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ABSTRACT

An inherent characteristic of Wireless Sensor Networks is their ability to operate

with autonomy when sensor node devices are resource-constrained. Optimizing energy

consumption with the goal of achieving longer sensor network lifetime is a major challenge.

This thesis focuses on energy-efficient strategies based on the reduction of communication

processes, the most energy expensive tasks by far. In particular, we analyze selective

communication policies that allow sensor nodes to save energy resources at the same time

that can assure the quantity and quality of the transmitted information.

This thesis proposes selective communication strategies for energy-constrained Wireless

Sensor Networks, which are based on statistical models of the information flowing through

the nodes. Assuming that messages are graded according to an importance/priority value

(and whose traffic can be statistically modeled) and that the energy consumption patterns of

each individual node are known (or can be estimated), the design and evaluation of optimal

selective communication policies that maximize the quality of the information arriving to

destination along the network lifetime are analyzed. The problem is initially stated from

a decision theory perspective and later reformulated as a dynamic programming problem

(based on Markov Decision Processes). The total importance sum of the transmitted, for-

warded or finally delivered messages are used as performance measures to design optimal

transmission policies. The proposed solutions are fairly simple and based on forwarding

thresholds whose values can be adaptively estimated. Simulated numerical tests, including

a target tracking scenario, corroborate the analytical claims and reveal that significant energy

saving can be obtained to enlarge sensor network lifetime when implementing the proposed

schemes.





RESUMEN EXTENDIDO EN CASTELLANO

INTRODUCCIÓN Y MOTIVACIÓN

Recientemente, las redes de sensores inalámbricas (Wireless Sensor Network, WSN) han

recibido una gran importancia debido a su enorme potencial para mejorar y cambiar la forma

en que las personas interactúan con el entorno. La naturaleza peculiar de las redes de sen-

sores ha dado lugar a una intensa actividad investigadora en diferentes campos (electrónica,

procesado de señal, comunicaciones) dado el potencial de sus aplicaciones y el gran número

de desafı́os tecnológicos que plantean.

En particular, el diseño de redes de sensores a gran escala, compuestas de dispositivos

que deben funcionar con autonomı́a y alimentados únicamente a través de baterı́as (o, quizás,

obteniendo energı́a del entorno), plantea muchos retos que no pueden resolverse con solu-

ciones clásicas que funcionan para otro tipo de redes inalámbricas.

En concreto, la energı́a es un recurso escaso que juega un papel primordial en este tipo de

redes ya que puede influir crı́ticamente en las capacidades y condiciones de funcionamiento

de los sensores. Por eso, buena parte de la investigación reciente en redes de sensores ha

estado orientada a la búsqueda de soluciones hardware y software para optimizar la gestión

y el consumo de energı́a en todas las capas de la WSN y prolongar ası́ el tiempo de vida

de la red. Gran parte de estas técnicas han estado orientadas a reducir el gasto energético

global en comunicaciones (transmisión o recepción de información), al ser éstas las activi-

dades que consumen mayor energı́a, aunque otras actividades del sensor (captura de datos

y procesamiento) también implican un gasto energético, aunque mucho menor. Por eso,

todas las decisiones del sensor que impliquen procesos de comunicación deben de tener en

consideración los costes energéticos involucrados, pudiendo influir sobre las decisiones del

nodo [Lee et al., 2006] or [Chelius et al., 2005].

Tı́picamente, los nodos de una red son forzados a transmitir cualquier señal capturada

por sus sensores, o a reenviar cualquier señal bajo demanda de un nodo sensor vecino,

mientras tengan baterı́as, lo que da lugar a una pérdida de capacidad para administrar sus

propios recursos (y la consecuente ineficiencia en la utilización de la red). A pesar de la

gran variedad de estrategias propuestas en el estado del arte para reducir el coste de las

comunicaciones en las WSNs, apenas se han propuesto estrategias de ahorro de recursos

basadas en la propia naturaleza de la información que se transmite, o en las expectativas
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de disponibilidad de recursos de los sensores que participan en la comunicación en cada

momento.

Habitualmente, la red trata equitativamente la información de los diferentes no-

dos sensores. Sin embargo, existen numerosas situaciones donde cabe atribuir a cada

mensaje a transmitir (o reenviar) un nivel de importancia [Wood and Stankovic, 2002],

prioridad [Muraleedharan et al., 2006], utilidad [Athanassoulis et al., 2007] o relevancia

[Wischhof et al., 2003]. Si nos centramos en estos escenarios, se puede asignar a los

mensajes un indicador de importancia que refleje la prioridad del mensaje, la relevan-

cia de la información, o un determinado nivel de Calidad de Información (Quality of

Information, QoI). En el contexto de redes de sensores, se pueden encontrar ejem-

plos en diferentes campos: seguridad (informe de ataques [Wood and Stankovic, 2002]),

atención médica (alertas crı́ticas [Shnayder et al., 2005]), o sistemas de reconocimiento de

caras [Muraleedharan et al., 2006], por citar algunos. En estos escenarios es donde cabe

plantearse la cuestión de la viabilidad y eficiencia de dotar a los nodos de la red de capaci-

dad para decidir sobre la conveniencia de la transmisión de un mensaje por la red, o por el

contrario, su descarte en base a la importancia de su contenido, de los recursos energéticos

del nodo y de sus patrones de consumo. Aparece, por tanto, el concepto de comunicaciones

selectivas que consiste en reducir el tráfico menos importante de la red y reservar mejores

recursos para información con mayor importancia (prioridad), permitiendo una mejor uti-

lización de las capacidades de la red.

Hay algunos trabajos publicados en esta lı́nea, ya sea a través del uso de heurı́sticos (que

se basan tı́picamente en la modificación de un algoritmo existente) o bien teóricos. La idea

de descarte de mensajes puede considerarse implı́cita en redes de sensores orientadas a sis-

temas de alertas (donde los sensores únicamente envı́an los datos que son indicios de eventos

relevantes), o en sistemas de seguimiento (donde los sensores transmiten la información que

supone un indicio de la presencia de un blanco en las proximidades).

Las propuestas teóricas basan el diseño en la resolución de un problema de optimización

concreto. Ası́, el dilema entre transmitir y no hacerlo es la base de las redes de censores

(censor networks) en detección descentralizada, que se remontan al trabajo original de Rago

[Rago et al., 1996]. Los sensores transmiten solamente observaciones informativas al centro

de fusión, y eliminan aquellos datos (no informativos) cuya verosimilitud local (basada en
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datos disponibles por el nodo) está dentro de un cierto intervalo, cuyo rango se selecciona

para satisfacer unas restricciones a priori sobre la máxima tasa de comunicaciones permitida

para el nodo. En [Patwari and Hero, 2003], advirtiendo que la tasa de transmisión no es una

restricción adecuada para redes con limitaciones superiores en energı́a que en capacidad, se

reemplaza la restricción sobre la tasa de bit por restricciones sobre la probabilidad de trans-

misión. Por estos mismos motivos, en el trabajo desarrollado en [Appadwedula et al., 2005]

se impone una cota sobre el coste energético medio global (en toda la red) asociado a una

detección.

En estos ejemplos, el ahorro energético se impone, directa o indirectamente, estable-

ciendo cotas sobre la tasa de bit, la tasa de envı́os, el coste energético de cada tarea u otras,

pero el valor de dicha cota es un parámetro libre cuya asignación, en general, no es tri-

vial porque estos parámetros especifican un punto de equilibrio entre las prestaciones del

detector y el ahorro energético.

Por eso, en esta Tesis Doctoral se plantea como cuestión fundamental la búsqueda de

un compromiso entre prestaciones de la red de sensores y el ahorro energético, donde está

presente el problema de determinar la importancia relativa del consumo energético frente

al valor de las actividades soportadas por la red. Para ello, se va a suponer que los datos

están graduados de acuerdo a un valor que cuantifique su importancia (que se puede estimar

localmente) y se conocen (o estiman) los patrones de consumo energético de cada sensor

con la finalidad de maximizar las prestaciones globales de la red.

El problema de optimización de las prestaciones de una WSN durante su tiempo de vida,

que además tenga en cuenta las limitaciones energéticas, se puede plantear matemáticamente

utilizando el formalismo de los Procesos de Decisión de Markov (Markov Decision Pro-

cesses, MDP) [Puterman, 2005], sus generalizaciones [Kaelbling et al., 1998]), o los mode-

los de aprendizaje por refuerzo [Sutton and Barto, 1998].

Los MDP’s se han aplicado recientemente a la gestión eficiente de energı́a en redes

de sensores. En [Williams et al., 2005b], [Williams et al., 2005a], [Williams et al., 2007]

se plantea el compromiso entre el valor de la información contenida en un conjunto de

medidas de red y el coste de capturarlas, procesarlas y enviarlas al nodo destino. Por

ejemplo, se propone el uso de MDPs para resolver el problema de asignación del nodo

lı́der (aquel que centraliza la recolección de los datos) en aplicaciones de seguimiento
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de blancos. También se utilizan como herramienta para encontrar un compromiso entre

ahorro de energı́a en la agregación de datos y retardo de transmisión [Ye et al., 2009], o

para optimizar una función objetivo que combina consumo de potencia, caudal y retardo

[Munir and Gordon-Ross, 2009]. La teorı́a de MDPs proporciona un formalismo común

para diferentes situaciones que pueden resolverse por procedimientos similares, ya que se

basan en resolver un problema de optimización que caracteriza a una polı́tica de acciones

óptimas. Dado que los parámetros estadı́sticos de un MDP raramente se conocen, y por

tanto el diseño a priori de la estrategia óptima es pocas veces viable, en esta Tesis Doctoral

se plantean dos alternativas: estimar los parámetros del modelo o bien aplicar técnicas de

aprendizaje estadı́stico.

OBJETIVOS

De forma general, el objetivo principal de la Tesis consiste en diseñar y evaluar proce-

dimientos que permitan dotar a los nodos de una red de sensores de capacidad para tomar

decisiones autónomas sobre el tratamiento de los datos recibidos o detectados por el sensor,

basándose en información capturada del entorno o recibida a través de otros nodos. Además,

se pretende que las decisiones sean energéticamente eficientes buscando en todo momento

un compromiso entre las prestaciones globales de la red y la prolongación de su tiempo de

vida.

En lugar de utilizar aproximaciones heurı́sticas, el objetivo de esta Tesis Doctoral con-

siste en obtener resultados analı́ticos que elaborados sobre una base matemática proporcio-

nen las pautas básicas para diseñar esquemas de comunicaciones selectivas que aseguren

una QoI. Para ello, se hará uso de modelos de tipo MDP o sus generalizaciones.

De este modo, para extender el tiempo de vida de la red y optimizar las prestaciones de

la misma, los nodos deberán sopesar dos factores: (i) los potenciales beneficios de transmi-

tir información; y (ii) el coste de los subsiguientes procesos de comunicación. Para ello, el

primer paso consistirá en cuantificar (o estimar) adecuadamente tanto los beneficios como

los costes de la transmisión. Esto es posible en la práctica debido a que, por un lado, la

energı́a consumida en cada tarea de comunicación (coste) está normalmente bien caracte-

rizada y, por otro lado, la existencia de escenarios donde los mensajes están graduados de

acuerdo a un indicador de importancia (beneficio) es habitual. A partir de esta información,
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los nodos tomarán decisiones de forma autónoma sobre el envı́o de los mensajes basándose

en su importancia, permitiéndoles ası́ ahorrar energı́a al adaptar sus decisiones al tráfico de

importancias.

En esta Tesis Doctoral se abordará el diseño de polı́ticas de comunicación eficientes en

energı́a para redes de sensores, restringiéndose a aplicaciones donde: (i) la importancia de

los mensajes se puede cuantificar apropiadamente, y (ii) los mensajes de baja importancia

se pueden descartar eventualmente. De esta forma, la idea de comunicaciones selectivas

se basa en el descarte de mensajes de baja importancia para ahorrar energı́a que se pueda

utilizar para la transmisión de mensajes más importantes que lleguen en un futuro. Para

tomar la decisión sobre la transmisión de los mensajes, los nodos tendrán en cuenta factores

como los patrones de consumo en los diferentes estados del nodo, las baterı́as disponibles,

la importancia de los mensajes recibidos, la distribución estadı́stica de las importancias de

los mensajes o el comportamiento de los nodos sensores vecinos.

El objetivo general se puede dividir en objetivos más especı́ficos:

• Identificar los aspectos clave a tener en cuenta en la toma de decisiones sobre la

transmisión de mensajes con la finalidad de reducir el consumo de energı́a en las

redes se sensores. Para ello, es necesario tener una visión conjunta de las propuestas

presentes en el estado del arte que nos permitirá situar y describir el ámbito de la

Tesis.

• Definir un modelo adecuado para los nodos sensores, por lo que será necesario deter-

minar las caracterı́sticas esenciales de los nodos para incluirlas en el modelo.

• Proponer esquemas óptimos de comunicación selectiva para diferentes escenarios de

acuerdo a las necesidades particulares de cada caso. Se pretende diseñar un esquema

óptimo de transmisión selectiva y su posterior generalización, cumpliendo en todo

momento los siguientes requisitos. En primer lugar, optimizar el consumo de energı́a

a la vez que se mantengan las prestaciones de la red (incluida la QoI). En segundo

lugar, que los procedimientos diseñados no conlleven una elevada complejidad y un

alto coste computacional. Además, los nodos deberán tomar las decisiones sobre

nuevos mensajes en el instante en que lleguen.
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• Evaluar los esquemas propuestos (tanto teórica como experimentalmente), identifi-

cando las ventajas y desventajas de cada tipo de polı́tica de comunicación selectiva.

• Analizar la idoneidad de las poĺıticas de comunicación selectiva diseñadas cuando

se aplican a un escenario real, el seguimiento de blancos.

CONTRIBUCIONES

La Tesis Doctoral se ha centrado en desarrollar un formalismo matemático para analizar

el problema de la gestión autónoma y automática de los recursos energéticos de cada uno de

los nodos de una red de sensores y en estudiar el impacto que las limitaciones de recursos

de un nodo tienen sobre sus procesos de comunicación e interacción con el entorno, espe-

cialmente cuando los mensajes tienen asignado un valor de importancia o prioridad y, por

tanto, se pueden abordar polı́ticas de comunicación selectiva. En particular, se han derivado

y evaluado estrategias óptimas de comunicación selectiva con la finalidad de ahorrar re-

cursos energéticos en redes de sensores con restricciones de energı́a al mismo tiempo que

se ha garantizado una QoI. Los esquemas óptimos de transmisión (y reenvı́o) selectivo de

mensajes desarrollados se han basado en modelos estadı́sticos del tráfico de las importan-

cias (prioridades) de los mensajes. Ası́, en el diseño de las polı́ticas de reenvı́o selectivo

los sensores han tenido en cuenta tanto factores locales, como la energı́a que los nodos con-

sumen en los diferentes estados del nodo (transmisión, recepción y escucha), las baterı́as

disponibles en cada instante, la importancia de los mensajes recibidos (para asegurar una

QoI a los usuarios) o el modelo estadı́stico de las importancias de los mensajes; además de

factores no locales, como es la información sobre el comportamiento de los nodos vecinos.

A continuación se resumen las principales contribuciones de esta Tesis Doctoral, de

forma que cada una de ellas se corresponde con un capı́tulo de la memoria de la Tesis.

Inicialmente, se ha caracterizado el sensor a través de un modelo que incluye todos los

aspectos relevantes de un sensor real. Además de proponer un modelo estocástico de con-

sumo de energı́a para poder abarcar una amplia variedad de escenarios, el nodo se ha mode-

lado mediante un vector de estados (una de sus componentes es la energı́a disponible (nivel

de baterı́as) mientras que la importancia del mensaje determina la posible recompensa por

la acción de transmitir). Es preciso mencionar que el modelo de sensor es una abstracción

de la realidad que considera ciertas simplificaciones: transmisiones perfectas, conocimiento
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de los recursos energéticos en cada instante y la distribución de importancias de los men-

sajes, entre otras. Algunas de estas suposiciones no son crı́ticas, de forma que el modelo

se puede modificar para incorporar escenarios más realistas. Sin embargo, otras plantean

desafı́os siempre que se quiera implementar esquemas de decisión selectiva prácticos. Pero,

en cualquier caso, el modelo de sensor captura el comportamiento esencial de una polı́tica

de comunicación selectiva y puede ser el punto de partida para otros diseños más apropiados

para escenarios especı́ficos.

Posteriormente, bajo la suposición de que los mensajes están graduados con un valor

de importancia e inspirándose en la teorı́a de decisión bayesiana, se ha planteado la trans-

misión selectiva como un problema de decisión con costes (determinados por los consumos

energéticos) y beneficios (determinados por las importancias de los mensajes), dando lugar a

un esquema de transmisión selectiva basado en la minimización de un coste medio. La regla

de decisión obtenida promovı́a la transmissión y reenvı́o de mensajes importantes mientras

que descartaba los mensajes menos importantes. El esquema obtenido ha demostrado que

filtrar los mensajes según su importancia puede ser eficiente cuando se pretende maximizar

la eficiencia global de la red, medida en términos de la importancia acumulada de todos los

mensajes llegados a destino durante su tiempo de vida. La regla de decisión se ha aplicado

al diseño de dos nuevos algoritmos de encaminamiento, LPGR y Q-PR. En ellos ha quedado

patente que los nodos sensores son capaces de aprender de decisiones de encaminamiento

tomadas en el pasado para adaptar sus decisiones a condiciones futuras haciendo un uso

eficiente de la energı́a.

Sin embargo, la aproximación anterior era inadecuada ya que el diseño del decisor no

tenı́a en cuenta el carácter secuencial del problema. De hecho, una consecuencia indirecta

es la aparición de un parámetro libre, que pondera el peso relativo del consumo energético

respecto a la importancia del mensaje, cuyo valor debe asignarse a priori. Por eso, poste-

riormente se ha reformulado y resuelto el problema de la transmisión selectiva como un pro-

blema de decisión iterativo, determinando, a través de técnicas de programación dinámica

estocástica, el decisor óptimo que maximiza la suma de importancias de todos los mensajes

transmitidos por un nodo. En este caso, el equilibrio entre la minimización de los gastos

de energı́a y la maximización de la suma de importancias se determina automáticamente,

resultando la decisión óptima como una comparación entre la importancia del mensaje y un
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umbral variante en el tiempo. Además, la ganancia del esquema de transmisión selectiva

dependı́a de los gastos de energı́a asociados a cada estado del nodo, entre otros factores.

Por otro lado, se han desarrollado esquemas prácticos, que aunque son subóptimos, operan

bajo condiciones menos exigentes que los óptimos. Ası́, el esfuerzo se ha dirigido en tres

direcciones: 1) el análisis de polı́ticas óptimas de transmisión para varias distribuciones

de importancias estacionarias; 2) el diseño de un esquema de transmisión con umbral in-

variante que conllevaba optimalidad asintótica; y 3) el diseño de un algoritmo adaptativo

que estimaba la distribución de importancias a partir de los mensajes realmente recibidos

(o sensados). El análisis y evaluación de los distintos escenarios ha demostrado que las

estrategias de transmisión selectiva mejoran las prestaciones de la red, medidas como la

suma de importancias de los mensajes que llegan a destino, y el tiempo de vida de la red.

Aunque no se hace explı́cito, el modelo utilizado es esencialmente un MDP, donde su uso

resuelve completamente, al menos desde el punto de vista teórico, algunas dificultades de

otras aproximaciones no secuenciales.

La optimización del transmisor selectivo se ha realizado a nivel de nodo, ya que ma-

ximiza la suma de importancias de los mensajes transmitidos por cada nodo, ignorando si

estos mensajes enviados son seguidamente reenviados por sus vecinos o no, lo que con-

duce a algunas ineficiencias cuando se implementan en redes multisalto, porque algunos

nodos pueden desperdiciar energı́a enviando mensajes que no son retransmitidos. Además,

tampoco se atendı́a al destino final de los mensajes enviados, de forma que no se estaban

garantizando las prestaciones a nivel global. Por este motivo, se abordó la generalización

del modelo teórico anterior, posibilitando que los nodos usaran información no local, tanto

de la vecindad como del destino, e incorporando dicha información al modelo estadı́stico

para poder analizar su impacto en el comportamiento de la red. Con suposiciones menos

restrictivas que en el caso anterior, se han diseñado y desarrollado esquemas de reenvı́o se-

lectivo para tres escenarios diferentes: 1) cuando los sensores maximizan la importancia

de sus mensajes transmitidos, que coincide básicamente con el modelo anterior de trans-

misión selectiva, aunque usando un modelo de consumo de energı́a más general; 2) cuando

los sensores maximizan la importancia de los mensajes que son realmente reenviados por

sus vecinos (optimización local); y 3) cuando los sensores maximizan la importancia de los

mensajes que llegan de forma exitosa al destino (optimización global). Resultó especial-
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mente importante la generalización de los resultados a costes energéticos estocásticos, ya

que permitı́a incluir, por ejemplo, la idea de que los nodos podı́an consumir una cantidad

de energı́a diferente en cada estado como consecuencia del tiempo que se permaneciera en

ellos o de las distancias entre sensores (mayor gasto de energı́a cuanto más lejos estuvieran

los nodos que se comunicaban). Desde una perspectiva práctica, el segundo escenario de

los mencionados anteriormente, que es algo más complejo que el primero, puede ser el can-

didato para implementarse en la mayorı́a de los escenarios prácticos, ya que además requiere

menos señalización que el escenario de optimización global.

En una aplicación práctica de este modelo se plantea si los criterios de optimización

utilizados son o no adecuados para obtener buenas prestaciones desde el punto de vista de la

aplicación. Por este motivo, se aplicó la polı́tica de comunicación selectiva a un escenario

de seguimiento de blancos. Se ha comprobado que maximizar la suma de importancias

permite mantener un error cuadrático medio bajo en la estimación de la posición de

los blancos al tiempo que prolonga el tiempo de vida de la red. Adicionalmente, se ha

demostrado su buen funcionamiento cuando el reenvı́o selectivo es combinado con otras

técnicas de reducción de datos (como la agregación o fusión).

LÍNEAS FUTURAS

Finalmente, se indican futuras lı́neas de investigación que permiten extender el trabajo

iniciado en esta Tesis Doctoral.

• Los teoremas propuestos en la Tesis se basan en la hipótesis de independencia entre

observaciones (la secuencia de importancias es estadı́sticamente independiente). Esto

es de gran utilidad porque simplifica el diseño algorı́tmico y, en general, aumenta la

correlación entre la optimización de criterios aditivos (como la suma de importancias)

y la mejora de las prestaciones globales de la aplicación. Sin embargo, aunque existen

argumentos a favor de la hipótesis de independencia de observaciones en detección

descentralizada, [Appadwedula et al., 2005], en un contexto general puede ser falsa,

a causa de la posible correlación temporal y espacial entre observaciones.

Desde el punto de vista del diseño de transmisores selectivos basados en MDPs, y

aceptando el criterio de maximización de la suma de importancias, la hipótesis de in-

dependencia de importancias no es inherente al modelo. La teorı́a de MDPs solamente
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requiere que la secuencia de importancias sea markoviana, pero no independiente,

y por tanto, los esquemas de comunicación selectiva que se han propuesto pueden

generalizarse a observaciones dependientes, aunque en general los sensores deberán

incorporar algún mecanismo de estimación de la correlación entre observaciones.

• Tı́picamente, los resultados obtenidos a través de simulación no se pueden aplicar

directamente a motas reales debido a la frecuente aparición de problemas asociados

a su implementación. Por eso, para constatar el verdadero potencial de las estrate-

gias de comunicación selectiva y determinar, por tanto, su verdadero interés práctico,

es imprescindible su implementación en plataformas reales. Además, esto nos per-

mitirı́a analizar cómo se ajustan los datos a las predicciones de los modelos teóricos

y determinar qué parámetros tienen mayor influencia sobre las prestaciones finales.

En esta lı́nea se han obtenido algunos resultados preliminares, [Hansen et al., 2010].

En particular, se han aplicado los algoritmos de transmisión selectiva sobre sensores

TmoteSky [Tmo, 2009] con sistema operativo TinyOS [Levis et al., 2005] y un proto-

colo LPL (Low Power Listening) en la capa MAC.

• La aplicación de las estrategias de comunicación selectiva al seguimiento de blancos

tiene aspectos cuestionables y mejorables. En particular, la elección de la función

de importancia, basada en la potencia de señal detectada por el sensor, es sencilla

y no tiene en cuenta la correlación con medidas previas. Una alternativa serı́a una

elección basada en medidas de entropı́a condicional [Williams et al., 2007], donde la

importancia mide esencialmente el grado de innovación del nuevo mensaje respecto a

los anteriores.

• Las polı́ticas de comunicación selectiva desarrolladas incluyen algunos parámetros li-

bres, que están relacionados con la manera en que los nodos adquieren información

sobre las polı́ticas de reenvı́o de los vecinos y la frecuencia con la que los nodos

comunican esta información. En la Tesis, la asignación de estos parámetros se ha re-

alizado a través de la exploración de diferentes valores. Sin embargo, la optimización

automática de estos parámetros tiene interés, fundamentalmente desde un punto de

vista práctico.

• El análisis teórico ha permitido determinar una ecuación (de solución única) que es-
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tablece el valor que, en caso de existir, debe tener el umbral asintótico. Nos podemos

plantear si dicha existencia es una propiedad general, pero la respuesta es negativa:

bajo ciertas condiciones, de escaso interés práctico, la función del umbral no con-

verge a una constante, sino a una función de tipo oscilatorio. Hay, por tanto, un doble

trabajo que realizar en esta lı́nea: (i) analizar el comportamiento del umbral en estos

casos, y (ii) determinar bajo qué condiciones puede garantizarse la existencia de un

umbral asintótico. Sin embargo, esta lı́nea de investigación tiene interés teórico, pero

no cabe esperar de ella consecuencias prácticas, en la medida en que los casos de no

convergencia son inusuales.

• El modelo desarrollado en esta Tesis no es aplicable a situaciones en las que los nodos

pueden trabajar de forma indefinida en el tiempo (como es el caso de los sensores re-

cargables), porque existen infinitas estrategias óptimas de suma de importancias. Para

resolver este problema, serı́a necesario reemplazar el criterio de suma de importancias

por alguna medida basada en promedios. La dificultad estriba no tanto en formular

matemáticamente el modelo como en resolver el problema de optimización resultante

para determinar la estrategia de transmisión óptima.

Lei [Lei et al., 2009] ha propuesto recientemente un modelo de MDP que puede apli-

carse a escenarios con sensores recargables o hı́bridos. Para resolver el problema de

optimización, ha optado por discretizar todas las variables relevantes del problema:

en particular, la importancia de los mensajes y el estado del nodo. Sin embargo, este

modelo tiene algunas limitaciones importantes: está orientado a redes con un único

salto, no es adaptativo (supone que los parámetros energéticos y de tasa de recepción

de mensajes son conocidos a priori), supone que los gastos energéticos de transmisión

son constantes y es sensible a errores de discretizacion. Por eso, la adaptación del

modelo propuesto a este tipo de sensores es una lı́nea futura de gran interés.
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Tania, Miguel Ángel, Belén, Isa, Pablo, Jorge, Mercedes, mi compi de piso Beatriz, Alicia,

Alberto...

Finalmente, no hubiera llegado hasta aquı́ sin la ayuda de mis padres. Sin su apoyo, sin
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CHAPTER 1

INTRODUCTION

This chapter introduces the problem approach and the precedent related work of the state of

the art, the motivation, and it formulates the objectives of this thesis. Moreover, the outline

of the dissertation is described as well as the main contributions.

1.1 PROBLEM APPROACH

The high prominence recently given to Wireless Sensor Networks (WSNs) has been possible

thanks to their potential to enhance and change the way people interact with technology and

the world, revolutionizing many aspects of our economy and life, ranging from surveillance

and environmental monitoring, to manufacturing and business asset management, automa-

tion in the transportation and health-care industries [Zhao and Guibas, 2004]. However, the

origin lies in the users increasing demand of devices, appliances, and systems with better

capabilities and higher levels of functionality. The sensor market is extremely diverse and

sensors are used in most industries and so, sensors satisfy the continuous demand for more

sophisticated applications [Hac, 2003].

The development of Sensor Networks requires technologies from three different re-

search areas: sensing, communication and computing (including hardware, software and

algorithms) [Chong and Kumar, 2003]. The separated and combined advancements in each

of these areas have driven research in Sensor Networks and have been the key to originate

the explosive growth in both academy and industry.

1



1.1. PROBLEM APPROACH

1.1.1 Sensor Networks overview

A Wireless Sensor Network can be defined as a large-scale, ad hoc, multihop, unpar-

titioned network of largely homogeneous, tiny (hardly noticeable), resource-constrained,

low-complexity, mostly immobile (after deployment) sensor nodes that would be randomly

deployed in the area of interest [Römer and Mattern, 2004] and which communicate in short

distances either directly or through other nodes by a wireless medium. Although this first

approach is quite general and valid for a huge variety of applications (specially those re-

lated to the military domain), it does not always characterize to an increasing number of

applications.

A sensor is an autonomous electronic device with embedded data processing and com-

munication capabilities, which is capable of detecting environmental conditions such as

temperature, humidity, pressure, light, sound, vibration, motion, radiation, chemicals, pol-

lutants or the presence of certain objects [Stojmenovic, 2005]. Each sensor has one or more

sensing subsystems, an embedded processor, generally associated with a small memory for

local data processing (processing subsystem), low-power radios for data communication

(communication subsystem) and a power supply. Figure 1.1 shows the architecture of a

common wireless sensor node. Sensing circuitry measures parameters from the observed

phenomenon in the environment around the sensor and transforms them into digital signals.

Processing the information captured by sensors can help researchers to draw conclusions

about the properties of the located objects or events happening in the environment over a pe-

riod of time. Fig. 1.2 shows a typical sensor node (Mica 2 mote) developed by researchers

at University of California Berkeley.

In a WSN, a variable amount of sensor nodes ranging from hundreds to thousands

may be densely deployed either directly inside the phenomenon of interest or close to it

[Akyildiz et al., 2002]. Thus, sensors can be scattered on the ground, underground, in the

air, under water, in vehicles, on human bodies and inside structures and buildings. Once sen-

sor nodes are deployed, they require minimal external support for their functioning, since

sensor networks are designed to withstand specific conditions. Under these working con-

ditions and from application requirements and network management perspectives, sensor

network protocols and algorithms must posses self-organizing capabilities. Nodes in their

role as information sources interact with the physical environment and sense, measure and
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    Power Supply Subsystem 

Power Generator Mobilizer Location Finding  System 

Battery DC-DC Sensors ADC Radio 
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Processing 
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Figure 1.1: The architecture of a sensor node, taken from [Anastasi et al., 2009].

Figure 1.2: A sensor node (Mica2) developed by researchers at UC Berkeley, taken from

[Cro, 2010].

gather detailed information from the entities of interest, performing simple processing on

the extracted data, when required, and transmit it to remote locations, as it is shown in Fig.

1.3. Finally, the destination node (a.k.a. sink) uses data locally or communicates with the

user through conventional network services, such as the Internet. In order for sensor nodes

to accomplish their tasks, sensor nodes do not work independently, but cooperatively. As

sensor nodes are often deployed in resource-constrained environments, i.e., they are usually

battery-operated nodes, a considerable reduction in energy consumption can be easily ob-

tained from node cooperation whenever nodes act as relays with messages originated from

other nodes. Many sensing tasks require a sensor network system to process data coopera-

tively and combine information from multiple sources, despite the fact that sensors operate

autonomously.
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SINK INTERNET 
AND

SATELLITE

USER

Figure 1.3: A multihop Wireless Sensor Network where sensors collect data and route them

back to the sink and to the end user via infrastructureless architecture.

Commonly, it is used a single sink in a WSN, as depicted in Fig. 1.3. However, a more

general scenario includes multiple sinks. A larger number of sinks will decrease the prob-

ability that nodes cannot deliver their data due to the signal propagation conditions or the

presence of obstacles in the network. Therefore, the possibility of having multiple sinks en-

sures better network performance regarding the single-sink scenario (keeping constant the

density of the network), but communication protocols must be more complex and should

be designed according to suitable criteria. A common scenario where nodes require ad-

ditional sinks is underground, where multiple sinks can be located on the ground to relay

satisfactorily to the user data from sensors buried underground [Yick et al., 2008].

1.1.2 Sensor Network features

The discussion about sensor networks’ features is based on the typical characteristics and

requirements of the design space of WSNs proposed in [Römer and Mattern, 2004].

Cost and size

Typically, sensor nodes are inexpensive devices. Bearing in mind large-scale sensor net-

works, the cost of each sensor should be kept low to justify the use of sensor networks

instead of other alternatives. However, it is also possible to find sensor devices of hundreds

of euros in those networks that require few but powerful nodes.
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Similarly and depending on the application needs, nodes can vary their physical size

ranging from the almost invisibility (appropriated for military applications) to a shoe-box

size (e.g. weather stations). Both, sensor node’s size and cost constraints, have an impact on

the battery size as well as on other resources such as computing, storage and communication.

