, which assumes that times between failures are exponentially
distributed with parameters depending on an unknown latent state variable which, in
turn, evolves as a Markov chain. Hirata et al. [30] developed a Java based prototype
tool for Bayesian estimation in NHPP -based SR models.

4.3. A BAYESIAN APPROACH TO SRMS USING COVARIATES

Often, in real software development scenarios, members of the developing time
or software users may have useful prior knowledge about the quality of the software
and then, via a Bayesian approach, this knowledge could be used to improve the pre-
dictions of the proposed model. Even when real prior knowledge is not available
and relatively uninformative priors are proposed, then in a predictive system such
as in the software reliability scenario, Bayesian predictions automatically account for
any parameter uncertainty. However, classical approaches based on substituting pa-
rameters by plug in estimates often underestimate predictive uncertainty. For more
comments of the advantages of the Bayesian approach in software reliability, see e.g.
Singpurwalla and Wilson [91].



4.3. A BAYESIAN APPROACH TO SRMS USING COVARIATES 87

In this section, we shall develop an alternative approach to both Type I and Type II
software reliability models, where the failure rate at a given time period is estimated
using Bayesian non-parametric regression techniques based on Gaussian processes,
after the software has been corrected. In the following subsection, we give a brief
review on Gaussian processes. We also consider the software metrics for the current
version of the software as the covariate in our Bayesian non-parametric regression
model. This approach may be thought of as an extension of the work of Ray et al.
[81] which generalizes this earlier, parametric regression based approach by using a
nonparametric regression model. Although Bayesian models for software reliability
have been investigated in the literature, as we showed in Section 4.2.2, to the best of
our knowledge, these models do not incorporate any covariate information.

4.3.1. Gaussian processes

Gaussian process models have recently been used in Bayesian approaches to regre-
ssion, classification and other areas, see e.g., Rasmussen and Williams [80]. Formally,
a Gaussian process is defined as following.

Definition 4.3.1. A Gaussian process (GP) is a collection of random variables, any finite
number of which have a joint Gaussian distribution.

A GP is a generalization of the Gaussian probability distribution. Just as a Gaus-
sian distribution is fully specified by its mean and covariance matrix, a GP is specified
by a mean and a covariance function. We define the mean function m(x) and the co-
variance function C( f (x), f (x′)) of a real process f (x) as

m(x) = E [ f (x)] ,

C( f (x), f (x′)) = E
[
( f (x)−m(x))

(
f (x′)−m(x′)

)]
.

As we assume the mean function is defined to be zero, the covariance function is
the crucial ingredient in a GP model. There exist different covariance functions, as the
dot product covariance function which depends only on x and x′ through x ·x′, or the
inhomogeneous polynomial kernel, C( f (x), f (x′)) = (σ2 +x ·x′)r, where r is a positive in-
teger, among others. In addition, the covariance function can be the sum or product or
linear combination of different covariance functions. The only technical restriction on
the covariance function is that it must be positive semidefinite. Following Rasmussen
and Williams [80], we define the squared exponential covariance function as

C( f (x), f (x′) | θ) = η
2 exp

{
−1

2

k

∑
j=1

ρ
−2
j

(
x j− x′j

)2

}
, (4.3.2)
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where θ =
(
ρ2

1 , . . . ,ρ
2
k ,η

2
)

is the unknown parameter set, i.e., the hyperparameter set.
Observe that ρ j is a length scale parameter and the variance η2, called the scaling
parameter, is the overall vertical scale of variation of the latent value.

Note that for n observed data points, x1, . . . ,xn, the mean vector m will be an n-
element column vector, and the covariance matrix C(θ) will be an n× n matrix with
elements as given in (4.3.2).

GPs are used in regression and classification problems. Next, we will review
briefly the Bayesian analysis of the standard regression model. Given a set D= {(xi,yi) :
i= 1, . . . ,n} of n observations, wherexi =(xi1, . . . ,xik)

T denotes an input vector (covaria-
tes) of dimension k and y = (y1, . . . ,yn)

T denotes a scalar output or target (dependent
variable), the regression model is defined as

yi = f (xi)+ εi,

where εi follows an independent, identically distributed Gaussian distribution with
zero mean and variance σ2. Usually, one assume that the prior distribution, p(f | θ),
on f = ( f1, . . . , fn)

T is a GP, where fi = f (xi), and we will write the GP as f | θ ∼
GP(m(x),C(θ)). In a regression problem with additive noise the likelihood is straight-
forwardly obtained from the noise model of εi, thus, the likelihood is Gaussian. Then
the posterior distribution on f , p(f |D,θ) ∝ p(D | f)× p(f | θ), is also a GP.

