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ABSTRACT 

The efficient combination of directions is a significant problem in line search 
methods that either use negative curvature, or wish to include additional in­
formation such as the gradient or different approximations to the Newton 
direction. 
In this paper we describe a new procedure to combine several of these directions 
within an interior-point primal-dual algorithm. Basically, we combine in an 
efficient manner a modified Newton direction with the gradient of a merit 
function and a direction of negative curvature, if it exists. We also show 
that the procedure is well-defined, and it has reasonable theoretical properties 
regarding the convergence of the method. 
We also present numerical results from an il11plementation of the proposed 
algorithm on a set of small test problems from the CUTE collection. 
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1 Introduction 

Our goal is to describe a procedure to combine search directions in algorithms that compute local solutions 
for nonlinear optimization problems of the form 

minx 
s.t. 

f(x) 
c(x) = 0 
x 2: 0, 

(1) 

where f : JR" --> JR and c : JRn --> JRm, and we assume all functions to be at least twice continuously 
differentiable. 

Standard procedures for computing these solutions are based on solving local approximations to 
the problem at successive iterates Xb and using the solutions for these approximations as the next 
iterates. This basic scheme is complicated by the need to ensure global convergence for the resulting 
algorithm, attained basically through the use of trust-region schemes or searches along a parametrized 
line or curve (linesearch methods); we will concentrate on procedures. that are based on this second 
alternative. Standard algorithms in this class (see for example Fletcher [13], Gill et al. [17]) rely on some 
modified version of the Newton direction and compute the next iterate on the unidimensional subspace 
generated by this direction. In some cases, it may be useful or efficient to take into account additional 
information to determine this next iterate. For example, the use of directions of negative curvature is 
needed to ensure the convergence of the algorithm to second-order KKT points, while perhaps improving 
the efficiency of the algorithm. The use of additional descent information, obtained from the gradient, 
for example, may provide more robust algorithms and may yield better iterates, particularly away from 
the solution. Our goal is to derive a procedure that, by taking into account additional search information 
in an efficient manner, requires a reduced number of iterations to obtain a solution for problem (1), with 
a consequently reduced computational cost. 

Although these directions might be used in the line searches independently of each other to generate 
the sequence of iterates, it seems more efficient to combine them before computing the next iterate. 
IvIany proposals based on these ideas can be found in the literature. For example, the dogleg method 
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(see Dennis and Schnabel [9], for example) combines the gradient and Newton direction in an attempt 
to mimic the behavior of trust-region methods. More and Sorensen [21J proposed a procedure to find the 
next iterate from a direction of descent and one of negative curvature by following a quadratic curve on 
the subspace spanned by both directions. 

In this paper we present a proposal based on the approximate solution of a system of ordinary 
differential equations. This idea was first proposed in Courant [8]; other related proposals can be found 
in Behrman [1], Botsaris [4J, Schropp [22] and Zang [27J for the unconstrained case, and Evtushenko 
and Zhadan [11] for the constrained case. Our proposal is most closely related to that in [1] for the 
unconstrained ca.."le, where the iterates were found by constructing a Krylov subspace in each iteration, 
performing a standard univariate search on the steepest descent curve defined on this subspace. We apply 
similar ideas to the combination of the search directions in a constrained optimization setting. 

The main difficulty when combining the different search directions arises from the differences in the 
scales of these directions. While the Newton direction is in general well scaled (a step of one is reasonable 
in many cases), this is not true either for directions of negative curvature or for the gradient direction, 
our choices of additional search directions. One alternative to overcome this difficulty would be to carry 
out a search on the reduced-dimension subspace spanned by these search directions. Byrd et al. [6] 
compute the next iterate from a linear combination of a direction of negative curvature and a gradient 
direction, and these coefficients are obtained as the solution of a two-dimensional trust-region problem. 
Nevertheless, most proposals in the literature reduce first the search to a univariate one, to attain greater 
computational efficiency. This will also be our approach; we will construct a curve in the subspace 
generated by the directions of interest: descent direction, negative curvature and b'Tadient. A reasonable 
curve in this subspace would be the one that corresponds to the trajectory having the steepest descent 
at each point; this trajectory would lead to a local solution at the fastest rate, measured ill terms of the 
objective function. Unfortunately, this curve is in general very expensive to compute, and we will satisfy 
ourselves with constructing a steepest descent curve based on a simple (quadratic) local model of the 
problem. The next iterate will be obtained as a point on the curve providing sufficient descent for an 
appropriate merit function. 

This proposal will be introduced as part of a complete algorithm for the solution of problem (1) l based 
on a primal-dual interior point method and the use of an augmented Lagrangian merit function. The 
method computes approximate solutions for a sequence of barrier problems of the form 

minx 
s.t. 