Heterogeneity

Usually, sensor networks are composed of sensor devices identical from a hardware and

software point of view. However, sensor networks composed of a variety of different devices

with different abilities, such as computing power or sensing range, are starting to appear

lately since they enhance energy capacity or communication capabilities, also increasing

network reliability and lifetime [Yarvis et al., 2005].

Network topology

Regarding network topologies, sensor networks can be structured according to the common

and basic ones, such as fully connected, star, ring, tree, bus, mesh or a combination of

them. The mesh topology is stressed since it is the most appropriate model for large-scale

WSNs. Information is usually sent via other sensors in a multihop manner towards other

sensor nodes, or eventually, to the sink. Multihop communication is expected to consume

less power than the traditional single-hop communication.

Transmission media

Generally, application requirements influence the choice of the transmission media. The

most common among the communication modalities is the use of radio links due to their

characteristics, such as a non-requiring free line-of-sight together with their low power con-

sumption and relatively small antennae for transmitting over medium ranges.

Infrastructure and deployment

Typically, a WSN has little or no infrastructure. Therefore, WSNs can be categorized into

structured or unstructured [Yick et al., 2008].

• Nodes in a structured WSN are deployed in a predefined location to provide coverage,

so that only few nodes are deployed, keeping network maintenance and management
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costs at low values. Besides, sensor nodes can only directly communicate with the

sink.

• An unstructured WSN is composed of a dense collection of sensor nodes. In this type

of WSN, nodes are usually randomly deployed (ad-hoc manner), which is specially

useful in hazardous, hostile and difficult access terrains (e.g. nodes on treetops or re-

mote mountain areas), where nodes work unattended. The ad-hoc nature of the sensor

deployment produces unpredictable patterns of connectivity and varied node density.

Nodes can directly communicate with each other, acting as transmitters or as routers,

being responsible for forwarding messages generated by other nodes up to the sink

node over multiple hops. Nevertheless, network maintenance, and managing con-

nectivity and detecting failures in particular, is more complicated than in structured

WSN.

As the process of establishing an infrastructure is costly and sometimes not feasible due

to the terrain characteristics, unstructured ad-hoc WSNs are preferred and desired for many

applications.

Coverage

Since coverage is interrelated to sensor node placement, the degree of network coverage

is determined by the number of sensors and their position in the sensor field. The exe-

cution of the sensing tasks requires an adequate sensor deployment. Mobile sensors can

adaptively reposition and organize themselves in order to have a better coverage area or a

uniform placement in the network, improving network connectivity compared with static

sensor nodes [Bartolini et al., 2008].

High dynamism

On the other hand, densely deployed sensor networks have to handle with frequent topol-

ogy changes. After the initial deployment, topology changes may be caused by changes in

nodes’ position as a consequence of their mobility (it can result from environmental influ-

ences, because sensors may be attached to or carried by mobile entities, or due to sensor

node automotive capabilities), connectivity failures or the malfunctioning of some nodes
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(such as physical damage), changes in task dynamics, battery exhaustion or alterations in

reachability because of jamming, noise, environmental interferences or moving obstacles

[Akyildiz et al., 2002]. Despite the fact that nodes may fail, network topology needs to be

built and updated in real time assuring fault tolerance. At this effect, different solutions have

been proposed to improve robustness [Hoblos et al., 2000].

Types of data storage

Once data are collected, nodes should make data accessible to the user for future retrieval

and data analysis. Different canonical ways can be adopted [Shenker et al., 2003]. In ex-

ternal storage, relevant captured data are routed back (and stored) to the sink for further

processing. Local storage, where data are locally stored at the node that detects the phe-

nomenon of interest. Or data-centric storage, characterized because the event information

is stored in a specific node chosen to be responsible for that particular event.

From the above sensor network overview, it is clear that WSNs have to cope with dif-

ferent requirements and resource constrains (limited power and memory, computational and

storage resources, short communication range and low bandwidth) that traditional networks

(such as the Internet) do not have to. Table 1.1 contains a brief summary of some possible

attributes of general sensor networks, most of them aforementioned. In WSNs, the entire

protocol stack from the physical to the application layer must be designed on the basis of

no fixed infrastructure. Even more, interdependencies among variables and parameters at

different layers lead to the coupling among layers in order to obtain better results. Thus,

to meet the requirements and reach WSN potential gains, a cross-layer protocol design that

support adaptivity and optimization across multiple layers of the protocol stack is advisable

[Goldsmith and Wicker, 2002]. Critical dependence on energy consumption makes sensor

nodes consider energy as a first-order optimization goal, unlike traditional networks. Hence,

all these aspects make traditional networks not directly applicable to WSNs.

Sensor Networks applications

The increase in popularity of Wireless Sensor Networks is based on the fact that they po-

tentially provide low cost solutions to a great variety of real-world challenges. The fast
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Table 1.1: Attributes of Sensor Nodes, taken from [Chong and Kumar, 2003].

Size: small (e.g. micro-electro mechanical systems (MEMS)),

large (e.g. radars, satellites)

Number: small, large (hundreds or thousands)

Type: passive (e.g. acoustic, seismic, video, IR, magnetic), active (e.g. radar, ladar)

Sensors Composition or mix: homogeneous, heterogeneous

Spatial coverage: dense, sparse

Deployment: fixed and planned (e.g. factory networks), ad-hoc (e.g. air-dropped)

Dynamics: stationary (e.g. seismic sensor), mobile (e.g. on robot vehicles, animals)

Extent: distributed (e.g. environmental monitoring), localized (e.g. target tracking)

Sensing entities of interest Mobility: static, dynamic

Nature: cooperative (e.g. air traffic control), non-cooperative (e.g. military targets)

Operating environment Benign (factory floor), adverse (battlefield)

Networking: wired, wireless
Communication

Bandwidth: high, low

Centralized (all data sent to a central site),

Processing architecture Distributed (located at sensors or other sites),

Hybrid

Energy availability Constrained (e.g. small sensors), unconstrained (e.g. in large sensors)

deployment, self-organization and fault tolerance, among other characteristics, make them

promising for a huge number of applications. Since their military beginnings as a means

of battlefield surveillance, defense applications led research and development in WSNs but

later, interests were widened to a range of civil applications which included environmental

and habitat monitoring, natural disaster prediction and relief, health monitoring, fire detec-

tion, infrastructure security or industrial sensing, to name a few.

1.1.3 Wireless Sensor Network constraints

Among the many design challenges that have been identified, the ability of sensors to be-

have in an autonomous and self-organized manner using limited energy and computation

resources has emerged as a key factor that requires novel solutions, where the limitation of

resources at sensor nodes is often a critical factor that conditions the design of applications

for sensor networks. The major sensor node constrains are listed below:

• Limited power: energy restrictions are raised due to its small physical size and lack
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Table 1.2: Memory specifications of sensor network platforms.

René Mica-2 Tmote Sky Imote2

1999 2002 2005 2007

512B RAM 4KB RAM 10KB RAM 32MB RAM

8KB Flash 128KB Flash 48KB Flash 32MB Flash

of wires. As the absence of wires results in lack of a constant power supply, power

solutions are limited.

• Limited memory and storage restrictions, due to its limited battery capacity, as well

as its restriction in size, weight and cost. Usually, sensor node memory includes

a flash memory used for storing downloaded application code, which is generally

enough. Some of the state-of-the-art sensors have approximately a flash memory of

4 Mb [Ananda et al., 2006] and a RAM memory, which is used for storing applica-

tion programs, sensor data and intermediate computation results [Sen, 2009]. The

latter sometimes represents a real problem for some models, such as the 4KB (AT-

mega128L) or 10KB (MSP430), because after loading the operating system and the

application code, there is not so much space left to run complex algorithms. Table1.2

contains the key memory specifications of four sensor nodes [Langendoen, 2007].

• Low bandwidth and much lower transmission rate compared to wired networks, orig-

inating a degradation in the Quality of Service (QoS), such as delays, jitter effect and

longer connection set-up times.

• Computational and processing resources. Computation is closely linked to the avail-

able amount of power. As it is reasonable to understand, since there is a limited

amount of power, computations are also constrained.

Efforts in WSNs are aimed at meeting the above constraints by introducing new design

concepts, creating or improving existing protocols, building new applications, and devel-

oping new algorithms. Among the multiple limitations to consider, energy consumption

emerges as a primary concern. While QoS is of paramount importance in traditional net-

works, sensor networks focus primarily on energy conservation.
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1.1.4 The energy concern in Wireless Sensor Networks

Battery is the main power source in a sensor node. Once a WSN has been deployed, it is

expected to operate for extended periods of time and typically without human intervention.

It is practically unfeasible that sensor node batteries are (easily) refilled, either because

sensor nodes are deployed in inaccessible terrains, the vast amount of deployed sensors or

due to the sensor size limitation. This fact has a direct impact on the sensor node lifetime.

Energy constraints impact both the hardware operation and the signal transmission as-

sociated with the node operation. So much so that the energy concern has reached the indus-

try and academy communities, since it has become the cornerstone in every ad-hoc sensor

network design. No matter how much processors, memory or networks have improved if

sensor node batteries die or have a really short lifetime to operate. At the beginning of the

nineties, progress in battery technology, specifically in battery capacity, was forecast to un-

dergo a maximum improvement of 20% within the following ten years [Sheng et al., 1992].

Nearly two decades later, new materials have appeared (nickel-cadmium, lithium-ion among

others) which have led to an increase in energy capacity from 10 to 15 percent per year,

but these technologies have already reached their ceiling since they were just capable of

providing another 15 to 25 percent more [Paulson, 2003]. Therefore, battery capacity has

slightly improved but it does not scale exponentially, rather, it proceeds along flattering

[Paradiso and Starner, 2005], evolving (battery technology) very slowly compared to elec-

tronic technology. This limitation together with the fact that every task carried out by the

WSN has an impact in terms of energy consumption, has led the proposal in literature of

an enormous variety of solutions, both software and hardware, to optimize energy manage-

ment and energy consumption. Even more, the explosion of terms, such as ’energy-aware’,

’power-aware’, ’energy-efficient’ or ’energy-limited’, in the recent sensor network literature

denotes the increasing interest and concern for energy aspects in WSNs.

Therefore, the crucial question is: ’how to manage energy efficiently and thus, save

energy resources to prolong the network lifetime of battery-powered sensors?’ Energy ef-

ficiency must watch over both the lifetime of each individual node and the overall network

lifetime. In the next subsection we expose the more recent techniques of the state of the art

to achieve this purpose.
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1.1.5 State-of-the-art strategies for energy conservation

Sensor node energy consumption is split among the hardware and the different layers, such

as the link layer, the Medium Access Control (MAC) layer, the network layer, etc. Opti-

mizing simultaneously the energy consumption in all the layers is rather challenging. With

a finite energy source, it is complicated to optimize all performance parameters at the same

time (lifetime, cost, sensing reliability and sensing and transmission coverage). For in-

stance, higher batteries imply increased cost and size, higher transmission range implies

higher power requirements while lower transmission range implies more nodes taking part

in the communication process and consuming energy, or low duty-cycle implies decreased

sensing reliability. That is the reason why most up-to-date research is focused on optimizing

communication and minimizing energy use independently in each layer.

Summarizing, the typical power-management design goal in battery-powered devices

is to minimize energy consumption or maximize the lifetime while meeting certain per-

formance requirements. Hence, to maximize the sensor node lifetime, aspects including

circuits, architecture, algorithms, and protocols have to be energy-efficient.

In the remainder of the subsection, different approaches and strategies, extracted from

the literature, that reduce power consumption or enlarge sensor network lifetime are listed.

1. Energy scavenging. A proper maintenance of batteries is a key requirement to ex-

tend sensor node lifetime in energy-constrained sensors. As it is not easy to replace

or recharge batteries, acquiring the electrical power needed to operate is a major con-

cern. Two alternatives may help sensor nodes to increase their functioning: A first

approach considers alternative types of energy sources to conventional batteries: en-

ergy harvesting or energy scavenging techniques. It refers to methods that scavenge

(harvest) energy from the environment or other energy sources (body heat, foot strike,

finger strokes) available where the node lies to be later converted into electrical energy.

Broadly, energy can either be harvested just in time for use (harvest-use architecture)

to directly power the sensor device or harvested whenever possible and stored for fu-

ture use (harvest-store-use architecture) to recharge the battery, as it is shown in Fig.

1.4.
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Potential energy sources used for harvesting include ambient energies such

as sunlight [Alippi and Galperti, 2008] or wind [Weimer et al., 2006]; Mechani-

cal energy, such as fluid flow [Starner, 1996], the human activity (walking)

[Shenck and Paradiso, 2001] or vibration sources [Arms et al., 2009]; Thermal energy

obtained from persons and animals, machines or other natural sources; RF energy har-

vesting converts radio waves into power [Visser et al., 2008]. Other forms of motion

include energy harvested from body movements of humans (e.g. typing, cycling, etc.).

DIRECT FROM SOURCE

Harvesting 
System

DIRECT FROM SOURCE

System

Sensor
node

(a) Harvest-Use architecture

SINGLE/DOUBLE STAGE STORAGE

Harvesting 
System

Sensor
node

SINGLE/DOUBLE STAGE STORAGE

System node

Primary Secondaryy
storage

y
storage

(b) Harvest-Store-Use architecture

Figure 1.4: Energy harvesting architectures.

Energy scavenging offers an additional mean to prolong the lifetime of sensor devices,

but it may not be enough in the sense that the harvested power may be several orders

of magnitude lower than the consumption of sensor devices.

A second alternative is the use of secondary power supplies. The maintenance prob-

lem is, however, still not solved. Actually, a possibility to recharge such kind of

batteries is to harvest energy from the environment. In this way, energy harvesting is

not trying to replace batteries but complements the maintenance issue.

2. Hardware and power-aware computing approaches. Other techniques that address

the issue of energy efficiency consist of providing sensor nodes with low-power hard-

ware components or including hardware optimization, such as dynamic optimization

of voltage and clock rate. Thus, the development of ultra-low-power microproces-

sors or microcontrollers has been possible due to the advanced technology in VLSI

circuits and system design [Raghunathan et al., 2002]. Besides, energy efficiency for
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active states can be achieved by allowing processors to operate at different supply

voltages to meet the instantaneous processing requirements. This is possible adopt-

ing the Dynamic Voltage Scaling (DVS) technique [Qu, 2001], an effective technique

for reducing CPU (Central Processing Unit) energy. Also, additional energy saving

can be significantly achieved if the system software, including the Operating System

(OS), is energy-aware designed (e.g. introducing the task scheduler into the core of

the OS [Raghunathan et al., 2001]).

3. Physical Layer. Minimizing energy consumption starts at the physical layer. Ig-

noring physical parameters may end in inefficient energy solutions. It is difficult to

create energy-efficient algorithms and protocols that perform intelligent power man-

agement without the knowledge of the underlying computation and communication

hardware. This is the origin of the work presented in [Shih et al., 2001], which pro-

poses a physical-layer-driven approach to design protocols and algorithms with the

aim of minimizing energy consumption. In [Marques et al., 2008], the authors mini-

mize the average transmission power, subject to average rate and BER requirements,

for coherent communications in a WSN, where sensors communicate with a fusion

center using adaptive modulation and coding over a wireless fading channel.

4. Data-driven approaches. Data-driven approaches gather all techniques involving

data that contribute to improve energy efficiency in sensor nodes, specially reducing

the impact of data sensing on energy consumption. Here, we discuss the taxonomy

proposed in [Anastasi et al., 2009]. Mainly, data-driven approaches are divided into

two methods according the problem they address (see Fig. 1.5). Specifically, data re-

duction schemes face to unneeded samples, due to the fact that data have strong spatial

and/or temporal correlations, resulting in redundant communications and useless en-

ergy consumption. On the other hand, energy-efficient data acquisition schemes focus

on the sensing subsystem, trying to reduce the amount of sampled data while keeping

sensing accuracy within reasonable levels (according to the application requirements).

Belonging to the data reduction schemes, in-network processing basically consists in

performing data aggregation while messages are routed towards the sink. Data aggre-

gation techniques allow to combine data from different sources, decreasing communi-
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Figure 1.5: Taxonomy of data-driven approaches to save energy in sensor networks, taken

from [Anastasi et al., 2009].

cation overhead for energy-saving purposes. Several algorithms have been proposed

following this technique, such as [Fasolo et al., 2007], [Intanagonwiwat et al., 2003],

or [Luo et al., 2009], to name a few. However, the intrinsic trade-off between en-

ergy and delay in aggregation operations characterizes this technique [Ye et al., 2009],

[Zheng and Barton, 2007], apart from the fact that it is application-specific. Besides,

in-network processing is also feasible through signal processing techniques, which is

referred as data fusion. Apart from combining data from different sources, filtering

and processing techniques help to eliminate the transmission of redundant data so that

more accurate data are produced (e.g. [Wang et al., 2008]).

Data compression (encoding information at source nodes, and decoding it at the sink)

can be applied to reduce the amount of data flowing through the network towards the

sink. Some proposed methods are [Tang and Raghavendra, 2004], [Xiao et al., 2006]

or [Pradhan and Ramchandran, 2003].

Data prediction techniques also reduce the amount of information sent by source

nodes as well as the energy needed for communication. Continuous sensing and re-

porting of measures consumes not only energy but also memory. That is why these

techniques are based on building a model that characterizes the phenomenon to be

sensed, so that the sink can predict the values sensed by sensors within certain error

bounds. If the model is accurate enough, the sink does not need the exact data.
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On the other hand, energy-efficient data acquisition techniques are based on the

assumption that, for some applications, the energy consumption of the sensing sub-

system is relevant enough. In these cases, energy-saving approaches are aimed at

reducing data samples acquired by sensors, by selecting a subset to deliver or report-

ing only those measurements falling outside or inside a certain interval, for instance.

Moreover, reducing the number of samples implies decreasing the number of commu-

nications given that radio energy consumption reduces. Techniques belonging to this

category can be split into three main groups:

Adaptive sampling exploits spatio-temporal correlations between data to reduce the

amount of data acquired by sensors. In [Law et al., 2009], an adaptive sampling algo-

rithm based on the Box-Jenkins approach in time series analysis is proposed. DOSA

algorithm [Chatterjea et al., 2007], instead, exploits the high degree of spatial cor-

relations of measurements of adjacent nodes in a densely deployed WSN and takes

advantage of cross-layer information from the MAC protocol.

Hierarchical sampling is based on the idea that the sensor network is composed

of different types of sensors, some of them are less accurate and low-energy

consumption and the others quite the opposite. Triggered sampling applications

[Xia and Zhao, 2007] or multi-scale sampling [Tseng et al., 2007] belong to this

group.

Model-based active sampling follows a similar approach to data prediction (a model

representing the sensing phenomenon is built) but unlike the latter approach, which

periodically samples the medium to update the model, this technique reduces the sam-

pling rate by using the computed model, see e.g. [A. Deshpande et al., 2004].

5. Duty Cycling. Another widely employed energy-saving technique consists of putting

nodes in low-power sleep mode whenever communication is not needed and back to

active modes as soon as new data are available, which is called as duty cycling. In a

traditional sleep scheduling, sensors usually have to start up several times, consuming

extra non-negligible amount of energy due to the state transitions.

As an example, Table 1.3 lists the time and power consumption for a MICA2 mote

with a CC1000 Transceiver regarding the different mote states [Ma et al., 2009]. The
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Table 1.3: Time and power consumption in the startup process for a MICA2 mote with a

CC1000 Transceiver.

Operation Process Time Power consumption

Sleep − 90 µW

Radio Initialization 0.35ms 18 mW

Turn radio on 1.50ms 3 mW

Switch to RX/TX mode 0.25ms 45 mW

Receive 1 byte 0.416ms 45 mW

Transmit 1 byte 0.416ms 60 mW

startup process includes radio initialization, radio and its oscillator startup, and the

switch of radio to receive/transmit state. In the example, the startup time is slow,

2.1 ms approximately, and consumes about 22 μJ. It consumes precious energy while

doing nothing. As a consequence, switching the radio into sleep mode only saves

energy if the state is kept during a long time.

Moreover, the cooperative nature of sensors highlights the need of a sleep/wake-

up scheduling algorithm. Again, we discuss the taxonomy proposed in

[Anastasi et al., 2009], which differentiates between two different duty cycling ap-

proaches (see Fig. 1.6).

Duty Cycling
approaches

Topology Powerp gy
control Management

Sleep/Wakeup
protocols

MAC protocols with
low duty cycle

Figure 1.6: Taxonomy of duty-cycling approaches to save energy in sensor networks.

Topology control includes all protocols managing node redundancy. Protocols are
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aimed at dynamically adapting the network topology according to the application

needs by only keeping active the minimum and optimum subset of sensors that en-

sures network connectivity. The remaining nodes (those that do not participate)

transition to sleep state to save energy (e.g. GAF [Xu et al., 2001], SPAN protocol

[Chen et al., 2002]). The main limitation of topology control protocols is the close

dependency to the network density. That is why they are usually combined with other

energy conservation approaches.

Dynamic Power Management (DPM) is the complementary technique to topology

control that implements duty cycling. As the radio is the most power-consuming com-

ponent of a typical sensor node, additional energy savings can be attained by using

DPM to suitably shut down the sensor node radio if no events occur. The analytical

model of [Chiasserini and Garetto, 2006] explores the trade-off between energy sav-

ing and network performance in terms of throughput and data delivery delay as the

sensor dynamics in sleep/active mode vary. DPM can be classified into two different

categories depending on the layer of the network architecture.

Sleep/wakeup protocols, the first group, implement sleep/wakeup protocols indepen-

dently of the MAC layer. Different kinds of protocols belong to this group.

On-demand schemes are based on the idea that nodes only remain active whenever

another node wants to communicate with them and spend the minimum time required

for communication in that mode, maximizing the energy saving and hardly impact-

ing on latency. Some examples are STEM [Schurgers et al., 2002] and its variation

STEM-T or the PTW approach [Yang and Vaidya, 2004].

Scheduled rendez-vous schemes follow deterministic wakeup patterns because of the

need of both the sender and the receiver to be awake at the same time. Nodes wake

up periodically to check for potential communications, remain active for a predefined

period of time and then, they come back to sleep state until the next rendez-vous (e.g.

[Lin et al., 2004], [Cao et al., 2005] or [Keshavarzian et al., 2006]).

With asynchronous approaches, nodes can wake up independently of the others be-

ing still able to communicate with their neighbors through overlapped active peri-

ods within a specific number of cycles. The synchronization requirement is relaxed
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at the price of getting lower energy efficiency. In [Zheng et al., 2006], the prob-

lem of designing optimal asynchronous wakeup schedules to facilitate distributed

power management is tackled. Other state-of-the art techniques are the RAW

[Paruchuri et al., 2004] or the AWS [Vasanthi and Annadurai, 2006] algorithms.

MAC protocols with low duty-cycle compose the second category of the DPM tech-

niques. In this second group, sleep/wakeup protocols are integrated into the MAC

protocol, allowing the specific sleep/wakeup pattern to optimize medium access func-

tions. As the MAC layer is here involved, let us first expose several factors that cause

energy waste from a MAC perspective [Langendoen, 2007]:

• Collisions.

• Idle listening: the radio is on all the time to receive incoming data, but the cost

is extremely high when nothing is sensed for a long period of time.

• Overhearing: as nodes are listening at incoming traffic, they can also receive

packets intended for other neighboring nodes.

• Traffic fluctuations: the occasional peak loads can lead to network congestion or

the use of long contention windows, rising energy consumption.

• Protocol overhead: MAC headers and control messages are considered overhead

because they do not directly convey useful data, yet consume energy and reduce

the effective throughput.

Properly designed MAC protocols should be intended to deal with the major sources

of energy waste previously mentioned, implementing low duty-cycle schemes for

power management. Thus, each MAC protocol has its own policy for controlling

the use of the radio, switching it off to achieve a different trade-off.

A first group is composed of schedule-based protocols, such as TDMA (Time Division

Multiple Access), which are able to schedule transmissions and idle periods. Time

is divided into periodic slots so that nodes transmit or receive during their own slots,

fixed according to a certain scheduling algorithm, and go to sleep later. Thus, TDMA

protocols may reduce energy expenditure and solve problems associated with interfer-

ences among nodes (transmissions of neighboring nodes can be scheduled at different
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time slots). LEACH [Heinzelman et al., 2000] or TRAMA [Rajendran et al., 2003]

are some of the most well-known protocols. LEACH organizes nodes into cluster

hierarchies and applies TDMA within each cluster, so that it directly extends the cel-

lular TDMA model to sensor networks. TRAMA uses traffic-based scheduling to

avoid wasting slots when nodes do not have data to transmit, switching to sleep mode

when nodes are not target receivers of traffic.

A second group, contention-based protocols, does not require tight synchronization

requirements and uses the Carrier-Sense Multiple Access (CSMA) technique. Its ma-

jor disadvantage is its inefficient use of energy because of the incurred costs for idle

listening and overhearing. However, contention-based MAC protocols are mainly

proposed in the state-of-the-art approaches. B-MAC protocol [Polastre et al., 2004]

provides collision avoidance and achieves low-power operation through the use of

an adaptive preamble sampling scheme to reduce duty cycle and minimize idle

listening. Another popular protocol is S-MAC [Ye et al., 2004]. It achieves col-

lision avoidance and low-duty-cycle operation by putting nodes into sleep state.

Adaptive listening reduces energy expenditure but increases latency and reduces

throughput. Among the vast amount of MAC protocols, it is also worthy mention-

ing T-MAC (Timeout-MAC) [Van-Dam and Langendoen, 2003], DSMAC (Dynamic

Sensor-MAC) [Lin et al., 2004], WiseMAC protocol [Enz et al., 2004], or DW-MAC

protocol [Sun et al., 2008].

Finally, hybrid approaches combine the strength of both, as the Z-MAC protocol

[Rhee et al., 2008].

6. Routing protocols. Sensor nodes play a dual role, as data sources and data routers.

The continuous topology changes might require a network reorganization with the

consequent message reroute, taking power conservation and power management ad-

ditional importance. Hence, significant energy saving can be obtained by incorpo-

rating low-power strategies in the design of routing protocols. However, despite the

huge number of routing protocols and variations, the current state of the art is spe-

cially rich in specialized routing protocols, concentrating on satisfying one or few

requirements, but performing poorly under slightly different network conditions and
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scenarios. Therefore, special interest will be put in energy-aware routing protocols,

which mainly focus on two aspects: minimizing energy cost per message (or equiva-

lently, maximizing sensor network lifetime) and balancing energy consumption in the

network.

Data-centric routing algorithms. These protocols are query-based and depend on the

naming of the desired data, which helps to eliminate many redundant transmissions

(i.e. only sensors within a specified region are tasked to start collecting informa-

tion). SPIN family protocols [Kulik et al., 2002] are one of the earliest works, which

consider data negotiation among nodes to eliminate redundant data. Directed Diffu-

sion [Intanagonwiwat et al., 2003] was developed later and became a breakthrough in

data-centric routing since many proposed protocols are based on it.

Hierarchical routing algorithms. With the aim of decreasing the number of transmit-

ted messages, the sensor network is divided into groups (clusters), where a represen-

tative node of each group (cluster head) gathers information of its group members and

performs data aggregation and fusion. Many clustering protocols are enhancements or

variations of the popular LEACH algorithm, in which nodes are chosen to be cluster

heads based on a priori probability (e.g. PEGASIS [Lindsey and Raghavendra, 2002]

or its extension hierarchical PEGASIS). TEEN [Manjeshwar and Agrawal, 2001] and

its extension APTEEN, both also based on LEACH, reduce the number of transmis-

sions by reporting only those measurements that exceed prefixed thresholds.

Location-based (or geographic) routing algorithms. Location-based protocols use

position information to transmit data to the desired regions or to the sink. GPSR

[Karp and Kung, 2000], one of the earliest and traditional works, relays the message

to the neighboring node closest to the sink and solves the problem of holes following

the perimeter of a planar graph to round the message around the void region. An-

other example is GEAR (Geographic and Energy Aware Routing) [Yu et al., 2001]. It

disseminates queries to the desired geographical area without flooding using energy-

aware and geographically informed neighbor selection heuristics. Within the region,

it uses recursive geographic forwarding or restricted flooding to spread messages. A

more recent work is LEARN [Wang et al., 2006], which theoretically guarantees the

power efficiency of its routes.
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Learning-based routing algorithms. Artificial intelligence techniques have started to

appear lately to solve routing problems efficiently. Reinforcement learning is probably

the most widely used machine learning technique for routing in WSNs because of its

effective on-line decision making procedure, its flexibility and quick adaptability to

changes. Some of the earliest works using reinforcement learning are Q-Routing

[Boyan and Littman, 1994] or PQ-routing [Choi and Yeung, 1996] algorithms, which

learn the best paths considering the least latency to the destinations. Other recent

examples are CLIQUE [Förster and Murphy, 2009], IDR [Zhang et al., 2006] or the

algorithm proposed in [Pandana and Liu, 2008], to name a few.

Energy Balanced Data Propagation algorithms. The approaches included in this cat-

egory do not exactly propose routing algorithms but an algorithmic way of ensuring

a balanced average energy consumption among all sensor nodes. The main goal is

to avoid early energy depletion of sensors to enlarge sensor network lifetime by re-

distributing network traffic without compromising network connectivity (e.g. TAEE

load balanced energy-aware routing protocol [Liu and Hong, 2009]).

Another factor that contributes to increase energy expenditure in routing, and which

deserves to be mentioned, is link quality. Link-level retransmissions could largely

increase the energy cost, in the sense that, sometimes, retransmissions in a shorter

path with low link quality may be even worse than a long multi-hop path provided

with better link quality. Therefore, some works are aimed at including link quality in

the routing metric (e.g. [Banerjee and Misra, 2002] or [Lal et al., 2003]); proposing

procedures to estimate it since measuring instantaneous link quality is prohibitive (e.g.

LQER [Chen et al., 2008] or SIR [Barbancho et al., 2006] routing algorithms).

7. Storage. Some works are devoted to evaluating and finding the most energy-efficient

storage platform for WSN (e.g. [Mathur et al., 2006]).

8. Mobility-based schemes. In a multi-hop sensor network, nodes located closer to the

sink usually deplete their batteries faster than their faraway counterparts, because they

have to relay more messages. Adding mobility to sensor nodes may alter traffic flow

whenever data collection is performed by mobile elements. Sensor nodes wait for

having a mobile device in proximity to route messages directly to it, so that commu-
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nication takes place in short distances and energy consumption is reduced. Providing

with mobility to all sensor nodes is not energy convenient (energy expenditure of mo-

bilizers is high). A best choice is to provide with mobility just some of them while

the others remain static. Up to date, two tendencies are basically exploited.

The first includes mobile sink-based approaches. The unique (or multiple)

sink moves in the network following different strategies (e.g. [Bi et al., 2009],

[I. Chatzigiannakis and Nikoletseas, 2006] or [Wang et al., 2005]).

The second group, mobile relay-based approaches, includes the message ferrying

[Zhao and Ammar, 2003] or data-MULE system approaches [Jain et al., 2006]. Both

approaches consist in mobile entities, which follow a fixed or random trajectory, col-

lecting data gathered by static sensors. Later, mobile entities forward data to the sink.

In summary, the concern about energy consumption in WSNs has given rise to an over-

whelming amount of approaches in the literature, from the underlying hardware to the appli-

cation software and different layer protocols. The energy optimization approaches presented

above tackle lifetime enlargement of either sensor nodes or the sensor network, mainly re-

ducing communications because of their high cost (from an energetic point of view). With-

out any doubt, it is more complex the latter case, since it involves not only the reduction

of energy consumption in a single sensor, but also the maximization of the lifetime in the

whole network. In any case, lifetime can be considerably increased if energy-awareness is

incorporated into every stage of a WSN design and operation.

However, it is important not to leave cross-layer design perspectives aside. While tra-

ditional layered protocols may achieve very high performance in terms of the metrics re-

lated to each of these individual layers, they are not jointly optimized to maximize the

overall network performance while minimizing energy expenditure. Thus, cooperation be-

tween layers by exchanging pertinent information is also exploited for optimizing algo-

rithms. As a result, performance in sensor networks improves notably. Some authors sug-

gest to classify the different techniques based on the network layers they aim at replacing

in the classical OSI network stack [Melodia et al., 2005]. Some proposals are shown be-

low, since the state of the art is also quite rich. The work in [Escudero-Garzás et al., 2007]

proposes a model which tackles the minimization of the total transmission energy con-

sumption in centralized networks, through a cross-layer design which involves the phys-

22



CHAPTER 1. INTRODUCTION

ical layer (selecting the modulation scheme adaptively) and the MAC layer (the alloca-

tion of the number of time slots to each sensor). Another cross-layer design perspective

is also adopted in LESOP [Song and Hatzinakos, 2007] for high protocol efficiency, where

direct interactions between the application and MAC layers are exploited; a cross-layer en-

ergy consumption model of the physical, data link, and network layer is analytically in-

vestigated in [Haapola et al., 2005]; or the cross-layer optimization problem proposed in

[Yuan and Yu, 2006], a distributed optimization framework for multi-hop WSNs based on a

game theoretic approach, which is decomposed into two subproblems corresponding to two

separate layers (the physical and the application layers).