When the posterior distribution cannot be computed analytically, some approxi-
mation must be employed to obtain an approximate posterior. Several different tech-
niques have been proposed to overcome this obstacle, such as Laplace approximation,
expectation propagation algorithm and MCMC sampling. For a deep study on this
topic, we refer the reader to an excellent book by Rasmussen and Williams [80].

4.3.2. Model description

In this subsection we present a new approach to both Type I and Type II software
reliability models (see Section 1.5). Our model is a hierarchical non-parametric regre-
ssion model based on exponential interfailure times or Poisson failure counts where
the rates are modeled as Gaussian processes where software metrics data are used as
inputs.

We consider a regression problem where we have a data set D of M scalar obser-
vations with an arbitrary distribution with parameter λi and that the software being
analyzed is possibly imperfectly corrected after each period. If we assume that we ob-
serve the times between successive M failures, say T1 = t1, . . . ,TM = tM, then, in this case,
D = {ti : i = 1, . . . ,M}. We might also assume that interfailure times are exponentially
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distributed, that is,

Si | λi ∼ E(λi).

When we assume that we observe the numbers of failures, say N1 = n1, . . . ,NM = nM

in M time periods of length L1, . . . ,LM respectively, then D = {ni : i = 1, . . . ,M}. We
also assume that the numbers of failures follows a Poisson distribution, that is, for
i = 1, . . . ,M, we have

Ni | λi ∼ P(Liλi) .

As part of the correction procedure, we shall suppose that after the (i− 1)’th fai-
lure the software is possibly imperfectly corrected and software metrics, say xi =

(xi1, . . . ,xik) are generated for i = 1, . . . ,M. Such metrics may reflect both characteristics
of the code such as number of lines or also measures of the amount of work under-
taken on correction such as many hours or costs. Thus, it is reasonable to suppose
that changes in the quality of the code will be reflected in changes in the values of the
software metrics.

In both cases, the rate, λi can be modeled as a function of the software metrics, xi,
available after the last correction as

lnλi | fi = f (xi)+ εi,

where εi ∼ N(0,σ2) and f : ℜk→ℜ can take different forms.
Now, the most important problem to consider is how to model the unknown func-

tion, f . One possibility is to assume that f is a linear function of the software metrics,
say

f (xi) = β0 +
k

∑
j=1

β j xi j ,

see Subsection 4.1.1, but there is quite a lot of evidence to illustrate that the relation-
ship between software quality and software metrics is often highly non-linear and
therefore, it seems preferable to use a more general, fully nonparametric model. One
possibility would be to use classical, nonparametric regression techniques, see e.g. Fox
[24], but here we prefer to use a Bayesian approach, as outlined below.

We shall follow a popular approach in the Bayesian literature of modeling f using
Gaussian process (GP) priors, see Subsection 4.3.1. A GP prior supposes that for any
finite set of points, say x1, . . . ,xM, the joint distribution of f (x1), . . . , f (xM) is normal or
Gaussian distributed with zero mean and a squared exponential covariance function
defined as in (4.3.2). Here we shall write

f | θ ∼ GP(0,C(θ)) ,
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where θ are the parameters characterizing the process and f denotes a set of latent
variables in a vector. This implies that the probability density of ln(λ) =

(
lnλ1, . . . ,

lnλM
)T , given the parameters, is a factorized Gaussian, ln(λ) | f ,σ2 ∼ N(f ,σ2I) and

therefore, λ= (λ1, . . . ,λM)T , given the parameters, is a lognormal distribution

p(λ | f ,σ2)∼ LN(f ,σ2I), (4.3.3)

where I is the identity matrix. The basic, Bayesian model is then completed by defi-
ning prior distributions for the error variance, σ2 and for the GP parameters, θ. As
is typical in such problems, in the lack of strong prior information, we shall assume
independent, proper but relatively uninformative inverse gamma (IG) priors for σ2,
η2 and ρ2

j for j = 1, . . . ,k. The family of inverse gamma densities is versatile enough
to incorporate both increasing and decreasing failure rates.

