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OUTLIERS ROBUST ECM COINTEGRATION TESTS BASED ON THE 
TREND COMPONENTS 

MIGUEL A. ARRANZ AND ALVARO ESCRIBANO 

ABSTRACT. The main goal of this paper is to analyze the behavior of the ECM non-cointegration 

test when there are additive outliers in the time series under different co-breaking situations. We 

show that the critical values of the usual ECM test are not robust to the presence of transitory 

shocks and we suggest a procedure based on signal extraction to bypass this problem. These 

procedure renders ECM tests with a left tail of distribution under the null that is robust to the 

presence of additive outliers in the series. The small sample critical values and the empirical power 

of the test are analyzed by Monte Carlo simulations for several low frequency filters. 

1. INTRODUCTION 

The properties of cointegration tests based on single equation error correction models (ECM 

test) are well known. The dependence of the critical values and the power of the ECM test on 

nuisance parameters is documented in Banerjee et al. (1986), Engle and Granger (1987), Kremers 

et al. (1992), and Banerjee et al. (1993) 1. 

The effects of having breaks when applying unit root test, like Dickey and Fuller (1979) test, etc., 

are also well known, see Stock (1994). Perron (1989) is a good starting point to see those impacts. 

From Clements and Hendry (1999), a structural break essentially corresponds to an intermittent 

shock with a permanent effect on the series. If this permanent shock is not explicitly taken into 

account, standard unit roots tests might mistake the structural break with a unit root. The results 

of Hendry and Neale (1990) and Perron and Vogelsang (1992) indicate that a neglected shift in 

the mean also leads to spurious unit roots. Rappoport and Reichlin (1989) is probably the first 

reference to check if we want to know the impact of having segmented trends as an alternative to 

a unit root model. Andres et al. (1990) extended the analysis of Rappoport and Reichlin to more 

that one break point in the trend. Other references on breaks and unit roots tests are Banerjee 

et al. (1992), Zivot and Andrews (1992), and Leybourne et al. (1998). 

Key words and phrases. Outliers, transitory co-breaks, cointegration testing, trend-component error correction 
models. 
This draft: December 15, 2000. 
We thank A. Lucas for kindly providing us with the data for the empirical example. 
lSee Arranz and Escribano (1998, 2000) for a brief review of the main results. 
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From the applied point of view, the main nuisance is to add dummy variables for the structural 

breaks in order to apply valid unit root tests when the critical values obtained depend on the size 

and on the timing of the break. Again, the selection of the dummy variable is critical for the 

result of the test. A vast literature emerged searching for unknown break points using recursive or 

sequential tests (Andrews, 1993, Andrews et al., 1996, Bai, 1997, Vogelsang, 1997, Bai and Perron, 

1998, Banerjee et al., 1998). 

An important class of unusual events are additive outliers. These are events with a large, but 

temporary effect on the series. In certain cases, this effect dominates the remaining information 

contained in the series and biases unit root inference towards rejection of the unit root hypothesis 

even if the null hypothesis of a unit root is correct, as reported in Franses and Haldrup (1994) and 

Lucas (1995a,b). 

With multiple time series the situation could be worse if the breaks are independent. Now we 

have to decide on the models that generate the anomalous observations (breaking trends, additive 

outliers, ... ) taking into account that those irregularities need not occur simultaneously nor on all 

of the variables. Therefore, the multivariate analysis is generally more difficult. However, in some 

cases it can be more simple if there is partial co-breaking in the series. 

In empirical applications the addition of dummy variables to obtain parameter "constant" models 

is more the rule than the exception. The effects of including dummy variables to capture structural 

breaks in ECM tests have been previously analyzed by Kremers et al. (1992), and Campos et al. 

(1996). Once again, critical values (C.V.) depend on the particular type of dummy variable included 

in the model and is a nuisance for empirical applications 

One alternative to avoid the use of dummy variables is to use robust estimation techniques. This 

is the approach taken by Lucas (1995a,b) in the univariate case and Lucas (1997) and Franses and 

Lucas (1997a,b) in the multivariate case. 

In this paper we follow a different route. The objective isto find robust modeling procedures to 

test for unit roots in the presence of structural breaks in an ECM context. Instead of including 

dummy variables in ECM models, we try to approximate those breaks by adding extra dynamic 

terms (lags), as determined by the SBIC criterion. In particular, we look at the critical values 

obtained with the overparameterized model. We study the size of the ECM test under different 

MA(1) errors, and analyze the power of the ECM test, using Monte Carlo simulations. We also 

investigate whether the robustness properties of the ECM test improve by following the same 

steps not on the observable variables, but on the trend components obtained from trend-cycle 

decompositions, as in Arranz et al. (2000). In particular, we study three filters, the Hodrick and 
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Prescott (1980, 1997) filter, the Baxter and King (1995, 1999) filter, HP and BK respectively from 

now on, and the median filter (see Wen and Zeng, 1999). Guay and St-Amant (1997) and Baxter 

and King (1995) provide some insights about the relationship between the HP and BK filters. 

The structure of the paper is the following. In Section 2 we analyze the effects of having transitory 

breaks on alternative specifications of the ECM models, and in particular on the cointegrating 

relationship. Three types of cobreaking possibilities are studied in detail: full co-breaking, co­

breaking in levels (not in differences) and co-breaking in differences (not in levels). We also study 

several cases without any cobreaking. Section 3 reviews the signal extraction filters that we apply. 

The trend component ECM models are introduced in Section 4. Section 5 presents the main results 

of the Monte Carlo simulation experiments. The usefulness of our approach is illustrated with an 

empirical application in Section 6. Finally, the conclusions. and some comments for further research 

directions are included in Section 7. 

2. ERROR CORRECTION MODELS WITH AND WITHOUT SIMULTANEOUS CO-BREAKING 

Consider the following conditional error correction model (ECM) 

(2.1a) 

(2.1b) 

Assume that ... ,Y-l,YO = 0 and ... ,Z-l, Zo = 0, let /1y,t = ily,t + SyOr, /1z,t = ilz,t +szot, where or 

and ot are iid Bernouilli variables independent of til,t and ti2,t 

{

pr(ot = 1) = Pr(ot = -1) = ~ 
Pr(ot = 0) = 1 - 71'. 

The terms ily,t and ilz,t include all possible deterministic components like: constant terms, de­

terministic trends, dummy variables, segmented trends, etc. Define B as the back-shift operator, 

BkYt = Yt-k, 6. = (1 - B) is the first differencing operator, and let (1, -a) be the cointegrating 

vector. Given valid initial conditions, the stochastic errors tilt and ti2t are jointly, and serially 

un correlated with zero mean, and constant variances,say o-~ and o-~, respectively. 
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Model (2.1a)-(2.1b) can be written in terms of the observable variables Yt and Zt as follows, 

/).Yt = Ct + a/).Zt + b(Yt-l - aZt-l) + Ult 

- s:z 
/-tz,t = /-tz,t + S zUt 

- s:Y /-ty,t = /-ty,t + syUt 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 

(2.2e) 

In this paper we investigate the effects of having alternative generating models (with partial co­

breaks, etc.) for the stochastic intercept Ct of (2.2a) given by (2.2c) on the ECM test for non­

cointegration (b = 0). 

Definition 2.1. We say that the time series Yt and Zt have co-breaks in levels if /-ty,t - a/-tz,t = Cl, 

where Cl is a finite constant parameter. 

Definition 2.2. We say that the time series Yt and Zt have co-breaks in differences if /)./-ty,t -

a/)./-tz,t = Cd, where Cd is a finite constant parameter. 

Definition 2.3. We say that the time series Yt and Zt have simultaneous co-breaks if /)./-ty,t -

a/)./-tz,t - b(/-ty,t - a/-tz,t) = Cs, where Cs is a finite constant parameter. 

From definitions 2.1 and 2.2, it is clear that if Yt and Zt are co-breaks in levels and in differences 

(full co-break), we have a particular case of simultaneous co-breaking. 

Several possible intermediate cases are of interest in empirical applications and will be considered 

in the the simulation experiments later on. 

Case 2.1. Cobreak in levels but not 'in differences. Cobreak in levels (/-ty,t - a/-tz,t = Cl)' Taking 

first differences, we have /)./-ty,t - a/)./-tz,t = O. But from equation (2.2c) 

(2.3) 

and equation (2.2a) becomes 

(2.4) 

Remark 2.1. cobreak in levels =} cobreak in differences if a = a (COMFAC restriction), for any 

value of Ct. 

Case 2.2. Cobreak in differences but not in levels. Cobreak in differences: /)./-ty,t - a/)./-tz,t = Cd 

implies that /)./-ty,t - a/)./-tz,t = (a - a)/)./-tz,t + Cd. From recursive substitution /-ty,t - a/-tz,t = 

I 
I 

I 
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(2.5) 

and equation (2.2a) becomes 

(2.6) 

where Cm is a constant equal to Cm = Cd - b(/-Ly,o - a/-Lz,o) + bCd. 

Remark 2.2. Assuming that /-Ly,O - a/-Lz,O = constant, cobreak in differences '* co break in levels if 

a = a (COMFAC) and Cd = O. 

In general, without having any cobreak in levels or in differences, the most parsimonious rep­

resentation in terms of unobservable variables is the conditional ECM model (2.1a). In terms of 

observable variables, the most parsimonious representation is (2.2a), because it only requires to add 

the regressors coming from the contemporaneous values of Ct. If we are interested in estimating 

the parameters a, a and b, we can estimate them by I-step procedures (OLS or NLS) in ECM 

representation (2.2a), see Arranz and Escribano (2000) for details. However, to do that we need to 

know or to estimate /-Ly,t and /-Lz,t, and this can incorporate arbitrary assumptions about unknown 

events (dummy variables, etc.), see Vogelsang (1999). 