Therefore, joint optimization and design of networking layers (i.e. cross-layer design)

stand as the most promising alternative to inefficient traditional layered protocol architec-

tures. Nevertheless, the price we have sometimes to pay is an increase in complexity.

1.2 MOTIVATION

Since communication processes are among the most energy-expensive tasks, the cost

of transmitting and receiving information should influence node decisions; see, e.g.,

[Lee et al., 2006] or [Chelius et al., 2005]. Typically, nodes are compelled to transmit any

signal captured by their sensors while batteries are alive. A similar situation occurs in sce-

narios where nodes act as relays that have to forward any message upon request from other

neighboring node. This inability to apply autonomous transmission policies, thus preventing

nodes from managing their own resources, hinders an efficient utilization of the network.

Despite the great variety of resource-saving strategies proposed in the literature con-

tributing to reduce communication costs in WSNs, few approaches are based on the nature

of the information that nodes have to transmit. Energy saving can also be obtained by tak-

ing a higher level approach and considering the different nature of the information and the

expected available resources in sensors that take part in the communication at each moment.

Usually, data from different source nodes are handled equitably within the network.

However, there exist many practical scenarios where it is feasible to attribute a particular

significance [Wood and Stankovic, 2002]; priority [Muraleedharan et al., 2006]; relevance

[Wischhof et al., 2003]; or utility [Athanassoulis et al., 2007] value to messages transmitted
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or forwarded by sensor nodes. Tailored to those scenarios, we may consider that mes-

sages can be valuated through an importance indicator which reflects the priority of the

message, the relevance of the information conveyed or the required level of Quality of Ser-

vice (QoS) or preferably, Quality of Information (QoI)1. Relevant examples in the context

of sensor networks can be found in different fields. For instance, in a security scenario,

nodes periodically report to the sink information related to battlefield conditions, track-

ing enemy troops movements, monitoring a secure zone for activity or measurement of

damages and casualties. However, attack reports are sent to the sink as high importance

(priority) messages [Wood and Stankovic, 2002]. Data priority in medical care area allow

critical alerts from patients to have higher priority than others in presence of radio con-

gestion (see, e.g., [Shnayder et al., 2005]). Another example is a face recognition system

[Muraleedharan et al., 2006], where an image is transformed into some approximation coef-

ficients and sets, which are categorized according to the level of detail. Coefficients are then

transmitted considering different priorities assigned depending on the importance on the

reconstruction (the higher level, the more influence and higher importance). Message prior-

ity/importance is also relevant in congested networks in order to not drop messages (see, e.g.,

[Kumar et al., 2006]) or in sensor networks that implement data aggregation. Message prior-

ity is also relevant in Wireless Multimedia Sensor Networks (WMSNs), in order to provide a

required QoS. For example, a priority-based rate control mechanism for congestion control

and service differentiation in WMSNs is presented in [Yaghmaee and Adjeroh, 2009] or the

path priority scheduling algorithm [Chen et al., 2008], which considers message priority to

satisfy the delay constraint of video frames while balancing energy and bandwidth usage

among all the available paths.

In such scenarios, energy in WSNs can be saved providing sensor nodes with the abil-

ity to make intelligent importance-driven decisions about message transmission, adapting

forwarding decisions to the message importance. In fact, this is the main goal of selective

1The concept of QoS was introduced in networking to provide different priority to different applications,

users, or data flows according to a set of static predefined policies in order to guarantee a certain level of

performance to the most important data flows (e.g. get first delivered). For sensor networks, the definition of

QoS is inadequate because the notion of importance is associated not with a source, but with the data itself and

moreover, with the value of the data to the end user of the application. This requires a form of dynamic QoS that

translates the value of data from a node into its priority on-the-fly, which is called QoI [Charbiwala et al., 2009].
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communications: some messages are transmitted while others discarded, according to cer-

tain criteria, to reduce the network load and increase the network lifetime by saving power of

individual nodes. For instance, the idea of selective communications is the base of the work

developed in [Chow et al., 2007]. The authors propose a selective transmission protocol to

select and transmit images to a sink in an energy-efficient manner by comparing the similar-

ity among images. It is worthy remarking the difference between selective communications

when nodes act faithfully and decide not to transmit messages in exchange of optimizing

network resources, and the fact that nodes act maliciously and refuse to forward certain mes-

sages, simply dropping them and ensuring that they are not propagated any further, which

is known as the selective forwarding attack [Karlof and Wagner, 2003]. It is clear that the

matter of study of this thesis is the first case. The idea of selective transmission is close to

information-aware traffic reduction approaches [Ngai et al., 2009]. These approaches allow

a better utilization of the network capacity by reducing the relatively less important traffic

and reserving better resources for high priority data. Remark that these techniques are based

on data reduction, so that they can be included in the taxonomy of data-driven approaches of

Fig. 1.5. However, although information-aware approaches reduce unnecessary data traffic

and consequently reduce the number of transmissions, they are mainly aimed at reducing

network congestion adjusting the transmission rate control while providing QoI to the users

without considering, explicitly, energy consumption issues.

Similar ideas to selective communications that also use the importance of messages as

transmission criterion have been explored in the literature, either using a heuristic approach

(typically focused on the modification of existing algorithms) or a theoretical one (aiming

at the identification of basic guidelines for WSN design). Examples that fit in with the first

category are mentioned next. The approach presented in [Ngai et al., 2009] wisely selects

important data to be selectively transmitted to the sink according to their importance and

the network load (it maximizes the information gain at the same time that controls the data

rate in a node to be smaller than the maximum affordable) and reduces unnecessary rou-

tine data traffic without degrading the QoI. The PGR (Prioritized Geographical Routing)

algorithm [Mujumdar, 2004] selects the appropriate routing technique depending on the pri-

ority of the message (low, medium or high). The RRR (Random Re-Routing) algorithm

[Gelenbe and Ngai, 2008] gives a preferential treatment to high priority messages resulting
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from unusual events, routed along the shortest paths, and provides them with significantly

better QoS (Quality of Service), opposite to background traffic, which is randomly shunted

towards slower secondary paths.

Differently, theoretical approaches base the design of importance-driven schemes on the

resolution of a specific optimization problem, as in [Lei et al., 2009], where a mathemati-

cal framework based on Markov chains is used to characterize an optimal policy for single

hop transmission over a replenishable sensor network. The transmission/no transmission

idea is also the base of censoring networks in decentralized detection [Rago et al., 1996].

Sensors only send informative observations to the fusion center, and do not transmit those

deemed uninformative, i.e. whose local likelihood ratio falls in a certain single inter-

val, which is fixed in order to satisfy a maximum communication rate constraint. In

[Patwari and Hero, 2003], the authors argue that the appropriate constraint to bound energy

consumption is the probability of transmission instead of the bit rate, as the communication

rate is not a suitable constraint for WSN more limited in energy than in capacity. For the

same reasons, the work in [Appadwedula et al., 2005] imposes a constraint on the expected

cost arising from transmissions (sensor nodes to a fusion node) and measurements (at each

sensor node) in a detection scenario.

In the examples mentioned above, energy saving is obtained, directly or indirectly, fixing

constraints over the bit rate, the probability of transmission, the energy cost of each task,

etc. However, the threshold value is a free parameter of the model whose assignment is not

trivial because these parameters establish a trade-off between the detector performance and

the energy saving.

In this thesis, however, the search of the trade-off between global performance and en-

ergy saving is stated as a fundamental matter. We will pose the problem from a general point

of view: assuming that data are graded according to an importance value (whose distribution

can be locally estimated), and knowing (or estimating) the energy consumption patterns of

each sensor in order to maximize/optimize the global network performance.

Optimizing the performance of a WSN along the whole lifetime, also considering

the energy constraints, can be mathematically stated using Markov Decision Processes

(MDPs) [Puterman, 2005], some of its generalizations (Partially Observable Markov De-

cision Processes, POMDP [Kaelbling et al., 1998]), or Reinforcement Learning models
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[Sutton and Barto, 1998].

MDPs have been recently applied to energy-efficient management in sensor networks.

In [Williams et al., 2005b], [Williams et al., 2005a], [Williams et al., 2007], the trade-off

between the value of the information held in a set of measures and the cost of captur-

ing them, processing them and transmitting them to the sink is raised, proposing the use

of MDPs to solve the leader assignment problem in target tracking applications. Be-

sides, MDPs have been used as a tool to find a trade-off between energy saving of data

aggregation and transmission delay [Ye et al., 2009]; to balance energy saving of low-

power sensor states and the efficiency of the sensing, receiving and transmitting processes

[Kianpisheh and Charkari, 2009]; or to optimize a reward function combining power con-

sumption, throughput and delay [Munir and Gordon-Ross, 2009]. These works already

highlight two fundamental questions related to the application of MDPs to selective commu-

nications in sensor networks: (i) how to assign locally the message importance (a problem

pointed out in [Rago et al., 1996]); and (ii) how to build a global function based on local

importances that weighs up the global network performance during its lifetime, and that can

be optimized using decentralized procedures of low computational cost.

The theory of MDPs provides a common framework to different situations that can be

solved using similar procedures, because they are based on solving an optimization problem

that characterizes an optimal action policy. As the statistical parameters of a MDP are

rarely known, and therefore, the a priori design of an optimal strategy is hardly feasible,

two alternatives will be raised in this thesis: the estimation of the model parameters or the

application of statistical learning techniques.

1.3 OBJECTIVES AND MAIN CONTRIBUTIONS

As stated above, the thesis is framed within the energy-constrained wireless sensor network

field. According to the research and restriction problems described previously and the mo-

tivation of this work, the main and global objective pursued in this thesis consists of:

Designing energy-efficient methods that provide sensor nodes of a WSN with the abil-

ity to make autonomous decisions about the actions to be carried out on the received or

sensed data (transmission, discarding, aggregation, fusion, etc.), based on information cap-
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tured from the environment or coming from other sensor nodes, and entailing a trade-off

between the global network performance, the quality of information and the enlargement of

the network lifetime.

Thus, the application of selective policies to message transmission reduces considerably

the number of energy-expensive communications, enlarging sensor network lifetime, which

are relevant facts pursued in WSNs. Rather than using heuristic approaches, the aim of this

thesis is to obtain analytical results that building on a mathematical formulation, provide

basic guidelines to design energy-efficient selective communication schemes at the same

time that assure a certain quality of information. To that purpose, we will make use of MDP

models or their generalizations.

In order to enlarge the network lifetime and optimize the network performance, sensor

nodes could weigh up: a) the potential benefits of transmitting information and b) the cost

of the subsequent communication process. A first step to address such an optimum design is

to properly quantify or estimate both costs and benefits. This is possible in practice because

the energy consumed by every communication task (cost) is typically well-characterized

and because applications where messages are scored according to an importance indicator

(benefit) are frequent in WSNs. Once costs and benefits are properly quantified, energy can

be saved by making intelligent importance-driven decisions about message transmission,

in an autonomous and self-organized manner, adapting forwarding decisions to the traffic

importance. This way, selective communication schemes allow nodes to keep the capacity

for managing their own resources at the same time that optimize communication expenses

by only transmitting the most relevant messages, while providing satisfactory quality of

information to the users.

We will address the design of efficient communication policies for sensor networks,

constraining ourselves to applications where: (i) the importance of messages can be properly

quantified, and (ii) low graded messages can be eventually discarded. This way, the idea of

selective communications consists of discarding low importance messages in order to save

energy that can be used for transmitting more important upcoming messages. In order to

make a decision (whether to transmit or not), sensors will take into account factors such as

the energy consumed during the different states (transmission, reception, etc.), the available

battery, the importance of the received message (to guarantee a certain level of QoI to the
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user), the statistical distribution of such importances, or the behavior of their neighbors.

The general objective is split into more specific objectives, which are listed below:

• To identify key aspects that should be taken into account when making transmission

decisions in order to reduce energy consumption in sensor networks. To tackle this

objective, it will be necessary to have a unifying view of several approaches present

in the state of the art. That will allow us to situate and describe the scope of this

work. Therefore, it will include the review of the literature with regard to proposed

alternatives to reduce energy consumption.

• To define an appropriate model for sensor nodes. Before proposing any policy, it will

be necessary to clearly expose those features of a sensor node that are essential and

should be included in the model. To this aim, we will make use of the study of the

state of the art made previously.

• To propose optimum selective communication schemes for different scenarios accord-

ing to the needs of each particular case. Considering the key aspects and the sensor

node model as a starting point, we will describe an initial optimal selective transmis-

sion scheme and its generalization, meeting both the following requirements. First,

they will optimize energy consumption at the same time that will maximize the qual-

ity of information. Secondly, they will not entail high complexity and computational

cost. And finally, communication policies will be applied on-the-fly, i.e., sensor nodes

will not require to store all previous received messages to make decisions about new

incoming messages.

• To evaluate the proposed schemes, identifying advantages and disadvantages of each

type of policy. Differences among the proposed schemes will be quantified both from

a theoretical and numerical perspective. Moreover, this evaluation will allow us to

extract conclusions that will be useful for future research.

• To analyze the suitability of the selective communication policies in specific and real-

istic scenarios. The first step so as to fulfill this objective will be to identify a scenario

where the selective transmission policies can be applied. After that, the scenario will

be reproduced in order to analyze the performance of sensor networks composed of

selective forwarders.
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From the aforementioned objectives, the main contributions of this thesis can be sum-

marized as follows:

• The definition of a sensor model that brings together the relevant characteristics of a

real sensor node, including its energy consumption model.

• The development of a selective communication model based on decision theory, as a

first approach to develop optimal energy-aware transmission schemes with quality of

information.

• The derivation of optimum selective communication schemes for three different sce-

narios: 1) when sensors maximize the importance of their own transmitted messages

(selective transmitter) ; 2) when sensors maximize the importance of their messages

that are actually retransmitted by their neighbors (selective forwarder with local op-

timization); and 3) when sensors maximize the importance of the messages that suc-

cessfully arrive to the sink (selective forwarder with global optimization). Clearly,

from an overall network efficiency perspective the first scenario performs worse than

its counterparts, but it requires less signaling overhead. On the contrary, the last

scheme optimizes the overall network performance, but it requires full coordination

among the nodes of the WSN. Performance evaluation is quantified, both theoreti-

cally and numerically. The derivation and evaluation of these schemes are the central

contributions of this thesis since it links several of the previous specific objectives.

• The development of suboptimal schemes that operate under less demanding conditions

than those for the optimal ones and entail reduced computational cost.

• The application of selective forwarding policies to a particular application scenario:

target tracking in Wireless Sensor Networks.

1.4 DISSERTATION OVERVIEW

The dissertation is divided into 7 chapters and 2 appendix. Once exposed the relevant state

of the art in WSNs concerning energy conservation techniques, the motivation and the objec-

tives, Chapter 2 describes the sensor model used in the subsequent chapters. Later, Chapter
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3 proposes a selective communication model based on decision theory. This initial proposal

leads us to the main contributions of this thesis, which are detailed in Chapter 4 and 5. Opti-

mal selective message forwarding schemes to economize on energy and extend the lifetime

of WSNs are developed using stochastic tools. Chapter 6 includes the study and analysis

of selective forwarding policies applied to a target tracking scenario in energy-constrained

sensor networks. Finally, Chapter 7 draws the conclusions of this dissertation as well as

points out future research lines. Below is a more detailed overview of each chapter.

• Chapter 2 describes the sensor model used in the thesis. Initially, we will discuss

the main ways of expending energy in a sensor node. The drawn conclusions will be

later used to characterize the sensor through a model that details the different states

of a sensor node, its possible actions or dynamics, together with a generic energy

consumption model.

• Chapter 3 provides a selective communication model based on decision theory: nodes

decide to transmit or discard a message according to a decision rule that minimizes a

cost, which depends on the energy expenses as well as the message importance.

The main contributions of this chapter are published in [Arroyo-Valles et al., 2006],

[Arroyo-Valles et al., 2007b] and [Arroyo-Valles et al., 2007a].

• Chapter 4 presents an optimum selective message transmission scheme based on a

statistical model of the message importances (the Selective Transmitter). More specif-

ically, optimal decisions that maximize the importance sum of the transmitted mes-

sages at each node are derived and the node behavior is analyzed under different im-

portance distributions. Using asymptotic analysis, gains with regard to a nonselective

scheme are theoretically quantified. Furthermore, in scenarios where nodes do not

know the statistical importance distribution of messages, an alternative method that

does not require a priori knowledge of the statistical information is developed. Nu-

merical results quantify the gain of implementing the selective transmission scheme.

The main contributions of this chapter are published in [Arroyo-Valles et al., 2009]

and [Arroyo-Valles et al., 2010b].

• Chapter 5 generalizes the model presented in Chapter 4, allowing the use of infor-
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mation from other nodes and analyzing the impact of using non-local information on

the network behavior. The selective forwarding schemes are studied under three dif-

ferent scenarios: 1) when sensors maximize the importance of their own transmitted

messages (which basically coincides with the model presented in Chapter 4, though

using a more general energy consumption model); 2) when sensors maximize the im-

portance of their messages that are actually retransmitted by their neighbors (selective

forwarder with local optimization); and 3) when sensors maximize the importance of

the messages that successfully arrive to the sink (selective forwarder with global op-

timization). Suboptimal schemes that rely on local estimation algorithms and entail

reduced computational cost are also considered. Theoretical results will be comple-

mented with numerical simulations.

The main contributions of this chapter are published in [Arroyo-Valles et al., 2008a]

and [Arroyo-Valles et al., 2010a].

• Chapter 6 proposes an application case study. Selective forwarding sensor nodes are

deployed in an energy-constrained sensor field to perform target tracking. We will an-

alyze and evaluate the behavior and performance of selective sensors in this scenario

with and without the simultaneous application of other data reduction approaches.

The main contributions of this chapter are published in [Arroyo-Valles et al., 2008b]

and [Arroyo-Valles et al., 2010c].

• Chapter 7 summarizes the main results and contributions of the thesis, discusses the

basic assumptions considered in the thesis and points out further research lines.

The main contribution of this chapter is published in [Hansen et al., 2010].

• To conclude the dissertation, two appendix are included in order to show the mathe-

matical proofs of the theorems stated in the thesis. Particularly, Appendix A includes

the proofs of the theorems corresponding to the Optimal Selective Transmitter (Chap-

ter 4) whereas Appendix B contains those proofs of the Optimal Selective Forwarder

(Chapter 5).
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CHAPTER 2

SENSOR MODEL

In the precedent chapter, we discussed a classification of the state-of-the-art energy con-

servation strategies for Wireless Sensor Networks. However, we did not include a detailed

accounting of the main ways in which sensor nodes may consume energy. Identifying the

representative activities performed by sensor nodes will contribute to properly characterize

energy consumption. Thus, the analysis and drawn conclusions will be essential in the sense

that they will be later integrated into the sensor model proposed for the selective communi-

cation policies. Apart from specifying a generic energy consumption model, the definition

of the sensor model will also include other relevant information such as the different states

of a sensor node, or its possible actions or dynamics.

The rest of the chapter is organized as follows. Initially, a discussion about the energy

expenditure in sensor nodes will be raised. After exposing the differences between power

and energy consumption, the chapter will be closed describing the general sensor model.

2.1 ENERGY EXPENDITURE IN SENSOR NODES

According to the work presented in [Ephremides, 2002], sensor nodes can be in four differ-

ent operational modes in a WSN:

• Transmission. In this mode, energy can be spent on two major different ways. In

the front-end amplifier that supplies the power for the actual RF transmission (trans-

mission energy) and in the node processor implementing the signal generation, for-
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2.1. ENERGY EXPENDITURE IN SENSOR NODES

matting, encoding, modulation, memory access and other signal processing functions

(processing energy).

• Reception. Energy is consumed completely by the processor, including the low noise

amplifier that boots the output of the receiving antenna to suitable levels for demodu-

lation, decoding, buffering, etc.

• Idle, or ’on’. In this state, sensor nodes are not actively receiving but listening to

the channel. Again, energy is consumed by the processors, since the Voltage Control

Oscillator (VCO) is operating to be ready to start demodulating an incoming signal

and all circuits are properly initialized and charged being ready to operate. But some-

times, a listening node requires that the network protocol transmits periodical beacon

signals consuming, therefore, transmission energy. It is usually the default mode in

nodes of a sensor network.

• Sleep. In the sleep mode, some parts of the sensor circuitry (e.g., microprocessor,

memory, radio frequency (RF) components) are turned off. The more circuitry com-

ponents are switched off, the more the power consumption as well as the operational

capabilities of the sensor decrease.

The previous operational modes involve all sensor node components, including both

hardware and software. The first two types of operational modes are grouped into the active

mode, where the node is fully working and is able to transmit and receive data. Energy

spent in idle listening is quite small compared to active modes. But it consumes a non-

negligible amount of energy in applications where sensors must spend most of their time

without transmitting and receiving, just listening to the medium. Usually, the highest energy

consumption corresponds to the transmission mode and the lowest to the sleep mode, when

the node turns off the transceiver. In the latter mode, a node can not take part in the network

activity, neither transmitting nor receiving, until it is woken up.

A summary of the power consumption of some of the most commonly used motes is

presented in Table 2.1 [Sen, 2010]. According to data in Table 2.1, power consumption for

transmitting messages is the same as for receiving. However, it is very often to consider

higher values for transmissions, as in the examples shown below. It is also remarkable how

power consumption drops drastically in the sleep state. On the other hand, the exact cost of
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Table 2.1: Power consumption for different sensor motes.

Mica-2 Tmote Sky Imote BTnod TinyNode 584

sleep 0.054 mW 0.0153 mW 9 mW 9.9 mW 0.0195 mW

idle listening 66 mW 65.4 mW 62.1 mW 82.5 mW 48 mW

receive 117 mW 58.5 mW 112.5 mW 102.3 mW 186 mW

transmission 117 mW 58.5 mW 112.5 mW 102.3 mW 186 mW

the idle listening depends on the radio hardware and the operation mode. It is known that for

long-distance radios (0.5 km or more) transmission power dominates receiving and listen-

ing costs, however several generations of short-range radios have listening costs of the same

order of magnitude as transmission or reception cost [Ye and Heidemann, 2003]. For exam-

ple, Stemm and Katz measured the power consumption ratios of idle:receive:transmission

on the 915MHz Wavelan card [Stemm and Katz, 1997], 1:1.05:1.4, while the Digitan 2

Mbps Wireless LAN module (IEEE 802.11/2Mbps) specification showed ratios of 1:2:2.5

[Ye and Heidemann, 2003].

Looking at the operational modes of the sensor nodes, it is clear that communication

processes are energy-expensive (e.g., the transmission or reception of a message). But

power consumption is not only present in communication tasks but also in data process-

ing and sensing events of interest. In the sensing activity, the main sources of power con-

sumption are signal sampling and conversion of physical signals to electrical signals, signal

conditioning, and analog to digital conversion (ADC) [Halgamuge et al., 2009]. The sens-

ing subsystem consumes a different amount of power depending on the specific type of

sensor and the specific application, so that it might be another source of power consump-

tion. However, experimental measurements have shown that the wireless communication

task is the major power consumer during the node operation [Raghunathan et al., 2002].

Specifically, the energy cost of transmitting a single Kb of information is approximately

the same as the energy needed for processing three million operations in a typical sensor

node [Pottie and Kaiser, 2000]. As presented in [Raghunathan et al., 2002], an analysis of

the power consumption for the WINS Rockwell seismic sensor indicates power consump-

tion between 0.38 - 0.7 W for transmitting, 0.36 W for receiving, 0.34 W for the idle state

and 0.03 W in sleep state, while the power consumed for the sensing task is 0.02 W. For this
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particular type of sensor, an interesting observation is that the receive and idle modes may

require as much power as transmitting, whereas in the traditional ad-hoc wireless networks,

transmitting may use as high as twice the power of receiving. Another observation concerns

the communication/computation power usage ratio, which can be higher than 1000 (e.g., for

the WINS Rockwell sensor, it is from 1500 to 2700). Therefore, local data processing is

preferable to communication tasks.

2.2 POWER VERSUS ENERGY CONSUMPTION

Consumption values in Table 2.1 are expressed in terms of power (energy per unit time)

reported from the data sheets of motes. Other typical way of expressing consumption in

mote data sheets is current values. However, the term ‘energy consumption’ is probably

more widely used in the literature. Obviously, energy and power consumption terms are not

the same but they are close related. Looking at the values of Table 2.1, the instantaneous

power consumption of transmissions and receptions is identical (or similar in other motes).

Nevertheless, energy consumption (which is essentially the product of power and time) may

be significantly different because of its dependence on the amount of time spent in each

state or operational mode. This fact clearly entails that the average energy consumption

of transmission and reception processes may strongly depend on features from the network

design at all levels (the power control strategies, the choice of the MAC layer protocol, the

routing algorithm, etc.) and also on the current network deployment and conditions (the

density of nodes, the traffic patterns, the link quality, fading channels, environmental in-

fluences, etc.). For instance, implementing a Low Power Listening (LPL) MAC layer, a

transmitter repeatedly sends the same packet for a duration longer than the sleep interval to

guarantee that the receiver is awake during transmission. Thus, the length of the transmis-

sion varies accordingly to whenever the receiver wakes up and acknowledges a successful

reception. Clearly, it also depends on the LPL interval versus the data rate. On the other

hand, the length of a reception varies with the number of received packets, and so, it does

the reception cost. Another example is a WSN where errors induce packet losses and nodes

implement automatic repeat request (ARQ) schemes to combat them. In those networks,

the energy required for a successful transmission may vary with certain probability due to
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the additional cost that retransmissions entail. The same idea applies to low link quality

networks. But in any case, the energy consumption for transmissions is considerably higher

than for receptions. In practice, sometimes it is not easy to compute energy consumption

associated to each operational mode. For instance, the transmission of a packet can interfere

with the idle and receive modes so the computation of the transmission energy consumption

is quite involved.

Note that selective communication strategies assume that the cost of transmission is

much higher than that of reception, otherwise the benefits of discarding messages may be

negligible. Under these conditions (hence, considering energy consumption values), the

benefits of a selective transmission algorithm become apparent.

2.3 SENSOR MODEL

For the purpose of the analysis that follows from now on, we consider a sensor network

as a collection of sensor nodes N = {n|n = 0, . . . , N − 1}. Next, we will characterize

each sensor through a model that gathers all the relevant characteristics of a real sensor.

The sensor model here proposed will be used for the derivation of the Selective Transmitter

(Chapter 4) and the Selective Forwarder (Chapter 5), although a slight adaptation will be

performed to the latter. Remind that the sensor model has to be rich enough so that different

real scenarios can be fit into. On the other hand, it has to be simple enough so that the

mathematical formulation will be tractable and closed-form solutions can be derived.

2.3.1 Sensor node state information

For the time being, we will focus on the behavior of each sensor node, which receives a

sequence of requests to transmit messages (no matter how the network topology is). The

node state will be characterized by two variables:

• ek : available energy (battery level) at time k. It reflects the “internal state” of the

node; and

• xk : importance of the message to be sent at time k. It reflects the “external input” to

the node.
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The “time” variable k requires an explanation. Strictly speaking, it does not represent

physical time, but a counter of epochs. An epoch is every time period that starts when the

node acquires some data (from the sensing devices or from other nodes) with a request to

forward them to the sink, ends when the node discards the message or completes the trans-

mission to a neighboring node, and contains all time instants devoted to receive, process and

(eventually) forward these data. In practice, this may happen in a non-continuous time pe-

riod (e.g., if new messages arrive to the node before completing the transmission of previous

messages), and different epochs may be intertwined in the real time line. The identification

of the time periods that correspond to each epoch (and the further assignment of energy

consumption to epochs) is an important step for implementing a selective scheme in true

networks, but goes beyond the scope of this thesis.

In addition to this, it may happen that a node has no pending messages, and stays in

idle state or listening to the channel. For the mathematical model, these periods can be

interpreted as requests to transmit null messages with zero importance (i.e. xk = 0), while

true messages will have xk > 0.

2.3.2 Sensor node location information

Sensor nodes must address messages to a unique sink. It is widely recognized that per-

formance can be improved if nodes have (possibly local) information about their own geo-

graphical position and that of other nodes. Therefore, each node n knows its location, the

location of its neighbors and the location of the sink, but global knowledge of the network

topology is not needed. Location information could be dispensable in the model whenever

sensor nodes do not use geographical routing.

2.3.3 Sensor node actions

The network routing algorithm (whatever it is) has defined (possibly, in a decentralized

manner) a set of neighbors for each sensor node, in such a way that, any sensor node holding

a message at time k has to make a decision dk about sending or not the current message to

a neighbor. The message is sent if dk = 1, while it is discarded if dk = 0.
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2.3.4 Operational modes and sensor node dynamics

Sensor nodes consume energy at each time epoch by an amount that depends on the oper-

ational mode (node state). According to the analysis exposed in Section2.1, four different

energy expenses are typically considered:

• eI : energy expenditure corresponding to the “idle” state, i.e., when there is no mes-

sage reception or sensing activity and the node keeps listening;

• eR: energy expenditure corresponding to the reception state, which may include the

reception of a single or multiple messages;

• eT : energy expenditure corresponding to the transmission state. It embraces the en-

ergy expense of the whole transmission process, which may also include the energy

cost of a waiting period for acknowledgments (ACKs); and

• eS : energy expenditure on data collection by a sensing device.

Remark that energy consumption due to the sleep mode is not considered since it was

shown that its energy cost was almost negligible.

The value of these parameters will depend on the system specifications and the specific

application. For example, for static dense networks, eT and eR values may be very similar,

while for mobile networks operating over fading channels, eT >> eR is expected because

sensors usually beamform their transmitted symbols to mitigate the degradation effects in

the communication performance due to fading (e.g. [Marques et al., 2008]).

Two energy consumption models are proposed. As a first approach, a constant energy

consumption model. This model will be used for the derivation of the selective transmitter

(Chapter 4). Energy at time k can be expressed recursively as

ek+1 = ek − dkE1(xk)− (1− dk)E0(xk), (2.1)

where E1(xk) is the energy consumed when the node decides to transmit the message, and

E0(xk) is the energy consumed when the message is discarded. Assuming that the energy

consumption is constant for any node state, the mean consumption patterns are given by
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ES = eS , ER = eR, ET = eT , EI = eI . For positive values of importance, energy

consumption is independent of the message importance, and we have

E1(xk) = ET + ER, xk > 0 (2.2)

E0(xk) = ER, xk > 0. (2.3)

Recalling that xk = 0 means that no messages are received, we also have

E1(0) = E0(0) = EI . (2.4)

When the sensor node is the source of the message, ER comprises the energy cost of the

message generation process (possibly by a sensing device), i.e. ES = ER. When the sensor

node acts as a forwarder, ER comprises the energy expense of receiving the message from

other node. Thus, for simplicity we assume that ER is the same no matter if the node is the

source of the message or it has been requested to forward a message from other node (i.e.

ER represents the energy consumption associated to the data capture event, integrating both

reception and sensing). Constant parameters ET , ER and EI are perfectly known by sensor

nodes. It is important to mention that although the energy consumption model is given by

(2.2)-(2.4), we will formulate the selective transmitter considering the general case in (2.1)

by assuming that both consumption profiles, E1(xk) and E0(xk), may arbitrarily depend on

xk.

However, the model can be even applied to situations where ET and ER are random or

time-variant (e.g., a WSN transmitting over fading channels, where the energy consumption

is a random variable that depends on the fading realization; see, e.g., [Marques et al., 2008])

by substituting ET and ER by their respective mathematical expectations. This way we can

deal with a broader range of scenarios, and actually, be more realistic. This idea leads to the

second approach, the stochastic energy consumption model. This case is a generalization of

the first model and it will be used for the derivation of the selective forwarder (Chapter5).

Now, the available energy at time k is expressed as

ek+1 = ek − dkc1,k − (1− dk)c0,k, (2.5)

where c1,k is the energy consumed when the node decides to transmit the message, and

c0,k is the energy consumed when the message is discarded. The latter may include the
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cost of sensing the data (if the sensor device is the source of the message), the cost of data

reception (when data come from other nodes) or the cost of the idle state (if there are no

data to transmit, which is formally equivalent to receive a virtual zero importance message).