Therefore, we have an approach to both Type I and Type II SR models which can
be summarize, respectively, as following.

Ti | λi ∼ E(λi),

lnλi | fi = f (xi)+ εi,

f | θ ∼ GP(0,C(θ)).

Ni | λi ∼ P(Liλi),

lnλi | fi = f (xi)+ εi,

f | θ ∼ GP(0,C(θ)).

Next, we can theoretically evaluate the posterior distributions using Bayes theo-
rem. The joint posterior for λ,f and σ2 given the observed data, D, is

p(λ,f ,σ2 |D) ∝ likelihood×prior

= p(D | λ)× p(λ,f ,σ2)

= p(D | λ)×
(

p(λ | f ,σ2) · p(f ,σ2)
)
.

Unfortunately simple closed form expressions for the integration constants of the
posterior parameter distributions are not available. Thus, we need to use numerical
integration techniques or simulation methods to generate samples from these poste-
rior distributions. Note that by decomposition:

p(λ,f ,σ2 |D) = p(λ | f ,σ2,D) · p(f ,σ2 |D)

= p(λ | f ,σ2,D) · p(f | σ2,D) · p(σ2 |D), (4.3.4)

where
p(λ | f ,σ2,D) ∝ p(D | λ) · p(λ | f ,σ2). (4.3.5)

Assume now that we observe the first M interfailure times with exponential distri-
bution, then the likelihood function is

p(D | λ) =
M

∏
i=1

λi e−tiλi ∝ exp
(
−λT t

)
,
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where D= {ti : i = 1, . . . ,M} and t= (t1, . . . , tM)T . From (4.3.5), the conditional posterior
distribution for λ given the data and the parameters σ2 and f is

p(λ | f ,σ2,D) ∝
1(

2πσ2
)M/2 exp

(
−λT t

)
exp
(
−1
2σ2 (lnλ−f)

T (lnλ−f)
)
. (4.3.6)

What remains is to sample the f and σ2 from their conditional posterior distribu-
tion. Since we have assumed, σ2 ∼ IG(α, β ), an inverse gamma as the prior distribu-
tion for σ2, we have that

p(σ2 | λ,f ,D) ∝ p(λ | f ,σ2) · p(σ2)

∝
1(

2πσ2
)M/2 exp

(
−1
2σ2 (lnλ−f)

T (lnλ−f)
)(

σ
2)−α−1

exp
(
− β

σ2

)
∝
(
σ

2)−(α+M
2 )−1

exp
(
−1
σ2

(
β +

1
2
(lnλ−f)T (lnλ−f)

))
,

which we recognize as an inverse gamma,

IG
(

α +
M
2
, β +

1
2
(lnλ−f)T (lnλ−f)

)
, (4.3.7)

and

p(f | λ,σ2,D) ∝ p(λ | f ,σ2) · p(f)

∝ exp
(
−1
2σ2 (lnλ−f)

T (lnλ−f)
)

exp
(
−1
2
fTC(θ)−1f

)
.

Completing the square, we obtain the conditional posterior distribution of the corres-
ponding function value f ,

p(f | λ,σ2,D) ∝ exp
(
−1

2
(f −w)T

(
1

σ2 I+C(θ)−1
)
(f −w)

)
,

wherew= σ−2
(
σ−2I+C(θ)−1

)−1 lnλ, and we recognize the form of the posterior dis-
tribution as Gaussian with mean w and covariance matrix A−1,

p(f | λ,σ2,D) ∝ N
(
σ
−2A−1 lnλ, A−1) , (4.3.8)

where A = σ−2I+C(θ)−1.
Next, we assume that D= {ni : i = 1, . . . ,M} are the number of failures observed in

time periods of length L1, . . . ,LM which follows a Poisson distributed, then the likeli-
hood is not a function of θ,