J(x) - Li(JLJ.;)i log Xi 

c(x) = 0, 
(2) 

where Itk -+ 0, see Fiacco and fvIcCormick [12], Wright [24J for a theoretical analysis of these procedures. 
Note also that we use a vector of barrier parameters JL ERn. 

In each iteration, the algorithm computes a descent direction and a direction of negative curvature for 
problem (2), if it exists. These directions and the gradient of an augmented Lagrangian merit function 
(see Bertsekas [2]) 

(3) 

are then combined to generate a new iterate that provides sufficient decrease for this merit function. This 
merit function has been extensively used in optimization packages, see for example Conn et aL [7J. 

The rest of the paper is organized as follows: In Section 2 we describe the general algorithm to 
compute a local solution for problem (1). In Section 3 we motivate and describe the proposal to combine 
the directions generated by the algorithm to obtain the next iterate. In Section 4 we justify some basic 
properties of this procedure, such as for example that it is well-defined, and that sufficient descent can 
be achieved in each iteration. Finally, Section 5 gives the general structure of the algorithm, discusses 
some implementation issues and presents and comments some computational results on a set of small 
test problems. 

2 The interior-point algorithm 

Our main goal is to explore an alternative procedure for the combination of search directions in a line­
search based algorithm. In this regard, we are interested in determining the impact this approach may 
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have in the practical behavior of a nonlinear optimization algorithm. As a consequence, we will introduce 
an algorithm that uses the combination procedure of interest, but that also computes efficiently the 
required search directions. This algorithm is based on a primal-dual interior point approach to generate 
the search directions, and uses an augmented Lagrangian merit function to ensure global convergence. 
An iterative algorithm of this sort carries out three main tasks in each iteration: i) Compute search 
directions at the current iterate. In our case we will obtain a descent direction and a direction of negative 
curvature from the KKT system of linear equations, in addition to the gradient of the merit function. ii) 
Combine the directions to obtain the next iterate. Hi) Update the parameters in the algorithm. 

Section 3 will be devoted to our main goal, the description of the combination of directions, while 
in this section we will describe those issues related to the first and third items, providing only the basic 
details of the procedures implemented in the algorithm. Additional information can be found in Moguerza 
and Prieto [20]. 

2.1 Computing the search directions 

In the proposed algorithm we solve a sequence of problems (2) such that /-Li ---+ 0 for all i, following [12]. 
The search directions are obtained from the application of Newton's method to the primal-dual equations 
for problem (2), 

where E diag(a). 

'Vf(x) - 'VcT(x), - a 
c(x) 
Ex 

0, 
0, 
/-L, 

(4) 

Newton's method provides search directions dx . d>. and da , corresponding to update directions for the 
variables x, ,\ and a respectively. From the first-order Taylor series expansion for the primal-dual KKT 
conditions (4) about the current values x, ,\ and a, the resulting system of linear equations defining the 
search directions is (we omit the dependence on the variables to simplify the notation): 

(5) 

where H 'VixL(x, ,\), L(x,'\) is the Lal,'Tangian fUllction, that is, L(x,'\) = f(x} _),T c(x), X = diag(x) 
and I denotes the identity matrix. From the last set of equations in (5), we have 

(6) 

Replacing (6) into the first two sets of equations in (5), the movement direction ax can.be computed 
as the solution of the symmetric system 

(7) 

where K is defined as 

( 
G vcT

) 
K = 'Vc 0 ' (8) 

for G H + Any ill-conditioning that might arise from the diagonal terms in G is benign, see 
Wright [25] for example. 

The direction obtained from (7) may fail to provide descent for any reasonable merit fUIlction, for 
example when the iterates are close to a stationary point that is not a minimizer. "Ve adapt system (7) to 
ensure that the direction dx is a sufficient descent direction. The modified system that we use to define 
these search directions is 

(9) 
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where its coefficient matrix (and Gp in particular) is computed from a modification of 

K = (Gp 
p Vc (10) 

for Gp = V;'xL(x, A - pc) + X-1L:. 
An appropriate matrix Gp for (9), such that Z];GpZA is positive definite, can be generated in the 

process of factorizing Kp, where ZA has columns that form a basis for the null-space of Ve(x). A modified 
Choleski factorization of the reduced Hessian Z]; G pZA could be used, as in Gay et al. [15]. This approach 
requires forming explicitly the reduced Hessian, and as a consequence it is only useful for problems in 
which this reduced Hessian is not too large. We have chosen to use a version of the symmetric indefinite 
factorization, see Bunch et al. [5] for example, incorporating the modifications proposed in Forsgren and 
Murray [14]. This alternative is able to obtain the desired modification for the reduced Hessian directly 
from system (9), it allows the computation of appropriate directions of negative curvature, as we will 
indicate below, and it can be applied to medium-sized and large problems. Additional details of the 
computation of these directions and the factorization used in the algorithm can be found in [14, 20]. 