Parameter c1,k accounts for all the previous costs plus the cost of forwarding the message. In

general, we assume that energy consumption may depend on xk and may have some random

components, so that c1,k and c0,k are stochastic processes. Note also that the fact that c1,k

and c0,k are stochastic allows integrating in the sensor model the idea of nodes consuming

a different amount of energy at every state, being able to include explicitly in the model

the dependence on other features of the network design. Energy consumption may depend

on factors such as the amount of time spent in each state (which in fact may be linked to

messages of different lengths as a consequence (or not) of having different priorities, for

instance) or the inter-sensor distances (transmitting a message to faraway nodes implies a

higher consumption).

Besides, assuming that energy consumption costs are stochastic for any node state, and

defining the mean consumption patterns asER = E{eR} (orER = E{eS}, asER represents

the energy consumption associated to a data capture event), ET = E{eT }, EI = E{eI}, we

can express c1,k = ET + ER and c0,k = ER for xk > 0, and c1,k = c0,k = EI for xk = 0,

so that this model is equivalent to the previous one.

Finally, we assume that energy functions are perfectly known by sensor nodes.

2.3.5 Additional sensor node characteristics

A sensor node is able to overhear any message sent by a node within its transmission radius.

As wireless networks usually use a single frequency for communication purposes, a message

intended for a node is also heard by all neighbors within the sender transmission radius

[Stojmenovic, 2002]. However, we neglect to consider overhearing energy costs because we

assume early overhearing avoidance techniques (e.g. the work in [Hu and Motani, 2009]),

which is able to reduce the impact on energy consumption to low values.

Sensors are assumed to have a single omnidirectional antenna. Hence, reciprocity be-

tween coverage areas is assumed (i.e. node j is neighbor of node i and vice versa).
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2.4 CONCLUDING REMARKS

This chapter has listed the main sources of energy expenditure in a sensor node. The drawn

conclusions were crucial to characterize the sensor through a model appropriated for the

design of the selective communication policies.

Remark that the sensor model is an abstraction of reality, which makes some simplify-

ing assumptions: perfect transmissions, perfect knowledge of energy resources and energy

costs, and some others. Some of them are likely not critical and the model can be modified

in order to incorporate more realistic situations. Some others state some challenges in order

to obtain more practical selective decision schemes. In any case, we believe that the model

captures the essential behavior of a selective sensor and can be used as a starting point for

other designs more accurately adapted to specific scenarios.
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CHAPTER 3

SELECTIVE COMMUNICATIONS

BASED ON DECISION THEORY

In the introductory chapter, it was remarked that one of the main goals in WSNs consisted

of designing energy-efficient schemes that reduce considerably communication tasks for

being extremely costly, energetically speaking. It was also stated that making intelligent

importance-driven decisions about message transmission in WSNs may notably contribute

to reduce communication expenses by only transmitting the most relevant messages (selec-

tive transmission), while a level of QoI is assured.

This chapter considers a selective forwarding scheme that uses a probabilistic approach

as a first attempt to develop optimal selective communication policies. Thus, the decision to

transmit or discard a message at each node will be made by means of a Bayesian decision

model that tries to minimize a cost which will depend on the energy expenses and the energy

availability as well as the importance of the current message.

Furthermore, adding sensor nodes the capability to learn in a distributed way from pre-

vious decisions together with cooperation patterns may help to improve the adaptation of

sensor nodes to changing conditions, which on the other hand, are so common in WSNs.

For instance, applying the potential benefits of machine learning techniques to a routing

scenario, sensor nodes may learn from the success or failure of past decisions in order to

make intelligent decisions according to future conditions.
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Hereunder, a selective transmission scheme inspired from Bayes decision theory and

based on learning patterns will be developed as a manner of preserve energy whereas guar-

antees QoI.

3.1 DECISION MODEL INSPIRED BY BAYES DECISION THEORY

As it was mentioned in the motivation section in Chapter 1, the basis of selective com-

munications consists of selecting, according to a criterion or a rule, which messages will

be transmitted and which discarded in order to save energy of individual nodes. Hence,

based on selective communication principles, in this section we derive a transmission deci-

sion rule based on energy expenses, energy availability, cooperation patterns and message

importance.

Whenever a sensor node receives a message, it should make a decision that implies

accomplish an action, i.e. transmit or discard the message. To make the right decision

in order to extend network lifetime while not discarding relevant information (important

messages), each node should assess the consequences derived from each action. The node

should evaluate the risk assumed when forwarding the message to a neighboring node (and

thus, the energy expenditure associated to the possible transmission) and the probability that

the message will not be eventually retransmitted from a neighboring node (either for energy

problems or selfish reasons), opposite to discarding the incoming message to wait for future

highly graded messages.

Sensors are able to make better decisions if they have some kind of information that

contributes to assess the action effects. Defining φ(i) as the neighbors of sensor node i,

decisions at node i will be based on the following variables:

• Energy expenditure associated to the operational modes/node states: ET , ER, EI .

• The importance of the message to be transmitted at time k, xk. The assessment of

the message importance is a responsibility of the source node, so that the importance

value should be transmitted along with the message.

• Profiles of neighboring nodes (cooperation patterns and an estimation of the available

energy at neighbors, {Êij , j ∈ φ(i)}), learnt from previous experiences and statistics.
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Variables xk and Êij are grouped into observation vector y (i.e. y = [Êij xk]T ).

Based on y, each node with a message to be transmitted states the decision as the result of

solving a hypothesis testing problem with two hypothesis: q = 0 or q = 1, where:

• q = 1 if at least one neighboring node will forward the message.

• q = 0 if no neighboring node will forward the message (thus, saving energy to trans-

mit future high important messages).

Depending on its belief about the value of q, node i will make decision D1 (the message

is transmitted, d = 1) or D0 (the message is not transmitted, d = 0).

To do so, we define cost C(Di, z) = ciz as the cost of deciding Di when the true

hypothesis is q = z (where i, z ∈ {0, 1}). The table of costs associated to the transmission

decision problem is shown in Table 3.1.

Table 3.1: Table of costs associated to the transmission decision problem.

C(Di, q) q = 0 q = 1

D0 c00 = EI c01 = EI

D1 c10 = ET c11 = ET − γxk

Note that the cost of rejecting a forwarding request (c0,q) is the energy expenditure due

to the listening state. The cost for node i when it decides not to transmit a message is

independent of the decision made by neighboring nodes. The cost of deciding to forward

a message when at least a neighbor retransmits (c11) is reduced according to the message

importance xk. As message importance xk is not scaled as regards energy consumption,

parameter γ modulates the trade-off between the transmission energy (cost) and the message

importance (benefit).

According to this, the conditional risks (mean costs) associated to decide in favor of

transmitting (D1) or discarding (D0) are given by

C(D0|y) = EIP (q = 0|y) +EI(q = 1|y) = EI (3.1)

C(D1|y) = ETP (q = 0|y) + (ET − γxk)P (q = 1|y) = ET − γxkP (q = 1|y), (3.2)
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respectively. Note that we have used P (q = 0|y) = 1 − P (q = 1|y). As the goal is to

minimize the mean cost, which consists of making the decision that minimizes the condi-

tional risk (i.e. arg miniE{C(Di|y), i = 0,1, ...,L}, which translates into C(D1|y) ≷D0
D1

C(D0|y) because it is a binary decider), the final decision is given by

P (q = 1|y)
1
≷
0

ET −EI

γxk
. (3.3)

3.1.1 Computation of the posterior probability

In order to estimate the posterior probability of each hypothesis, P (q = 1|y), node i makes

two simplifying assumptions:

a1) The probability of node j forwarding a message is independent of the forwarding

decision made by any other node.

a2) The probability of node j forwarding a message is independent of the state informa-

tion at any other node.

Defining the random variable qj equal to 1 if node j will forward the message and 0

otherwise, we can rely on a1) to write

pij = P (q = 1|y) = 1− P (q = 0|y) = 1−
L∏

j=1
j∈φ(i)

(1− P (qj = 1|y)). (3.4)

In order to compute (3.4), we make use of the simplifying assumption a2), which states

that the posterior probability of transmitting only depends on local information of node j.

Thus, noting that the local information of node j is given by yj = [Êij xk 1]T (the last

component, equal to unity, has been included for mathematical convenience), we can write

P (qj = 1|y) = P (qj = 1|yj). (3.5)

Since a closed-form expression for (3.5) is unknown, we may assume a truncated logistic

model

P (qj = 1|yj) =
1

1 + exp
(
−wT

j yj

)u(Êij − ET ), (3.6)

46



CHAPTER 3. SELECTIVE COMMUNICATIONS BASED ON DECISION THEORY

where u is the Heaviside step function. Note that a direct consequence of (3.6) is that node i

assigns a zero probability of retransmission to any node that (according to its estimate) does

not have energy to transmit the message.
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Figure 3.1: Logistic model to compute the probability of forwarding by neighboring nodes,

P (qj = 1|yj).

We have chosen the logistic sigmoid because it is bounded by 0 and 1, and its S-shaped

continuous output, which assigns higher output values to higher x-coordinate values. This

function captures the intuition that nodes have about the probability that neighboring nodes

will forward the message, since the higher the message importance and the estimation of the

available energy at neighboring nodes is, the higher the probability of forwarding is. Fig.

3.1 represents the logistic sigmoid function.

The probabilistic dependencies which define the decision process at each node are illus-

trated in Fig. 3.2 for the case of 3 nodes. Each transmitting node “builds” a graphical model

including the most relevant variables in the node decision: namely, the message importance

and the estimation of the energy at neighboring nodes. Though each node makes the simpli-

fying assumption that the decision of a neighboring node will not depend on the energy at

other nodes, it learns existing probabilistic dependencies through the logistic model.

3.1.2 Learning neighbors’ profile

Each node is able to estimate parameters wj of the logistic neighbors’ profile in (3.6) without

exchanging any information among nodes, just overhearing retransmissions.

Let us define dj as the decision of node j to forward a message from node i (i.e. dj

is a binary variable equal to 1 if node i listens to node j forwarding its message, and 0
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q1

Ê1 Ê2 Ê3

q2 q3

qxk

Figure 3.2: The graphical model built by a transmitting node including the message impor-

tance and the estimation of energy at neighboring nodes. Each node makes the simplifying

assumption that the decision of a neighboring node will not depend on the energy at other

nodes (thus omitting dependencies given by the dashed arrows, which may appear if neigh-

bors of a node are neighbors among themselves).

otherwise). Parameters wj are estimated in order to minimize a loss function capable of

providing adequate estimates of the posterior probability, such as the cross entropy loss

function [Miller et al., 1993], a loss function commonly used in neural network training

algorithms and which is given by

L(pij, dj) = −dj ln pij − (1− dj) ln(1− pij), (3.7)

where pij represents the estimated probability that node i transmits the message through

node j. This cost function is widely used for learning problems.

Applying stochastic gradient learning rules, node i updates parameters after a transmis-

sion as

wj(k + 1) = wj(k) + η(dj(k)− pij(k))u(Êij − ET )yj(k), (3.8)

where η is the adaptive step and k represents the epochs. Clearly, the selection of η entails

a trade-off between the speed of convergence (higher for large η) and the stability of the

adaptive rule (better for small η).

48



CHAPTER 3. SELECTIVE COMMUNICATIONS BASED ON DECISION THEORY

3.1.3 Updating information from statistics

Based on node dynamics, node i can estimate the profile information of its neighbors, such

as the remaining energy (Êij , j ∈ φ(i)). Even though it could be possible to include this

information in periodical “keep alive” beacons, we would rather consider that sensor nodes

have incomplete information so they need getting it from statistics, with the consequent

imprecisions that it implies. Thus, energy at node j can be estimated by node i (whenever

it hears a retransmission by node j or when it is aware node j receives a message) using the

general energy model proposed in (2.1) in Chapter 2 (but substituting ek by Êij).

There are, however, messages received by node j that node i is not aware of. Exper-

imental results showed that this slight energy overestimation seems to affect neighboring

nodes concentrated in a local region in a similar way, so it does not result significant to

make forwarding decisions. Moreover, if energy expenditure is similar in reception and idle

states, the overestimation is considerably reduced.

3.1.4 Application of the Decision Model to Routing in WSN

The decision model was incorporated into the design of two new energy-

aware routing algorithms, namely Learning-based Prioritized Geographical Rout-

ing (LPGR) [Arroyo-Valles et al., 2007b] and Q-Probabilistic Routing (Q-PR)

[Arroyo-Valles et al., 2007a], to verify its validity. Nevertheless, as the decision rule

is the key and starting point of the work that follows in the remainder of the dissertation, we

are not including the description and performance evaluation of both routing algorithms.

We urge the reader to have a look at the references cited above to go into detail. However,

we briefly resume the main findings below.

Using the decision model, nodes are able to make intelligent forwarding decisions dis-

carding low importance messages to save energy for higher importance incoming messages.

Thus, each node observes if neighboring nodes forward its messages and based on these ob-

servations and exploiting local information from the signals detected at them, sensor nodes

can learn to route messages in order to improve the communication performance of the over-

all network and minimize the need of coordination or signaling protocols among nodes. The

resulting protocols transmit messages selectively according to a given importance value,

promoting the transmission of highly graded messages, which is efficient to maximize the
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overall importance of the messages arriving to the sink during the whole network lifetime.

Furthermore, both protocols ensure successful message transmissions entailing a low loss

rate.
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CHAPTER 4

OPTIMAL SELECTIVE

TRANSMISSION

In the previous chapter, a probabilistic selective communication model based on decision

theory was proposed. The transmit/discard decision was quantified according to a cost which

depended on energy expenses and the message importance so that the final decision was

made with the aim of minimizing a mean cost. Thus, the resulting decision rule tended to

promote the transmission of highly graded messages and, as a result, the overall importance

of the transmitted messages during the full node lifetime was higher than the corresponding

to nonselective transmission schemes. However, this model does not take into account the

sequential nature of the problem. Besides, the cost model is, to some extent, arbitrary. The

dynamical adjustment of parameter γ in (3.3), which balances the importance of the message

(benefit) regarding the energy expenses (cost), should be properly refined. According to

(3.3), a high value of parameter γ will promote the transmission of messages while a low

value will have the opposite effect. But, what is the appropriate value of parameter γ? That

is why the relative influence of energy expenses and importance values in the overall cost is

a free parameter of the model, whose value is difficult to optimize.

The goal pursued in this chapter is to re-formulate and solve the selective transmission

problem as an iterative decision problem in such a way that the balance between minimizing

energy expenses and maximizing the importances of the transmitted messages is determined
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automatically by the optimization process. Specifically, we derive a selective transmission

policy maximizing the importance sum of the messages transmitted by each node from the

sensor node information (e.g. energy expenses, available batteries, the importance of mes-

sages, etc.), and analyze the node behavior under different importance distributions. Using

asymptotic analysis, the gain with regard to a nonselective scheme is theoretically quantified.

Furthermore, in scenarios where nodes do not know the statistical importance distribution

of messages, an alternative method that does not require a priori knowledge of the statistical

information is developed.

It will be shown that in most cases, the optimal transmission scheme is fairly simple.

Particularly, it will turn out that the optimal decision is made comparing the message impor-

tance with a time-variant threshold. It will be also shown that the gain of the selective trans-

mission scheme, compared to a nonselective one, will critically depend on energy expenses,

among other factors. Theoretical results will be complemented with numerical simulations

that not only will corroborate the theoretical claims but also will help us to quantify the

gains of implementing the selective scheme for a broad range of practical scenarios.

Noticeably, the statistical model of the selective transmission scheme here presented

exhibits similarities to other problems in Operations Research and Stochastic Dynamic Pro-

gramming (see, e.g., [Sennott, 1997]), and the equations describing the energy evolution

at the sensor node and the importance sum can be restated as a particular type of Markov

Decision Process, as it will be further stated in the next chapter.

The chapter is organized as follows: Section 4.1 focuses on the optimal selective trans-

mitter, obtaining a general formula to compute the optimal time-variant threshold, which is

thereafter particularized for specific operating conditions and different importance distribu-

tions. Section 4.2 describes a selective transmission policy based on a constant threshold.

The asymptotic analysis in Section 4.3 provides a gain formula as well as some illustrative

examples. In Section 4.4, an adaptive method that does not require any knowledge of the

importance distribution, but estimates it on-the-fly is presented. Section 4.5 discusses the

experimental study and results for a single node scenario. Finally, the chapter ends with

some concluding remarks.
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4.1 OPTIMAL SELECTIVE TRANSMISSION

The sensor model used for the mathematical formulation was described in Chapter2. Re-

mind that the derivation of the selective transmitter is made considering that the node has

a constant energy consumption model (although may arbitrarily depend on the importance

value xk) given by (2.1).

To derive the optimal transmission policy we will consider that node decisions do not

depend on the state and actions of neighboring nodes, but only on the available information

at each node. Therefore, at each time k, the node decision depends on the internal state and

the external input

dk = dk(ek, xk), (4.1)

(note that, with some abuse of notation, we adopt the same notation for the decision variable

and the decision function), with the constraint

d(ek, xk) = 0, if ek < E1(xk) (4.2)

reflecting that, if the sensor node does not have enough energy to receive and transmit the

message, it cannot decide dk = 1.

Decisions at each node will be made with infinite horizon, i.e., by maximizing (on aver-

age) the importance sum of all transmitted messages

t∞ =
∞∑

k=0

dkxk. (4.3)

Since nodes have limited energy resources, this sum only contains a finite number of

nonzero values (eventually, for some k, ek < mink E1(xk), and ∀k′ ≥ k, we have dk′ = 0).

Since the design focuses on the performance of each single node, decisions made at other

nodes are not explicitly taken into account, but only implicitly through messages actually

received from its neighbors. Although this approach fits into the design philosophy of sensor

networks where the complexity of each node should be kept as low as possible, it is worth

remarking that from an overall network perspective, it may entail a loss of performance.

Therefore, a generalization of the selective transmission model proposed in this chapter,

which will also consider the behavior of neighboring nodes, will be proposed in Chapter5.
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The following result provides the optimal selective transmitter.

Theorem 1 Let {xk, k ≥ 0} be a statistically independent sequence of importance values,

and ek the energy budget at time k, whose energy process is given by (2.1). Consider the

sequence of decision rules in the form

dk = u(xk − μk(ek, xk))u(ek − E1(xk)), (4.4)

where u(x) stands for the Heaviside step function (with the convention u(0) = 1) and

threshold μk is defined recursively through the pair of equations

μk(e, xk) = λk+1(e− E0(xk))− λk+1(e− E1(xk)) (4.5)

λk(e) = (E{λk+1(e− E0(xk))} + E{(xk − μk(e, xk))+u(e− E1(xk))}
)
u(e), (4.6)

where

(xk − μk(e, xk))+ = (xk − μk(e, xk))u(xk − μk(e, xk)). (4.7)

Sequence {dk} is optimal in the sense of maximizing E{t∞} (with d(ek, xk) = 0 for

ek < E1(xk) and t∞ given by (4.3)) among all sequences in the form dk = dk(ek, xk).

The auxiliary function λk(e) represents the expected increment of the total importance

(expected reward) at time k , i.e.,

λk(e) =
∞∑

i=k

E{dixi|ek = e}. (4.8)

Proof See Appendix A.1.

Although the result of Theorem 1 is general and holds for any energy cost and impor-

tance value, it does not provide a clear intuition about the impact ofE(x) and the distribution

of xk on the design of the optimal transmission scheme. Moreover, the direct application

of this result is difficult, because (4.5) and (4.6) state a time-reversed recursive relation: to

make optimal decisions, the node should know the future importance distributions in ad-

vance. For these reasons, in the reminder of this chapter we will focus special attention on

several particular cases that will lead us to tractable closed-form solutions.
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4.1.1 Stationarity

If all variables x1, . . . , xk have the same distribution, then μk does not depend on k [c.f.

(4.5) and (4.6)]. In this case, the following result can be shown:

Theorem 2 Under the conditions of Theorem 1, if the importance values {xk, k ≥ 0} are

identically distributed and infx{Ei(x)} > 0, for i = 0, 1, the sequence of decision rules

d = u(x− μ(e, x))u(e − E1(x)), (4.9)

where

μ(e, x) = λ(e− E0(x))− λ(e− E1(x)) (4.10)

λ(e) = (E{λ(e− E0(x))} + E{(x− μ(e, x))+u(e−E1(x))}
)
u(e), (4.11)

is optimal in the sense of maximizing E{t∞} (with d(e, x) = 0 for e < E1(x) and t∞ given

by (4.3)) among all sequences in the form d = d(e, x).

Proof See Appendix A.2.

It is important to stress that in most scenarios involving multiple sensors, the stationarity

assumption, strictly speaking, is not true. For example, the distribution of messages arriving

to a node depends on the transmission policy used by forwarding nodes. Since the optimal

policy presented here is energy-dependent [c.f. either (4.5) or (4.10)] and the available

energy clearly changes along time for all nodes, the importance distribution of the received

messages will also change along time. However, it will be shown in the next sections that the

simplification obtained in (4.10) is not only useful from a theoretical perspective, but also

valid from a practical point of view for large networks. This (almost) stationary behavior can

be justified based on different reasons. First, although the optimal transmission policy varies

along time, this variation turns out to be negligible during most of the time (i.e., it is almost-

stationary). The underlying reason is that for medium to high values of available energy

the optimal transmission scheme is not very sensitive to energy changes. Only when nodes

are close to run out of batteries, the decision threshold varies significantly as a function of

55



4.1. OPTIMAL SELECTIVE TRANSMISSION

the remaining energy. Second, even if the behavior of a single node is not stationary, the

aggregate effect of the entire network may be stationary. In other words, the approximation

given by (4.10) will be accurate during most of the time, and the discrepancy will only

arise when the network is close to expire. Theoretical analysis and numerical results will

corroborate this intuition.

4.1.2 Constant energy profiles

Under the constant energy profile model given by (2.2)-(2.4), the optimal threshold can be

written as

μk(e, x) = μk(e)Ix>0, (4.12)

where Ix>0 is an indicator function (equal to unity if the condition holds and zero otherwise),

and using (4.5) we have

μk(e) = λk+1(e− ER)− λk+1(e− ET − ER). (4.13)

Also, defining the probability of being in idle state as PI = P (xk = 0), (4.6) becomes

λk(e) = PIλk+1(e− EI) + (1− PI)λk+1(e− ER)− PIμk(e, 0)u(−μk(e, 0))u(e − EI)

+ (1− PI)E{(xk − μk(e, xk))+|xk > 0}u(e− ET − ER)

= PIλk+1(e− EI) + (1− PI)λk+1(e− ER)

+ (1− PI)E{(xk − μk(e, xk))+|xk > 0}u(e− ET − ER). (4.14)

Furthermore, defining

Hk(μ) = E{(xk − μ)+|xk > 0}, (4.15)

we can write

λk(e) = PIλk+1(e−EI) + (1−PI)λk+1(e−ER) + (1−PI)H(μk(e))u(e−ET −ER).

(4.16)

Thus, the optimal transmission policy for a sensor with a constant energy profile is

described by (4.13) and (4.16). In order to analyze the influence of idle times and the relation
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between transmission and reception energy expenses separately, in the following examples

we consider the case of PI = 0 and/or EI = 0. Note that if any of these conditions holds,

the expected importance sum in (4.16) can be rewritten as

λk(e) = λk+1(e− ER) +H(μk(e))u(e − ET −ER). (4.17)

4.1.3 Examples

As we have already mentioned, there is no general explicit solution to the pair of equations

(4.5) and (4.6), not even for the stationary case in (4.13) and (4.16). For this reason, in

this section we focus on systems satisfying the operating conditions that gave rise to (4.17)

(constant energy profiles, stationarity and zero idle energy) and solve the recursive relations

for several importance distributions1 . This simplification will lead to tractable expressions,

providing insight into the behavior of the optimal transmission scheme.

• Uniform Distribution: Let U(0, 2) denote the uniform distribution between 0 and 2

whose probability density function (PDF) is

p(x) =
1
2
(u(x)− u(x− 2)). (4.18)

By substituting (4.18) into (4.15), we have

H(μ) = E{(x− μ)+} =
1
4
(2− μ)2, (4.19)

and therefore, the expected reward is given by

λ(e) = λ(e− ER) +
1
4
(2− μ(e))2u(e− ET − ER). (4.20)

Fig. 4.1(a) plots the threshold for extremely small values of available energy, e.

E1(x) = 1 and different values of the ratio ET /ER are considered. Note that, for

values of e lower than 1, in spite of the threshold value is 0, there is no actual trans-

mission because u(e − ET − ER) = 0. For 1 < e < ET + ER there is only one

opportunity to send the message, so the threshold is also 0, which means that the mes-

sage will be transmitted whatever its importance value is. For larger energy values,

1In the following, free parameters will be set so that importance distributions have a mean value equal to 1.
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Figure 4.1: Variation of the decision threshold (a) and the expected importance sum (b) for

low values of available energy, e. A uniform importance distribution U(0, 2) with E1(x) =

ER + ET = 1 is assumed. Different plots correspond to different values of ET /ER.

the threshold increases, meaning that the transmission can be made more selective.

Note, also, that μ(e) evolves in a staircase manner, because any energy amount in

excess of a multiple of ER is useless.

Fig. 4.1(b) represents the expected reward (λ(e)). Note that the case ET = 0 is

equivalent to a nonselective transmitter (because, according to (4.13), the optimal

threshold is 0, which means that no messages are discarded). Despite that, for e close

to 2, there is not energy for a second transmission, the selective transmitter provides

a significant expected income with respect to the nonselective one.

Fig. 4.2(a) shows the optimal threshold for ET = 4, ER = 1 and high values of avail-

able energy. Note the sawtooth shape of the transmission threshold: as the available

energy is reduced to a value close to a multiple of the energy required to transmit, the
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Figure 4.2: Variation of the decision threshold (a) and the expected importance sum (b)

(continuous line) as a function of the available energy. A uniform importance distribution

U(0, 2) with ET = 4 and ER = 1 is assumed. The stepwise function (dotted line) re-

flects the behavior of a nonselective transmitter, which transmits any message whatever its

importance value is.

transmission threshold decreases, because if there is not any transmission, the total

number of possible messages to be sent is reduced by a unity.

Fig. 4.2(b) represents the expected reward of the selective transmitter (continuous

line) and the nonselective one (dotted line), which transmits all messages regardless

of the importance value, until energy is used up.

• Exponential: For an exponential distribution of free parameter a, we have

p(x) =
1
a

exp
(
−x
a

)
u(x), (4.21)
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and

H(μ) = a exp
(
−μ
a

)
, (4.22)

so that

λ(e) = λ(e− ER) + a exp
(
−μ(e)

a

)
u(e− ET − ER). (4.23)
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Figure 4.3: Variation of the decision threshold (a) and the expected importance sum (b)

(continuous line) with respect to the available energy. An exponential importance distribu-

tion with a = 1, ET = 4 and ER = 1 is assumed. The dotted line represents the expected

importance sum of the nonselective transmitter.

The variation of μ and λ for an exponential distribution with a = 1, ET = 4 and

ER = 1 is illustrated in Fig. 4.3. The more restrictive threshold (Fig. 4.3(a)), com-

pared to that one shown in Fig. 4.2(a) for the uniform distribution, gives rise to a

higher increase in the expected reward with regard to the nonselective transmitter

(Fig. 4.3(b)).

60



CHAPTER 4. OPTIMAL SELECTIVE TRANSMISSION

• Pareto: For the Pareto-type distribution with PDF

p(x) =
a− 1

(1 + x)a
u(x), (4.24)

we have

H(μ) =
1

a− 2
1

(1 + μ)a−2
(4.25)

so that

λ(e) = λ(e−ER) +
1

a− 2
1

(1 + μ(e))a−2
u(e− ET − ER). (4.26)
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Figure 4.4: Variation of the decision threshold (a) and the expected importance sum (b)

(continuous line) with respect to the available energy. A Pareto importance distribution

with a = 3, ET = 4 and ER = 1 is assumed. The dotted line shows the behavior of the

nonselective transmitter.

The evolution of μ and λ for a Pareto distribution with a = 3, ET = 4 and ER = 1 is

depicted in Fig. 4.4. Similar conclusions can be applied to this type of distribution.
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4.2 THE CONSTANT THRESHOLD TRANSMITTER

For comparative purposes in the following sections, we will derive some expressions relative

to selective transmission policies based on constant thresholds. Let us assume that node

decisions are given by

dk = u(xk − μc)u(ek − E1(xk)), (4.27)

where μc is a constant threshold. Note that if μc = 0, the constant threshold transmitter

reduces to the nonselective transmitter. Following an analysis similar to that exposed in

Appendix A.1, we can write the expected reward of the constant threshold transmitter as

λk(e) = E{dkxk|ek = e}+ E{(1− dk)λk+1(e− E0(xk))}+ E{dkλk+1(e− E1(xk))}
= E{u(xk − μc)u(e− E1(xk))xk}
+ (1− P (xk ≥ μc, e ≥ E1(xk)))E{λk+1(e− E0(xk))|(xk < μc) OR (e < E1(xk))}
+ P (xk ≥ μc, e ≥ E1(xk))E{λk+1(e− E1(xk))|xk ≥ μc, e ≥ E1(xk)}. (4.28)

In particular, for large e (i.e., e > maxx{E1(x)}) and the stationary case,

λ(e) =E{u(x− μc)x}+ P (x < μc)E{λ(e− E0(x))|x < μc}
+ P (x ≥ μc)E{λ(e− E1(x))|x ≥ μc}. (4.29)

Interestingly, for the constant energy profile case with PI = 0, E1(x) = ET + ER and

μc = 0, λ(e) can be computed explicitly using (4.8) as

λk(e) =
∞∑

i=k

E{u(ei − E1(xi))xi|ek = e} =
⌊

e

ET + ER

⌋
E{x}, (4.30)

where �y� denotes the largest integer which is lower than y. So that (4.30) reflects the

stepwise form shown in the example of Fig. 4.2.
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4.3 ASYMPTOTIC ANALYSIS

4.3.1 Large energy threshold

The above examples show that for large energy values e, the threshold converges to a con-

stant value, and the expected reward tends to grow linearly. Both behaviors are closely

related because, as (4.5) shows, the optimal threshold is the difference between two ex-

pected rewards. But this is also a general behavior of the constant threshold transmitter. In

this section, we discuss the asymptotic behavior of any selective transmitter in the stationary

case. To do so, we first define the income rate of a selective transmitter.

Definition 1 The income rate of a selective transmitter with expected reward λ(e) is defined

as

τ = lim
e→∞

λ(e)
e
. (4.31)

We start with the income rate of the constant threshold transmitter, providing a formula

and a proof for bounded energy profiles.

Theorem 3 Consider the selective transmitter given by (4.27), constant threshold μc, and

energy profiles with upper bound, B, such that E0(x) ≤ B, and E1(x) ≤ B, for all x.

Then, the income rate is given by

τμc =
E{u(x− μc)x}

(1− Pμc)E{E0(x)|x < μc}+ PμcE{E1(x)|x ≥ μc} (4.32)

where Pμc = P (x ≥ μc).

Proof See Appendix A.3.

As a reference for comparison, we will consider the particular case of the nonselective

transmitter, the particular case of the constant threshold transmitter with μc = 0, in such a

way that (4.32) reduces to

τ0 =
E{x}

E{E1(x)} . (4.33)

The following theorem provides a way to compute the income rate of the optimal selec-

tive transmission policy:
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Theorem 4 The only threshold function μ(e, x) which is a solution of (4.10) and (4.11) and

is constant with e is given by

μ(e, x) = μ(x) = (E1(x)− E0(x))τ, (4.34)

where τ is a solution of

E{E0(x)}τ = E{(x− (E1(x)− E0(x))τ)+}. (4.35)

Moreover, if E1(x) ≥ E0(x), for all x, this solution is unique.

Proof See Appendix A.4.

An important consequence of Theorem 4 is that, if lime→∞ μ(e, x) exists, it must be

equal to (4.34). Even though we will not show any theoretical convergence result, we have

found a systematic empirical convergence and we guess that this could be a general result

for any importance distribution, provided it is stationary.

For the constant energy profile case, the asymptotic threshold (4.34) becomes

μ(x) = ET τIx>0. (4.36)

The recursive expression in (4.35) can be written as a function of μ∗ = ET τ as

(PIEI + (1− PI)ER)μ∗ = (1− PI)ETH(μ∗), (4.37)

where H(μ∗) is given by (4.15). Defining

ρ =
(1− PI)ET

PIEI + (1− PI)ER
, (4.38)

we get

μ∗ = ρH(μ∗). (4.39)

4.3.2 Gain of a selective transmission scheme

In this section, we analyze asymptotically the advantages of the optimal selective scheme

with regard to the nonselective one. To do so, we define the gain of a selective transmitter

as the ratio of its income rate τ and that of the nonselective transmitter τ0,
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G =
τ

τ0
. (4.40)

For the optimal selective transmitter with constant energy profile, combining (4.34) and

(4.33), we get

G =
μ∗E{E1(x)}
ET E{x} =

μ∗(PIEI + (1− PI)(ET + ER))
ET E{x}

=(1− PI)(1 + ρ−1)
μ∗

E{x} =
1 + ρ

ρ

μ∗

E{x|x > 0} . (4.41)

In the following, we compute the gain for several importance distributions.