In this paper, we argue that in a non-stationary context /-Ly,t and /-Lz,t could include any possible 

combination of transitory breaks and outliers, which complicates the analysis. Therefore, we suggest 

to consider general detrending procedures to get rid of those unobserved non-stationary transitory 

elements. In particular, we recommend to specify error correction models in terms of the growth 

components variables (trend components) to obtain robust ECM test for non-co integration (b = 0) 

in the presence of outliers, as will become clear in Sections 4 and 5. 

2.1. Error Correction Models under Simultaneous Cobreaking. From equations (2.2a)­

(2.2c) and the analysis of Escribano (1987) and Andres et al. (1990), it is clear that any error 

correction model in terms of the observable variables and constant parameters should account for 

the joint effects of the following elements: 6/-Ly,t, 6/-Lz,t, /-Ly,t-l and /-Lz,t-l· 

Previous error correction models with certain cobreaks have been treated in Camp os et al. (1996) 

and Clements and Hendry (1999). In this section we study models with simultaneous co-breaks so 
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that Ct = O. Under simultaneous co-breaks, (2.2a) and (2.2b) can be simplified to 

flYt = aflzt + b(Yt-l - azt-d + Ult 

flzt = flpz,t + U2,t 

Pz,t = ilz,t + SzOt 

(2.7a) 

(2. 7b) 

(2.7c) 

where (2.7a) has the form of the usual single equation error correction without a constant term 

since Ct = O. The parameter Sz measures the size of the break, and of is the additive outlier, see 

section 5 for more details. 

From equations (2.7a) and (2.7b) it is clear that Yt '" 1(1), Zt '" 1(1) , and that they are 

cointegrated in the sense of Engle and Granger (1987) with cointegration vector equal to (1, -a) 

for certain parameter values of b (-2 < b < 0). Notice that we are allowing for transitory breaks 

in the 'exogenous' variable Zt that co break simultaneously with the endogenous variables Yt and 

therefore the breaks disappear from the conditional model, equation (2.7a). 

2.2. Error Correction Models without Simultaneous Co-breaking. In the previous section 

we have discussed the case of joint cobreaking in levels and in differences. Our purpose now is to 

discuss several interesting intermediate cases, see Arranz and Escribano (2000) for a full discussion. 

Case 2.1. Co-breaks in levels but not co-breaks in differences. 

From equations (2.2a)-(2.2c) we have 

(2.8) 

Therefore the breaks of in the marginal process of flz t affect the error correction model unless the 

COMFAC restriction is satisfied (a = a). Later we analyze the effects of omitting the second term 

of the right-hand side of equation (2.8). 

Case 2.2. Co-breaking in differences but not co-breaking in levels. 

From equation (2.6) 

(2.9) 

Section 5 provides evidence of the effects of omitting the second and third terms of the right-hand 

side of (2.9) 

Case 2.3. Independent breaks 

The final possibility there is no cobreaking in levels nor in differences. This plausible empirical 

situation is the result of joining the effects of equations (2.8) and (2.9). In our simulation study, 

I 
I 

I 
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we will consider independent breaks on Yt and Zt, and also breaks on just one of the two series. 

Therefore, the term Ct from (2.2c) will be one of the following: 

(2.10a) 

(2.lOb) 

(2.lOc) 

and will analyze the impacts of considering Ct as a constant term in alternative modelling strategies. 

3. FILTERS AND SIGNAL EXTRACTION 

The usual aim of a filter in macroeconomic time series is to extract particular components of the 

series: trend, cycle, irregular, etc. In this paper, we are interested in splitting an observed time 

series in two components, 

Yt = yi + yf (3.1) 

where yi is the growth component and yf is the cyclical component. Two main possibilities are 

usually considered. First, define what the trend component is and the cycle is therefore the residual 

Yt = yi + (Yt - yi) (3.2a) 

Second, define the cycle and the trend is the residual provided that the series are integrated J(d), 

with d ;::: 1 

Yt = (Yt - yD + yf (3.2b) 

3.1. Baxter and King filter (BK) . Most of the filters used in macroeconomic time series are 

two-sided infinite-order moving averages, as pointed out by King and Rebelo (1993) and Baxter 

and King (1995, 1999). In practice the filter has to be approximated by a two-sided MA(k) 

k 

Y; = ao + L ah(Bh + B-h)Yt 
h=l 

The implications of the filters are clearly seen in the frequency domain by looking at the jrequency 

response junction. The frequency response function of the two-sided MA( (0), equation is given by 

00 

fJ(w) = L bhe- iwh (3.3) 
h=-oo 

I 
I!! 

I 

I 
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while for the two-sided MA(k) the frequency response function is 

k 

a(w) = L ahe- iwh . 

h=-k 

(3.4) 

Baxter and King (1995) obtain optimal approximating filters by minimizing the mean square error 

of o(w) == (3(w) - a(w) with respect to ah. The component ye could be obtained by applying trend 

reducing filters (high-pass filters) based on symmetric MA(k) transformations. Baxter and King 

showed that when L:~=-k ah = 0, Yt has no trend if the growing component of Yt was generated 

by deterministic trends (linear or quadratic) or by 1(1) or 1(2) processes. 

Notice that the trend reduction condition, L~=-k ah = 0, implies that the frequency response 

function, equation (3.4) satisfies a(O) = O. The spectrum of Yt is zero at the zero frequency and it 

is associated with the business cycle component (yt) and therefore (Yt - yt) is the trend component 

(yf). These trend reducing filters are called high-pass filters since they pass components of the 

data with frequency larger than a predetermined value ~ close to O. That is (3(w) = 0 for Iwl < ~ 

and (3(w) = 1 for Iwl 2:: ~. 

On the other hand, low-pass filters are determined so that (3(w) = 0 for Iwl > S!:!. and (3(w) = 1 

for Iwl ::; ~ and therefore low frequencies, (long term movements) remain unchanged while others 

are canceled out. In terms of the finite symmetric MA(k) filter, this means that low-pass filters 

must satisfy L~=-k ah = 1. 

Baxter and King (1995) showed that an 'ideal' approximate low-pass filters could be obtained 

by choosing the coefficients of the two-sided MA(k) filter, equal to ao = ~~ and ah = h\r sin(hw) 

for h = 1,2,3 ... Therefore, the complementary high-pass filter has coefficients (1 - ao) at h = 0 

and -ah for h = 1,2,3, ... 

When the filter passes frequencies between S!:!. and w of the spectrum where 0 < IS!:!. I < IWI < 7f 

it is called band-pass filter and can for example be obtained by subtracting two low-pass filters. 

Usually, the frequency interval is associated with the NBER business cycle duration as defined by 

Burns and Mitchell (1946) where ~ corresponds to 32 quarters (8 years) and w to 6 quarters (1.5 

or 2 years). This band-pass filter is what we are calling the BK filter in the simulations. 

3.2. Hodrick and Prescott filter (HP). The Hodrick and Prescott (1980, 1997) filter is widely 

used in macroeconomics to detrend series in order to study of the stylized facts of an economy 

along the business cycle. The basis of this filter is the following: starting from (3.1) they define the 

I 
!! 

I 

I 
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trend component as the solution to the following optimization problem 

mtn t[(Yt -yf)2 +A(~2Yf+1rl 
{Ut} t=l 

(3.5) 

The first term of (3.5) might be regarded as a measure of the goodness of fit of the trend 

component to the observed series, while the second one imposes a penalty in order to get a smooth 

trend component. The values of the parameter A suggested by Kydland and Prescott (1990) are 

). = 1600 for quarterly data and A = 400 for annual data, obtained as the ratios of volatility of the 

irregular components relative to the volatility of the growth components. 

Expressing the problem in terms of the backward shift operator, B, the decompositions is written 

as 

with Yl = F(B)-lYt and yf = C(B)yt. where the polynomials in B (filters) are 

and 
A(1 - B)2(1 _ B- 1)2 

C(B) = A(1 _ B)2(1 _ B-1)2 + 1 ' 

which is the HP filter. Notice that F(1) = 1 and C(1) = O. 

(3.6) 

A number of authors have studied the basic properties of the HP filter, see for example Harvey 

and Jaeger (1993) and King and Rebelo (1993). 

3.3. The median filter. The HP and BK filters are examples of linear filters. For completeness, 

herein we wiII also consider a class of non linear filters, called the median filter (Wen and Zeng, 

1999), that has been proven to be very useful in recent years in signal processing. Median filters 

have two interesting properties: edge (sharp change) preservation and efficient noise attenuation 

with robustness against impulsive-type noise. Neither can be achieved by traditional linear filtering 

techniques. To compute the output of a median filter, an odd number of sample values are sorted, 

and the middle or median value is used as the filter output. If the filter length is 2n + 1, the filtering 

procedure is denoted as 

med{Yt-n, Yt-n+1, ... , Yt, ... , Yt+n}. (3.7) 

Frequency analysis and impulse response have no meaning in median filtering since the impulse 

response of a median filter is zero. Nonetheless, a very important property of the median filter is the 

so-called root-convergence property, namely, any finite sample time series contains a root signal set 

I 
I 

I 

I 
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that is invariant to the median filtering. From an economic point of view, this invariant property is 

of interest because it makes possible that possible structural shifts of economic fundamentals be not 

disturbed by the filtering operation. See Wen and Zeng (1999) for further details. This property is 

particularly relevant for our purpose, as we will notice in the Monte Carlo experiments. 