p(D | λ) =
M

∏
i=1

λ
ni
i

ni!
e−λi .
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The prior of f is assumed to correspond to a GP with zero mean, and there exits a
covariance function. An example of such a covariance function is given in (4.3.2). Then
the distribution of λ | f ,σ2 is the same that in (4.3.3) and the prior distribution for σ2 is
an inverse-gamma, IG(α,β ). As before, we can evaluate the posterior distributions as
follows. The joint posterior for λ,f and σ2 given the observed data is given in (4.3.4).
We need to use numerical integration techniques or simulation methods to generate
samples from these posterior distributions. Note that, from (4.3.5), we get

p(λ | f ,σ2,D) ∝
1(

2πσ2
)M/2 exp

(
−λT1− 1

2σ2 (lnλ−f)
T (lnλ−f)

)( M

∏
i=1

λ
ni
i

ni!

)
,

(4.3.9)
where 1 denotes a vector with all entries one, that is, 1 = (1, . . . ,1)T . The conditional
posterior distributions of σ2 and f are given in (4.3.7) and (4.3.8), respectively.

4.3.3. Bayesian inference and model selection

Exact Bayesian inference is impossible for these models and thus, numerical me-
thods must be applied. Various approaches have been developed for sampling in
the context of GP models, see e.g. Rasmussen and Williams [80] and here we apply a
MCMC algorithm suggested in Neal [70] in the context of non-parametric regression.
The MCMC approach is the most popular and versatile method to evaluate the pos-
terior distribution (see Subsection 4.2.1). Instead of an analytical expression for the
posterior distribution, the method uses sampling data generated from this posterior
distribution. The main idea behind the MCMC approach is to derive samples from the
joint posterior distribution of the model parameters by alternatingly applying condi-
tional marginal densities related to the joint posterior distribution. MCMC methods
for NHPP based SRMs are discussed by Kuo and Yang [49], as we noted in Section
4.2.2.

Our scheme basically proceeds by specifying initial values for the parameters and
then successively generating from their conditional posterior distributions using Gibbs
or
Metropolis-Hastings steps as appropriate. Specifically, we consider the use of Gibbs
sampling for conditionally conjugate distributions, i.e., for σ2 given in (4.3.7) and for
f given in (4.3.8), and the Metropolis-Hastings algorithm for distributions that are
not conditionally conjugate, i.e., for λ given in (4.3.6) and (4.3.9) when the data are
times between failures or number of failures, respectively. The acceptance rate in the
Metropolis-Hastings step was about 35%.

Our proposed model class includes many simpler models such as the JM model
(see Section 1.5) which are independent of covariate information and also simpler
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regression functions. Furthermore, in many problems we may often have large num-
bers of metrics available and therefore, which model or which metrics to choose is an
important problem. The standard approach to model selection in the classical context
is to use selection criteria such as the Akaike or Bayesian information criterion. The
most popular Bayesian selection criterion is the deviance information criterion or DIC
developed in Speigelhalter et al. [93]. However, this criterion is highly dependent on
the stability of the posterior (mean) parameter estimates and in the Gaussian process
context, we have found that it is unstable. Therefore, we prefer to use a variant of the
DIC, denoted DIC3 in Celeux et al. [14]. This criterion is defined, for the Type II model
with data n= (n1, . . . ,nM) and model M as

−4E [ln p(nθ) | n,M]+2ln p̂(n | n,M),

where

p̂(n | n,M) =
M

∏
i=1

p̂(ni | n,M),

and

p̂(ni | n,M) =
1
J

J

∑
j=1

p(ni | n,λi, j,M) =
1
J

J

∑
j=1

λ
ni
i, j e−λi, j

ni!
.

This criterion is straightforward to calculate from the MCMC output and, in our
experience, gives much more satisfactory results than the DIC. As with the AIC and
BIC, lower values of this criterion imply better fitting models. For a full review, see
Celeux et al. [14].

It is also interesting to study the predictive capacity of the GP based regression
models. Rinsaka et al. [82] considered partitioning data set into two parts (50% and
75% and 90%) for predictive purposes, a training set for parameter estimation and a
test set for evaluation of the predictive quality of their models. The prediction square
error (PSE) is then calculated to evaluate the predictive ability of the models. For a
training sample of size r, this is defined as

PSE =
1

M− r

M

∑
i=r+1

(
ni−E [Ni | n1, . . . ,ni−1]

)2
,

where the observed data are the numbers of software failures N1 = n1, . . . ,NM = nM.
Clearly, lower values of the PSE indicate better predictive performance.