We would also want to satisfy the necessary second-order condition at any limit point. For problem 
(2) this condition requires that 

(11) 

where M is a diagonal matrix with entries those of Jl, that is, M = diag(Jl). We will use directions of 
negative curvature to avoid converging to points that do not satisfy (11), but as the direction of negative 
curvature will be used to obtain iterates that decrease the merit function (3), we also need to ensure that 
such a direction will be appropriate for our merit function. A direction of negative curvature Ii" for our 
algorithm should lie in the subspace spanned by the columns of ZA and should satisfy 

(12) 

As we will justify in Section 3, in our case the choice of an appropriate sign for dn (to ensure descent, 
for example) is not relevant, as the search for the next iterate will be performed on a subspace spanned 
by a combination of directions including dn , and the combination chosen by the algorithm will take the 
best sign into account automatically. 

This direction dn (assuming that it exists) is computed from the same symmetric indefinite factoriza­
tion used to obtain the descent direction dx from (9). Let Kp be the matrix defined in (10), and assume 
that its symmetric indefinite factorization Kp = UT DU has been computed using the algorithm in [14]. 
Assume also that from the factorization it has been determined that this matrix has more than m nega­
tive eigenvalues, implying that Z];GpZA has at least one negative eigenvalue. Let P be the permutation 
matrix associated with the pivoting choices in the factorization algorithm and define w = Pw, where tu 
satisfies 

(U~l ~~~) ( ~~ ) = ±V-Arnin(D2) ( uOA ), (13) 

for a partition of U and D such that D1 and Ull correspond to all the pivots taken from elements of 
Vc, Amin(D2 ) denotes the most negative eigenvalue of D2 and U A is a unit eigenvector corresponding 
to this smallest eigenvalue. The direction of negative curvature dn is defined as the first n components 
of w. Additional details can be found in [14]; in particular, it is shown there that Vc{x)dn = 0, and 
consequently dn lies in the correct subspace. Also, there exist positive constants k1 and k2 such that 

and 

The direction of negative curvature computed from (13) will satisfy 

If a - X -1 Jl is sufficiently small and the constraints are close to zero, Gp will be close to the Hessian of 
the Lagrangian of (2) and the direction dn computed using the preceding procedure will be a direction 
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of negative curvature for the merit function LA(x, A; p), given that "ilcdn = O. As in general 0' - X-I JL 
may not be small, each time a direction of negative curvature is computed we will also check if (12) is 
satisfied. If this is not the case, the direction of negative curvature d" will not be used. 

A third search direction that will be used to generate the next iterate will be the gTadient of the merit 
function, defined as 

dg = "il f - X-IJL - "ilcT(5. - pc), 

where 5. and p will be defined later on. 

2.2 Updating the parameters 

(14) 

In each iteration the algorithm must update the different parameters involved in the specification of 
the barrier subproblems (2) and the merit function (3). In the following paragraphs we describe the 
procedures used to change the multiplier estimates and the barrier parameters. 

2.2.1 The multipliers 

Two sets of dual variables are generated by the algorithm, the equality constraint multipliers A and the 
approximations to the multipliers for the bound constraints 0'. The multipliers A will be updated using 
d).. from (9), as described in Section 3. 

The solution of the Newton equations (5) provides a search direction for the lIlultipliers 0', cia, defined 
in (6). These dual variables will be updated from 

The only restriction on the values of the dual variables is their non-negativity. The scalar ad is chosen 
as the largest reasonable value that satisfies this condition, as follows. Let 

ad = min (Tmin ( (~:~:i I (da)i < 0) ,1) , (15) 

where T is defined as 

T = max(0.995, 1 - IIJlI12)' (16) 

This definition is introduced to ensure reasonable local convergence properties for the algorithm, see 
Yalllashita and Yabe [26]. 

2.2.2 The barrier parameters 

The vector of barrier parameters in (2) is also updated ill each iteration. The updating rule is based 
on the relationship between the satisfaction of the first-order conditions, the complementarity conditions 
and the previous values of the barrier parameters. Let F(x, A, 0': p) be a measure of the satisfaction of 
the first-order KKT conditions for problem (1) at the current iterate, that is, 

set 

and define y = X 0'. 

( 

"ilf(x) - "ilc(x)T(A - pc) ~ 0' ) 

F(X,A,U;p) = c(x) , 
~x 

e = { IIF(x,A,Ujp)112 
IIF(x, A, 0'; p)ll~ 

if IIF(x,A,U;p)1I2 2:: I, 

otherwise, 

(17) 

(18) 

The new value for JL is chosen to ensure a reasonably uniform allocation of the distance from optimality 
taking into account each complementarity gap. These new values are obtained, in a manner similar to 
the procedure ill [20], from the solution of the problem 

minI" 
S.t. 