4. TREND COMPONENTS ECM TEST 

Decomposing the series Zt as in (3.1) we get 

Zt = zf + zf ( 4.1) 

If the actual series are [(1) and (Yt - azd is [(0) they are co integrated. In terms of the unobserved 

components we could write 

Yt - aZt = (yf - azf) + (yf - azf) (4.2) 

Let b(B) be a general two-sided moving average filter where we impose some constraints in the 

bk coefficients so that it is a low-pass filter (see section 3.1 for details), and call yf = b(B)Yt the 

corresponding trend component. Then, multiplying equation (5.1a) by b(B) we get 

(4.3) 

which is an ECM model for the trend component 

6.yl = q + a6.zf + b[Yf-l - azLll + b(B)Ul,t ( 4.4) 

Since b(B)Ul,t might have some auto correlation, we can consider the more dynamic version of the 

ECM for the trend components given by 

(4.5) 

where rJt is considered white noise and the lags of <py(B)6.yf and <Pz(B)6.zf are determined by 

the SBIC criterion. We might expect that for significant smoothing, cf can be approximated by a 

constant or a linear trend. 

From equation (5.1a) we can write the ECM model for a general trend-cycle decomposition as, 

6.(yf + yD = Ct + a6.(zf + zD + b[(yLl + yf-l) - a(zLl + zf-l) + Ul,t (4.6) 

I 
I 

I 
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and grouping terms, equations (4.6) and (5.1d) can be written as 

Cr =(f::.J.Ly,t - f::.yf) - a(f::.J.Lz,t - f::.zf) - b[(J.Ly,t-l - aJ.Lz,t-l) - (yf-l - azf_l)] 

11 

(4.7a) 

(4. 7b) 

In practice, since we do not know where the breaks occur, we would like to approximate (4.7a)-

(4.7b) by 

if>y(B)f::.y¥ = c~ + aif>z(B)f::.z¥ + b[ytl - aztd + Et (4.8) 

The question now is whether the ECM test based on the t-ratio (t1) of equations (4.8) is robust to 

the presence of outliers in the series. 

5. MONTE CARLO SIMULATION EXPERIMENT 

Our data generating process (DGP) is based on several extensions of the one used by Kremers 

et al. (1992) and Campos et al. (1996). It is a linear first-order vector autorregression with normal 

disturbances, Granger causality in only one direction (z --+ y), and a possible structural break in 

the strongly exogenous variables (f::.zt ) for the parameters a and a of interest. 

5.1. The model. Our DGP is based on 

Ct = /:).J.Ly,t - af::.J.Lz,t - b(J.Ly,t-l - aJ.Lz,t-l) 

J.Lz,t = J.Lz,o + szoj,t 

{

pr(Of = 1) = Pr(of = -1) = % 
Pr(of = 0) = 1 - 7r 

(5.1a) 

(5.1b) 

(5.1c) 

(5.1d) 

(5.1e) 

In order to get only cobreaks in differences, we impose that /:).J.Ly,t - af::.J.Lz,t = Cd = 0.5. On the 

other hand, to simulate a set of series with only cobreaks in levels, we impose /:).J.Ly,t - aLlJ.Lz,t = O. 

The series will show full cobreaking when f::.J.Ly,t - a/:).J.Lz,t - b(J.Ly,t-l - aJ.Lz,t-d = C = o. In the case 

of no cobreaks, we add another shock to J.Ly given by 

J.Ly,t = J.Ly,o + SyoJ,t (5.H) 

where O;,t follows a stochastic process similar to o],t in (5.1e) but mutually independent. 

I 
ii 

I 

I 
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Based on (5.Ia)-(5.Id)' the critical values (b = 0), the size (b = 0 with Ma(I) structure in U1,t) 

and the power (b of: 0) of the test are obtained by Monte Carlo simulation experiments. 

Without loss of generality, we take O"I = 1, a = 1 and 0"2 = s, /-Ly,O = /-Lz,o = o. Thus, the 

experimental design variables are the parameters a,b,s, and the sample size, T. The experiment is 

a full factorial design with: 

a = 0.0,0.5,1 (contemporaneous correlation in first differences) 

b = 0.0 (no cointegration), b < 0 (cointegration) 

7r = 0 (no breaks), 0.05, O.l. 

s = 1, 6, 16 (size of the breaks) 

T = 100, 200, 500, 1000 (sample sizes) 

This represents 144 experiments for each value of b . Notice that when a = 1 there is a common 

(COMFAC) restriction in the error correction model (a = a = 1). 

The Monte Carlo experiments are based on 2000 replications of each experiment where the first 

50 observations of the simulated series are dropped to consider random initial conditions. 

To obtain the empirical critical values we simulate the Yt and Zt series following the DGP (5.1a)­

(5.1e) with b = 0 and we estimate the flollowing three models 

tlYt =c + atlzt + b(Yt-l - Zt-l) + Ult 

</;(B)tlYt =c + B(B)tlzt + b(Yt-1 - zt-d + Ult 

</;(B)tlyf =c + B(B)tlzf + b(Yf-1 - zLl) + Ult 

(Model 1) 

(Model 2) 

(Model 3) 

where we have imposed a = 1, and the order of the polynomials </;(B) and B(B) are chosen by 

means of the SBIC criterion. The variables yf and zf are the trend components obtained by 

Hodrick Prescott filter (HP10 and HPIOO), Baxter and king filter (BK) and the median filter 

(MD). See Section 3 for more details. The lower 5% tail of the distribution of the t(b) statistic is 

the empirical critical value considered. The empirical power of the test is calculated analogously by 

simulating the series with the other parameter values of b (b < 0), and computing the percentage 

of rejections obtained using the previously obtained empirical critical values. 

To impose simultaneous co-breaking we force Ct = tl/-Ly,t - atl/-Lz,t - b(/-Ly,t - a/-Lz,t) = O. In order 

to get only co-breaks in differences, we impose that tl/-Ly,t - atl/-Lz,t = Cd = 0.5. On the other hand, 

to simulate a set of series with only co-breaks in levels, we impose tl/-Ly,t - atl/-Lz,t = 0, see Arranz 

and Escribano (1998) for more details of the derivation. 

I 
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Notice that we avoid the case Cd = 0 because the critical values would be the ones obtained in the 

simultaneous co-breaking case, since under b = 0 we have simultaneous co-breaking with Cs = O. 

Furthermore, notice that in the case where a = a = 1, co-breaks in differences would co-breaks in 

levels (full co-breaking). This comes from the fact that under the COMFAC restriction (a = a), 

co-breaks in levels imply co-breaks in differences (full co-break). 

5.2. ECM test based on the trend components: No outliers. Figure 1 represents the kernel 

density estimator of the whole empirical distribution of t(b) for Model 2 (ECM test) and Model 

3 using the HP10 filter, HPlOO filter, BK and MD respectively. With all of the filters used we 

get similar results. It is important to remark that the best results are obtained for the left tail 

of the distributions. This implies that the critical values used to test the null hypothesis of no­

cointegration against the cointegration alternative are robust to the type of filter used, see Table 

1. 

[Table 1 about here.] 

[Figure 1 about here.] 

[Figure 2 about here.] 

In terms of power there is only a small loss when using the BK filter and even smaller when 

using the median filter, see Figure 2 and Table 2. The HPlO and HP100 filters display the lowest 

power. 

[Table 2 about here.] 

To evaluate the size of the test based on Models 1-3 we add an Ma(l) structure to the ul,t error 

term, i.e. Ul,t + eUl,t-l = Vt with Vt '" iid N(O, 1), and the MA(l) parameter equal to e = ±0.2 

and e = ±0.5. The empirical results for a 5% nominal size are included in Table 3 

As expected, the largest size distortions are generated in small sample sizes and with e = -0.5. 

In the case of Model 2 with T = 200, a = 1, and e = -0.5 the 5% is transformed into 20%. This 

empirical size is reduced to 6.55% with the HP100 filter, 3.15% with HPlO, 6.65% with BK and 

6.8% with the MD filters. Once again, the most stable results in terms of the size are obtained by 

using the median filter (MD). 

[Table 3 about here.] 

5.3. ECM test with additive outliers. In order to evaluate the effects of the additive outliers 

on the ECM tests we evaluate the most favorable situation. That is, we allow for extra lags in the 

I 
I 

I 
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ECM models to approximate the effect of the outliers and run the ECM test based on Model 2 

when the orders of the polynomial cp(B) and O(B) were chosen by the SBIC criterion. 

From Figure 3.1 we see that the effects of having 10% contamination of additive outliers are 

dramatic. The whole distribution is shifted to the left and therefore we wiII detect too much 

cointegration. this result supports previous evidence given in Franses and Haldrup (1994). 

ECM test from Model 1 with additive outliers. The model in this case is 

(Model 1) 

which is correctly specified only under simultaneous co-breaks. The reason is that Ct from (5.1d) is 

equal to O. 

[Table 4 about here.] 

Notice that the critical values (C.V.) are very stable for the simultaneous co-breaking case and 

only marginally affected by the sample size (T), the nuisance parameter a and the size of the break 

(s ). 

Co-breaks in differences, not in levels. In this case Ct = c + bCdt - b( a - a)s z<5;_1' Therefore, in 

Model 1 there is a missing term even when a = a (COMFAC). The results of Table 4 show that 

the CV of t(b) based on Model 1 are shifted to the right and the values change with T and only 

marginally with a and s (the size of the break). Notice that the values are close to the Normal 

distribution since there ia a missing trend. 

Co-breaks in levels, but not in differences. Now Ct = c+(a-a)szLJ.<5;, and Model 1 is misspecified. 

However, in this particular case, if a = a (COMFAC), Ct = C and we are back to the simultaneous 

co-breaks case, which means that Model 1 is correctly specified. From Table 4, CV are now more 

stable with the sample size (T) but they span from -2.5 to-2.8 depending on the COMFAC 

restriction. 

Independent shocks or shocks in only one of the variables. In this case Ct is always different from 

a constant, see equations (2.lOa)-(2.lOc), and therefore Model 1 is always seriously misspecified. 

Even for a sample size of 1000 the CV span form -3.09 to -16.3 depending on the size of the jump 

5, see Table 4. The question now is how much do we improve by adding extra lags in the ECM 

model. 