To study the predictive ability we compare our model with the model of Rinsaka et
al. [82]. They developed a software reliability assessment tool, called PISRAT: Propor-
tional Intensity-based Software Reliability Assessment Tool (see Shibata et al. [90]).
We use this software program to obtain the prediction square error of the model by
Rinsaka et al. [82] in order to compare the predictive performance of this model with
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the predictive ability of our model. According to Rinsaka et al. [82], we denote by
PIM(·,·) the proportional intensity model which we outlined in Subsection 4.1.1, where
the first component represents the software metrics used and the second is a distribu-
tion function, such as W = Weibull distribution, G = Gamma distribution and E =

exponential distribution.

4.3.4. Applications to real data sets

In this subsection, we present the analysis of three real data sets. Two of them,
referred to hereafter as DS1 and DS2 respectively, were taken from Rinsaka et al. [82]
where alternative, non-Bayesian models were proposed. The third data set, referred
to hereafter as DS3, was presented by Dalal and McIntosh [19]. All data sets consist
of number of failures in given time periods and therefore can be analyzed using Type
II models. DS1 and DS2 contain 54 and 38 failure counts observed during 17 and 14
weeks, respectively, along with the values of three testing effort data: execution time
(CPU hr), failure identification work (person hr) and computer time-failure identifica-
tion (CPU hr) which we shall treat as software metrics. DS3 contains approximately
400000 new or changed non-commentary source lines (NCNCSL), the staff time spent
testing and the number of faults found. In order to undertake Bayesian inference for
the models described before, prior distributions for the GP parameter σ2 and hyperpa-
rameters θ = (ρ2

1 , . . . ,ρ
2
k ,η

2) must be defined. As is typical in such problems, we shall
assume independent, proper but relatively uninformative inverse gamma, IG(α,β ),
priors, where α = β = 0.001. In all cases, our approach was implemented using the
MCMC algorithm outlined in Subsection 4.3.3 with 10000 iterations to burn in and
50000 iterations in equilibrium.

RESULTS FOR DS1

Various models based on both linear regressions and on the use of Gaussian pro-
cesses, with different software metrics as inputs, were considered for DS1. Table 4.1
shows the estimated values of the DIC3 criterion from fitting various regression mo-
dels for f (left hand side) and GP priors (right hand side) to these data. Note that
many other Poisson regression models were also applied but performed worse than
the optimal model presented here.

From Table 4.1, it can be seen that our models can give the smallest DIC3, i.e.,
our models fit the data reasonably well. The optimal model according to the DIC3

criterion is the GP model that uses all three software metrics, although various GP
based models give similar results. The estimated mean number of failures and a 95%
credible interval given the GP(EFC) model for the 17 weeks of DS1 are illustrated in
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Table 4.1: DIC3 criterion for different type II models for DS1

Model DIC3 Model DIC3

β0 +βCxC 88.9387 GP(C) 59.5539
β0 +βExE 86.5568 GP(E) 59.3764
βFxF 67.9521 GP(F) 58.8286

β0 +βExE +βCxC 88.6426 GP(EC) 58.9651
βExE +βFxF 69.2479 GP(EF) 58.7668
βFxF +βCxC 68.5449 GP(FC) 59.0388

βExE +βFxF +βCxC 70.1835 GP(EFC) 58.5152

Figure 4.1. The model appears to estimated the observed data very well and in all
cases, the observed value falls within the 95% predictive interval.
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Figure 4.1: Estimated mean number of failures and 95% intervals for DS1.

In order to study the predictive capacity of the GP model, we perform one step
prediction and following Rinsaka et al. [82], we shall consider training sets consisting
of (approximately) the first 50% and 75% and 90% of the sample, that is 9, 13 and
15 data respectively so that the test sets consist of 8, 4 and 2 data, respectively. We
then measure the predictive capacity of our models using the prediction squared error
(PSE) in each case. Table 4.2 compares the predictive squared error performance of
the three models with the smallest DIC3s calculated earlier, that is GP(F), GP(EF) and
GP(EFC) with the proportional intensity PIM(·,·) model proposed by Rinsaka et al.
[82], where the first component represents the metrics used (E = execution time, C
= failure identification work and F = computer time-failure identification). In Table



96 CHAPTER 4. MODELS WITH SOFTWARE METRICS AS COVARIATE

4.2, one sees NC in some cases, it means that the algorithms of the PIM model do not
converge, in spite of their computational efficiency (see Shibata et al. [90]).