4.3.3 Examples

Let us illustrate some examples taken from the constant energy profile as follows:

• Uniform Distribution: Substituting (4.19) into (4.39), we get

μ∗ =
1
4
ρ(2− μ∗)2, (4.42)

which can be solved for μ∗ as

μ∗ = 2

⎛⎝1 + ρ

ρ
−
√(

1 + ρ

ρ

)2

− 1

⎞⎠ (4.43)

(the second root is higher than 2, which is not an admissible solution). Note that, for

ρ = 4, we get μ∗ = 1, which agrees with the observation in Fig.4.2(a).

Therefore, the gain is given by

G = 2
1 + ρ

ρ

⎛⎝1 + ρ

ρ
−
√(

1 + ρ

ρ

)2

− 1

⎞⎠ . (4.44)

• Exponential: Using (4.22) we find that μ∗ is the solution of

μ∗ = aW (ρ), (4.45)
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where W (x) = y is the real-valued Lambert’s W function, which solves the equation

yey = x for −1 ≤ y ≤ 0 and −1/e ≤ x ≤ 0 [Corless et al., 1996]. Thus,

G = (1 + ρ−1)W (ρ). (4.46)
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Figure 4.5: Gain of the selective transmission policy under uniform and exponential distri-

butions as a function of ρ.

Fig. 4.5 compares the gain of the uniform and the exponential distributions as a func-

tion of ρ. The graphic remarks that, under exponential distributions, the difference

between the selective and the nonselective transmission scheme is much more signifi-

cant. The better performance of the exponential distribution compared to the uniform

may be attributed to the tailed shape. We may think that, for a long-tailed distribution,

the selective transmitter may be highly selective, saving energy for rare but extremely

important messages. This intuition is corroborated by the following example.

• Pareto (one-sided): For this distribution, (4.25) can be used to conclude that μ∗ is the

solution of

μ∗ =
ρ

(a− 2)(1 + μ∗)a−2
. (4.47)

Although for a generic a, this equation does not have an analytical solution (closed-

form solutions for specific values of a are possible), it can always be solved numer-

ically. Fig. 4.6 shows the gain of the optimal selective transmission policy under a
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Pareto distribution, for different values of parameter a. As stated before, it is cor-

roborated that the gain achieves higher values for a Pareto distribution regarding the

other two types of distributions. Besides, for the Pareto distribution, the higher the

distribution parameter a is, the lower the gain is.
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Figure 4.6: Gain of the selective transmission policy under a Pareto distribution, for different

values of parameter a. For values higher than 10, the gain is approximately equal to the case

a = 10.

4.3.4 Bounding the gain of a selective transmitter

We can bound the gain of the optimal selective transmitter on a constant energy profile

scenario by noting that, for any μ∗ ≥ 0 and any importance distribution, (x−μ∗)u(x−μ∗) ≤
x2

4μ∗ . Therefore,

H(μ∗) = E{(x− μ∗)u(x− μ∗)|x > 0} ≤ E{x2|x > 0}
4μ∗

. (4.48)

Using (4.39), we get

μ∗ ≤ 1
2

√
ρE{x2|x > 0}. (4.49)

Thus, the gain in (4.40) can be bounded as

G ≤
√

E{x2|x > 0}
E{x|x > 0}

1 + ρ

2
√
ρ
. (4.50)
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Figure 4.7: Comparison of the normalized gain with the theoretical bound, for different

importance distributions.

Fig. 4.7 compares the normalized gain given by

G =

(√
E{x2|x > 0}
E{x|x > 0}

)−1

G (4.51)

with the theoretical bound, for different distribution types, in a log-log scale. Note that, for

large values of ρ, the bound has the same tendency than the Pareto distribution.

4.3.5 Influence of idle states

The above examples show that the gain of the optimal selective transmitter increases with ρ.

By noting that ρ in (4.38) is a decreasing function of PI and EI , the influence of idle states

becomes clear: as soon as the frequency of idle states or the idle energy expense increases,

the gain of the selective transmission scheme reduces. This effect will be observed in the

experiments.

4.4 ALGORITHMIC DESIGN

4.4.1 Estimating Importance Distributions

To obtain the optimal transmission threshold, the importance distribution of messages is re-

quired. However, in many practical scenarios, p(xk) is either unknown or may change along

68



CHAPTER 4. OPTIMAL SELECTIVE TRANSMISSION

time. On the other hand, the computation of μk for a given value of available energy e must

be carried out iteratively. Moreover, the recursions in (4.5) and (4.6) proceed forward, from

lower energy values to higher values. This is undesirable because, in practice, the available

energy at a given node reduces with time, so we cannot take advantage of previous compu-

tations with energy e = ek−1 to compute λk and μk for energy e = ek. To bypass these

problems, p(xk) can be estimated in real time based on available data {x�, � = 0, . . . , k} at

time k.

We consider an approach based on a parametric estimation of p(xk) given by the Gamma

distribution (see Fig. 4.8)

p(x|v, θ) = xv−1 e
−x/θ

θvΓ(v)
, x, v, θ > 0. (4.52)
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Figure 4.8: Probability density function of the Gamma distribution for different values of

parameters v and θ.

Obviously, many other (non) parametric methods can be used to estimate p(xk), such as

the nonparametric estimate given by

E{(x− μ)u(x− μ)} ≈ 1− αk+1

1− α
k∑

�=0

αk−�(x� − μ)u(x� − μ), (4.53)

where α = 0 if p(xk) does not depend on k (i.e., the importance distribution is stationary),

and 0 < α < 1 otherwise.
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However, the main reason for actually selecting (4.52) is that it does not require to

store all importance values at each time, and so, the estimation is not too much expensive

computationally. Thresholds can be computed analytically by using the upper and lower

incomplete gamma distribution (Γ(a, x) and γ(a, x), respectively),

E{(x− μ)u(x− μ)} =
1

θvΓ(v)

∫ ∞

μ
(x− μ)xv−1e−x/θdx

=
1

θvΓ(v)

∫ ∞

μ
xve−x/θdx− μ

θvΓ(v)

∫ ∞

μ
xv−1e−x/θdx

=
θ

Γ(v)

∫ ∞

μ/θ
xve−xdx− μ

Γ(v)

∫ ∞

μ/θ
xv−1e−xdx

=
1

Γ(v)
(θΓ(v + 1, μ/θ)− μΓ(v, μ/θ))

=
1

Γ(v)
(θ (Γ(v + 1)− γ(v + 1, μ/θ)) − μ (Γ(v)− γ(v, μ/θ))) .

(4.54)

Let us define

m̂k =
1

k + 1

k∑
�=0

x�, , (4.55)

n̂k =
1

k + 1

k∑
�=0

ln (x�). (4.56)

While the maximum-likelihood (ML) estimate θ̂k (ML estimate of θ at time k) is calcu-

lated as

θ̂k =
m̂k

v̂k
, (4.57)

the ML estimate of parameter v at time k, denoted by v̂k, can be obtained as the solu-

tion of ln(v̂k) − ψ(v̂k) = ln(m̂k) − n̂k, where ψ(v̂k) = Γ′(v̂k)/Γ(v̂k) is the digamma

function. Although there is not a closed-form solution for v̂k, it can be approximated as

[Maddah et al., 2007]

v̂k ≈ 3− zk +
√

(zk − 3)2 + 24zk
12zk

, (4.58)

where zk = ln(m̂k)− n̂k.

If accuracy were critical, closer approximations would be obtained iterating
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v̂k ← v̂k − ln(v̂k)− ψ (v̂k)− zk
1/v̂k − ψ′(v̂k)

, (4.59)

where ψ′ (·) denotes the trigamma function, the derivative of the digamma function (see

[Choi and Wette, 1969] for further details).

Note that m̂k and n̂k can be computed accumulatively so that the importance sequence

xl is not required to be stored (saving memory resources). Also note that both sums in

these equations can be exponentially weighted so as to cope with nonstationary importance

distributions as

m̂k =
1− αk+1

1− α
k∑

�=0

αk−�x�, (4.60)

n̂k =
1− αk+1

1− α
k∑

�=0

αk−� ln (x�). (4.61)

The design of optimal/efficient algorithms to estimate the importance distributions and

calculate the optimal decision threshold is a complex problem that has to be thoroughly ad-

dressed. The scheme proposed in this section is a simple implementation, which, besides

achieving good performance, can be used to gauge the influence of using estimates instead of

the true statistics. Another alternative, considerably less expensive computationally speak-

ing, consists of estimating the optimal threshold function by its asymptotic limit, which is

also computed in real time based on the received data. Further details will be exposed in

Chapter 5.

4.5 EXPERIMENTS AND RESULTS

In this section we test the selective message transmission scheme in a scenario where the

node is isolated. As this scenario is quite simple, the next chapter includes a more complex

setup where nodes are integrated into a sensor network. Simulations have been conducted

using Matlab.

4.5.1 Isolated node

The scenario simulates an isolated energy-limited node. At each time k, the node receives a

message of importance xk randomly generated according to a distribution p(x). This distri-
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bution is known and independent of k (stationary case). Next, a decision about transmitting

the message is made. Three importance distributions have been considered: uniform, expo-

nential, and Pareto. Distribution parameter a is set to 1.8 and 3.5 for exponential and Pareto

distributions, respectively. Samples belonging to the uniform distribution are generated ac-

cording to U(0, 10). Recall, xk = 0 represents a silent time.

Performance of four different types of sensors is compared as follows:

• Nonselective sensor (NS). The threshold is set to μ = 0, so that the node transmits all

incoming or generated messages.

• Optimal selective Transmitter (OT). Threshold μ is computed according to (4.13) and

(4.16). The node knows the importance distribution p(x).

• Constant threshold Transmitter (CT). The sensor node establishes a constant thresh-

old, which is set to the asymptotic value of the optimal threshold given by (4.39).

• Adaptive selective Transmitter (AT). The threshold is also computed following (4.13)

and (4.16). Nevertheless, the node is unaware of p(x) and it uses the estimation

strategy exposed in Section 4.4 to know p(x), so that μ is computed according to

(4.54).

The initial battery of the sensor is set to E = 2, 000 units. Energy expenses are also set

to ET = 4, ER = 1 and EI = 0 units. A simulation finishes when the node runs out of

battery. Results are averaged over 50 simulation runs.

Fig. 4.9 depicts the optimal selective transmitter and the decision-making process given

by the optimal transmission decision rule. In case of an affirmative decision, the next for-

warder is chosen according to the routing algorithm.

Performance is assessed in terms of the importance sum of all transmitted messages, the

mean value of the transmitted importances and the total number of transmitted messages.

Results are summarized in Tables 4.1, 4.2 and 4.3.

The first observation is that the nonselective node transmits more messages than any

type of selective transmitters: approximately 17% more in the uniform distribution, 32%

in the exponential distribution and 47% in the Pareto distribution. Bearing in mind that

the NS sensor forwards all the messages it receives, it is hardly surprising that the number
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Figure 4.9: Sketch of the optimal selective transmitter.

Table 4.1: Averaged performance of a sensor node considering that importance values are

generated according to a uniform importance distribution.

Type of Avg. Total Imp. Tx Importance Total Transmitted

sensor ± std. deviation mean value messages

NS 1988.22 ± 53.17 4.97 400

OT 2486.03 ± 35.98 7.48 332.50

CT 2485.22 ± 35.84 7.48 332.22

AT 2480.40 ± 37.87 7.59 326.82

of transmitted messages is the same no matter the importance distribution (as opposed to

selective transmitters). Nevertheless, on the one hand, the importance sum of all transmitted

messages in a NS sensor is the lowest in comparison with the selective transmitters. On

the other hand, the mean value of the transmitted messages is lower for the NS transmitter

for all types of importance distributions. The mean importance value of the exponential and

Pareto importance distributions is conditioned by the parameter selection, since it influences

on the threshold, as it was shown in Section 4.3.3. Therefore, the simulated results confirm

the less efficient behavior of theNS transmitter. Besides, as selective transmitters maximize

the importance sum of all transmitted messages, they provide QoI since the most important

messages are always transmitted.

Focusing on the selective transmitters, we observe that OT/CT nodes outperform the

AT node. Clearly, estimation errors penalize the AT node performance compared to the

optimal. In spite of that, its performance is close to the one achieved by the OT sensor.

Furthermore, it always yields a better result than the NS transmitter. With regard to the CT

node, results are similar to those of the OT node (differences only appear when the node is
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Table 4.2: Averaged performance of a sensor node considering that importance values are

generated according to an exponential importance distribution.

Type of Avg. Total Imp. Tx Importance Total Transmitted

sensor ± std. deviation mean value messages

NS 719.47 ± 34.25 1.80 400

OT 1087.15 ± 43.70 3.98 273.46

CT 1086.85 ± 43.91 3.98 272.92

AT 1084.39 ± 42.21 3.94 275.34

Table 4.3: Averaged performance of a sensor node considering that importance values are

generated according to a Pareto importance distribution.

Type of Avg. Total Imp. Tx Importance Total Transmitted
sensor ± std. deviation mean value messages

Type NS 262.94 ± 24.20 0.66 400

Type OT 473.47 ± 38.35 2.23 212.20

Type CT 473.40 ± 38.23 2.23 211.82

Type AT 469.06 ± 40.79 2.05 230.30

close to use up its batteries). Performance clearly depends on the importance values of those

messages arrived at the node when the battery level is scarce.

With the aim of obtaining a better comparison between both types of selective sensors

(OT and CT), their behavior under low battery resources is studied. In this case, the battery

level is limited to 13 units, so that the maximum number of possible transmissions is two.

Fig. 4.10 illustrates that, when batteries are scarce and the importance of the messages

arriving at the sensor is low, the OT sensor slightly outperforms the CT sensor. This is

because for small energy values, the optimal transmitter is more sensitive to energy changes.

Study of the influence of frequencies of idle states

Threshold variations as a function of the remaining energy e under the influence of different

frequencies of idle states (PI ) are depicted in Fig. 4.11 for an AT sensor.

Reception and idle energy expenses are fixed to the same amount (ER = EI = 1 units)

and the node is initially provided with E = 2, 000 units. The importance of messages fol-
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Figure 4.10: Comparison between the optimal selective transmitter and the asymptotically

optimal selective transmitter with low battery level.
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Figure 4.11: Threshold evolution regarding the remaining battery level e in an isolated AT

sensor node for a uniform importance distribution U(0, 10). Different frequencies of being

in idle mode have been considered in a single run.

lows a uniform distribution U(0, 10). As it can be observed, the more frequent the idle

states is, the lower the decision threshold is. The node is less selective when the opportu-

nities to send true messages decrease, corroborating the theoretical results presented above.

Moreover, for high values of energy e, we observe strong oscillations in threshold μ. This

oscillation occurs because during the first time instants, the AT node does not have enough

samples to properly estimate the importance distribution. As the number of received mes-

sages increases, nearly constant thresholds are obtained and changes only appear when the

node’s battery is close to use up. The duration of the transitory phase will depend on the spe-

cific application. For instance, monitoring activities will not entail a long transitory phase.
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The reason is that during most of the time, sensors are reporting a high number of consistent

measurement values (the network is typically dense and the environment usually remains

unchanged). On the other hand, in applications where nodes are not always collaborative,

more time is needed to reach the long-term behavior of the network. A transitory phase

might also appear if the importance distribution varies too drastically, since nodes would

need some time to learn the new distribution (smooth changes should easily be tracked by

the learning algorithm). Regardless of its duration, the impact of the transitory phase on the

overall network performance is not necessarily critical, since high importance messages will

be always transmitted.
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Figure 4.12: Gain of the selective transmitting policy under a uniform importance distribu-

tion U(0, 10) for different values of PI .

Fig. 4.12 shows the gain of the different types of selective transmitters regarding the

nonselective transmitter for a uniform importance distribution and for different frequencies

of idle states. As mentioned in Section 4.3.5, the gain of the selective transmission scheme

decreases as PI increases. Intuitively, it is easy to see that as PI approaches one (i.e.,

the node is in idle mode most of the time), the selective transmitter converges to the NS

transmitter. The same behavior is appreciated in the exponential and the Pareto importance

distributions (see Fig. 4.13 and 4.14). In these cases, the gain is even higher than in the

uniform case, what corroborates the theoretical study.
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Figure 4.13: Gain of the selective transmission policy under an exponential importance

distribution with a = 1.8 for different values of PI .
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Figure 4.14: Gain of the selective forwarding policy under a Pareto importance distribution

with a = 3.5 for different values of PI .

Analysis of different constant energy consumption models

We have also investigated the behavior of the performance of the various transmission strate-

gies for a wide variety of constant energy consumption patterns. The study will help us to

explore how our findings are influenced by the relative values of the energy consumptions.

First of all, the gain of the aforementioned transmission strategies is analyzed for different

values of ER. Besides considering a uniform importance distribution, the transmission ex-

pense is set to ET = 4, the idle expense to EI = 1, and PI = 0.5. Fig. 4.15 shows a

decreasing behavior in the gain for all types of selective transmitters when the value ER
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approaches to ET . This behavior is expected since ρ in (4.38) is a decreasing function of

ER. Note that this result is in agreement with the general assumption made by selective

communication strategies (exposed in Chapter 2): benefits of a selective transmission algo-

rithm become apparent when the cost of transmission is much higher than that of reception.

On the other hand, the NS transmitter is not affected by the value ER since it will transmit

the incoming messages in any case.
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Figure 4.15: Gain of the selective transmission policy under a uniform importance distribu-

tion U(0, 10) for different values of ER and PI = 0.5.

Fig. 4.16 focuses on the OT sensor in order to examine the gain behavior under the

influence of the frequency of idle states and for different values ofER. As it can be expected,

as the frequency of idle states and the reception energy expenses increases, the gain of the

selective transmission scheme reduces, according to (4.38).

Now, the gain of the selective transmission policy for different values of EI is studied.

Again, we consider a uniform importance distribution, and node state expenses are set to

ET = 4, ER = 1, and PI = 0.5. Parameter EI varies from 0.05 to 1.5, since it was

shown in Chapter 2 that energy consumption due to idle listening mode is usually lower

than the energy expenditure corresponding to the transmission/reception state. Fig. 4.17

corroborates the idea previously stated in Section 4.3.5: the gain of the different types of

selective transmitters reduces as soon as EI increases because ρ in (4.38) is a decreasing

function of EI .
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Figure 4.16: Gain of the OT sensor under a uniform importance distribution U(0, 10) for

different values of ER and PI .
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Figure 4.17: Gain of the selective transmission policy under a uniform importance distribu-

tion U(0, 10) for different values of EI and PI = 0.5.

Analysis under different importance distribution patterns

Finally, the evolution of the transmission threshold under different importance distribution

patterns also allows us to illustrate the behavior of the selective transmitter.

Firstly, a bimodal importance distribution is analyzed. The importance distribution ar-

riving to the node follows a bimodal uniform distribution (U(1, 6) and U(10, 15), whose

PDF is given by p(x) = 1
10(u(x− 1)−u(x− 6)) + 1

10(u(x− 10)−u(x− 15))). The node

is provided with E = 2, 000 units. Energy expenses are set to ET = 4, ER = 1 and EI = 0

units. The decision threshold evolution as a function of the battery level e for an AT node

is depicted in Fig. 4.18 (only a sampled set of importance values is shown).

79



4.5. EXPERIMENTS AND RESULTS

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

 e

μ(
 e

)

Figure 4.18: Threshold evolution regarding the remaining battery level e in an isolated AT

sensor node for a bimodal uniform importance distribution.

From the analysis of the plot, it can be observed that low importance messages are

discarded in favor of high importance messages. Only those messages whose importances

are generated according to U(10, 15) are transmitted because they contribute to maximize

the importance sum of the transmitted messages. The same behavior will appear under

different bimodal importance distributions. A direct consequence of this behavior is the

better performance of the selective transmitter versus the nonselective regarding the metric

to maximize (see Table 4.4, whose results are averaged over 50 experimental runs). The

selective transmission policy (AT node) gets 30% higher importance sum than the achieved

by the nonselective node, assuring QoI since the most importance messages are transmitted

(remark also the higher importance mean value).

Table 4.4: Averaged performance of a sensor node considering that importance values are

generated according to a uniform bimodal distribution.

Type of Avg. Total Imp. Tx Importance Total Transmitted

sensor ± std. deviation mean value messages

NS 3190.86 ± 90.55 7.98 400

AT 4159.05 ± 59.94 12.49 333.04

Secondly, a non-stationary importance distribution is studied. In this case, the impor-

tance follows a U(10, 15) distribution but it changes to a U(1, 6) distribution at a certain
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time epoch. The threshold evolution regarding the remaining battery level for an AT node

provided with E = 4, 000 units is depicted in Fig. 4.19.
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Figure 4.19: Threshold evolution regarding the remaining battery level e in an isolated AT

sensor node for a non-stationary importance distribution.

Importance values arriving to the node are also represented. Initially, the decision thresh-

old is set according to the received importance values. Nevertheless, as soon as the node

notices a change in the importance distribution, the threshold decreases to adapt to the new

received importance values. Note, however, the appearance of a transitory phase when the

importance distribution changes, as the node needs some time to learn the new distribution.

Also, remark the higher concentration of received importance samples during the initial

phase of the threshold adaptation because the node rejects the transmission of any message.

4.6 CONCLUDING REMARKS

This chapter has exposed an optimal selective transmission policy in WSNs as an energy-

efficient scheme for data transmission that also provide QoI. Messages, which were assumed

to be graded with an importance value and which could be eventually discarded, were trans-

mitted by sensor nodes according to a transmission policy, which considered consumption

patterns, available energy resources in nodes, the importance of the current message and the

statistical description of such importances.

The optimal selective transmitter was derived, leading to an expression for the optimal
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decision that turned out to compare the received importance with a transmission threshold,

whose optimal value varied with time. Under certain simplifying operating conditions, a

constant transmission threshold, which did not change along time and entailed asymptotic

optimality, was also developed and closed-form expressions were obtained. Moreover, the

gain of the selective transmission policy compared to a nonselective one was quantified and

it was proved to have a strong dependence on the energy expenses, the frequency of idle

states and the statistical importance distribution. Finally, for cases were the importance

distribution of messages was unknown or it varied with time, an adaptive algorithm that

caught this distribution on-the-fly and based on the the received messages was proposed.

The study has also motivated the application of the selective communication model to an

evaluation case: an isolated node. Numerical results validated the analytical claims and cor-

roborated that the selective transmission scheme clearly outperforms the nonselective one,

even when idle states are considered. Results also evidenced that the simplified developed

designs obtained a performance close to the optimal transmitter.

Besides the theoretical value of this work: (i) the developed schemes can eventually

be incorporated into many existing routing protocols; and (ii) the approach can also be

easily integrated with a variety of existing data collection approaches, including schemes

that support in network data aggregation.
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CHAPTER 5

A GENERALIZATION: OPTIMAL

SELECTIVE FORWARDING

Chapter 4 introduced, from theoretical considerations, an optimal selective transmission pol-

icy in WSN as an energy-efficient scheme for data transmission. Assuming that messages

have an importance value (apart from being independent among themselves) and based on

energy consumption patterns and the availability of energy resources in a node, the selective

transmission model optimizes the communication performance of each node considered in-

dividually. However, nodes do not behave independently but they take part in a sensor

network. Hence, as the selective transmission scheme does not pay attention to the final

destination of the transmitted messages, it does not guarantee global performance of the

sensor network, measured in terms of the quantity and quality of those messages actually

arriving to the sink.

The selective transmission model offers powerful insights and guidelines for the design

of schemes able to exploit the trade-off between the importance of messages and energy

consumption. However, it does not allow the transmission policy of a given node to depend

on parameters of other nodes. As nodes are integrated into a sensor network, it may be use-

ful to incorporate information coming from the neighborhood (or the sink) into the statistical

model. Generalizing the model to allow the use of information from other nodes and ana-

lyzing the impact of using nonlocal information on the behavior of the network are the main
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goals of this chapter. To do so, we develop optimal forwarding schemes for three differ-

ent scenarios: 1) when sensors maximize the importance of their own transmitted messages

(which basically coincides with the setup in Chapter4, though using a more general energy

consumption model); 2) when sensors maximize the importance of their messages that are

actually retransmitted by their neighbors; and 3) when sensors maximize the importance of

the messages that successfully arrive to the sink. Upon properly selecting the formulation,

all three cases can be tackled in parallel. The motivation to consider those three scenarios

is twofold. First, since each scenario requires different operating conditions, designers can

chose the one that best fits their WSN at hand. Second, by comparing the importance per-

formances of the different schemes, the impact of accessing to nonlocal information can be

evaluated.

The design of the selective transmission policy was formulated as a stochastic sequen-

tial decision problem, proposing a mathematical model that, as we stated in the previous

chapter, is a particular case of a MDP [White, 1993] [Puterman, 2005]. The application of

MDP models to sequential decisions in WSNs has attracted recent attention in the literature,

as it was mentioned in Section 1.2. Nevertheless, the approach presented in Chapter 4 was

content-driven: the importance value is used to decide whether transmit or discard a mes-

sage, so that the accumulated importance of all transmitted messages is maximized. In this

chapter, however, we will raise the sequential decision problem from a MDP framework.

Regarding practical implementations, it will turn out that the optimal forwarding scheme

is fairly simple: the decision maker must compare the importance of the received message

with a time-variant threshold. Furthermore, under some stationarity conditions, a constant

threshold can be nearly optimal and can be estimated adaptively. The results obtained in this

chapter generalize those exposed in Chapter 4 because not only are two additional scenar-

ios (optimality criteria) considered, but also the assumptions are less restrictive. Especially

important is the generalization of the results to stochastic energy costs. Moreover, the adap-

tive/suboptimal schemes are more robust and require less a priori information than those

proposed in the previous chapter.

From a generalization point of view, it is worth noting that although the schemes in this

chapter solve well-defined problems and are derived using a self-contained formulation, they

can be adapted to address problems different than those specifically considered in the thesis.
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For example, our approach can be easily integrated with a variety of existing data collection

approaches, including schemes that support in network data aggregation. On the other hand,

although the chapter has a strong theoretical component, the results are also useful from a

practical point of view. Because not only can they provide basic guidelines for the design

of future systems, but also the developed schemes can eventually be incorporated into many

existing routing protocols.

The chapter is organized as follows: Section 5.1 describes some additional remarks

about the sensor model to adapt the notation to MDP terminology. The optimization prob-

lem formulated in this chapter is solved in Section 5.2. Assuming that the distribution of

importances is stationary and that the available energy is large, an asymptotically optimal

scheme that gives rise to a constant threshold that does not vary along time is also devel-

oped. Adaptive methods to estimate the forwarding thresholds and that do not require the

knowledge of the importance distribution are proposed in Section5.3. Theoretical results

will be complemented with numerical simulations in Section 5.4. Results not only will cor-

roborate the theoretical claims but also will help us to quantify the gains of implementing

the selective forwarding schemes for a broader range of practical scenarios and the impact of

nodes accessing to nonlocal information. Conclusions in Section5.5 wrap-up this chapter.

5.1 ADDITIONAL REMARKS ABOUT THE SENSOR MODEL

In this section, we make some additional remarks to adapt the sensor model proposed in

Chapter 2 to the MDP framework, at the same time that we include some generalizations.

5.1.1 State vector

Besides ek and xk, the node may use additional information to make decisions: this includes

information about the packet (e.g., the packet length, which could be relevant to estimate

the energy cost of forwarding it) and some data about the state or the eventual actions of

neighboring nodes (e.g., information about the forwarding policy of other nodes). All this

additional information (together with xk) is collected into vector zk. Following a usual

terminology in MDP models, the node state vector is defined as sk = (ek, zk); i.e., the state

vector contains all and only the information that is available at the node to make a decision
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at time k. The set of all possible states is denoted as S .

5.1.2 Actions and policies

At time k, the sensor must make a decision dk about transmitting (dk = 1) or discarding

(dk = 0) the current message. A forwarding policy π = {d1, d2, . . .} at a given node is a

sequence of decision rules, which are functions of the state vector; i.e.,

dk = dk(sk) = dk(ek, zk). (5.1)

5.1.3 State dynamics

Each node consumes energy at each time epoch according to the stochastic energy consump-

tion model given by (2.5).

With respect to the other component of the state vector, zk, we assume that it is a sta-

tistically independent sequence, and independent of ek−n or dk−n, for any n > 0. Our

goal is to use the previous assumptions to characterize the probability of any state transi-

tion from k to k + 1. More specifically, we want to find p(sk+1|sk, dk), which denotes the

probability of reaching the state sk+1 given that at time k the state was sk and the decision

made was dk. To do so, let p0,k, p1,k and pk+1 denote the probability density functions of

c0,k, c1,k and zk+1, respectively. Taking into account that the energy consumed during time

k + 1 is ek − ek+1 and that the energy dynamic is given by (2.5), the transition probability

p(sk+1|sk, dk) can be expressed as

p(sk+1|sk, dk) =
(
dkp1,k(ek − ek+1|zk+1 ) + (1− dk)p0,k(ek − ek+1|zk+1)

)
pk+1(zk+1).

(5.2)

In other words, if dk = 1, then p1,k(ek − ek+1|zk+1)pk+1(zk+1); while if dk = 0,

then p0,k(ek−ek+1|zk+1)pk+1(zk+1). Although for the theoretical analysis we assume that

the distributions p0,k, p1,k and pk+1 are known, we will see that only some of its statistics,

which may be estimated from data, are required to implement the selective forwarder.

5.1.4 Rewards

Let qk ∈ {0, 1} denote the success index: a binary variable taking value 1 if the transmission

is successful, and zero otherwise. With u(·) standing for the Heaviside step function (with
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the convention u(0) = 1), the reward at time k for a node that decides to transmit a message

will be

rk = xkqku(ek − c1,k). (5.3)

The “success” of a transmission can be measured in different ways. In the thesis we

consider three different measures:

• Global success index. Since each message must travel through several nodes before

arriving to destination, the transmission of a message is completely successful (qk =

1) if the message arrives to the sink, and zero otherwise.

• Local success index. If the transmitting node does not have a way to know if the mes-

sage arrives to the sink, the global success index is not accessible. However, it may

be the case that the transmitting node may know if the neighboring node receiving

the message forwards it to other nodes or not (by overhearing, or because the neigh-

boring node returns a confirmation message). The local success index is qk = 1 if a

neighboring node forwards the message, and zero otherwise.

• Zero-order success index. As a degenerate case, we can take any transmission as

successful, so that qk = 1 in any case. This amounts to say that every node maximizes

the importance of its own transmitted messages, which is the problem dealt in Chapter

4.

In summary, if dk denotes the decision at node i, (5.3) states that the node receives

a reward equal to the message importance if dk = 1 (the node decides to transmit the

message), qk = 1 (the transmission is successful) and ek ≥ c1,k (the node has enough

energy for the transmission). Otherwise, the reward is zero. In all three previous cases we

have assumed that when a node transmits a message, the message is always received by

the destination. This free-loss assumption can be accurate when losses are extremely small

or when nodes implement ARQ schemes. Nevertheless, transmission losses can be easily

accommodated in (5.3). In fact, the only modification is to scale qk by (1 − ploss
k ), where

ploss
k stands for the packet loss probability.

The figure of merit to design the selective forwarder will be given by the accumulated

importance of all messages successfully transmitted by nodes. Accordingly, the total reward
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up to time k is defined as

tk =
k∑

i=0

diri =
k∑

i=0

diqixiu(ei − c1,i). (5.4)

The selective forwarding policy is chosen in order to maximize the total expected reward,

defined as

E{t∞} = E

{
lim

k→∞
tk

}
. (5.5)

Note that, since nodes have limited energy resources, the sum in (5.5) only contains a finite

number of nonzero values (eventually, for some k, ek < mink c1,k, and ∀k′ ≥ k, we have

rk′ = 0).

5.2 OPTIMAL SELECTIVE FORWARDING

5.2.1 Markov Decision Process

The tuple defined by (S,A, P, r), where S is the set of states, A = {0, 1} is the set of

possible decisions (actions), P is the transition probability measure given by (5.2) and r is

the reward function, has the structure of a MDP. Moreover, since the action set A is finite,

an optimal policy exists and it is Markovian. This means that there is an optimal policy

such that, at any time k, the decision rule only depends on the state sk [Puterman, 2005].

Therefore, the sensor does not need to save in memory the state history to make optimal

decisions.

The following result, which provides an optimal selective forwarder, can be derived

using some standard results from MDP models. Our proof is, however, self-contained. All

expectations in the following are taken over zk, c0,k, c1,k and qk (which are the primary

random variables in the model), unless otherwise stated through the conditional operators.