ECM test from Model 2 with additive outliers. The model is 

rjJ(B)tlYt =c + O(B)tlZt + b(Yt-1 - Zt-d + Ult (Model 2) 

I 
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Under simultaneous co-breaks or with co-breaks in levels; but not in differences the CV are fairly 

stable, as before with Model 1. Similarly, with co-breaks in differences but not in levels the CV are 

shifted to the left but are more unstable with respect to the sample size (T) and fairly stable with 

respect to the other parameter values of a and s. 

[Table 5 about here.) 

[Table 6 about here.) 

From Table 5 it is clear that the main improvements of Model 2 over Model 1 occurs when the 

shocks are independent or when they are in only one of the variables. However, this does not mean 

that they are always stable since for example, when the shocks are only in the variable Yt, the CV 

can span from -3 to -10.9 for a sample of 200 observations. therefore, adding extra lags helps, 

but it is not a satisfactory solution. 

The power of the test depends heavily on the kind of co-break, see Table 6. In the case of 

co-breaks in differences but not in levels the test shows no power at all, which is explained by the 

fact that we are omitting a deterministic trend component. On the other hand the power of the 

test is high in the other two cases of co-breaks, namely simultaneous co-breaks and co-breaks in 

levels but no in differences. In the cases of independent shocks or shock in one of the variables the 

power depends on the kind and size of the shock as well as on the value of the parameter a. 

ECM test from Model 3 with additive outliers. The model is 

cjJ(B)!:::.yf =e + O(B)t:.zf + b(yLl - zLl) + Ult (Model 3). 

The intuition for expecting Model 3 to be a good approximation to the correctly specified model is 

the following. Equation (2.2a) is transformed into equation (4.7a) based on the trend components, 

where er is a stochastic intercept given by equation (4.7b). Since the additive outliers are transitory 

shocks they should mainly be part of the cycle in a trend-cycle decomposition and therefore the 

following elements should be free of outliers: 

The stochastic slope et from (4. 7b) should be a stationary series which can be approximated by 

lags of !:::.yf and !:::.zf, and this is exactly what Model 3 does. 

[Table 7 about here.] 

[Table 8 about here.] 

[Table 9 about here.) 
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[Table 10 about here.] 

Tables 7-10 show the CV obtained under the six possible co-breaking and non-cobreaking sit­

uations previously analyzed. No matter what type of filter we use, the CV are stable for different 

sample sizes, different values of parameter a, different sizes of the jumps (s). We did the analysis for 

HPlO, HP100, BK and MD filters, The only case where the CV of the ECM test depend seriously 

on the sample size (T) is when there is only co-breaks in differences but not in levels. Notice, 

however the robustness of those critical values to nuisance parameters such as s or s (the jump 

size), even for a 10% of outliers ('if = 0.1). 

[Table 11 about here.] 

[Table 12 about here.] 

[Table 13 about here.] 

[Table 14 about here.] 

The power of the test is analyzed in Tables 11-14. First, notice that in the case of co-breaks in 

differences not not in levels we get no power, as it happened with Model 2. It is remarkable that 

the power of the test depends crucially on the parameter a in most cases. As expected, the power 

of the test based on Model 3 is lower than the one obtained with Model 2, but this is not true in 

all cases. In particular, we whould notice that in the case of having shocks only in the variable Yt, 

with a = 1 and s = 1,16, the most powerful test is the one based on Model 3 with the BK filter 

with T = 100. In the case of shocks in Zt, with a = 1 the most powerful test for T = 100,200 is 

the one based on the MD filter. Another feature of the test based on Model 3 and the MD filter is 

that, apart from the case of co-breaks in differences but not in levels, the power of the test does not 

depend on the type of co-breaks considered. Furthermore, the test based on the MD filter yields 

the highest power among those tests based on Model 3. 

5.4. Robustness of critical values to the presence of outliers. The question now is the 

following: Can we safely use the critical values of Table 1 to do cointegration tests, such as the 

ECM test, in the presence of additive outliers? 

To answer this question we computed the empirical rejection frequencies obtained using the 

5% critical values of Table 1 when the data generating process given in equations (5.1a)-(5.lf) 

is contaminated with the most dangerous case, that is, independent shocks in variables Yt and Zt 

under the null hypothesis Ho : b = o. If those critical values are robust, the percentage of rejections 

should be around 5%. 

[Figure 3 about here.] 

I 
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[Table 15 about here.] 

Model 2 is clearly not robust since the percentage of rejection can reach 43.5% for a sample size 

of T = 100 with s = 16, see Figure 3.1. Using Model 3 the results improve dramatically, see Figures 

3.3-3.5. With HP10 and BK the previous figure is reduced to 21.8% and 26.1 %, but with HPlOO 

and MD those values are 5.1 % and 6.2%, respectively, see Table 15. Notice that we only mention 

the results for the worst contamination types. For most of the parameter values analyzed all of the 

filters perform quite well, but the best one in terms of robustness and power is the MD filter. 

6. EMPIRICAL EXAMPLE 

In this section we illustrate the practical usefulness of our procedure by performing the analysis 

on annual observations of the CPI-based US/Finland real exchange rates during the period 1980-

88. This dataset has been previously studied in Perron and Vogelsang (1992), Franses and Haldrup 

(1994) and Franses and Lucas (1998). The question is whether the real exchange rate series is 

stationary or not, i.e does the purchasing power parity (PPP) hold? We proceed by testing if the 

nominal exchange rates and the CPI ratio are cointegrated. 

First, we perform the analysis imposing the common factor restriction (COMFAC) with the 

following variables: Yt is the log of the nominal exchange rate and Zt is the log of CPI ratio. The 

cointegrating relationship is known and equal to the real exchange rate, Le. rt = Yt - Zt. The 

number of lags in the ECM model is chosen by means of the SBIC criterion. If the variables are 

cointegrated the term rt-1 should be significant in at least one of the two equations. We perform 

the ECM test by examinig the t-stats of the coefficient corresponding to rt-1 in both equations. 

When the analysis is done on the observed variables, the values of the t-stats are -6.65 and 

-1.49, when the dependent variables are !.iYt and !.iZt, respectively. It is clear that the long run 

causality runs form Zt, the log of the CPI ratio, to Yt, the log of the nominal exchange rate, but it 

is unclear that the series are co integrated. From Tables 1 and 5, the critical values would indicate 

that the series are co integrated in the cases of partial cobreaks and shocks only in Zt, the log of the 

CPI rate. However, it is not clear that the series are cointegrated if there independent shocks or the 

shocks occur only in the variable Yt, the log of the nominal exchange rate, and this might well be 

the case. If we apply this procedure to the trend components ECM models obtained by the HPlOO 

filter, the t-stats are -1.03 and -2.15, while with the BK filter the ECM test statistics are -1.84 

and -0.47, and finally -2.16 and -0.37 for the MD filter. As we can see from the critical values in 

Tables 7, 9, and 10 the conclusion is that we cannot reject the null hypothesis that the series are 

I 
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not cointegrated, which agrees with the findings in Franses and Haldrup (1994) and Franses and 

Lucas (1998). 

Notice, however, that imposing the COMFAC restriction reduces the power of the ECM test. 

Therefore, we apply the tests without imposing the COMFAC restriction, as we did in Section 5. 

In the case of the BK filter, the ECM test statistics are -3.63 and -0.86, and -6.71 and -1.42 for 

the MD filter. Since the absolute value of the second statistic is not significant, it suggests that the 

second variable is weakly exogenous for the long run parameter of interest. Therefore, we conclude 

that the series are cointegrated, using the critical values from Tables 7, 9, and 10, and that the 

real exchange rate follows a stationary process with outliers. This conclusion is consistent with the 

result of Vogelsang (1999) and Arranz et al. (2000). 

7. CONCLUSIONS 

In this paper we have analyzed the effects of having additive outliers in a multivariate context 

with cointegrated variables. Usual non-cointegration tests (like ECM tests) tend to find too much 

cointegration in this case. The problem is partially solved by using overparameterized models that 

include extra lags of the regression variables. 

Different effects of the additive outliers have been analyzed in a multivariate context, running 

from simultaneous co-breaks, partial co-breaks and reaching independent shocks in each of the 

variables of the model. Obviously, the worst case is the one of independent shocks. 

We suggest to approach this problem by doing the non-cointegration test on the ECM models 

based on the trend component instead of on the ECM model with the observed variables. We have 

analyzed by Monte Carlo simulation experiments different trend-cycle decompositions based on 

the Hodrick-Prescott filter (HP10, HP100), the Baxter and King filter (BK) and the median filter 

(MD). Most of them yield good results in terms of robustness, but the best ones are the HPlOO 

and MD filters. On the other hand, in terms of power, the best results are provided by the BK 

and MD filters. Our results suggest that in the future we should pay more attention to nonlinear 

filters such as the median (MD) filter. 
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FIGURE 1. Kernel Density Estimator of the ECM test statistic (Model 2), and Low­
Pass filter ECM test (Model 3) under the null hypothesis. T = 1000, a = O. No 
outliers 
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Figure 3.1: ECM 

Figure 3.3: HP100 

Figure 3.5: MD 
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FIGURE 3. Kernel Density Estimator of the ECM test (Model 2) and the Low-pass 
filtered data test (Model 3). T = 1000, a = 1, independent shocks in variables Yt 
and Zt, S = 16. 
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a T=lOO T=200 T=500 T=lOOO 
Model 1 

0.0 -2.624 -2.518 -2.654 -2.639 
0.5 -2.769 -2.738 -2.758 -2.752 
1.0 -2.875 -2.842 -2.878 -2.929 

Model 2 

0.0 -2.596 -2.495 -2.641 -2.652 
0.5 -2.801 -2.787 -2.754 -2.789 
1.0 -2.951 -2.868 -2.862 -2.949 