Table 4.2: Prediction squared errors multiplied by 100 for DS1

Model 50% 75% 90%

PIM(F, G) 143 1.0 2.0
PIM(F, W) 7 2.0 4.0
GP(F) 4.73 2.53 1.60
PIM(EF, W) 11.0 2.0 3.0
GP(EF) 8.89 1.6 3.65
PIM(EFC, W) NC 2.0 1.0
GP(EFC) 12.51 5.16 0.25

As seen from Table 4.2, the GP and PIM models show similar PSE performance
for this data set. Note that many other PIM models were also applied but performed
worse than the models presented in Table 4.2. Finally, Figure 4.2 shows the behavior
of predicted number of faults from the 75% observation point with DS1 of the three
GP based models with the smallest DIC3s.
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Figure 4.2: Predicted number of failures based on test set 2 (75%) for DS1.

The predicted number of faults appear reasonable.

RESULTS FOR DS2
Here we use the model with the smallest DIC3 value, that is, GP(EFC), to compute

the estimated mean number of failures and a 95% credible interval for the 14 weeks
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of DS2. Figure 4.3 shows that this model estimates reasonably well the observed data,
and also, the observed value in all weeks falls within the 95% predictive interval.
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Figure 4.3: Estimated mean number of failures and 95% intervals for DS2.

Another three experiments have been performed using data DS2. In this case, the
data were divided into training sets of size 7, 10 and 12 and test sets of size 7, 4 and 2
respectively. We measure the predictive capacity of the three models with the smallest
DIC3 in Table 4.1, and then, we compare these models with the PIM model. Table 4.3
presents the prediction error results multiplied by 100 for DS2. As before, NC means
that the algorithms of the PIM model do not converge.

Table 4.3: Prediction squared errors multiplied by 100 for DS2

Model 50% 75% 90%

PIM(F, E) 227 12 4
PIM(F, G) 15 23 5
GP(F) 3.71 9.06 3.88
PIM(EF, W) 475 32 3
PIM(EF, G) 2702 15 2
GP(EF) 20.71 2.31 1.53
PIM(EFC, W) NC 36 4
PIM(EFC, E) NC 10 4
GP(EFC) 16.61 3.31 1.80

For DS2, it is clear that our model is better than PIM model. The largest difference
can be seen in the first experiment from 50% observation point. However, the pre-



98 CHAPTER 4. MODELS WITH SOFTWARE METRICS AS COVARIATE

diction of both models is very similar in the third experiment where the observation
point is 90%. Figure 4.4 graphs the cumulative number of failures for the real data DS2
and gives the GP regression prediction from the 75% observation point.
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Figure 4.4: Predicted number of failures based on test set 2 (75%) for DS2.

RESULTS FOR DS3
We shall consider three training sets for DS3 consisting of 99 (50%), 149 (75%) and

178 (90%) data, and three test sets consist of 99, 49 and 20 data, respectively. We then
compute the estimated values of the deviance information criterion of our model using
the new or changed noncommentary source lines (NCNCSL) as covariate. In order to
study whether software metrics provide information to the model, we compare the GP
model with two classical NHPP-SR models defined in Subsection 1.5.2. In particular,
we shall consider a Bayesian approach to the GO model and the DU model as follows,

Ni | a,b∼ P(Λ(ti))

a∼ G(αa,βa)

b∼ G(αb,βb),

where Λ(t) is defined in (1.5.13) for the GO model and in (1.5.15) for the DU model.
From Table 4.4, it can be seen that our model can give the smallest DIC3 value,

i.e., in the estimation of software failure data is appropriate to use software metrics
information. We also perform one step prediction of the GP model using the software
metric NCNCSL. Figures 4.5a, 4.6a and 4.7a plot the cumulative number of failures,
observed and predicted, against the cumulative staff days for the three experiments,
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Table 4.4: DIC3 criterion for DS3