Theorem 5 Let {zk, k ≥ 0} be a statistically independent sequence of importance values,

and ek the energy process given by (2.5). Consider the sequence of decision rules in the

form

dk = u(Qk(ek, zk)xk − μk(ek, zk)), (5.6)
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where Qk(ek, zk) = E{qku(ek − c1,k)|ek, zk} and threshold μk is defined recursively

through the pair of equations

μk(e, zk) = E{λk+1(e− c0,k)− λk+1(e− c1,k)|zk} (5.7)

λk(e) = (E{λk+1(e− c0,k)} + E{(Q(e, zk)xk − μk(e, zk))+})u(e), (5.8)

with (z)+ = zu(z), for any z.

Sequence {dk} is optimal in the sense of maximizing E{t∞} (with t∞ given by (5.5))

among all sequences in the form dk = dk(ek, zk).

The auxiliary function λk(e) represents the increment of the total importance that can

be expected at time k, i.e.,

λk(e) =
∞∑

i=k

E{diqixiu(ei − c1,i)|ek = e}. (5.9)

Proof See Appendix B.1.

It is interesting to rewrite (5.6) as dk = u (Qk(ek, zk)− μk(ek, zk)/xk), which ex-

presses the node decision as a comparison of Qk with a threshold inversely proportional to

the importance value xk. Remark that this result is in agreement with the transmission rule

based on decision theory (3.3) obtained in Chapter 3.

Note that (5.7) and (5.8) do not state a forward recursion (λk+1 vs. λk) but a backward

recursion (λk vs. λk+1). This makes the direct application of these equations impossible in a

general non-stationary environment, because to compute λ0 the importance distribution ∀k
should be known at time k = 0. The boundary conditions determining the solution to these

recursive equations are given by λk(e) = 0, for any k and any e < 0, which are implicit in

the factor u(e) in (5.8).

Theorem 5 is general and holds for any energy cost and importance distributions, but it

does not provide a clear intuition about the impact of the available energy and the distribution

of xk on the design of the optimal forwarding scheme. Due to this, and as it was done for

the selective transmitter, in the reminder of this chapter we will pay attention to several

particular cases that will lead us to tractable closed-form solutions and useful insights.

89



5.2. OPTIMAL SELECTIVE FORWARDING

5.2.2 Stationarity

If the statistical distributions of zk, c0,k and c1,k do not depend on k, then μk does not depend

on k [c.f. (5.7) and (5.8)]. In this case, the following result can be shown:

Theorem 6 Under the conditions of Theorem 5, if the following conditions hold: (i) the

statistical distribution of zk, c0,k and c1,k is independent of k; (ii) P (ci,k > ε) = 1, for

i = 0, 1, some ε > 0 and any k ≥ 0; and (iii) Qk(e, z) = Q(e, z) (i.e., Qk does not depend

on k), then the sequence of decision rules

dk = u(Q(ek, zk)xk − μ(ek, zk)), (5.10)

where

μ(e, zk) = E{λ(e− c0,k)|zk} − E{λ(e− c1,k)|zk} (5.11)

λ(e) = (E{λ(e− c0,k)} + E{(Q(e, zk)xk − μ(e, zk))+}) u(e), (5.12)

is optimal in the sense of maximizing E{t∞} (with t∞ given by (5.5)), among all sequences

in the form dk = dk(ek, zk).

Proof See Appendix B.2.

Theorem 6 implies that, under stationarity assumptions, μk and λk do not depend on k,

so that the optimal policy is characterized by a the pair of functions (5.11) and (5.12). But as

it was remarked for the selective transmitter, the stationarity assumption, strictly speaking,

is not true. However, from a computational point of view, the stationarity assumption is a

good alternative to make the design of forwarding policies tractable.

5.2.3 Asymptotic analysis: constant threshold

Experimental work in Chapter 4 shows that, for large values of available energy e and for

Q(e, z) = 1 (i.e. for situations where neighboring nodes always transmit the incoming mes-

sages), the optimal threshold converges to a constant value and the expected reward tends

to grow linearly. Both behaviors are closely related because, as (5.7) shows, the optimal
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threshold is the difference between two expected rewards. This situation can also be ob-

served when Q(e, z) does not depend on e, so that we can write Q(z) = Q(e, z). In this

section, we discuss the asymptotic behavior of any selective forwarder in the stationary case.

To do so, we prove the following:

Theorem 7 Assume that the conditions of Theorem 6 hold and E{xk} < ∞. If

lime→∞ μ(e, z) and lime→∞Q(e, z) exist, then

lim
e→∞μ(e, z) = (E{c1|z} − E{c0|z})τ, (5.13)

where τ is a solution of

E{c0}τ = E{(Q(z)x− (E{c1|z} − E{c0|z})τ)+}. (5.14)

Moreover, if E{c1|z} ≥ E{c0|z}, for any z, this solution is unique.

Proof See Appendix B.3.

An important consequence of Theorem 7 is that, if lime→∞ μ(e, z) exists, it must be

equal to (5.13). The main idea behind the selective forwarding algorithm consists of re-

placing the optimal rules in (5.10) - (5.12) by their asymptotic approximations based on

(5.13) and (5.14). Experimental work in Chapter 4 suggested that this is a good choice pro-

vided that there is enough energy for a reasonable number of transmissions. If the node has

battery for only a few transmissions, the forwarding threshold should start to oscillate and

decreases in some way defined by (5.10) and (5.11), but the computational cost of comput-

ing such threshold is high. The design of computationally efficient forwarding policies for

low batteries is an open issue.

Thus, (5.13) is the basis of the adaptive procedure proposed in the next section.

5.3 PARAMETER ESTIMATES

5.3.1 Estimating asymptotic thresholds

The optimal threshold depends on the distribution of message importances, which may be

unknown in practice. To bypass this problem, apart from estimating it (which was the so-

lution proposed in Chapter 4), we can try to estimate parameter τ in (5.14) and replace the
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optimal threshold function by its asymptotic limit. Parameter τ can be estimated in real time

based on the available information at time k: {(z�, q�), � = 0, . . . , k}.
Defining the mean energy difference

Δ(z) = E{c1|z} − E{c0|z}, (5.15)

we can estimate the expected value on the right-hand side of (5.14) as

E{(Q(z)x−Δ(z)τ)+} ≈ mk, (5.16)

where

mk =
1
k

k∑
i=1

(Q(zi)xi −Δ(zi)τ)+ =
(

1− 1
k

)
mk−1 +

1
k

(Q(zk)xk −Δ(zk)τ)+.

(5.17)

According to (5.14), we can then estimate τ at time k as τk = mk/ε0, where ε0 = E{c0}.
Using (5.17) we get

τk =
(

1− 1
k

)
τk−1 +

(Q(zk)xk −Δ(zk)τ)+

kε0
. (5.18)

Unfortunately, the above estimate is not feasible because the right-hand side depends on

τ , which is unknown. But we can replace it by τk−1, so that

τk =
(

1− 1
k

)
τk−1 +

(Q(zk)xk −Δ(zk)τk−1)+

kε0
. (5.19)

If the mean energy difference Δ(z) is unknown, it can be estimated from data. Making

the simplifying assumption that energy cost does not depend on z (which may be realistic,

for instance, if z only contains the importance value), it can be estimated as the difference

of the average costs of past decisions. For instance, E{c1} ≈
(∑k

i=1 dic
i
1

)
/
(∑k

i=1 di

)
.

5.3.2 Estimating the success index

A simple estimate of the selective communication policy Qk(ek, zk) = E{qku(ek −
c1,k)|ek, zk} can be derived by assuming that: a) it does not depend on ek (i.e., the subse-

quent forward/discard decision made at the receiving node is independent of the energy state
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at the transmitting node), and b) each node can know about the success of the transmission.

When qk represents the local success index, each node is able to listen to the retransmission

of a message that has been previously sent (i.e., each node can observe qk when dk = 1).

Similarly, when qk represents the global success index, it requires the sink to acknowledge

the reception of messages back through the routing path, so as to provide nodes with a set of

observations qk for the estimation algorithm. Following an approach similar to that exposed

in Chapter 3, Qk can be estimated by means of the parametric model

Qk(zk, w, b) = P (qk = 1|xk, w, b) =
1

1 + exp[−w(xk − b)] . (5.20)

Note that the only component of zk which has some influence on Qk in (5.20) is xk. For

positive values of w, Qk increases monotonically with xk, as expected from the node be-

havior. We estimate parameters w and b via ML using the observed sequence of neighbor

decisions {qk} and importance values {xk}, by means of stochastic gradient learning rules

wk+1 = wk + η(qk −Qk(xk, wk, bk))(xk − bk) (5.21)

bk+1 = bk − η(qk −Qk(xk, wk, bk))wk, (5.22)

where the learning step, η, is a free parameter of the rules.

5.4 NUMERICAL EXPERIMENTS AND RESULTS

In this section we analyze the performance of selective forwarders in different network sce-

narios through simulation experiments carried out using Matlab. First, we describe some

common features of the experimental setup.

1. Initially, we have used a simple deterministic energy model given by three constant

and known parameters: EI , ER and ET . According to this, for xk > 0, energy

consumption in (2.5) is constant and deterministic, so that c1,k = ET + ER and

c0,k = ER. On the other hand, if xk = 0, c1,k = c0,k = EI . Again, for simplicity, we

assumed that the value of ER is the same no matter if the data have been taken from

the sensing device or received from other node. Energy values are set to ET = 4,

ER = 1 and EI = 0.
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2. Nodes are homogeneous and initially charged with the same batteries except for the

sink, which has unlimited power supply. Nodes keep working until their batteries

expire. The network dies when all the sink neighbors have died.

3. Sources are selected at random. Nodes are assumed to have identical transmission

radii. They can communicate only if they are within mutual transmission range. As

coverage areas are reciprocal and nodes can overhear, nodes are able to update their

information estimates. Moreover, remind that each node knows the location of its

neighbors, the sink, and itself.

4. Though the selective forwarding strategies can be implemented in any routing al-

gorithm, we have used the greedy forwarding scheme [Karp and Kung, 2000]. This

scheme selects the neighbor geographically closest to the sink as the next hop of the

message. Although the greedy forwarding algorithm has well-known disadvantages

(e.g., when there is a void or the network is sparse), we choose it for simplicity, to

minimize the influence of the routing algorithm on the final results. With the same

aim, link losses have not been included in the model.

5. Up to our knowledge, there are no other proposals in the literature oriented to maxi-

mize the important sum or any related measure. The only exception may be the work

in [Lei et al., 2009], which uses the same paradigm (MDP), but it is oriented to a

completely different scenario (replenishable sensors) and cannot be expected to have

a good behavior in sensors with finite lifetime. Therefore, to evaluate the behavior of

the developed schemes, different types of selective nodes are implemented:

• Nonselective sensor (NS). The sensor does not censor any message.

• Adaptive selective Transmitter (AT), which uses the zero-order success index.

• Local selective Forwarder (LF). It computes the forwarding threshold according

to (5.7) and (5.8), considering the local success index.

• Global selective Forwarder (GF), which uses the global success index.

The only information used by nodes to make decisions is the importance value. In

other words, zk = xk. Moreover, selective sensors compute the forwarding threshold

adaptively via (5.19).
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6. Performance is assessed in terms of the importance sum of all messages received

by the sink (Total Import. Received), the mean value of the received importance

(Importance mean value), the number of message receptions at the sink (Number of

receptions), and the number of generated messages (Number of gen. Messages). The

latter amounts to measure the network lifetime.

7. Experimental results are averaged over 50 topologies with different traffic patterns.

5.4.1 Nodes with full information

Chain network

With the aim of illustrating the merits of the selective forwarding policies, we have selected a

first simplified setup where 30 nodes are equidistantly placed in a row. Nodes are numbered

from 1 to 30 from left to right, being node 30 the sink, located at the end of the chain.

Each node can only communicate with its two adjoint neighbors. This simple configuration

emulates in a certain way the scenario where nodes placed closer to the sink have more

activity than those far-off located (they have to route their own messages and those coming

from remote nodes), thus representing a bottleneck in the routing path. In this setting, we

assume that selective forwarding nodes (LF and GF) know the forwarding threshold used by

their neighbors. Node batteries are initially charged with 3, 000 units. All nodes generate

messages whose importance values follow a uniform distribution U(0, 1), except for node

29 (the one connected to the sink), which generates importance values according to a U(1, 2)

distribution. Fig. 5.1 illustrates a sketch of the sensor network deployment.

SINK

…
Node 1 Node 2 Node 3 Node 29

0 1 0 1 0 1 21

p(xk) p(xk) p(xk) p(xk)

Figure 5.1: Chain network of 30 equally-spaced nodes.

This scenario has been designed ad-hoc to make clear the differences among the diverse

tested types of sensors. Numerical results are listed in Table5.1, and reveal that:
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Table 5.1: Averaged performance results in a chain network of 30 equally-spaced nodes.

Importance values are generated according to a uniform distribution.

Type of Total Import. Importance Number of Number of

sensor Received mean value Receptions gen. Messages

NS 321.04 0.54 599.00 600.00

AT 552.44 0.96 577.42 2623.60

LF 910.66 1.60 567.58 21170.40

GF 910.66 1.60 567.58 21170.40

• All selective communication strategies (AT, LF and GF) outperform nonselective for-

warding (NS). Despite the fact that the latter delivers more messages to the sink,

the total importance sum is lower (many delivered messages have a low importance

value), and so the network lifetime (NS nodes waste energy sending low importance

messages).

• The two selective forwarding policies (LF and GF) get around 65% higher impor-

tance sum than that achieved by the selective transmission in AT. Also, the higher

mean value of the messages received by the sink implies that the selective forwarders

are much more selective, what guarantees a level of QoI. This is also reflected in the

fact that the number of generated messages is considerably higher for the selective

forwarders, enlarging the network lifetime. This is not surprising: AT nodes do not

pay attention to the final destination of the messages they transmit, and keep sending

messages that will not be delivered to the sink (node 29 generates more important

messages, hence tends to reject most messages arriving from other nodes). On the

contrary, GF nodes are aware of the higher selectivity of node 29, and inhibit trans-

missions that they know will not succeed.

• Interestingly, LF and GF results are identical. GF nodes are aware of the higher selec-

tivity of node 29, and inhibit transmissions that will not be successful. LF nodes have

no direct access to the threshold set by node 29, but this information is propagated

backwards: nodes notice that node 29 is not forwarding messages below a certain

threshold and set their own threshold accordingly. This is first appreciated by node
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28, and then by node 27, and so on. As a consequence, despite the fact that LF nodes

only use local information, the state of node 29 propagates backwards to further nodes

with the global effect of removing all nonimportant traffic from the network. Besides,

we do not have taken into account the eventual costs due to the propagation of the

success index. Clearly, it would be a more realistic implementation and we may hope

that LF nodes outperform GF nodes.

Threshold evolution in a double branch network

The time evolution of the forwarding threshold in a two-branch network is also illustrative

of the behavior of selective sensors. The network sketch is represented at the top-right

corner of both plots in Fig. 5.2. Nodes 1-10 and 11-20 form two branches of nodes placed

equidistantly in a line. Nodes 10 and 20 are connected to node 21, which delivers all network

messages to the sink. While nodes 1-10 generate low importance messages (U(0, 1)), nodes

11-20 generate messages of high importance (U(9, 10)). Node 21 generates a mixture of

both distributions. This scenario represents the arrival of two flows of different prioritized

messages at a common node in the routing path to the sink.

Figures 5.2(a) and 5.2(b) plot the threshold evolution for AT and LF nodes, respectively.

Fig. 5.2(a) shows that the lines of nodes 1-10 converge to a low threshold, while those of

nodes 11-20 converge to a high threshold. The threshold of node 21 converges to a high

value, which means that all messages arriving at node 21 from the low importance branch

will not be delivered to the sink. Moreover, analyzing the nodes of the low importance

branch at a lower scale (see Fig. 5.3), we observe that the furthest node from the sink (which

only has to transmit its own generated traffic) sets the lowest threshold. The threshold of

subsequent nodes increases slightly as a consequence of receiving messages with clipped

importances from their previous nodes. This means that most nodes in the network waste

energy receiving messages that will not be forwarded.

In contrast, all nodes in Fig. 5.2(b) follow a similar trend. Thresholds tend to converge

to the value established by node 21, as a consequence of the same backward propagation

mechanism observed in the chain network. Low prioritized traffic is again removed from

the network.
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Figure 5.2: Decision threshold evolution for Adaptive Transmitters (a) and Local Forwarders

(b) as a function of time in a simulation run, represented in a X-axis logarithmic scale.

Uniform importance distributions are assumed.
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Figure 5.3: Zoom of the decision threshold evolution for Adaptive Transmitters in the branch

where messages have low importance.
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Threshold evolution after battery depletion

Another simple setup will serve to show how selective forwarders adapt their thresholds

to network topology changes. Fig. 5.4 shows the threshold evolution of a sensor network

(sketched at the top-right) with 3 nodes and the sink. With the aim of analyzing the adaptive

behavior of thresholds, nodes 1 and 3 are charged with more batteries than node 2. Nodes

1, 2 and 3 generate messages according to exponential importance distributions with means

m1 = 1.59, m2 = 2.57 and m3 = 0.95, respectively (note that m3 < m1 < m2, the

specific values of the means not being relevant).
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Figure 5.4: Decision threshold (a) and mu evolution (b) for Local Forwarders as a function

of time in a network topology composed of 4 nodes. Different exponential importance

distributions are assumed.

Although node 1 can transmit messages to nodes 2 and 3 (which are linked to the sink),

it will do it initially to node 2 (according to the greedy forwarding routing policy). Since

nodes are LF, thresholds of nodes 1 and 2 get rapidly coupled (i.e., they converge to the
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same value); Fig. 5.4(a) illustrates this fact. Once node 2 runs out of battery, node 1 starts

routing messages to the sink via node 3, which still has energy. From that point on, node

1 reduces its threshold, because node 3 is less selective, and node 3 adapts its threshold

according to the new messages arriving from node 1, which have higher importance values

(because m3 < m1). As a result, nodes 1 and 3 get coupled.

5.4.2 Nodes with incomplete information

In more realistic settings, nodes must acquire the information about neighboring thresholds,

either by estimating (learning) it from side information or by paying some cost (energy,

bandwidth) to learn it. Here, the aim is to analyze the performance of sensors with incom-

plete information and compare it with results of sensors with full information (-FI).

The setup is the same linear arrangement of 30 nodes depicted in Fig. 5.1, but with

message importances drawn from exponential distributions. The mean of each distribution

is taken from the increasingly sorted samples generated randomly from another exponential

distribution with mean 2. Nodes manage to get threshold information from their neighbors

following two different approaches:

• Based on learning. Nodes estimate the parameters of the probability model Qk in

(5.20) using learning rules, (5.21) and (5.22) (-EST). The success index, qk, of previ-

ous transmissions, which is required to apply these rules, can be obtained in different

ways: we assume that LF nodes overhear any message forwarding made by a neigh-

boring node, and also, GF nodes receive acknowledgments from the sink whenever a

message arrives successfully.

• Based on feedback. Nodes transmit threshold values to their neighbors. Since trans-

mitting the threshold every time it changes is energy expensive, we have explored two

ways to reduce communication overheads: (i) to send the threshold to all their neigh-

bors every time the current value differs more than a certain fixed amount (denoted

by βμ) from the last transmitted value (-VAR), or (ii) to broadcast the threshold to all

neighbors periodically using beacons (-BEAC).

In the experiments, the value of βμ is set to 3.5, the beacon interval to 2, 500 epochs

and the value of η in (5.21) and (5.22) to 0.04 for LF nodes and 0.009 for GF nodes. These
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values have been adjusted off-line to gauge the potential advantages of schemes relying on

incomplete information. The automatic assignment of these parameters, which is certainly

important from a practical implementation perspective, goes beyond the scope of this thesis.

Results are summarized in Table 5.2. As expected, the best performance among LF

nodes is achieved by LF-FI networks. The approaches that rely on feedback to obtain the

thresholds of the neighbors also provide good performance, always exceeding the results

of the AT: an improvement around 5.7% for the estimate-based approach and around 6.7%

for the use of beacons. Increasing the frecuency of beacons causes a significant decrease of

the importance sum due to the fast energy expense. On the other hand, selective forwarders

with a beacon interval approaching to infinity behave as AT nodes (nodes do not have any

information from their neighbors).

Table 5.2: Averaged performance results in a chain network of 30 equally-spaced nodes.

Importances follow exponential distributions.

Type of Total Import. Importance Number of Number of

sensor Received mean value Receptions gen. Messages

NS 1074.02 1.79 599.00 600.00

AT 6962.02 14.55 480.44 15638.10

LF-FI 7698.31 15.73 491.54 20563.78

LF-EST 7356.90 15.76 468.56 19911.62

LF-VAR 7696.91 16.80 459.32 24661.00

LF-BEAC 7429.23 15.41 484.10 19243.56

GF-FI 7699.94 15.73 491.40 20597.22

GF-EST 7319.05 15.13 485.82 17415.22

Reporting significant threshold variations (-VAR) provides an improvement around

10.5%, performing similarly to LF-FI sensor networks. Decreasing the value of βμ causes

very frequent threshold update reports due to the initial instability in thresholds, reducing

quickly the batteries. In all cases, the lifetime of LF sensor networks is higher than that

of AT sensor networks, as the higher number of generated messages shows. Even more, in

some cases the number of messages received by the sink is slightly higher than for AT net-

works. Moreover, in selective forwarding networks high prioritized messages arrive easier

to the sink than in AT networks. We just need to look at the importance mean value of the

messages received by the sink. The same conclusions can be extrapolated to GF networks.
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LF-FI and GF-FI results are practically identical. GL-EST results are slightly worse than

those achieved by the LF nodes, but very close to LF-EST.

5.4.3 Networks with arbitrary topologies

To analyze the behavior of selective forwarders in a more realistic scenario, we simulate a

network of 140 nodes scattered in a square field with corners (0,0) and (L,L), with L = 150.

Nodes are denser deployed near the sink, tailing off towards the edges. Nodes report the

information to a unique sink, located at (L,L/2). Fig. 5.5 illustrates a sketch of the sensor

network deployment.

Figure 5.5: Sensor Network deployment sketch.

Each node generates importances following an exponential distribution with different

mean, whose values were randomly generated from another exponential distribution with

mean 2. Messages are equally generated in the three regions and node batteries are charged

to 1, 500 units. In this case, results are averaged over 20 different topologies, where the

average depth of the network (number of hops required to reach the edges from the sink)

is 7. Note that if the depth of the network increases substantially, threshold information in

LF nodes will propagate slower towards the edges of the sensor field and could eventually

cause a degradation in the results, especially when batteries are close to run out, compared

with GF nodes.

Table 5.3 compares the performance for all types of nodes. Parameter η is fixed to 0.008

for LF and GF nodes. The value of βμ is set to 3.5, and the beacon interval to 13, 000

epochs. Conclusions are similar to those of section 5.4.2. The importance sum of mes-

sages arriving to the sink in AT networks is around 280% higher than that of NS networks.
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The improvement is even higher when deploying selective forwarders (around 293% for LF

estimate-based nodes and 343% for LF-FI nodes). Also, note that the network lifetime is at

least 6 times longer than that of NS networks.

Table 5.3: Averaged performance results in an arbitrary network topology of 140 nodes.

Importances are generated according to exponential distributions of different mean.

Total Import. Importance Number of Number of

Received mean value Receptions gen. Messages

NS 10328.62 1.92 5414.00 9292.20

AT 39105.03 10.13 3934.35 66630.15

LF-FI 45786.56 11.04 4223.95 101537.35

LF-EST 40578.81 10.36 3992.50 72406.10

LF-VAR 40075.74 11.32 3619.00 102801.30
LF-BEAC 40955.17 11.05 3766.90 86856.55

GF-EST 40957.99 10.42 4007.50 72997.05

The comparative analysis of selective sensors shows again that LF nodes outperform AT

nodes. Not only are the most relevant messages prioritized to arrive earlier to the sink (shown

through the importance mean value of messages received by the sink), but also the sensor

network lifetime is enlarged, beating the average value obtained by selective AT networks.

Specifically, the best performance corresponds to LF-FI sensor networks. The importance

sum is 17% better than that of AT sensors. As nodes initially lack of information from their

neighbors, the approximate approaches also yield a reasonable performance. Among the

proposed techniques, we would like to emphasize the good performance achieved by the

estimate-based proposal, both with local and global optimization. Even, GF-EST results are

slightly better than those of LF with incomplete information.

We have also analyzed the threshold values in different regions of the sensor field for

the same setup. Averaged results for AT and LF-FI sensor nodes are shown in Table5.4. In

general, AT nodes belonging to regions closer to the sink set higher thresholds than those

faraway located. As AT nodes set threshold values independently, the furthest nodes (which

only have to transmit their own generated traffic) set the lowest thresholds. Insofar as nodes

approach to the sink, threshold values are slightly increased as a consequence of receiving

messages with clipped importances from the furthest nodes.
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Table 5.4: Averaged threshold value in different regions of an arbitrary network topology

of 140 nodes. Importances are generated according to exponential distributions of different

mean.

R1 R21 R22 R23 R31 R32 R33

AT 2.79 3.36 3.85 3.63 3.05 4.88 3.39

LF-FI 11.20 9.34 10.48 10.85 7.42 7.89 8.56

On the contrary, the opposite effect is observed for LF-FI nodes, i.e., threshold values are

lower in those regions placed near the sink. It would not make sense that nodes approaching

to the sink set high thresholds because faraway generated messages will be never forwarded.

Naturally, the most selective nodes in the field are those located near the edges because they

ensure the forwarding of their own generated traffic and thus, they avoid wasting energy

transmitting messages that will not be forwarded. Recall that nodes generate messages of

different importances and moreover, set their thresholds also taking into account neighbor

behavior (whose information is backward propagated).

Finally, Table 5.5 lists the sensors remaining battery (averaged) for each region. Results

are shown for AT and LF-FI nodes. Clearly, AT nodes do their best concerning energy

consumption but LF-FI nodes are those that make a better use of energy resources.

Table 5.5: Averaged remaining battery in different regions of an arbitrary network topology

of 140 nodes. Importances are generated according to exponential distributions of different

mean.

R1 R21 R22 R23 R31 R32 R33

AT 0 7.07 6.65 6.45 237.20 113.16 244.84

LF-FI 0 221.13 199.42 222.40 641.16 289.81 659.52

Analysis of different constant energy consumption models

Now, we study the performance of the forwarding policies under different energy models.

The network topology consists of 150 nodes randomly scattered in a square field with cor-

ners (0,0) and (L,L), with L = 150. The sink is located at (L,L/2). Parameters η, βμ and
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the beacon interval as well as the node batteries are the same than those used in the previous

subsection.

Initially, let us define the gain as

GNS =
λ

λNS
, (5.23)

where λ and λNS stand for the importance sum of those messages succesfully arrived at

the sink when nodes use a selective and nonselective communication policy, respectively.

Alternatively, we may redefine the gain in order to compare the importance sum of the

received messages by the sink using selective forwarders versus selective transmitter (i.e.,

GAT = λ
λAT

).

Firstly, the value of ER is varied to analyze the effect on the gain. ET = 4, EI = 0,

and PI = 0. Averaged results are shown in Fig. 5.6. Fig. 5.6(a) plots the GNS gain.

Not surprisingly, the gain decreases for all types of selective sensors when ER approaches

to the ET value. The reason is the same than the stated in the previous chapter: the gain

increases with parameter ρ (defined by (4.38)) and ρ decreases with ER. However, the gain

of selective nodes is undoubtedly higher than that achieved by NS nodes.

Fig. 5.6(b) plots the GAT gain. Looking at the graph, we can conclude that the selective

forwarding nodes (LF and GF) yield a higher gain than selective transmitters (AT nodes),

even if the cost associated to the receiving state increases. Moreover, a tendency in the

gain behavior can be appreciated for selective forwarders: it increases slightly insofar as ER

grows. This fact is specially remarked by LF-FI and LF-VAR nodes. Therefore, changes in

the energy cost associated to the receive state have less effects on selective forwarders (LF

and GF) than on selective transmitters (AT).

Now, let us analyze the gain of the selective forwarding policy for different values of

EI . In this case, ER = 1 while ET remains unchanged. The probability of idle state, PI , is

computed based on the number of idle states and the number of data events (DE),

PI =
#idle
#slots

=
#idle

#idle+ #DE
, (5.24)

where DE includes locally generated messages, successfully received messages from neigh-

bors and message transmissions.

Results are shown in Fig. 5.7. Fig. 5.7(a) represents the GNS gain. An abrupt drop

in the gain of selective nodes is observed when parameter EI differs from 0, although the
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Figure 5.6: Gain of the selective communication policies regarding the NS node (a) and the

AT node (b) under exponential importance distributions for different values of ER.

gain always exceeds the value obtained by NS nodes. This behavior is expected from theory

since the gain increases with parameter ρ and ρ is a decreasing function of EI and PI .

Finally, we analyze the GAT gain (Fig. 5.7(b)). The gain of LF and GF nodes reduces,

regarding the AT node, when the value of EI increases. As it can be observed, the potential

gain of the local forwarder (established by LF-FI node) is not depreciable, but it reduces

when nodes have incomplete information. This fact can be partly due to the free parameter

assignment, which may not be appropriated and should be properly adjusted.
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Figure 5.7: Gain of the selective communication policies regarding the NS node (a) and the

AT node (b) under exponential importance distributions for different values of EI .

Stochastic energy costs

Up to this point, a simple deterministic energy model with constant energy costs was as-

sumed. But c1,k and c0,k can be stochastic processes (see (2.5)). In this section we consider

that energy costs vary along time: energy costs (ET , ER and EI ) are samples of noncentral

Chi-square distributions of one degree of freedom. The other free parameter of the distribu-

tion takes the value 3.5 for ET , 1 for ER and 2 for EI . The estimation of EI from the idle

states is straightforward as well as the estimation ofET . Parameter ER is updated according

to the cost of receiving messages from neighbors during a reception state as well as from

energy consumed during local data generation. To compute the forwarding threshold, the
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average value of the energy costs is needed. To save memory resources, all estimates are

based on an Exponential Weighted Moving Average (EWMA),

Es(n+ 1) =
(

1− 1
n

)
Es(n) +

1
n
enew, (5.25)

where n is an increasing counter for the specific estimate, Es corresponds to the energy

estimate (ET , ER or EI ) and enew is the current cost of the transmitting, receiving or idle

state. PI estimate is computed according to (5.24).

In the experiments, the network is composed of 150 nodes provided with E = 10, 000

units and they are randomly scattered in a square field. Parameter η is fixed to 0.1 for LF and

GF nodes. The value of βμ is set to 1.5 and the beacon interval to 2, 000 epochs. Results are

averaged over 50 different topologies and the depth of the network is, on average, 8 hops.

The gain for different types of sensors is depicted in Fig. 5.8. It highlights the advantage

of including selective nodes in sensor networks. The best performance corresponds to the

LF-FI node. Nevertheless, remark the good behavior achieved by LF-VAR and LF-BEAC

nodes, which approach to the results got by the LF-FI node. GF-EST gets a slightly better

results than LF-EST, what makes good sense to the fact that the global forwarder performs

rather better than the other two types of selective nodes.
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Figure 5.8: Gain of the selective forwarding policies under exponential importance distribu-

tions when energy costs are stochastic.
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5.5 CONCLUDING REMARKS

This chapter has introduced several selective message forwarding policies, formulated via

MDP notation, that were obtained as the optimal solution of a formulated problem in order

to save energy and extend the lifetime of WSNs. Messages were transmitted by sensor nodes

according to a forwarding policy, which considered consumption patterns, available energy

resources in nodes, the importance of the current message, the statistical description of such

importances and the behavior of neighboring nodes.

Forwarding schemes were optimally designed for three different scenarios: 1) when sen-

sors maximize the importance of their own transmitted messages (no information from other

nodes is available); 2) when sensors maximize the importance of messages that have been

successfully retransmitted by at least one of its neighbors (nodes need to know/estimate if

the message was retransmitted); and 3) when sensors maximize the importance of the mes-

sages that successfully arrive to the sink (nodes need to know if the message arrived to the

sink). Interestingly, the structure of the optimal scheme was the same in all three cases

and consisted of comparing the received importance to a forwarding threshold (in fact, the

expression for the optimal forwarding threshold turned into a general expression of the op-

timal selective transmitter stated in Chapter 4). The expression to find the optimal threshold

varies with time and is slightly different for each scenario. The developed schemes were

optimal from an importance perspective, efficiently exploited the energy resources, entailed

very low computational complexity and were amenable to distributed implementation, all

desirable characteristics in WSNs.