Model 3. HPlO Filter 

0.0 -3.017 -2.670 -2.668 -2.614 
0.5 -3.272 -3.071 -2.859 -2.874 
1.0 -3.481 -3.164 -2.940 -2.913 

Model 3. HP100 Filter 

0.0 -3.238 -2.726 -2.650 -2.608 
0.5 -3.707 -3.071 -2.832 -2.797 
1.0 -4.114 -3.085 -2.898 -2.891 

Model 3. BK Filter 

0.0 -2.889 -2.650 -2.667 -2.592 
0.5 -3.069 -2.750 -2.676 -2.752 
1.0 -3.021 -2.783 -2.889 -2.958 

Model 3. MD filter 

0.0 -2.749 -2.616 -2.654 -2.664 
0.5 -2.816 -2.599 -2.561 -2.652 
1.0 -2.859 -2.715 -2.736 -2.778 

TABLE 1. Critical value of the tests. No outliers 
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a T=lOO T=200 T=500 T=1000 
Model 1 

0.0 99.45 100.00 100.00 100.00 
0.5 95.50 100.00 100.00 100.00 
1.0 87.75 100.00 100.00 100.00 

Model 2 

0.0 99.15 100.00 100.00 100.00 
0.5 93.05 100.00 100.00 100.00 
1.0 79.70 99.95 100.00 100.00 

Model 3. HPlO Filter 

0.0 51.40 98.05 100.00 100.00 
0.5 30.15 76.75 100.00 100.00 
1.0 21.50 76.95 99.95 100.00 

Model 3. HP100 Filter 

0.0 31.75 81.05 100.00 100.00 
0.5 15.55 54.45 99.75 100.00 
1.0 11.25 42.80 99.25 100.00 

Model 3. BK Filter 

0.0 74.40 99.60 100.00 100.00 
0.5 46.15 92.85 100.00 100.00 
1.0 21.25 76.05 100.00 100.00 

Model 3. MD filter 

0.0 88.10 99.65 100.00 100.00 
0.5 58.35 97.55 100.00 100.00 
1.0 30.60 85.00 100.00 100.00 

TABLE 2. Power of of the tests. b = -0.2. No outliers 
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a IJ T-100 T-200 T-500 T -1000 a IJ T_IOO T-200 T-500 T -1000 I 0.0 -0.5 2.40 2.60 2.05 1.95 0.0 -0.5 2.75 3.50 2.30 2.35 

-0.2 5.00 4.80 4.20 3.90 -0.2 5.25 5.85 4.35 4.25 
0.2 6.30 6.10 5.25 5.95 0.2 4.95 5.75 5.50 5.30 
0.5 8.10 8.00 5.55 6.10 0.5 6.00 7.35 6.70 6.20 

0.5 -0.5 13.10 9.60 6.45 5.10 0.5 -0.5 2.55 2.80 4.35 4.35 
-0.2 8.20 7.40 6.60 5.80 -0.2 5.00 5.55 6.95 5.90 
0.2 4.25 4.95 5.30 5.45 0.2 4.45 3.90 4.10 4.40 
0.5 6.95 6.90 6.30 6.05 0.5 4.05 3.80 4.20 4.25 

1.0 -0.5 31.20 20.05 12.50 8.55 1.0 -0.5 1.25 6.55 8.05 8.40 
-0.2 11.70 11.40 7.50 5.35 -0.2 4.25 8.70 6.95 6.60 
0.2 3.75 5.15 5.30 5.00 0.2 2.75 3.90 3.60 4.00 
0.5 6.75 6.50 4.70 3.75 0.5 1.90 4.40 4.75 5.00 

Table 3.1: Model 2 Table 3.2: Model 3. HPIOO 

a IJ T-100 T-200 T-500 T-IOOO a IJ T-100 T-200 T-500 T-IOOO 
0.0 -0.5 2.05 2.80 2.40 2.55 0.0 -0.5 2.70 2.80 3.05 2.90 

-0.2 3.25 4.85 4.15 4.05 -0.2 3.65 4.20 4.45 4.35 
0.2 5.30 4.70 5.20 5.50 0.2 5.45 5.30 5.35 6.25 
0.5 5.65 6.10 5.95 6.05 0.5 6.15 6.90 6.85 8.05 

0.5 -0.5 3.25 1.65 3.10 2.70 0.5 -0.5 5.20 5.45 5.05 3.50 
-0.2 4.00 3.40 4.60 5.05 -0.2 5.50 4.95 5.05 4.80 
0.2 5.65 4.10 3.95 3.85 0.2 5.60 5.05 5.75 6.00 
0.5 4.85 3.50 3.20 3.95 0.5 5.45 7.85 9.25 7.90 

1.0 -0.5 2.45 3.15 4.75 5.75 1.0 -0.5 10.90 6.65 3.85 3.85 
-0.2 4.10 3.75 6.35 6.85 -0.2 5.80 4.40 3.75 4.20 
0.2 4.95 3.25 2.90 4.20 0.2 4.90 7.00 6.25 5.25 
0.5 2.95 2.10 3.75 4.55 0.5 7.00 9.35 7.40 6.05 

Table 3.3: Model 3. HP10 Table 3.4: Model 3. BK Filter 

a IJ T-IOO T-200 T-500 T-IOOO 
0.0 -0.5 5.05 4.70 3.05 2.15 

-0.2 5.30 4.65 4.30 3.35 
0.2 4.95 5.25 5.65 6.20 
0.5 5.95 5.90 6.15 7.55 

0.5 -0.5 5.95 5.60 4.60 2.60 
-0.2 6.60 4.45 5.10 4.05 
0.2 4.80 5.05 6.10 6.00 
0.5 4.85 6.25 7.05 7.60 

1.0 -0.5 8.90 6.80 4.75 4.85 
-0.2 5.15 5.40 4.85 5.20 
0.2 4.75 4.80 5.00 5.25 
0.5 5.00 4.85 5.45 5.45 

Table 3.5: Model 3. MD Filter 

TABLE 3. Size of the test. Simulated model with MA(l) dist ur bances. 
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28 Tables !!! 

I 
a = 0.0 a = 0.5 a = 1.0 

T 8-1 8=6 8-16 8=1 8=6 8=16 8=1 8=6 8=16 I Simultaneous cobreaks 

100 -2.631 -2.489 -2.350 -2.779 -2.694 -2.546 -2.883 -2.858 -2.849 
200 -2.519 -2.481 -2.384 -2.742 -2.731 -2.649 -2.850 -2.841 -2.840 
500 -2.652 -2.591 -2.533 -2.747 -2.748 -2.669 -2.879 -2.869 -2.869 

1000 -2.640 -2.627 -2.544 -2.762 -2.774 -2.745 -2.935 -2.939 -2.944 
Cobreaks in differences, not in levels 

100 -2.010 -1.989 -1.997 -1.982 -1.982 -1.985 -1.970 -1.965 -1.967 
200 -1.967 -1.923 -1.911 -1.936 -1.899 -1.897 -1.916 -1.902 -1.914 
500 -1.813 -1.836 -1.852 -1.849 -1.831 -1.837 -1.845 -1.840 -1.839 
1000 -1.763 -1.773 -1.772 -1.765 -1.760 -1. 767 -1.766 -1.761 -1.758 

Cobreaks in levels, not in differences 

100 -2.577 -2.739 -2.792 -2.738 -2.765 -2.799 -2.883 -2.858 -2.849 
200 -2.484 -2.754 -2.818 -2.735 -2.827 -2.844 -2.850 -2.841 -2.840 
500 -2.578 -2.769 -2.827 -2.750 -2.814 -2.804 -2.879 -2.869 -2.869 
1000 -2.544 -2.804 -2.891 -2.765 -2.885 -2.898 -2.935 -2.939 -2.944 

Independent shocks 

100 -2.650 -4.131 -5.426 -2.964 -4.751 -5.605 -3.293 -5.281 -5.756 
200 -2.582 -4.856 -7.818 -2.971 -5.855 -8.405 -3.259 -6.660 -8.744 
500 -2.683 -4.837 -9.457 -2.969 -5.994 -10.591 -3.253 -6.922 -11.229 
1000 -2.667 -5.202 -11.207 -2.974 -6.437 -13.026 -3.281 -7.451 -13.953 

Shocks in Yt 

100 -2.624 -4.613 -7.632 -2.864 -5.467 -8.132 -3.044 -5.905 -8.437 
200 -2.588 -5.108 -9.899 -2.890 -6.246 -11.059 -3.076 -6.878 -11.683 
500 -2.692 -5.122 -11.485 -2.886 -6.235 -13.401 -3.081 -7.075 -14.573 

1000 -2.667 -5.337 -12.553 -2.887 -6.643 -15.205 -3.089 -7.321 -16.323 
Shocks in Zt 

100 -2.631 -2.489 -2.350 -2.856 -2.967 -2.540 -3.080 -3.565 -2.857 
200 -2.519 -2.481 -2.384 -2.822 -3.084 -2.839 -3.024 -3.708 -3.205 
500 -2.652 -2.591 -2.533 -2.838 -3.127 -2.905 -3.060 -3.790 -3.433 

1000 -2.640 -2.627 -2.544 -2.882 -3.203 -3.071 -3.094 -3.929 -3.724 

TABLE 4. Critical values. Model 1 test, 7f = 0.1 



Tables 29 

a - 0.0 a - 0.5 a - 1.0 
T s-l s-6 s-16 s-l s-6 s-16 s-l s-6 s-16 I Simultaneous co breaks 

100 -2.601 -2.533 -2.407 -2.813 -2.736 -2.661 -2.934 -2.918 -2.899 
200 -2.512 -2.481 -2.402 -2.772 -2.711 -2.657 -2.871 -2.874 -2.860 
500 -2.650 -2.597 -2.512 -2.737 -2.757 -2.669 -2.853 -2.851 -2.840 