Model 50% 75% 90%

GP(NCNCSL) 299.80 517.90 625.73
GO-SRM 690.81 1.0786e+003 1.2929e+003
DU-SRM 694.12 1.0744e+003 1.3161e+003

50%, 75% and 90% observation point, respectively. Figures 4.5b, 4.6b and 4.7b plot the
last 20 cumulative number of failures, observed and predicted, for the three experi-
ments, respectively.
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(b) the last 20 data

Figure 4.5: Predicted number of failures for DS3 and 50% observation point
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Figure 4.6: Predicted number of failures for DS3 and 75% observation point
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Figure 4.7: Predicted number of failures for DS3 and 90% observation point

4.4. CONCLUSIONS AND EXTENSIONS

In this chapter, we have shown how to combine software metrics data with failure
counts data to improve the predictions of failure numbers of a software program using
a Bayesian approach via Gaussian processes.

A number of extensions are possible. Firstly, in this paper we have considered the
case were we have metrics and fault data and as we noted earlier, it is straightforward
to extend the new type II model to the case of type I models.

Secondly, an important practical problem is what to do when not all metrics are
available at all time periods. A reasonable approach to this would be to consider
putting a prior distribution over the possible metric values when, given the observed
data, the missing values could be easily sampled from the posterior distribution and
incorporated within the MCMC algorithm outlined here.

Thirdly, many alternative approaches to modeling the function f could be consi-
dered. One possibility is to use spline functions, see e.g. Van der Linde [98] and
another alternative would be to apply neural networks, see e.g. Su and Yuang [94] for
a recent application in the software reliability context.

Work is currently underway on the above extensions.



CHAPTER 5

Conclusions and contributions of this thesis

This chapter describes the benefits arising from this thesis and the contributions
that we have made to the fields of software reliability and stochastic orderings. The
purpose of this thesis, as stated in the introductory chapter, was to study under what
conditions a software system is reliable from a statistical point of view. To do this we
have showed the relationship between the random variables that define software fai-
lure times, namely, times to software failure and interfailure times, and some statistic
models, such as counting processes and models of ordered random variables. In the
following we summarize the contributions of this thesis.

ò We have studied stochastic properties of spacings from order statistics of he-
terogeneous exponential random variables, due to the relationship between spa-
cings and the times elapsed between successive software failures.

ß In the one sample problem, we have shown that the conjecture of K&K [43]
is true for n = 4 and we have established hazard rate ordering between the
second and third normalized spacings. We also have obtained these results
for simple spacings.

ß We have derived the conditions under which the spacings (both, simple
and normalized) from two heterogeneous exponential random samples are
ordered according to the likelihood ratio order. We have illustrated these
results with an application to multiple-outlier models.

ò Motivated by the relationship between sequential order statistics and the first n

101
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epoch times of a nonhomogeneous pure birth process, we have studied stochas-
tic properties and ageing notions of SOS.

ß We have investigated the preservation of some ageing notions, such as IHR,
IHRA, DHRA, from the underlying distribution function to the SOS.

ß We have investigated conditions on the underlying distribution functions
on which the SOS are based, in order to obtain stochastic comparisons be-
tween successive SOS.

ß We have applied the results obtained for SOS to epoch times of NHPB pro-
cesses.

ß We have tried to developed a NHPB process approach to software relia-
bility modelling under classical framework, but in this case the NHPB-SR
model reduces to a NHPP-SR model.

ò We have developed an alternative approach to software reliability models based
on nonhomogeneous Poisson processes with covariate information in the form
of software metrics such as code length, execution times will be generated each
time the software is corrected.

ß We have defined these new models which are useful to predict software
failure for both Type I and Type II software reliability models.

ß The models were constructed under Bayesian framework and the posterior
inference was performed using Markov Chain Monte Carlo methods. The
conditional approximation was implemented for Matlab which provides an
efficient user interface and a wide variety of ready made toolboxes.

ß Three real data case studies has been presented to illustrate the methodo-
logy developed.

Future research plans and extensions of the work presented in this thesis are in-
cluded in each chapter, specifically in Sections 2.4, 3.7 and 4.4.
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