The three schemes have been compared under different criteria. From an overall network

efficiency perspective, the first scheme performed worse than its counterparts, but it required

less signaling overhead. On the contrary, the last scheme was the best in terms of network

performance, but it required the implementation of feedback messages from the sink to

the nodes of the WSN. Numerical results showed that the proposed selective forwarding

schemes improved the global performance in terms of quantity and quality of the messages

that really arrive at the sink. Particularly, for the tested cases they showed that differences

among the three schemes were small - with schemes two and three performing evenly but

better than scheme one. From a practical perspective, this suggests that the second scheme,

which is just slightly more complex than the first one, can be the best candidate in most
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practical networks (especially in new deployments). Similarly, from a modeling point of

view, the results indicate that when nodes have access to nonlocal information, information

of first order neighbors may be enough. On the other hand, the variation of the energy

consumption patterns has the same impact than the observed for the selective transmitter:

an increase of ER or EI values reduces the advantage of selective communications, but

exceeds the behavior of nonselective communications by far. Finally, the gain enhancement

introduced by selective forwarders was also corroborated even considering stochastic energy

costs.
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CHAPTER 6

AN APPLICATION SCENARIO:

TARGET TRACKING

As a case study, we have identified a scenario within WSNs where the selective forwarding

policy can be useful: target tracking. Target tracking has received considerable attention in

the literature. The ability to track a target is essential in many military (e.g., tracking enemy

vehicles, detecting illegal border crossings) and commercial applications (e.g., tracking the

movement of wild animals, highway traffic monitoring, etc.). In a target tracking system,

the object of interest is a single (or multiple) target that moves in a field of sensors, which

measure signal power, and the objective is the estimation of its trajectory and velocity.

Most of the research work in target tracking in WSNs is focused on providing en-

ergy saving techniques to avoid the early battery exhaustion of sensor nodes (see, e.g.,

[Wang et al., 2010], [Pattem et al., 2003]). That is why we consider that the application of

the selective forwarding policy (together with other in-network data processing techniques)

to sensors aimed at tracking deserves some attention. From the optimal selective forwarding

scheme based on the statistical model of the message importance (defined in Chapter5), in

this chapter we analyze and validate the performance of selective sensors that initially apply

other data reductions techniques (data aggregation or fusion) for a centralized and distributed

tracking architecture. We compare results with those extracted from nonselective sensors to

assess the advantages in terms of tracking accuracy, network lifetime and resource usage,

111



6.1. TRACKING WITH SELECTIVE FORWARDERS

among other parameters. Particularly, only those sensors with essential information about

the target, i.e., whose message importance is over a time-variant decision threshold, trans-

mit their measurements/estimates in order to determine the target location. Consequently,

communication processes reduce considerably, having an impact on the network lifetime

enlargement without compromising the application performance.

The rest of the chapter is structured as follows. Section6.1 details the general procedure

for the joint application of the selective forwarding policy and the data aggregation/fusion

methods to sensor networks designed to track targets. Section6.2 describes the tracking al-

gorithm, the data reduction techniques and the computation of the importance values. Later,

Section 6.3 shows the experimental study and results, considering both selective and nonse-

lective sensor nodes. Finally, some concluding remarks are drawn in Section6.4.

6.1 TRACKING WITH SELECTIVE FORWARDERS

The more nodes collaborate in tracking, the more data measurements are collected, and the

better the estimate of the target position and velocity is. Nevertheless, nodes consume a

valuable amount of battery performing measurement collection and communication tasks,

increasing the congestion of the limited bandwidth. Data aggregation schemes can be used

to improve energy efficiency, but it states a major problem: sensor nodes may combine

redundant data or data that may not contain relevant information about the target, consum-

ing a non-negligible bandwidth. This weakness is, to some extent, alleviated using fusion

schemes since data are partially processed to compute target parameters, reducing power

consumption. Nevertheless, target estimations should be routed to the sink in order to let the

sink handle the collected information.

The key idea developed in this chapter is the combination of data reduction schemes

with the selective forwarding policy in such a way that nodes selectively report the most

informative information only, which suffices to obtain an accurate target parameter estimate,

saving energy resources that enlarge network lifetime.

6.1.1 The general procedure

For the sake of clarity, let us first expose the general procedure that we propose to follow.

112



CHAPTER 6. AN APPLICATION SCENARIO: TARGET TRACKING

1. At time k, nodes sense some specific parameters (i.e., take measurements), ln,k, which

are somehow related to the target state yk (position, velocity,...): ln,k = f(yk). Vari-

able n denotes the node index.

2. Some nodes, which vary depending on the particular scenario, compute estimates of

the moving target position recursively, considering the available observations at every

time instant, ŷk = g(ln,k, ŷk−1).

3. Nodes acting as source forwarders or cluster-heads compute and assign an importance

value to messages based on the available measurements or state estimates respectively,

xk = h(ln,k, ŷk). The importance value remains invariable once it is set.

4. Sensor nodes apply selective communication policies to decide whether to transmit

messages or not according to the importance value as well as other factors, such as

the remaining energy resources, dk = dk(ek, xk).

The computation of the importance value based on the available information at each time

k is a major issue in the design of a selective communication policy, and it is application-

dependent. The importance functions used in the experiments will be detailed in Sec.6.2.5.

Remark that the procedure is general enough to consider any type of sensor. The next

sections detail the target motion model, tracking method, and data reduction approaches.

6.2 TARGET LOCATION AND TRACKING METHODS

6.2.1 Target Motion Model

Generally, target tracking problems can be stated in terms of the estimation of an unobserved

discrete-time random signal in a dynamic system of the form

yk = f
(
yk−1,uk

)
(6.1)

lk = g (yk, vk) , (6.2)

where yk = [y1,k, y2,k, ẏ1,k, ẏ2,k] ∈ R4 is a state vector whose elements are the position and

the velocity of the target in a two dimensional Cartesian coordinate system at time instant
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k, uk is the noise component, and function f (·) relates the current state vector with the

previous one and the noise (i.e., the state transition function). lk is the sensor measurement

at time k, g (·) is the observation function (which will be defined in the next subsection),

and vk is the observation noise. uk and vk are assumed to be statistically independent.

We have focused on models that are linear in the state dynamics. The model is described

in [Gustafsson et al., 2002] as:

yk = Gy yk−1 + Gu uk, (6.3)

where Gy and Gu are known matrices defined by

Gx =

⎛⎜⎜⎜⎜⎜⎝
1 0 Ts 0

0 1 0 Ts

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ Gu =

⎛⎜⎜⎜⎜⎜⎝
T 2

s
2 0

0 T 2
s
2

Ts 0

0 Ts

⎞⎟⎟⎟⎟⎟⎠ , (6.4)

where Ts denotes the sampling period of lk, and uk is a 2×1 vector that represents a Gaussian

noise process with zero mean and known covariance matrix Cu = diag
(
σ2

u1
,σ2

u2

)
, which

accounts for the acceleration of the target (assumed to be unknown).

6.2.2 Type of Sensor: Acoustic Amplitude Sensor

The formulation of the measurement model is in agreement with the type of sensor deployed

in the network. Microphones, apart from being low-cost devices, are affordable and simple

in computation, what makes them attractive to study. An acoustic amplitude sensor node

measures sound amplitude at each microphone and estimates the distance to the target based

on the physics of the sound attenuation [Zhao and Guibas, 2004].

Assuming that the target is a point source and acoustic signals propagate lossless and

isotropically, the acoustic amplitude measurement ln,k performed by n-sensor is related to

the sound source position oTk = [y1,k, y2,k] by

ln,k =
a

‖ok − rn‖α/2
+ vn,k (6.5)

where a is a given random variable representing the amplitude of the signal at the target

(uniformly distributed in the interval [alo, ahi]), α is an unknown attenuation coefficient
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and ‖·‖ is the Euclidean distance. Measurement noise is modeled as Gaussian with zero

mean and variance σ2
v . Both, the noise variance and the sensor position rn, are typical

characteristics about sensors, together with its energy reserve [Zhao and Guibas, 2004].

To tackle the problem of selective forwarding, nodes set the importance of the informa-

tion according to the relevance of the measures taken by each node along time, xk = ln,k.

6.2.3 Tracking Algorithm

Target location is crucial in distributed tracking. The aim at target tracking is to obtain a

good estimate of the moving target position at time k, yk, from the measurement history

up to time k, lk = {l0, l1, . . . , lk}, within a sensor field monitored by a sensor network.

Among all possible methods to locate targets from the measurements sensed by nodes, we

have selected a statistical approach: the sequential Bayesian filtering. We would like our

estimate ŷ(lk) to be, on average, as close to the true value yk as possible, trying to minimize

the Minimum Mean Squared Error (MMSE) estimator [Liu et al., 2003],

ŷk = E
[
yk|lk

]
=
∫

yk p
(
yk|lk

)
dyk. (6.6)

where p
(
yk|lk

)
is the current a posteriori distribution or belief, which in this application

corresponds to the target position and velocity.

Specifically, we have made use of the particle filter Monte Carlo technique

[Doucet et al., 2000] [Ristic et al., 2004] to compute the corresponding Bayesian estimates

and target prediction. It approximates the belief by a set of particle streams y(m)
k , m =

1, 2, . . . ,M , and their weights w(m)
k , which are normalized such that

∑M
m=1 w

(m)
k = 1.

Particles have the same structure than the state vector presented in Section6.2.1, y(m)
k =[

y
(m)
1,k , y

(m)
2,k , ẏ

(m)
1,k , ẏ

(m)
2,k

]
∈ R4. Thus, the belief can be approximated as follows

p
(
yk|lk

)
=

M∑
m=1

w
(m)
k δ(yk − y(m)

k ), (6.7)

a discrete weighted approximation of the true posterior, p
(
yk|lk

)
.

The basic operation of a particle filter is summarized next: when new observations are

available, the set of particles y(m)
k−1 is expanded to y(m)

k and their weights w(m)
k−1 are updated

to w(m)
k . At least three steps can be easily identified: a) new particle generation; b) weights
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update; and c) resampling. The last step is necessary to avoid a degeneracy of random

measurements and it is based on the replication of particles that have larger weights.

The steps of the particle filtering algorithm can be summarized as follows:

1. Initialization ⇒ Particles y(m)
0 , m = 1, 2, . . . ,M , are initially drawn from a priori

distribution π(y0) (a Gaussian distribution, whose mean is the sensor position that

particles have and variance σ2
n), and the weights of the particles are set to 1

M .

2. New particle generation ⇒ A new set of particles, y(m)
k , m = 1, 2, . . . ,M , is com-

puted according to the distribution p (yk|yk−1), and can be expressed as

y(m)
k = f

(
y(m)

k−1

)
+ nk, (6.8)

where nk is the noise component which produces a random particle movement.

3. Weights Update⇒ Update weights by means of the likelihood

w
(m)
k = w

(m)
k−1 p

(
lk|y(m)

k

)
. (6.9)

4. Position Estimate⇒ An approximation of (6.6) is computed in order to estimate the

target position. Note that weights are normalized to sum up to 1.

ŷk ≈
M∑

m=1

w
(m)
k y(m)

k . (6.10)

5. Resampling⇒ Sampling importance resampling (SIR) technique, explained in detail

in [Arulampalam et al., 2002], is applied. It takes samples with replacement from the

set
{
y(m)

k

}M

m=1
, where the probability to take sample m is w(m)

k . Let w(m)
k = 1

M .

6. Let k := k + 1 and go to step 2.

6.2.4 Data reduction schemes

One of the main problems stated in tracking moving objects is the huge amount of messages

to be transmitted to the sink when sensors detect a target, and the possibility of collision

and interference in the shared media. With the aim of improving energy efficiency, data

reduction schemes are commonly used in target tracking to reduce communications in the

network. We consider two in-network processing approaches: data aggregation and sensor

fusion.
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Data Aggregation Scheme

Basically, data aggregation allows sensors to combine data from different sources and report

them to the sink. Later, the sink applies a location algorithm to the information gathered

from all sensors to update the target track. Figure6.1 shows an example of data aggregation.

Data from the two sources are aggregated by node c and the combined data (labeledD1+D2)

are sent from node c to the sink. It results in energy saving, as fewer transmissions are

required to send the information from both sources to the sink.

Sinkb

d

c

e

Source 1

D1

D2

D1 + D2

a

D1

Source 2

Figure 6.1: Example of data aggregation.

Though data aggregation can be done with some data processing, we have applied a

simple packaging scheme [Nakamura et al., 2007]: each node groups p measurements (ob-

servations sensed by itself or coming from other nodes), generating a packet to be routed

through the network. This avoids the overhead of the MAC protocol when transmitting sev-

eral packets. The selection of the packet size p must take into account the potential delay

incurred because data from nearer sources may have to be held back at an intermediate node

in order to be aggregated with data coming from further sources. This fact can be seen by

referring back to Fig. 6.1. There, node c is only one hop from source node d, but two from

source a. If both sources transmit measurements simultaneously, data from source 2 will

get to node c before data from source 1, and take longer to get to the sink than it would

in no aggregation schemes. For simplicity reasons, we have arbitrarily set a fix packet size

without further optimization.

We have integrated the data aggregation scheme into two different approaches:

• Centralized approach: every sensor of the network field wakes up periodically to

take a measurement, and informs the sink. The sink updates the belief state using

the sequential Bayesian filtering technique presented in Section 6.2.3, considering
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at every time the N measurements sent by sensors. Clearly, it is a simple but very

energy-expensive method.

• Leader approach: this approach is more energy-efficient because sensor activation

only affects a localized area in the sensor field, reducing communication overhead. It

is based on a cluster-leader scheme, particularly, the information-driven sensor query-

ing (IDSQ) approach. At each time, the leader and its m neighbors are active while

all the remaining nodes are sleeping. The leader requests the measurements to all its

neighbors, packages all collected data in groups of p measurements, and routes them

towards the sink, which estimates the target position based on this reduced set of

m � N measurements at each time. As the target moves continuously in the sensor

field, the leader role should be constantly updated. The process of leader selection is

based on an information-driven criterion: the most informative sensor (i.e., the neigh-

bor with the best measurement) is selected in the next round. The process is repeated

until the task is completed. In the initialization phase, some sensors, elected at ran-

dom, are assigned to weak up periodically and scan the network for detecting possible

targets. When a sensor measurement exceeds the power threshold, the corresponding

node becomes the initial leader and the tracking algorithm starts to run. Additionally,

it is a leader requirement to have enough energy to accomplish the task.

Sensor Fusion Scheme

The approach presented above is based on a fully centralized processing approach performed

by the sink. The main drawback of transmitting every measurement to the sink is the high

cost in terms of communication energy in any nontrivial size network. Moreover, aggregat-

ing data (packaging) does not exploit synergies among data. Other simple functions (such

as the average, maximum or minimum) are not appropriate, because information related to

sensor position is completely lost. Fusion schemes decrease communication overhead, and

save energy by combining data from different sources and by reducing the amount of infor-

mation, so that new data are improved (greater quality or relevance). In distributed fusion,

measurements are fused before sending them to the sink. Intermediate nodes only route the

packet, do not fuse incrementally.

The experimental work is specially focused on distributed sensor fusion based on the
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IDSQ tracking algorithm. Besides collecting measurements, the leader node fuses the infor-

mation to obtain an estimate of the target position, which is later routed to the sink. Again,

we use sensor fusion based on Bayesian Inference and particle filtering. Figure6.2 shows

the flowchart of the tracking algorithm in this scenario.

INITIALIZATION 

Leader?

START 

Wait for request 

Measure sound 
amplitude (ln,k) 

NO YES

Send information request 

FINISH 

Wait for information 

Measure sound 
amplitude (ln,t) 

Update the ‘a posteriori 
distribution’ and 

particles 

New leader election and 
handover process 

Route the packet with 
the target estimate to the 

sink

Send Information to 
the leader 

Figure 6.2: Flowchart of the tracking algorithm in a distributed sensor fusion scheme.

6.2.5 Computing the importance values

To avoid communicating uninformative messages, nodes will apply selective communica-

tion strategies. To do so, an importance function assigning an importance value to every

message to be transmitted must be computed. In the tracking scenario, since observations

ln,k represent signal power measures from microphones, and large values of ln,k can be ex-

pected to be more informative than low values, the importance value of a single measure

will be taken as xk = ln,k.

In case of data aggregation, the importance of the aggregated packet will be computed

as the sum of importances of each individual measurement. According to the selective
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forwarding policy, the aggregated packet may be discarded. However, the whole packet is

not dropped, but only the least important measurement (based on the signal power). A new

measurement can be added to the rest of the packet, and a new decision will be made. Any

intermediate node receiving a message repeats again the process.

In case of data fusion, the target position is estimated at leaders, and this estimation can

be used to compute the importance values. In our experiment, the message importance is

xk = ‖ŷk − y̌k‖2, (6.11)

where ŷk is the position estimate carried out by the leader node, and y̌k is the position

estimate that would be estimated by the sink without the current message (which is the

result of applying the target motion model to the last previous estimate).

When the sink receives a report message, it processes the information by means of a

tracking algorithm (the particle filter which was described in Section6.2.3), or directly re-

constructs the target trajectory, bearing in mind the time when nodes detected the target and

assuming that all sensors are initially synchronized. Whenever the sink does not receive any

estimate or any measurement for any particular time instant, it applies the target movement

equation to the precedent received or computed estimate, respectively. Fig. 6.3 helps to

clarify the sink behavior.

M
)()(

1ˆˆ −= kyk G yy

=

=
m

m
k

m
kk

1

)()(ˆ yy ω
kŷ

kŷ
kŷ

Figure 6.3: Flowchart of the sink behavior depending on the applied data reduction scheme,

and the availability of measurements and estimates in nonselective and selective networks.
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6.3 EXPERIMENTAL RESULTS

In this section we analyze and validate through simulations the performance of the selec-

tive forwarding policy applied to target tracking. Experimental results are conducted using

Matlab. Results are focused on comparing two types of sensors: local selective forwarders

based on learning (LF-EST) and nonselective (NS) sensors.

The sensor network field is considered as a square area of 250 x 250 m2, where 64

sensor nodes have been deployed in a grid structure. Nodes are initially charged with the

same batteries, E = 15, 000 units, except for the sink, which has unlimited power supply.

The sink is placed at the up right-hand corner in the sensor field. Nodes keep working

until their batteries expire and the network dies after the death of the fist node, or when a

predefined simulation time is over (at t = 30, 000s). We have used the constant energy

model given by (2.1), where energy values are set to ET = 5, ER = 2 and EI = 0.

Assuming acoustic sensors (6.5), parameter a is uniformly distributed in the interval

[60, 80], and the target moves continuously in the sensor field at variable speed between [0,

vmax] m/s, where vmax is 2 or 5. Whenever the target arrives at any side of the field, the

target is reflected guaranteeing its position in the field. The signal attenuation coefficient α

in (6.5) is set to 2. As in the previous chapter, we have used the greedy forwarding routing

algorithm for simplicity. Moreover, link losses have not been included in the model.

Sink

2R

Sink

R

Figure 6.4: Sensor network deployment and communication range.

The transmission radius R is adjusted so that nodes can communicate with eight neigh-

bors, as it is shown in Figure 6.4. By overhearing, nodes are able to update their information

parameter estimate according to (5.21) and (5.22). Besides, we have also tested tracking

scenarios with higher transmission radius. Particularly, nodes can enlarge their transmis-
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sion range up to 2R. In this case, the cost for transmitting to neighbors placed to a distance

between R and 2R increases accordingly, 2ET .

For tracking applications, performance is assessed in terms of tracking accuracy (track-

ing error) and resource usage (energy consumption). In multi-hop routing protocols, perfor-

mance is also stated in terms of energy consumption and network lifetime. As the selective

forwarding policy maximizes the importance sum of the forwarded messages, performance

will be also assessed in terms of the importance sum of messages received by the sink.

Experimental results are averaged over 50 simulation runs, where different target tra-

jectories are tracked. The same trajectories are tracked for both types of sensors (NS and

LF-EST) under three different scenarios: (i) no in-network processing technique; (ii) data

aggregation based on centralized or leader methods; and (iii) data fusion based on cluster-

leader schemes. The starting point of target trajectories is different in all simulation runs.

6.3.1 Tracking without in-network processing

This scenario is aimed at showing the benefits of including selective sensors. Initially, nodes

do not perform any in-network processing technique, i.e., every time sensor nodes collect an

acoustic amplitude measurement, it is routed back to the sink to estimate target parameters.
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Figure 6.5: Evolution of the importance sum of messages received by the sink for tracking

methods without in-network processing.

Figure 6.5 depicts the evolution of the importance sum received by the sink along time

when the target is moving at vmax = 2m/s. For the sake of clarity, we have kept the im-

portance sum constant once the network lifetime has expired. As expected, those networks

composed of selective forwarders achieve a higher importance sum regarding its correspond-
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ing nonselective counterpart method, and also a higher network lifetime. Comparing the

performance of the different tracking methods, leader-based method with radius R yields

the best performance, as it reduces the number of transmissions. In this scenario, increasing

the transmission radius does not improve the importance sum because energy consumption

drops faster as more nodes are involved in tracking. However, the best improvement re-

garding its nonselective counterpart corresponds to the centralized method. Multiple sensor

nodes perceive similar observations, which results in inherent redundancy of sensory data.

Including LF nodes reduces not only redundancy, but also inhibits the transmission of non-

relevant data while the network lifetime is prolonged. This scheme performs even better

than the leader-based method with NS nodes, and approaches the best performance.
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Figure 6.6: Average RMSE for NS and LF-EST sensor networks that implement centralized

(a) and leader-based schemes (b) without applying any data reduction schemes.

Figure 6.6 shows the Root Mean Square Error (RMSE) of the target estimation. Note

that we show average results; however, each trajectory has a different duration. Hence,
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we average those trajectories that are alive at every time instant. Tests for the centralized

scheme (see Fig. 6.6(a)) show that localization errors for LF sensor networks are lower

than for NS networks. However, the tracking error is rather high in both, and increases

progressively due to the fast battery exhaustion, forcing the sink to use the target motion

model. Therefore, tracking error achieves non admissible values for a tracking application.

The drastic drops of the error at the last time instants in LF sensor networks are caused by the

reception of informative measurements by the sink, which clearly contributes to get a better

target estimate. Besides, the lifetime of LF sensor networks is two times longer than the NS

network lifetime. This is also observed in leader-based methods (see Fig. 6.6(b)). Whereas

LF sensor networks with transmission range 2R achieve a lower error in the short term,

LF sensor networks with transmission radius R get a better performance in the long term

because less nodes are involved in the measurement capture, and the network lasts longer.

In general, error results still reach non admissible values, though. Finally, let us point out the

higher lifetime of the leader-based approach with radius R regarding the centralized ones.

6.3.2 Tracking methods with data aggregation

In this section, nodes are provided with data aggregation capabilities. We have arbitrarily

considered two packet sizes: p = 3 and p = 5 (i.e., nodes have to wait up to fill a packet with

the required amount of measurements). Note that results exposed in the previous section are

a particular case of those presented here by considering p = 1.

Table 6.1 summarizes the average network lifetime for LF and NS sensor networks pro-

vided with aggregation capabilities, for different packet sizes and target speeds. As ex-

pected, higher packet size increases network lifetime, because it reduces communication

processes. Concerning the use of selective nodes, the enlargement of network lifetime is

remarkable. Specifically, lifetime is increased more than 2 times in centralized methods,

around 1.5 in leader-based method with transmission radius R, and 1.7 in leader-based

method with transmission range 2R. Again, the best improvement, regarding its NS coun-

terpart, corresponds to the centralized method because of the huge filtering of redundant

and non-important information. However, network lifetime values are still far from the re-

sults achieved by the leader-based approach with transmission radius R, which undoubtedly

yields the best performance. Note also how network lifetime of centralized approaches is
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higher than for leader-based method with radius 2R.

Network Lifetime (s)

Method vmax = 2m/s vmax = 5m/s

p = 3 p = 5 p = 3 p = 5

Centralized method with NS nodes 1502 1503 1502 1503

Centralized method with LF nodes 3339 3575 4085 4230

Leader method with NS nodes 2924 3716 3075 3881

Leader method with LF nodes 4577 4601 5039 4963

Leader method with range 2R and NS nodes 1147 1298 1380 1553

Leader method with range 2R and LF nodes 1932 1962 2340 2316

Table 6.1: Average network lifetime (s) for nodes with aggregation capabilities and for

different tracking methods, packet size (p) and velocities of the target (vmax).

It is interesting to observe how the enlargement of the network lifetime is consistent with

energy expenditure. Fig. 6.7 plots the average energy per node along time for packet size

5 and vmax = 2m/s. The slope of the different plots shows that selective sensors balance

their energy expenditure (smoothness in the slope) to carry out the tracking and routing

tasks. This fact is particularly noticed making a comparison between centralized methods.

The abrupt slope in NS sensor networks is consequence of a faster battery depletion due to

the intrinsic nonselective nature of these sensors.
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Figure 6.7: Evolution of the average energy per node for tracking methods performing data

aggregation with p = 5 and for vmax = 2m/s.

Fig. 6.8 depicts the evolution of the importance sum of the received messages at the sink

when the target is moving at maximum speed 2m/s, and for different packet sizes. Again,

experimental results validate the theoretical claims. Basically, LF networks outperform their
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Figure 6.8: Importance sum evolution for tracking methods performing data aggregation

with p = 3 (a) and p = 5 (b) when vmax = 2m/s.

corresponding nonselective ones, whatever the aggregation method and packet size is. The

same conclusions got for Section 6.3.1 apply here: the leader-based aggregation method

with radius R yields better results than the centralized ones in terms of importance sum,

although the higher relative improvement compared to its NS counterpart corresponds to

centralized aggregation methods with LF sensors. The improvement of LF networks com-

pared to its NS counterpart reduces slightly in so far as the packet size increases. It may be

due to the proposed message discarding technique what makes that, sometimes, nodes have

to wait longer to fill in a packet, particularly if measurements have low importance.

To analyze the influence of selective policies on the tracking performance, Fig. 6.9

shows the average RMSE for NS and LF networks that implement aggregation with p = 3,

and vmax = 2m/s. Fig. 6.9(a) shows the outcome for the centralized approach. Again, it

is observed a significant lower tracking error for LF networks. However, even though the
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tracking error reaches lower values than for packet size 1 (i.e., no aggregation scheme is

used), the error is still high. On the other hand, the error obtained by leader-based aggrega-

tion schemes (see Fig. 6.9(b)) keeps at low values, so that LF networks perform better along

the whole sensor network lifetime.
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Figure 6.9: Average RMSE for NS and LF sensor networks that implement centralized (a)

and leader-based (b) aggregation schemes with p = 3 and vmax = 2m/s.

The trade-off between network lifetime and tracking error can be observed in Fig.6.10,

which shows the RMSE of each individual simulation run for the leader-based aggregation

scheme. Network lifetime of each simulation run is enlarged whereas the tracking error

yields at low values and comparable to those of NS networks.

The benefits of selective policies are even clearer for packet size 5, as it is shown in

Fig. 6.11, and similar conclusions arise for different target speed, as shown in Fig. 6.12.

Increasing the packet size helps to keep the good performance longer, as the decrease in
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Figure 6.10: RMSE of each individual run for NS and LF sensor networks that implement

the leader-based aggregation scheme with p = 3 and vmax = 2m/s.

the amount of transmissions also saves energy used for ulterior transmissions. However, the

increase of the target speed yields a worse initial performance in LF networks. As the target

is moving faster, nodes involved in capturing measurements change more often, needing

more time to set an appropriate decision threshold.
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Figure 6.11: Average RMSE for NS and LF sensor networks that implement leader-based

aggregation schemes with p = 5 and vmax = 2m/s.

6.3.3 Tracking methods with data fusion

The last set of simulations analyzes the distributed sensor fusion scheme. Table6.2 shows

the longer average lifetime for LF networks with respect to NS networks with data fusion,
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Figure 6.12: Average RMSE for NS and LF sensor networks that implement leader-based

aggregation schemes with p = 3 (a) and p = 5 (b) when vmax = 5m/s.

for different transmission ranges. It also evidences the benefits of data fusion schemes with

respect to data aggregation. Particularly, let us highlight the lifetime enlargement achieved

by LF nodes with communication range R, 40.6%.

Other important fact to evaluate is the importance sum of packets received by the sink

(Fig. 6.13). In this scenario, NS networks perform evenly and achieve a performance sig-

nificantly inferior than LF networks. We do not compare importance sum values between

aggregation and fusion schemes because the importance is set in a different way, hence,

having different meaning.

Finally, we analyze tracking accuracy. Fig. 6.14 illustrates the average tracking error for

the fusion method when the target moves at maximum velocity 2m/s. Comparing with NS

networks, LF networks sacrifice slightly accuracy to estimate the target position in exchange
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Method Network Lifetime (s) Improvement (%)

Leader with NS nodes 4378 17.8

Leader with LF nodes 6468 40.6

Leader with range 2R and NS nodes 2157 66.1

Leader with range 2R and LF nodes 2719 38.6

Table 6.2: Average network lifetime for the fusion method, and improvement of the fusion

approach versus the aggregation method with p = 5 and vmax = 2.
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Figure 6.13: Importance sum evolution for tracking methods performing sensor data fusion

when vmax = 2m/s.

of an increase in the network lifetime, specially LF networks with communication radius R.

On the other hand, selective networks with radius 2R have better accuracy, achieving error

values close to those of NS networks, but they keep it for a shorter period of time due

to their quicker battery exhaustion. The higher initial error in both selective networks is

a consequence of the selective node needs to set the decision threshold according to the

received information. As leaders transmit estimates instead of measurements, sensors need

receiving more packets to set the threshold properly. Perhaps a better approach would be the

use of LF nodes capable of switching adaptively between the two different communication

ranges, depending on the needs and the current tracking error, but the exploration of this

idea is left as a future research line.
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Figure 6.14: Average RMSE for NS and LF sensor networks that implement leader-based

fusion schemes when vmax = 2m/s.

6.4 CONCLUDING REMARKS

In this chapter, the selective communication policy was applied to target tracking in or-

der to save energy resources, particularly by reducing communication tasks. The selective

forwarding scheme, due to its easy capacity of integration, was jointly applied with other

data reduction techniques, such as data aggregation and sensor fusion, in centralized and

distributed architectures. Sensor nodes were able to make the appropriate decision about

message forwarding according to an estimated stationary asymptotic threshold. Besides, we

have also defined a scheme to assign importance values to packets in the target tracking

application.

Three different scenarios have been tested for selective and nonselective nodes: 1) sen-

sors without in-network processing capabilities; 2) sensors with aggregation capabilities;

and 3) sensors with data fusion abilities. From an overall perspective, the application of

selective forwarding policies enlarged sensor network lifetime, as a consequence of a more

balanced and optimized energy expenditure. Clearly, the first scenario was the simplest, but

the tracking error achieved non admissible values. On the contrary, the other two scenarios

were more complex, but tracking accuracy was not compromised. Particularly, sensors in

the third scenario achieved the longest lifetime but performed slightly worse, regarding the

tracking error, than sensors in the second scenario.

To conclude, we would like to remark the simplicity of the importance function, which
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is based on the power of the signal detected by sensors. Hence, this work can be improved

taking into account the degree of correlation of the current measure with the previous ones.

In that sense, an importance function based on measures of conditional entropy seems more

suitable, as it is considered in [Williams et al., 2007].
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CHAPTER 7

CONCLUSIONS

The main conclusions derived from the thesis are outlined here, and some of the new lines

of work that this thesis has opened are drawn.

7.1 CONCLUSIONS AND DISCUSSION

The nature of Wireless Sensor Networks has originated a number of new challenging and in-

teresting research topics. In particular, the design of large-scale sensor networks composed

of battery-powered devices provided with a high degree of autonomy states many challenges

that cannot be solved with classical solutions working out for other wired or wireless net-

works. Specifically, energy is of paramount importance in these networks because it may

critically impact on operating conditions and sensor capabilities, as it imposes the main con-

straint. Therefore, a prerequisite for achieving either longer sensor node lifetime or longer

sensor network lifetime is the development of energy-efficient strategies dealing with a re-

duction in communication processes, which are the most energy expensive tasks. Hence,

a selective policy for processing and transmitting at nodes allows optimizing energy con-

sumption and maximizes the quantity and quality of the transmitted information.

In this context, this thesis has been aimed at analyzing the problem of energy resource

self-management in nodes belonging to Wireless Sensor Networks, and studying the im-

pact that resource constraints had on communication processes, especially when messages

were graded according to an importance/priority value and we could tackle with selective
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transmission policies. In particular, it has been developed and evaluated optimal selec-

tive communication policies in order to save energy resources in Wireless Sensor Networks

while providing satisfactory quality of information. With this purpose, optimum selective

message forwarding schemes based on the statistical model of the traffic importances (mes-

sage priorities) were developed for energy-limited Sensor Networks. In order to design the

selective forwarding policies, sensor nodes took into account both local factors, such as the

energy consumed during the different node states (transmission, reception, idle listening),

the available battery, the importance of the received message (to assure a certain level of

quality of information to the user) or the statistical model of such importances, and non-

local factors, such as information behavior of other nodes.