1000 -2.664 -2.621 -2.531 -2.782 -2.801 -2.774 -2.955 -2.956 -2.954 
Cobreaks in differences, not in levels 

100 -2.068 -2.072 -2.039 -2.042 -2.068 -2.029 -2.001 -1.999 -2.009 
200 -1.928 -1.918 -1.903 -1.926 -1.916 -1.937 -1.897 -1.906 -1.910 
500 -1.824 -1.829 -1.838 -1.819 -1.823 -1.830 -1.809 -1.826 -1.832 
1000 -1.730 -1.736 -1.727 -1.729 -1.721 -1.720 -1.729 -1.707 -1.707 

Cobreaks in levels, not in differences 

100 -2.587 -2.778 -2.820 -2.767 -2.800 -2.812 -2.934 -2.918 -2.899 
200 -2.517 -2.786 -2.843 -2.787 -2.825 -2.843 -2.871 -2.874 -2.860 
500 -2.590 -2.776 -2.821 -2.746 -2.808 -2.827 -2.853 -2.851 -2.840 

1000 -2.612 -2.831 -2.885 -2.765 -2.882 -2.901 -2.955 -2.956 -2.954 
Independent shocks 

100 -2.644 -2.695 -3.111 -3.009 -4.004 -3.516 -3.303 -4.997 -5.922 
200 -2.571 -2.683 -3.563 -2.945 -3.593 -4.378 -3.253 -4.589 -4.919 
500 -2.645 -2.481 -2.240 -2.893 -3.387 -3.060 -3.033 -4.455 -4.046 

1000 -2.674 -2.509 -2.551 -2.954 -3.567 -3.597 -2.979 -4.108 -4.540 
Shocks in Yt 

100 -2.624 -3.311 -7.673 -2.866 -5.336 -8.067 -3.063 -5.921 -8.309 
200 -2.555 -2.780 -4.352 -2.891 -3.631 -6.740 -3.064 -4.249 -10.992 
500 -2.662 -2.635 -3.281 -2.841 -3.308 -4.634 -2.999 -3.420 -5.473 

1000 -2.670 -2.686 -3.437 -2.880 -3.180 -4.664 -3.029 -3.217 -4.967 
Shocks in Zt 

100 -2.601 -2.533 -2.407 -2.850 -2.982 -2.591 -3.121 -3.504 -2.887 
200 -2.512 -2.481 -2.402 -2.806 -3.023 -2.793 -3.029 -3.659 -3.205 
500 -2.650 -2.597 -2.512 -2.806 -3.031 -2.902 -2.968 -3.582 -3.425 
1000 -2.664 -2.621 -2.531 -2.866 -3.057 -3.051 -3.020 -3.430 -3.661 

TABLE 5. Critical values. Model 2 test, 1[' = 0.1 
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I 
a = 0.0 a = 0.5 a = 1.0 

T 8-1 8-6 8=16 8=1 8=6 8=16 8=1 8=6 8=16 I Simultaneous co breaks 

100 99.65 99.90 100.00 94.75 97.65 99.85 84.95 85.95 86.25 
200 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
500 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Cobreaks in differences, not in levels 

100 5.05 5.90 7.30 0.65 0.55 0.60 0.00 0.05 0.00 
200 2.85 5.55 6.20 0.40 0.30 0.15 0.00 0.00 0.00 
500 0.50 4.00 5.10 0.00 0.00 0.00 0.00 0.00 0.00 

1000 0.05 2.00 5.25 0.00 0.05 0.10 0.00 0.00 0.00 
Cobreaks in levels, not in differences 

100 99.70 93.95 89.10 95.90 90.75 89.15 84.95 85.95 86.25 
200 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
500 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Independent shocks 

100 99.65 90.20 44.80 94.55 52.80 14.30 84.95 48.05 3.70 
200 100.00 99.95 95.60 100.00 98.85 69.00 99.85 92.80 51.15 
500 100.00 100.00 100.00 100.00 100.00 98.40 100.00 100.00 89.05 

1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
Shocks in Yt 

100 99.60 96.00 81.40 96.00 80.75 70.45 87.15 80.05 58.50 
200 100.00 100.00 99.85 100.00 100.00 99.45 100.00 99.55 98.80 
500 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Shocks in Zt 

100 99.60 93.10 40.10 94.65 65.95 19.45 85.10 38.05 10.25 
200 100.00 99.95 85.20 100.00 98.90 48.30 99.95 89.50 23.95 
500 100.00 100.00 99.80 100.00 100.00 92.50 100.00 100.00 69.70 
1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 97.05 

TABLE 6. Size adjusted power of the test. Model 2 test, 7r = 0.1, b = -0.2. 



I 
Tables 31 i 

I 
a = 0.0 a = 0.5 a = 1.0 

T 8-1 8-6 8-16 8-1 8=6 8=16 8=1 8-6 8-16 I Simultaneous cobreaks 

100 -3.264 -3.184 -3.086 -3.725 -3.671 -3.669 -4.114 -4.048 -3.894 
200 -2.725 -2.763 -2.701 -3.058 -2.958 -2.875 -3.073 -3.021 -2.959 
500 -2.657 -2.634 -2.652 -2.819 -2.777 -2.788 -2.893 -2.866 -2.865 
1000 -2.611 -2.589 -2.587 -2.801 -2.795 -2.791 -2.898 -2.910 -2.881 

Cobreaks in differences, not in levels 

100 -2.756 -2.732 -2.633 -2.915 -2.721 -2.625 -2.878 -2.690 -2.627 
200 -2.187 -2.158 -2.143 -2.234 -2.169 -2.160 -2.203 -2.185 -2.132 
500 -1.920 -1.920 -1.933 -1.923 -1.909 -1.902 -1.925 -1.931 -1.911 
1000 -1.830 -1.824 -1.821 -1.832 -1.830 -1.818 -1.831 -1.832 -1.815 

Cobreaks in levels, not in differences 

100 -3.477 -3.783 -3.677 -3.740 -3.834 -3.688 -4.114 -4.048 -3.894 
200 -2.836 -2.952 -2.931 -3.035 -2.986 -2.924 -3.073 -3.021 -2.959 
500 -2.733 -2.817 -2.820 -2.790 -2.828 -2.853 -2.893 -2.866 -2.865 
1000 -2.701 -2.864 -2.873 -2.806 -2.888 -2.886 -2.898 -2.910 -2.881 

Independent shocks 

100 -3.393 -3.119 -2.739 -3.725 -3.166 -2.886 -4.054 -3.526 -3.085 
200 -2.782 -2.740 -2.650 -3.074 -2.981 -2.679 -3.318 -3.298 -2.952 
500 -2.682 -2.707 -2.673 -2.945 -2.653 -2.675 -2.987 -2.907 -2.767 
1000 -2.623 -2.607 -2.639 -2.873 -2.714 -2.740 -2.972 -2.891 -2.898 

Shocks in Yt 

100 -3.403 -3.107 -3.142 -3.826 -3.248 -3.170 -4.069 -3.598 -3.317 
200 -2.785 -2.746 -2.666 -3.109 -2.950 -2.779 -3.2~8 -3.059 -2.864 
500 -2.668 -2.697 -2.673 -2.868 -2.792 -2.760 -2.9.1 -2.938 -2.813 
1000 -2.629 -2.621 -2.624 -2.850 -2.867 -2.831 -2.971 -2.999 -2.956 

Shocks in Zt 

100 -3.264 -3.184 -3.086 -3.655 -3.259 -3.179 -3.991 -3.657 -3.288 
200 -2.725 -2.763 -2.701 -3.070 -2.721 -2.618 -3.166 -2.864 -2.755 
500 -2.657 -2.634 -2.652 -2.887 -2.620 -2.463 -2.885 -2.776 -2.626 
1000 -2.611 -2.589 -2.587 -2.838 -2.567 -2.477 -2.923 -2.790 -2.641 

TABLE 7. Critical values. Model 3, HP100 test, 7f = 0.1 
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a = 0.0 a = 0.5 
I 

a = 1.0 
T 8-1 8-6 8-16 8=1 8=6 8=16 8=1 s=6 s=16 I Simultaneous cobreaks 

100 -2.978 -2.921 -2.785 -3.267 -3.204 -3.090 -3.442 -3.314 -3.248 
200 -2.697 -2.661 -2.591 -3.058 -3.066 -3.028 -3.175 -3.148 -3.128 
500 -2.662 -2.659 -2.576 -2.863 -2.818 -2.756 -2.948 -2.912 -2.901 
1000 -2.608 -2.608 -2.612 -2.874 -2.805 -2.783 -2.906 -2.907 -2.900 

Cobreaks in differences, not in levels 

100 -2.343 -2.362 -2.320 -2.402 -2.308 -2.277 -2.417 -2.297 -2.263 
200 -2.037 -2.027 -2.007 -2.027 -1.999 -1.957 -2.006 -1.982 -1.933 
500 -1.834 -1.839 -1.852 -1.820 -1.825 -1.840 -1.814 -1.819 -1.830 
1000 -1.771 -1.776 -1.781 -1.773 -1.778 -1.771 -1.774 -1.772 -1.783 

Cobreaks in levels, not in differences 

100 -3.054 -3.210 -3.160 -3.299 -3.264 -3.157 -3.442 -3.314 -3.248 
200 -2.737 -3.113 -3.137 -3.085 -3.142 -3.133 -3.175 -3.148 -3.128 
500 -2.711 -2.900 -2.915 -2.863 -2.888 -2.882 -2.948 -2.912 -2.901 
1000 -2.770 -2.852 -2.873 -2.850 -2.911 -2.913 -2.906 -2.907 -2.900 

Independent shocks 

100 -2.984 -2.836 -2.732 -3.266 -2.809 -2.946 -3.400 -2.953 -3.094 
200 -2.725 -2.594 -2.661 -2.949 -2.616 -2.989 -3.123 -2.815 -3.140 
500 -2.673 -2.656 -2.835 -2.807 -2.656 -3.180 -3.003 -2.941 -3.494 
1000 -2.620 -2.668 -2.997 -2.859 -2.705 -3.486 -2.949 -2.970 -3.794 

Shocks in Yt 

100 -2.979 -2.926 -2.851 -3.247 -3.130 -3.057 -3.412 -3.236 -3.292 
200 -2.713 -2.596 -2.628 -3.037 -2.818 -2.974 -3.128 -2.879 -3.252 
500 -2.674 -2.645 -2.792 -2.846 -2.692 -3.089 -3.020 -2.843 -3.420 
1000 -2.621 -2.637 -2.775 -2.910 -2.782 -3.115 -2.985 -2.907 -3.324 

Shocks in Zt 

100 -2.978 -2.921 -2.785 -3.294 -2.908 -2.666 -3.357 -3.251 -2.765 
200 -2.697 -2.661 -2.591 -2.996 -2.675 -2.562 -3.155 -2.925 -2.673 
500 -2.662 -2.659 -2.576 -2.847 -2.577 -2.474 -2.984 -2.667 -2.662 
1000 -2.608 -2.608 -2.612 -2.882 -2.583 -2.541 -2.963 -2.752 -2.688 

TABLE 8. Critical values. Model 3, HP10 test, 7f = 0.1 
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I 
a = 0.0 a = 0.5 a = 1.0 

T 8-1 8-6 8-16 8-1 8-6 8-16 8-1 8-6 8-16 I Simultaneous co breaks 

100 -2.843 -2.712 -2.680 -3.073 -2.766 -2.682 -2.889 -2.812 -2.752 
200 -2.654 -2.605 -2.563 -2.665 -2.717 -2.721 -2.773 -2.793 -2.722 
500 -2.652 -2.682 -2.588 -2.670 -2.792 -2.832 -2.883 -2.927 -2.928 
1000 -2.589 -2.566 -2.556 -2.752 -2.882 -2.887 -2.961 -3.044 -3.050 

Cobreaks in differences, not in levels 

100 -2.471 -2.450 -2.416 -2.504 -2.474 -2.465 -2.487 -2.496 -2.480 
200 -2.114 -2.124 -2.114 -2.212 -2.221 -2.221 -2.246 -2.234 -2.204 
500 -1.962 -1.937 -1.929 -2.015 -1.991 -1.905 -1.985 -1.949 -1.896 
1000 -1.854 -1.854 -1.853 -1.880 -1.764 -1.626 -1.755 -1.654 -1.624 

Cobreaks in levels, not in differences 

100 -2.890 -2.797 -2.784 -2.990 -2.796 -2.728 -2.889 -2.812 -2.752 
200 -2.712 -2.737 -2.771 -2.722 -2.778 -2.799 -2.773 -2.793 -2.722 
500 -2.686 -2.944 -2.932 -2.740 -2.894 -2.909 -2.883 -2.927 -2.928 
1000 -2.603 -2.999 -3.028 -2.837 -3.044 -3.111 -2.961 -3.044 -3.050 

Independent shocks 

100 -2.815 -3.079 -4.165 -3.144 -3.201 -4.391 -3.242 -3.471 -4.578 
200 -2.637 -2.720 -4.015 -2.868 -2.934 -4.553 -2.749 -3.033 -4.901 
500 -2.689 -2.706 -2.500 -2.652 -2.740 -3.055 -2.813 -2.941 -3.578 
1000 -2.587 -2.641 -2.720 -2.720 -2.863 -3.496 -2.882 -2.995 -4.089 

Shocks in Yt 

100 -2.808 -2.990 -3.187 -3.175 -3.201 -3.410 -3.007 -3.362 -3.580 
200 -2.629 -2.536 -2.938 -2.783 -2.770 -3.329 -2.770 -2.959 -3.539 
500 -2.670 -2.615 -2.746 -2.700 -2.739 -3.105 -2.855 -2.867 -3.358 
1000 -2.579 -2.598 -2.755 -2.728 -2.862 -3.286 -2.940 -2.879 -3.508 

Shocks in Zt 

100 -2.843 -2.712 -2.680 -3.100 -2.762 -2.661 -3.148 -2.971 -2.757 
200 -2.654 -2.605 -2.563 -2.783 -2.608 -2.532 -2.767 -2.877 -2.756 
500 -2.652 -2.682 -2.588 -2.663 -2.646 -2.521 -2.867 -2.824 -2.713 
1000 -2.589 -2.566 -2.556 -2.718 -2.687 -2.546 -2.894 -2.845 -2.802 

TABLE 9. Critical values. Model 3, BK Filter, 7r = 0.1 
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I 
a - 0.0 a - 0.5 a-loO 

T s-l s-6 s=16 s=l s=6 s=16 s=l s=6 s=16 I Simultaneous cobreaks 

100 -2.775 -2.813 -2.813 -2.810 -2.873 -2.850 -2.816 -2.729 -2.733 
200 -2.609 -2.622 -2.626 -2.589 -2.622 -2.615 -2.718 -2.656 -2.638 
500 -2.701 -2.658 -2.667 -2.580 -2.591 -2.594 -2.710 -2.666 -2.671 
1000 -2.664 -2.663 -2.663 -2.655 -2.590 -2.598 -2.770 -2.767 -2.763 

Cobreaks in differences, not in levels 

100 -2.503 -2.520 -2.527 -2.543 -2.502 -2.353 -2.481 -2.284 -2.249 
200 -2.171 -2.174 -2.174 -2.187 -2.231 -2.159 -2.196 -2.111 -2.111 
500 -1.987 -1.980 -1.975 -1.973 -2.043 -2.183 -2.018 -2.136 -2.198 
1000 -1.848 -1.858 -1.858 -1.865 -1.900 -1.887 -1.929 -1.934 -1.902 

Cobreaks in levels, not in differences 

100 -2.831 -2.727 -2.727 -2.835 -2.853 -2.850 -2.816 -2.729 -2.733 
200 -2.611 -2.576 -2.576 -2.627 -2.615 -2.615 -2.718 -2.656 -2.638 
500 -2.655 -2.599 -2.623 -2.574 -2.617 -2.560 -2.710 -2.666 -2.671 
1000 -2.621 -2.538 -2.538 -2.651 -2.600 -2.598 -2.770 -2.767 -2.763 

Independent shocks 

100 -2.789 -2.769 -2.769 -2.845 -2.942 -2.942 -2.876 -3.078 -3.070 
200 -2.611 -2.648 -2.648 -2.632 -2.737 -2.737 -2.739 -2.856 -2.831 
500 -2.683 -2.641 -2.641 -2.584 -2.645 -2.666 -2.729 -2.802 -2.770 
1000 -2.657 -2.634 -2.634 -2.668 -2.713 -2.713 -2.829 -2.855 -2.854 

Shocks in Yt 

100 -2.801 -2.760 -2.760 -2.818 -2.875 -2.873 -2.866 -2.958 -2.971 
200 -2.637 -2.652 -2.652 -2.633 -2.672 -2.678 -2.705 -2.767 -2.785 
500 -2.679 -2.661 -2.661 -2.600 -2.628 -2.631 -2.728 -2.744 -2.752 
1000 -2.644 -2.632 -2.632 -2.664 -2.696 -2.696 -2.808 -2.807 -2.793 

Shocks in Zt 

100 -2.775 -2.813 -2.813 -2.828 -2.849 -2.854 -2.890 -2.956 -2.956 
200 -2.609 -2.622 -2.626 -2.581 -2.684 -2.684 -2.741 -2.831 -2.831 
500 -2.701 -2.658 -2.667 -2.558 -2.593 -2.595 -2.712 -2.762 -2.742 
1000 -2.664 -2.663 -2.663 -2.668 -2.711 -2.710 -2.815 -2.830 -2.830 

TABLE 10. Critical values. Model 3, MD test, 7r = 0.1 
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Tables 35 ii 

a - 0.0 a = 0.5 a = 1.0 
I 

T 8-1 8-6 8-16 8-1 8-6 8-16 8-1 8-6 8-16 I Simultaneous cobreaks 

100 25.15 21.30 13.05 12.00 12.80 8.15 9.20 8.95 7.65 
200 73.40 58.10 61.55 50.90 51.50 51.50 39.30 38.65 39.30 
500 99.60 99.65 99.90 99.05 99.10 99.40 98.25 98.45 98.70 
1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Cobreaks in differences, not in levels 

100 2.20 3.90 6.00 1.40 2.15 3.25 1.70 2.10 1.55 
200 1.25 2.35 4.50 0.70 1.15 1.95 0.55 0.70 0.50 
500 0.05 0.25 1.55 0.05 0.00 0.25 0.05 0.05 0.05 
1000 0.00 0.25 2.85 0.00 0.00 0.90 0.00 0.00 0.00 

Cobreaks in levels, not in differences 

100 21.05 11.90 11.55 13.20 12.25 11.05 9.20 8.95 7.65 
200 68.90 46.45 40.45 51.70 43.80 41.50 39.30 38.65 39.30 
500 99.50 97.00 96.60 98.80 98.05 97.95 98.25 98.45 98.70 

1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
Independent shocks 

100 23.10 16.70 9.65 12.05 14.80 5.35 8.90 9.05 2.60 
200 73.05 64.45 29.40 45.10 56.10 19.75 40.45 38.15 10.15 
500 99.65 98.75 94.45 99.20 98.30 71.40 98.65 86.60 39.95 

1000 100.00 100.00 100.00 100.00 100.00 99.95 100.00 100.00 98.85 
Shocks in Yt 

100 22.70 17.05 3.20 10.75 12.75 1.95 8.65 8.40 1.15 
200 73.05 64.30 28.65 43.50 57.30 16.45 42.95 47.50 11.50 
500 99.65 98.80 94.45 99.40 97.50 67.20 98.85 85.65 37.85 
1000 100.00 100.00 100.00 100.00 100.00 99.90 100.00 100.00 98.75 