The main contributions of this thesis are summarized hereunder. Each of them actually

corresponds to a chapter of this dissertation.

Initially, in Chapter 2 we characterized the sensor through a model, which gathered

all the relevant features of a real sensor. Among them, we remark the stochastic energy

consumption model proposed to deal with a broad range of scenarios.

Later in Chapter 3, under the assumption that messages are graded with an importance

value, a selective transmission scheme inspired by Bayes decision theory was proposed. The

scheme tried to minimize a cost, which depended on the energy expenses and the importance

of the current message. The obtained decision rule tended to promote the transmission of

highly graded messages while all messages with lower importances were discarded. As a

result, the proposed scheme showed that filtering messages according a given importance

value may be efficient to maximize the overall importance of the messages arriving to the

sink during the whole network lifetime. The proposed decision rule has been applied to

two new routing algorithms, named LPGR and Q-PR. It was proved that nodes were able to

learn from previous routing decisions in order to adapt their decisions to future conditions,

making an efficient energy use.

From the previous work, and using ideas that have many similitudes with others in

Stochastic Dynamic Programming and Markov Decision Processes, the problem of selective

transmission of graded messages in energy-constrained sensors was theoretically analyzed

in Chapter 4. The problem of selective transmission was reformulated (and solved) so that

the balance between minimizing the node energy expenses and maximizing the importance
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sum of all transmitted messages was automatically determined. It turned out that the opti-

mal decision was made comparing the message importance with a time-variant threshold.

Moreover, the gain of the selective transmission scheme depended on the energy expenses,

among other factors. Albeit suboptimal, practical schemes that operated under less de-

manding conditions than those for the optimal one were developed. Effort was placed into

three directions: 1) the analysis of the optimal transmission policy for several stationary

importance distributions; 2) the design of a transmission policy with invariant threshold that

entailed asymptotic optimality; and 3) the design of an adaptive algorithm that estimated the

importance distribution from the actual received (or sensed) messages. The analysis demon-

strated that selective transmission strategies had the potential to provide improvements of

the network performance, measured as the sum of importances of all messages arriving to

destination, apart from an enlarged lifetime.

In the selective transmission model proposed in Chapter 4, optimization was at node

level, focusing on optimizing the transmission efficiency made at each node, without paying

any attention if transmitted messages successfully arrived to the sink. Hence, global perfor-

mance was not guaranteed. Therefore, Chapter 5 dealt with a generalization of the previous

theoretical model, allowing nodes to use nonlocal information (coming from the neighbor-

hood or the sink), which was incorporated into the statistical model to analyze its impact

on the network behavior. Under less restrictive assumptions, optimum forwarding schemes

for three different scenarios were developed: 1) when sensors maximized the importance

of their own transmitted messages (which basically coincided with the policy presented in

Chapter 4, though using a more general energy consumption model); 2) when sensors max-

imized the importance of their messages that were actually retransmitted by their neighbors

(local optimization); and 3) when sensors maximized the importance of the messages that

successfully arrived to the sink (global optimization). Especially important was the gener-

alization of the results to stochastic energy costs because it integrated in the model the idea

of nodes consuming a different amount of energy at every state depending on the amount of

time spent in each state and/or the inter-sensor distances, for instance. From a practical per-

spective, the second scenario, which was just slightly more complex than the first one, can

be the best candidate in most practical networks, since it required less signaling overhead

than the global one.
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Finally, the selective communication policy was applied to the target tracking scenario in

Chapter 6 to optimize the application performance while saving energy resources. An impor-

tance assignment scheme to messages was defined from the available information that nodes

had about the application layer. By applying selective communication strategies, commu-

nication costs and energy consumption could be minimized, enlarging the network lifetime

consequently. Furthermore, the easiness of the selective forwarding scheme to be integrated

with other variety of existing data collection approaches, favored its jointly application to

data aggregation and sensor fusion schemes, in centralized and distributed architectures. The

analysis of the findings proved that scenarios where only selective communication policies

were applied (i.e., no other data reduction scheme was simultaneously applied) achieved a

poor performance, measured in terms of tracking error. On the contrary, the joint implemen-

tation with data aggregation or data fusion techniques did not compromise tracking accuracy

as well as increased the network lifetime.

Summarizing, the work of this thesis allowed us to find a suitable mathematical formal-

ism to solve the problem of energy-efficient management in communication processes in a

WSN. However, we are conscious that the potential advantages of the selective forwarding

strategies stand on a wide set of assumptions about the sensor network model:

1. Battery levels can be accurately measured and they are not rechargeable.

2. Sensor node lifetime can be divided into different predefined states: idle, reception,

sensing and transmission.

3. Sensor node states can be precisely identified by each node to efficiently attribute

energy consumptions to tasks in real time.

4. The energy consumption of each state does not depend on the selective transmission

policy used by the sensor node.

5. The energy cost of a transmission process is higher than the energy cost of reception

states.

6. Messages are graded with an importance value.

7. Low importance messages can be discarded.
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8. The sensor can only take two actions whenever it receives or senses data: transmitting

them immediately or discarding them.

9. The cumulative importance sum is a useful and good performance measure.

10. The importance sequence is statistically independent.

11. The importance distribution is stationary.

12. The constant threshold provides a good approximation to the optimal (variable)

threshold, etc.

We have tried to make all these assumptions explicit in the dissertation, focusing on pro-

viding a solid theoretical support to the algorithms emanated from the basic assumptions.

Testing the validity of these assumptions is of major importance to validate the application

of the selective communication policies to real settings. This is, in fact, part of the current

research work. The first findings obtained from implementing the selective transmission pol-

icy in real sensors (to test assumptions (1)-(5), which are related to the energy consumption

of a sensor) show that the potential advantages of selective transmitters depend on multi-

ple factors, including physical variables (power consumptions for each task) as well as the

chosen MAC protocol.

In the introductory chapter, several examples from the literature were mentioned to jus-

tify the feasibility of attributing a particular priority, relevance, utility or importance value

to messages transmitted or forwarded by sensor nodes (assumption 6). Assumption (7) may

not be reasonable in some applications, where the importance can be related to priority val-

ues, and where all messages are expected to arrive at the sink (maybe with different delays).

However, there are some applications where the outtake of less relevant messages for the

shake of saving energy is admissible, as in [Chow et al., 2007] or even, the proposed tar-

get tracking application explored in Chapter 6, where discarding weak measurements from

nodes faraway located from the targets can be perfectly done with a very low cost in es-

timation accuracy. Assumption (8) is considered in those works that deal with selective

communications as a dilemma between transmitting or discarding the information. How-

ever, other alternatives may include: the configuration of the transmitter so that sensors

always transmit messages but using a power or modulation according to the sensor state
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[Munir and Gordon-Ross, 2009]; routing all messages so that the sensor should decide the

appropriate path depending on the message importance and the energy state of nodes (as in

the PGR [Mujumdar, 2004] or RRR [Gelenbe and Ngai, 2008] priority-based routing algo-

rithms); or keeping the discarded message in memory waiting for more relevant messages

with whom it can be aggregated or fused [Ye et al., 2009].

The assumption about the validity of the cumulative importance sum as a good perfor-

mance measure (assumption 9) may be also arguable in situation where the value of the

information is not additive (for instance, if long messages are fragmented in smaller ones,

which have no value separately but when joined to reconstruct the original message).

Assumption (10) is likely wrong in many practical settings, for instance, in target track-

ing scenarios where nodes sense at a high rate so that measurements are likely correlated, or

in a data aggregation scenario. However, we believe that it can be relaxed in the theoretical

model. In fact, the selective communication policy (based on the statistical independence

assumption) has been applied to data aggregation schemes in the target tracking scenario

with a satisfactory result. Assumption (11) is clearly application-dependent.

7.2 FUTURE RESEARCH LINES

Let us end this dissertation by adding some potential open issues that may contribute to

extend the work exposed in this thesis. Some of them are directly derived from the discus-

sion started above, and for some others, we have already had some preliminary results that

guarantee its feasibility and interest. Some of them are briefly described hereafter:

• All the theorems proposed in this thesis assume that the importance sequence is statis-

tically independent. However, the generalization of the optimal selective forwarding

scheme with statistical dependence of the importance sequence can be tackled using

MDP tools, since the MDP theory only establishes that the state sequence (and con-

sequently, the importance sequence) is a Markov process. This would have interest in

the sense that we can rigorously deal with data aggregation or tracking scenarios, for

instance. Moreover, in these scenarios, it could be also interesting to include in the

selective forwarding model a factor to penalize for the delay incurred. Some works in

the literature are aimed at optimizing it (some are even formulated in terms of MDPs),
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so to integrate these models with the one proposed in this thesis could be explored.

• There are some free parameters in the optimal selective forwarding policy. These pa-

rameters are related to the way nodes acquire information about neighboring thresh-

olds, and the frequency of nodes communicating their thresholds (e.g., parameter η,

β, beacon interval, etc.). Up to now, the assignment of these parameters has been

adjusted off-line (exploring different values). The optimization of these parameters

so that neighboring nodes will be able to automatically update their threshold value

is raised as a future research line because it is certainly important from a practical

implementation perspective.

• Although the proof of the optimal selective forwarding exposed in the dissertation

is self-contained, the sensor model is stated as a special case of a MDP (with the

particularity that the state space is infinite and an expected non-discounted sum over a

potentially infinite horizon, which is actually finite). An extension of this work could

be to find and explore other MDP models so that they fit and are useful in sensor

network scenarios.

• Results obtained through simulation are typically not directly applicable to opera-

tional networks because many new issues arise when working with real-world ex-

periments or deployments. As the final aim of the selective policy exposed in this

thesis is to implement it in real motes, it would be essential to test results in real se-

tups to analyze its behavior. Furthermore, theoretical and simulation work would be

completed and complemented with real-world experiments. Therefore, another future

work (although actually it is a current line) is to test the implementation of the selec-

tive transmission strategy. Preliminary results can be found in [Hansen et al., 2010].

Thus, to go into preliminary results in depth and to think about more complex setups

are of interest.

• Another future research work was mentioned in the previous chapter. The application

of the selective communication strategies to target tracking can be improved. Par-

ticularly, the choice of the importance function, which is based on the power of the

signal detected by sensors, is simple and does not consider the correlation with pre-

vious measures. Therefore, an importance function based on measures of conditional
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entropy seems more suitable, as it is considered in [Williams et al., 2007], where the

importance reflects the degree of innovation of the incoming message regarding the

previous ones.

• The model developed in this thesis is not suitable for scenarios where nodes can work

indefinitely in time (as for renewable or rechargeable sensors), because there are in-

finite optimal strategies for the importance sum. To solve this problem, it would be

necessary to replace the importance sum criterion by another one based on averages.

The difficulty mainly stems from solving mathematically the optimization problem to

obtain the optimal transmission strategy.

Recently, Lei [Lei et al., 2009] has proposed a model for replenishable sensors based

on MDPs. To solve the optimization problem, the authors formulated the problem as

a discrete time Markov chain, and considered as discrete the main variables of the

problem: the message importance and the node state. However, the model has some

important restrictions: to make the problem tractable, they consider a single-hop trans-

mission, the model is not adaptive (the energy replenishment rate and the message

arrival rate are known a priori), and the model assumes that the energy transmission

costs are constant, among others. Hence, the adaptation of the models proposed in the

thesis to this kind of scenarios is a future line of great interest.

• Finally, other research lines are basically theoretical, as to prove the convergence

of parameter τ in (5.14) or trying to find a constant asymptotic threshold close in

performance to the optimal threshold for those ’particular’ cases where the optimal

threshold does not converge to a constant value when energy is infinite.
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APPENDIX A

MATHEMATICAL PROOFS: OPTIMAL

SELECTIVE TRANSMISSION

A.1 PROOF OF THEOREM 1

Defining the cumulative importance at time k as

tk =
k∑

i=0

dixi, (A.1)

the dynamics of the cumulative importances and energy can be described by the pair of

equations

tk = tk−1 + dkxk (A.2)

ek+1 = ek − dkE1(xk)− (1− dk)E0(xk), (A.3)

and dk = d(ek, xk) with the constraint d(ek, xk) = 0, if ek < E1(xk).

Note that the accumulated importance can be expressed as

t∞ =
∞∑
i=0

dixi = tk−1 +
∞∑

i=k

dixi. (A.4)

Since, for any k, E{t∞} =
∫

E{t∞|ek, xk}dP (ek, xk), maximizing E{t∞} is equiva-
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lent to maximize, for each k, E{t∞|ek, xk},1 which can be expressed as

E{t∞|ek, xk} = E{tk−1|ek, xk}+ dkxk +
∞∑

i=k+1

E{dixi|ek, xk}. (A.5)

Since dk is a deterministic function of ek and xk, we can write for any i > k,

E{dixi|ek, xk}
=P (dk = 0|ek, xk)E {dixi|ek, xk, dk = 0}+ P (dk = 1|ek, xk)E {dixi|ek, xk, dk = 1}
=(1− dk)E {dixi|ek, xk, dk = 0}+ dkE {dixi|ek, xk, dk = 1}
=(1− dk)E {dixi|ek+1 = ek − E0(xk), ek, xk}+ dkE {dixi|ek+1 = ek − E1(xk), ek, xk} ,

(A.6)

thus, replacing (A.6) into (A.5)

E{t∞|ek, xk} = E{tk−1|ek, xk} (A.7)

+ dk

(
xk +

∞∑
i=k+1

E{dixi|ek+1 = ek − E1(xk), ek, xk}
)

+ (1− dk)
∞∑

i=k+1

E{dixi|ek+1 = ek −E0(xk), ek, xk}.

Since (i) for i > k both di and xi are independent of xk (the importance sequence, xk, is

statistically independent) and (ii) ek+1 is fixed; we can remove xk and ek in the conditional

expectations. Thus, we can use the definition of λk+1 in (4.8), to rewrite (A.7) as

E{t∞|ek, xk} = E{tk−1|ek, xk}+ λk+1(ek − E0(xk)) (A.8)

+ (xk − [λk+1(ek − E0(xk))− λk+1(ek − E1(xk))]) dk.

Since the two first terms are fixed and do not depend on dk, focus has to be placed on

the third term. Defining μk(ek, xk) as in (4.5), the third term in (A.8) can be written as

1An intuitive explanation for the equivalence between maximizing E{t∞} and E{t∞|ek, xk}is the follow-

ing: no matter what a selective transmission scheme has done up to time k− 1, the best that can be done at time

k is maximizing E{t∞|ek, xk}. If this rule is applied at every time k, the unconditional expectation, E{t∞}, is

maximized.
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(xk − μk(ek, xk)) dk. (A.9)

Clearly, the decision rule given by dk = 1 as soon as xk ≥ μk(ek, xk) (so as to maximize

(A.9)) and ek ≥ E1(xk) (so as to satisfy the constraint in (4.2)) and dk = 0 otherwise, is

optimal in the sense of maximizing E{t∞|ek, xk}.
The recursive computation of λk(e) in (4.6) is the only result that remains to be proved.

To do so we note that, for any i > k,

E{dixi|ek} = P (dk = 0|ek)E{dixi|ek, dk = 0} + P (dk = 1|ek)E{dixi|ek, dk = 1}
=(1− P (xk ≥ μk(ek, xk), ek ≥ E1(xk)|ek))E{E{dixi|ek+1 = ek −E0(xk), ek, dk = 0}}

+ P (xk ≥ μk(ek, xk), ek ≥ E1(xk)|ek)E{E{dixi|ek+1 = ek − E1(xk), ek, dk = 1}},
(A.10)

(where the external expectation must be taken over xk|ek, dk). Using the definition of λk(e)

in (4.8) and capitalizing on (A.10), we find

λk(e) =
∞∑

i=k

E{dixi|ek = e} = E{dkxk|ek = e}+
∞∑

i=k+1

E{E{dixi|ek = e, xk}} (A.11)

where the outer expectation applies over xk. Taking into account that dk only depends on ek

and xk, the conditions in the inner expectation operators determine uniquely dk and, thus,

we can write

λk(e) = E{dkxk|ek = e}+
∞∑

i=k+1

E

{
(1− dk)E{dixi|ek+1 = e− E0(xk), xk}

+ dkE{dixi|ek+1 = e− E1(xk), xk}
}

=E{dkxk|ek = e}+ E{(1− dk)λk+1(e− E0(xk))}+ E{dkλk+1(e− E1(xk))}
=E{dkxk|ek = e} − E{dkμk+1(e, xk)}+ E{λk+1(e− E0(xk))}
=E{dk(xk − μk(ek, xk))|ek = e}+ E{λk+1(e− E0(xk))}
=E{λk+1(e− E0(xk))} + E{(xk − μk(e, xk))+u(e− E1(xk))}. (A.12)
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The initial value can be computed using (4.2): if there is no available energy, transmissions

are not possible. Mathematically, if ek = 0, di = 0 for i > k, so that (4.8) becomes

λk(0) = 0, for any k. (A.13)

Combining (A.12) and (A.13) we get (4.6), completing the proof.
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A.2 PROOF OF THEOREM 2

Let us define the minimum energy consumed per time as ε = mini,x{Ei(x)}. We prove

the theorem by induction, by showing that λk(e) does not depend on k for e ≤ nε, for any

n. This is true for n = 0, because λk(0) = 0. Now, let us assume that λk(e) does not

depend on k for e ≤ nε. If nε < e ≤ (n + 1)ε, by (4.5) we find that μk(e, x) does not

depend on k. Thus, using (4.6), and taking into account that expectations are taken over xk,

whose distribution does not depend on k, we find that λk(e) does not depend on k, which

completes the proof.
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A.3 PROOF OF THEOREM 3

Defining

z(e) = λ(e)− τμce · u(e), (A.14)

where τμc is given by (4.32), we have, for large e (i.e., e > B)

z(e) =E{u(x− μc)x} − τμce

+ P (x < μc)E{λ(e − E0(x))|x < μc}+ P (x ≥ μc)E{λ(e− E1(x))|x ≥ μc}
=E{u(x− μc)x} − τμce

+ P (x < μc)E{z(e − E0(x))|x < μc}+ P (x < μc)τμcE{e− E0(x)|x < μc}
+ P (x ≥ μc)E{z(e − E1(x))|x ≥ μc}+ P (x ≥ μc)τμcE{e− E1(x)|x ≥ μc}

=E{u(x− μc)x}
+ P (x < μc)E{z(e − E0(x))|x < μc}+ P (x < μc)τμcE{E0(x)|x < μc}
+ P (x ≥ μc)E{z(e − E1(x))|x ≥ μc}+ P (x ≥ μc)τμcE{E1(x)|x ≥ μc}

=P (x < μc)E{z(e − E0(x))|x < μc}+ P (x ≥ μc)E{z(e− E1(x))|x ≥ μc}.
(A.15)

Defining the random variable

ε = E0(x)Ix<μc +E1(x)Ix≥μc , (A.16)

we have

z(e) = E{z(e− ε)} = P (ε = 0)z(e) + P (ε > 0)E{z(e − ε)|ε > 0}. (A.17)

Thus,

z(e) = E{z(e− ε)|ε > 0}. (A.18)

Since z(e) is a weighted average of previous values, there should exist some values εl > 0

and εu > 0 such that

z(e− εl) < z(e) < z(e− εu). (A.19)
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Applying these inequalities iteratively, we can prove by induction that

z(el) ≤ z(e) ≤ z(eu), for some el, eu ≤ B. (A.20)

But, since λ is finite for finite e, λ is bounded in [0, B]; so z is also bounded in [0, B].

Thus, using (A.20), we conclude that z(e) is bounded in R. Therefore, we can compute the

income rate as

lim
e→∞

λ(e)
e

= lim
e→∞

z(e) + τμce

e
= τμc . (A.21)
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Let us assume that the threshold function does not depend on the energy level, so that

μ(e, x) = μ(x). Then, using (4.10), we can write

λ(e) = λ(e−Δ(x)) + μ(x), (A.22)

where

Δ(x) = E1(x)− E0(x). (A.23)

Defining

gx(e) = λ(e)− μ(x)
Δ(x)

e, (A.24)

(A.22) implies that gx(e) is a periodic function with period Δ(x). But this is impossible

if μ(x)
Δ(x) varies with x (because the difference between two periodic functions cannot be a

(nonconstant) linear function. Thus,

μ(x)/Δ(x) = τ (A.25)

for some constant τ , and

gx(e) = g(e) = λ(e) − τe. (A.26)

Combining (4.11), (A.22) and (A.26), we can write

g(e) +
μ(x)
Δ(x)

e = E {g(e − E0(x)) + τ(e− E0(x))} + E{(x− μ(x))+}. (A.27)

Thus,

g(e) − E{g(e −E0(x))} =− E {τE0(x)} + E{(x− μ(x))+}. (A.28)

Integrating the above equation with respect to e over a full period and noting that∫
Δ(x) g(e)de =

∫
Δ(x) g(e− E0(x))de, we get

τE {E0(x)} = E{(x−Δ(x)τ)+}, (A.29)
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which is equivalent to (4.35). To show that the solution of (A.29) is unique, note that the

left-hand side is a strictly growing function of τ while the right-hand side is a nonincreasing

function, because

dE{(x−Δ(x)τ)+}
dτ

= −E{Δ(x)u(x−Δ(x)τ)}, (A.30)

which is always nonpositive. Since a strictly increasing function intersects with a nonin-

creasing function in at most one single point, the solution is unique.
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B.1 PROOF OF THEOREM 5

The cumulative importance at time k, given by (5.4), can be expressed recursively as tk =

tk−1 + dkrk and, for any k > 0, the accumulated importance can be expressed as

t∞ =
∑∞

i=0 diri = tk−1 +
∑∞

i=k diri. (B.1)

Since, for any k, E{t∞} =
∫

E{t∞|ek, zk}dP (ek, zk), maximizing E{t∞} is equivalent to

maximize, for each k, E{t∞|ek, zk}, which can be expressed as

E{t∞|ek, zk} = E{tk−1|ek, zk}+ dkE{rk|ek, zk}+
∑∞

i=k+1 E{diri|ek, zk}, (B.2)

where we have used the fact that dk is a deterministic function of ek and zk . Also, it is useful

to write, for any i > k,

E{diri|ek, zk} = (1− dk)E {diri|ek, zk, dk = 0}+ dkE {diri|ek, zk, dk = 1} . (B.3)

Taking into account that

E{diri|ek = e, zk, dk = 0} =
∫

E{diri|ek = e, zk, dk = 0, c0,k}dP (c0,k|ek = e, zk, dk = 0)

=
∫

E{diri|ek+1 = e− c0,k}dP (c0,k|zk) = E{E{diri|ek+1 = e− c0,k}|zk}
(B.4)
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where we have used the fact that the data sequence, zk is statistically independent, so that

both di and ri are independent of zk, for i > k, and we can remove zk in the inner condi-

tional expectations in (B.4). The outer expectation should be taken over c0,k. Proceeding in

an analog manner with E{diri|ek = e, zk, dk = 1}, we arrive at

E{diri|ek = e, zk} = (1− dk)E{E{diri|ek+1 = e− c0,k}|zk}
+ dkE{E{diri|ek+1 = e− c1,k}|zk}. (B.5)

Upon defining Qk(ek, zk) := E{qku(ek − c1,k)|ek, zk} and replacing (B.5) into (B.2),

we get

E{t∞|ek = e, zk} = E{tk−1|ek = e, zk}

+ (1− dk)
∞∑

i=k+1

E{E{diri|ek+1 = e− c0,k}|zk}

+ dkxkQk(e, zk) + dk

∞∑
i=k+1

E{E{diri|ek+1 = e− c1,k}|zk}(B.6)

Using the definition of λk+1 in (5.9), the expected accumulated importance can be writ-

ten as

E{t∞|ek = e, zk} = E{tk−1|ek = e, zk}+ (1− dk)E{λk+1(e− c0,k)|zk}
+dkxkQk(e, zk) + dkE{λk+1(e− c1,k)|zk}. (B.7)

Defining μk(e, zk) as in (5.7), we get

E{t∞|ek = e, zk} = E{tk−1|ek = e, zk}+ E{λk+1(e− c0,k)|zk}
+ dk(xkQk(e, zk)− μk(e, zk))). (B.8)

Clearly, the decision rule given by dk = 1 as soon as xkQk(e, zk) ≥ μk(e, zk) (so

as to maximize the third term in (B.8)) and dk = 0 otherwise, is optimal in the sense of

maximizing E{t∞|ek, zk}. Therefore, dk = u(xkQk(ek, zk) − μk(ek, zk)), where u(·) is

the step function.
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The recursive computation of λk(e) in (5.8) is the only result that remains to be proved.

To do so, we note that, for any i > k,

E{diri|ek = e} = P0,k(e)E{E{diri|ek = e, dk = 0}} + P1,k(e)E{E{diri|ek = e, dk = 1}}
= P0,k(e)E{E{diri|ek+1 = e− c0,k}|ek}+ P1,k(e)E{E{diri|ek+1 = e− c1,k}|ek}

(B.9)

where P0,k(e) = P (dk = 0|ek = e) and P1,k(e) = 1 − P0,k(e). The outer expectations

must be taken over c0,k and c1,x. Using the definition of λk(e) in (5.9) and capitalizing on

(B.9), we find

λk(e) =
∞∑

i=k

E{diri|ek = e} = E{dkrk|ek = e}+
∞∑

i=k+1

E{E{diri|ek = e, zk}} (B.10)

where the outer expectation applies over zk. Taking into account that dk only depends on ek

and zk, the conditions in the inner expectation operators determine uniquely dk and, thus,

we can write

λk(e) =E{dkrk|ek = e}+
∞∑

i=k+1

E

{
(1− dk)E{diri|ek+1 = e− c0,k, zk}

+ dkE{diri|ek+1 = e− c1,k, zk}|ek = e
}

=E{dkrk|ek = e}+ E{(1 − dk)λk+1(e− c0,k)|ek = e}+ E{dkλk+1(e− c1,k)|ek = e}

=E{λk+1(e− c0,k)}+ E{dk(rk − μk(e, zk))|ek = e}
=E{λk+1(e− c0,k)}

+ E{(xkqku(e− c1,k)− μk(e, zk))u(xkQk(e, zk)− μk(e, zk))|ek = e}
=E{λk+1(e− c0,k)}+ E{(xkQk(e, zk)− μk(e, zk))u(xkQk(e, zk)− μk(e, zk))}.

(B.11)

Using (5.9), and taking into account that, if there is no available energy, no transmissions

are possible, we can write λk(e) = 0, for any k and e ≤ 0. Combining the latter with (B.11),

we get (5.8), completing the proof.
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Take ε > 0 such that, with probability 1, c1,i > ε for any i. We prove the theorem by

induction, by showing that λk(e) does not depend on k for e ≤ nε, for any n. This is true

for n = 0, because λk(0) = 0. Now, let us assume that λk(e) does not depend on k for

e ≤ nε. If nε < e ≤ (n + 1)ε, by (5.7) we find that μk(e, z) does not depend on k. Thus,

using (5.8), and taking into account that expectations are taken over zk, whose distribution

does not depend on k, we find that λk(e) does not depend on k, which completes the proof.
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B.3 PROOF OF THEOREM 7

Let define h(e) = E{(Q(e, zk)xk − μ(e, zk))+} and note that

E{λ(e− c0)} =
∫
λ(e− c)pc0(c)dc = λ(e) ∗ pc0(e) (B.12)

where ’∗’ denotes the convolution operator and pc0(e) is the probability density function of

c0. Then, (5.12) can be written as

(δ(e) − pc0(e)) ∗ λ(e) = h(e)u(e), (B.13)

where subindex k in ek and c0,k has been omitted for simplicity. Similarly, (5.11) can be

written as

μ(e, z) = λ(e) ∗ (pc0|z(e)− pc1|z(e)). (B.14)

Applying a convolution with δ(e) − pc0(e) to (B.14), and using (B.13), we get

(δ(e) − pc0(e)) ∗ μ(e, z) = (h(e)u(e)) ∗ (pc0|z(e) − pc1|z(e)) (B.15)

Once again, applying a convolution with u(e) to (B.15),

(u(e)− Pc0(e)) ∗ μ(e, z) = (h(e)u(e)) ∗ (Pc0|z(e)− Pc1|z(e)) (B.16)

where Pc0 , Pc0|z and Pc1|z are distribution functions. Defining dμ(e, z) = μ(e, z) − μ(z),

where μ(z) = lime→∞ μ(e, z), the left-hand side of (B.16) can be written as

(u(e)−Pc0(e)) ∗ μ(e, z) =
∫ e

0
(u(α) − Pc0(α))μ(e − α, z)dα

=μ(z)
∫ e

0
(u(α) − Pc0(α))dα +

∫ e

0
(u(α) − Pc0(α))dμ(e− α, z)dα. (B.17)

Now we compute the limit of (B.17) for large e. After some algebra, it can be shown that

lim
e→∞

∫ e

0
(u(α) − Pc0(α))dα = E{c0}. (B.18)

To compute the limit of the second term in (B.17), note that, since the limit in (B.18) is

E{c0}, for any ε > 0 we can take some qε such that, for any e > qε it holds that
∫ e
0 (u(α) −

Pc0(α))dα > E{c0} − ε. Also, since lime→∞ μ(e, z) = μ(z), we can take e large enough
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to get |μ(e′, z) − μ(z)| < ε for any e′ > e+ qε. Thus,∣∣∣∣∫ e

0
(u(α) − Pc0(α))dμ(e− α, z)dα

∣∣∣∣ ≤ ∫ qε

0
(u(α)− Pc0(α))|dμ(e− α, z)|dα

+
∫ e

qε

(u(α)− Pc0(α))|dμ(e− α, z)|dα < E{c0}ε+
∫ e

qε

(u(α) − Pc0(α))|dμ(e− α, z)|dα.

(B.19)

If we can prove that |dμ(e, z)| is bounded by some Bz <∞ for any e ≥ 0 we get∣∣∣∣∫ e

0
(u(α)− Pc0(α))dμ(e− α, z)dα

∣∣∣∣ < (E{c0}+Bz)ε (B.20)

so that

lim
e→∞

∫ e

0
(u(α) − Pc0(α))dμ(e− α, z)dα = 0 (B.21)

and, joining (B.17), (B.18) and (B.21), we arrive at

lim
e→∞((u(e) − Pc0(e)) ∗ μ(e, z)) = μ(z)E{c0}. (B.22)

To prove that |dμ(e, z)| is bounded, take an arbitrary ε > 0. Since lime→∞ μ(e, z) = μ(z),

there exists some q such that |dμ(e, z)| < ε for any e > q. For e < q,

|dμ(e, z)| ≤ |μ(e, z)| + |μ(z)| = |λ(e) ∗ (pc0|z(e)− pc1|z(e)|+ |μ(z)| ≤ λ(q), (B.23)

where the last inequality uses the fact that λ(e) is a nondecreasing function of e. Thus, for

any e ≥ 0, |dμ(e, z)| ≥ B = max{ε, λ(q)}, which completes the proof of (B.22).

The right-hand side of (B.16) can be analyzed in a similar way: defining dh(e) = h(e)−
h∞, where h∞ = lime→∞ h(e), we can write

(h(e)u(e)) ∗ (Pc0|z(e)− Pc1|z(e)) =
∫ e

0
(Pc0|z(α) − Pc1|z(α))h(e − α)dα

= h∞
∫ e

0
(Pc0|z(α) − Pc1|z(α))dα +

∫ e

0
(Pc0|z(α) − Pc1|z(α))dh(e− α)dα. (B.24)

The same reasoning used to prove (B.21) can be used to prove that

lim
e→∞

∫ e

0
(Pc0|z(e)− Pc1|z(e))dh(e− α)dα = 0. (B.25)

Defining Δ(z) = E{c1|z}−E{c0|z} and substituting (B.25) into (B.24), in the limit we get

lim
e→∞((h(e)u(e)) ∗ (Pc0|z(e)− Pc1|z(e))) = h∞

∫ e

0
(Pc0|z(α) − Pc1|z(α))dα = h∞Δ(z).

(B.26)
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Combining (B.16), (B.22) and (B.26), we have that μ(z)E{c0} = h∞Δ(z), which

shows that τ = μ(z)/Δ(z) does not depend on z. Thus

τE {E0(z)} = E{(xQ(z) −Δ(z)τ)+}, (B.27)

which is equivalent to (5.14). To show that, for Δ(z) > 0 the solution of (B.27) is unique,

note that the left-hand side is a strictly increasing function of τ while the right-hand side is

a non-increasing function, because dE{(xQ(z) −Δ(z)τ)+}/dτ = −E{Δ(z)u(xQ(z) −
Δ(z)τ)}, which (for Δ(z) > 0) is always non positive. Since a strictly increasing function

intersects with a non-increasing function in at most one single point, the solution is unique.
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