Shocks in Zt 

100 25.50 21.80 9.30 12.80 15.55 6.25 9.75 7.10 3.65 
200 73.90 70.75 40.15 48.85 50.35 20.60 41.90 28.65 9.65 
500 99.75 99.25 80.55 99.25 91.90 50.05 98.50 71.40 21.45 
1000 100.00 100.00 99.95 100.00 100.00 94.70 100.00 99.85 63.60 

TABLE 1l. Size adjusted power of the test. Model 3 HPlOO test, 7f = 0.1, b = -0.2. 
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36 Tables i 

a - 0.0 a - 0.5 
I 

a = 1.0 
T 8-1 8-6 8-16 8-1 8-6 8-16 8-1 8-6 8-16 I Simultaneous cobreaks 

100 52.25 48.15 47.45 28.10 29.60 34.60 22.20 26.25 27.80 
200 97.05 94.90 96.15 78.80 84.30 86.35 76.65 78.95 78.95 
500 100.00 100.00 100.00 100.00 100.00 100.00 99.95 99.95 99.95 

1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
Cobreaks in differences, not in levels 

100 0.95 1.70 3.75 1.05 0.85 1.25 0.85 0.50 0.30 
200 0.80 1.70 4.10 0.40 0.50 1.35 0.15 0.05 0.05 
500 0.15 0.80 2.90 0.00 0.00 0.55 0.00 0.00 0.00 
1000 0.05 0.55 3.50 0.00 0.00 0.60 0.00 0.00 0.00 

Cobreaks in levels, not in differences 

100 50.70 32.65 32.35 27.55 29.50 32.40 22.20 26.25 27.80 
200 97.15 82.15 78.75 82.30 80.10 78.90 76.65 78.95 78.95 
500 100.00 100.00 99.95 100.00 99.95 99.95 99.95 99.95 99.95 

1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
Independent shocks 

100 51.50 51.80 29.00 30.80 26.45 9.70 20.00 12.10 4.50 
200 97.20 97.40 87.25 78.75 82.60 43.90 75.30 58.45 20.25 
500 100.00 100.00 100.00 100.00 100.00 99.95 99.95 99.85 93.00 

1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
Shocks in Yt 

100 52.30 63.95 60.80 30.95 42.45 41.25 22.05 29.05 26.85 
200 97.20 99.25 99.70 76.80 93.25 96.90 78.55 81.85 90.75 
500 100.00 100.00 100.00 100.00 100.00 100.00 99.95 100.00 100.00 
1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Shocks in Zt 

100 51.90 40.75 15.60 29.55 24.60 8.70 23.65 10.80 5.05 
200 97.10 95.10 62.60 77.25 73.65 28.35 75.95 45.30 13.15 
500 100.00 100.00 98.60 100.00 99.90 80.20 100.00 95.10 44.65 
1000 100.00 100.00 100.00 100.00 100.00 99.50 100.00 100.00 85.45 

TABLE 12. Size adjusted power of the test. Model 3 HP10 test, 7r = 0.1, b = -0.2. 
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Tables 37 i 

I 
a = 0.0 a = 0.5 a = 1.0 

T 8-1 8-6 8=16 8=1 8=6 8-16 8-1 8=6 8=16 I Simultaneous cobreaks 

100 76.65 83.15 94.90 44.55 51.55 73.70 24.30 24.15 26.40 
200 99.80 99.50 99.70 94.60 96.00 98.20 76.15 74.70 78.85 
500 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
Cobreaks in differences, not in levels 

100 1.80 3.00 5.40 0.80 0.70 1.05 0.15 0.10 0.05 
200 1.35 3.50 6.15 0.20 0.15 0.80 O'°ot 0.00 0.00 
500 0.40 1.75 5.20 0.05 0.05 1.10 0.00 0.00 0.00 
1000 0.05 0.90 4.20 0.00 0.05 0.65 0.00 0.00 0.00 

Cobreaks in levels, not in differences 

100 73.35 41.15 27.60 39.00 30.25 28.55 24.30 24.15 26.40 
200 99.60 92.70 82.70 92.25 84.35 77.00 76.15 74.70 78.85 
500 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Independent shocks 

100 77.70 77.75 27.30 43.50 47.90 9.65 28.25 19.00 3.65 
200 99.80 99.45 91.85 93.70 93.75 75.85 84.65 71.65 47.75 
500 100.00 100.00 100.00 100.00 100.00 99.00 100.00 99.45 80.40 
1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Shocks in Yt 

100 78.35 83.40 98.15 45.45 62.95 97.10 26.45 66.00 96.25 
200 99.70 99.85 99.95 93.95 98.85 99.85 82.75 97.95 99.95 
500 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Shocks in Zt 

100 76.90 70.05 27.15 45.95 35.70 12.65 25.95 14.40 5.75 
200 99.85 99.25 79.45 93.20 85.00 40.50 80.60 50.95 13.90 
500 100.00 100.00 99.95 100.00 100.00 89.05 100.00 96.90 52.45 

1000 100.00 100.00 100.00 100.00 100.00 99.80 100.00 100.00 87.60 

TABLE 13. Size adjusted power of the test. Model 3 BK test, 1f = 0.1, b = -0.2. 
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·38 Tables i 

a = 0.0 a = 0.5 a = 1.0 
I 

T 5-1 5-6 5-16 5=1 5=6 5-16 5=1 5=6 5-16 

I Simultaneous co breaks 

100 88.25 85.35 57.10 58.75 53.60 33.70 33.95 35.40 35.30 
200 99.70 99.75 98.10 97.80 97.65 94.65 85.80 89.10 89.75 
500 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Cobreaks in differences, not in levels 

100 3.20 3.35 3.25 1.25 1.55 1.10 0.50 0.35 0.25 
200 2.05 2.20 2.15 0.80 0.75 0.55 0.05 0.05 0.05 
500 0.30 0.35 0.35 0.05 0.20 0.15 0.00 0.00 0.00 
1000 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cobreaks in levels, not in differences 

100 86.90 86.60 86.50 56.45 54.25 54.25 33.95 35.40 35.30 
200 100.00 99.95 99.95 97.10 97.45 97.45 85.80 89.10 89.75 
500 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
Independent shocks 

100 86.70 84.90 84.75 58.85 57.25 57.35 31.90 29.75 30.25 
200 99.70 99.60 99.65 97.05 94.90 94.95 85.05 80.20 81.60 
500 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Shocks in Yt 

100 87.05 87.25 87.25 59.60 57.60 57.80 30.70 32.00 32.15 
200 99.65 99.60 99.60 96.95 96.45 96.35 85.90 86.20 86.10 
500 100.00 100.00 100.00 100.00 100.00 100.00 99.95 99.95 99.95 
1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Shocks in Zt 

100 88.30 86.30 86.25 57.10 59.05 58.65 31.15 30.75 30.90 
200 99.65 99.75 99.75 97.75 96.50 96.50 85.25 80.55 80.50 
500 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.95 99.95 
1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

TABLE 14. Size adjusted power of the test. Model 3 MD test, 7r = 0.1, b = -0.2. 
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Tables 39 I 

I 
a = 0.0 a = 0.5 a = 1.0 

T s-l s-6 s_16 s-l 8-6 s-16 8-1 s-6 s-16 I Model 2 

100 5.35 6.30 13.95 7.55 17.55 16.45 10.05 3S.90 19.25 
200 6.05 7.75 30.S5 7.00 19.40 37.45 10.95 43.10 50.15 
500 5.05 3.25 1.25 6.65 16.35 10.75 7.35 34.S0 33.30 
1000 5.35 3.40 3.60 6.45 16.S0 20.45 5.50 21.75 43.55 

Model 3, HPI0 

100 4.75 3.45 2.50 4.95 2.00 2.00 4.15 1.65 2.05 
200 5.60 4.35 4.90 3.75 1.95 4.05 4.75 2.15 4.55 
500 5.00 4.90 7.20 4.70 2.95 9.35 6.10 5.00 15.40 
1000 5.10 6.00 11.00 4.75 3.35 13.S0 5.50 5.40 21.S5 

Model 3, HPI00 

100 5.S5 3.70 1.95 5.05 1.70 0.65 4.50 1.55 0.40 
200 5.60 5.15 4.35 5.00 3.90 2.20 7.10 6.75 3.70 
500 5.30 5.35 5.20 6.40 3.50 3.40 6.65 5.10 3.S5 
1000 5.35 4.95 5.35 6.05 4.15 4.45 6.15 5.00 5.15 

Model 3, BK filter 

100 3.95 7.20 34.75 5.60 7.00 41.10 6.65 10.00 4S.55 
200 4.65 5.S0 22.15 5.90 6.S5 34.15 4.65 9.35 45.70 
500 5.05 5.25 3.75 4.S0 5.S0 11.35 3.S5 5.55 lS.65 
1000 4.S5 5.S5 7.50 4.65 5.S5 16.70 4.00 5.50 26.10 

Model 3, MD filter 

100 5.55 5.25 5.25 5.35 6.50 6.50 5.10 7.60 7.60 
200 4.90 5.20 5.20 5.20 6.30 6.25 5.25 6.40 6.40 
500 5.15 4.90 4.90 5.15 6.25 6.30 4.90 5.S0 5.50 

1000 4.S5 4.35 4.35 5.25 5.90 5.90 5.40 6.15 6.25 

TABLE 15. Robustness against outliers. Rejection frequencies when the model is 
simulated with DGP (5.1a)-(5.lf) with independent shocks in variables Yt and Zt 

with 7r = 0.1 under b = 0, using critical values obtained in Table 1. 