~JLT P. 
yTp. = e 

JL 2:: O. 
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This solution is given by IJ* = wy, where w = OJ(yTy ). Definition (18) has been introduced to prevent 
IJi from becoming too large when far from a KKT point. On the other hand, if Yi is small then IJ; may 
become too smalL To avoid this situation we compute a reference value /1, similar to that in EI-Bakry et 
aL [10], 

and define the new value of IJ at iteration k as 

(20) 

where lik = min(0.25,exp(-(1/0k))) and Ok is given by (18). Note that IJi will not be decreased in 
every iteration, but only when a sufficient reduction in the satisfaction of the KKT conditions has been 
achieved. This definition of IJ ensures that IJ -> 0 if problem (2) has a solution. 

3 The computation of a new iterate 

\Ve now describe how to combine in an efficient manner our search directions: descent dx , negative 
curvature dn (if it exists) and gradient dg . Classical line search methods compute a direction of movement 
(dx , d>.) and a scalar 0 such that the next iterate (x + odx , ). + od>.) provides sufficient decrease for an 
appropriate merit function. This approach works quite well in practice whenever there is a single search 
direction dx • In our case we may have up to three search directions at a given iteration, and the preceding 
procedure must be modified to take into account that we search for the next iterate on a subspace of 
dimension three, as opposed to the univariate classical approach. Following our previous discussion, we 
proceed first by combining these directions into a trajectory of points of interest, and we then perform a 
conventional univariate search (a backtracking search) on this trajectory. 

3.1 Combining the search directions 

In the unconstrained case, and given our three search directions, it would seem reasonable to select the 
new iterate as a point on the trajectory defined by the steepest descent of the objective function from 
the current iterate, see [lJ for example. For our constrained problem (2), we have chosen to apply these 
ideas to our merit function (3). In particular, we construct this trajectory from the gradient field of the 
lIlerit function starting from a given iterate Xk; it will be given by the solution of the system of ordinary 
differential equations (we omit the iteration subscript to simplify the notation) 

i'(t) -VLA(x+,(t),'\;p), ,(0)=0, (21) 

where the reference value for the multipliers, '\, and the penalty parameter value, p. will be defined later 
on. 

Computing this trajectory is too expensive for most practical cases; we will restrict ourselves to solving 
an approximation to it, in the following two senses: 

• We will approximate locally the right-hand side of (21) by a linear function, to obtain a linear 
system of ODEs, having a closed-fomI solution . 

• \Ve will also restrict ourselves to those points lying on the subspace spanned by our three search 
directions, to reduce the dimension of the problem and to limit the computational cost. 

The ODE that defines the modified trajectory f3(t) on the two- or three-dimensional subspace of 
interest wi111mve the fonowing form: 

where B denotes all orthonormal basis for the subspace spanned by the search directions and dg = 
V LA(;!',,),; p). The matrix W will be either Gp as defined in (10), whenever a direction of negative 
CUl'Yature is available, or Gp if it is not or has been discarded. 
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If we introduce the notation H = BT(W + p'VcT'Vc)B and 9 = BT dg , we can obtain a closed-form 
solution for this ODE. If this solution is transformed back to the full space, we obtain the trajectory of 
interest, 1(t), given by: 

1(t) = B{3(t) = BH- 1 (exp(-Ht) - I) g. (22) 

Note that the computation of this trajectory requires only the determination of the exponential of a 
square matrix of dimension two or at most three. 

Interior-point methods ensure the positivity of all iterates, to guarantee that the objective function in 
(2), and in particular its barrier term, is well defined in each iteration. As a consequence, the trajectory 
defined by 1(t) must be transformed into another trajectory that lies within the strict interior of the 
positive orthant. In our algorithm, this is achieved by projecting each point on the trajectory (22) onto 
the simple bounds, 

i(t) = 0:(t)1(t), 

where the scalar o:(t) is chosen for each t as 

o:(t) = min { 1, T min { -~;(t) i1;(t) < o} } , (23) 

and T is defined as in (16). 
The next step would be to determine an acceptable value for the parameter t in i(t). As we will show 

in Section 4, when H is positive definite we have 1(t) --+ -BH-1g = dx , a reasonable step, as t -+ 00. As 
a consequence, we may need to handle infinite values of the parameter t to determine the next iterate. 
To avoid the complications associated with these values, the curve is reparametrized so that points of 
interest, such as this Newton step, can be found by moving a finite distance along i. 

"Ve have chosen to use the following reparametrization, see for instance [1, 19], 

{

-I 
S = fm (e-6mt 

- 1) if Om =1= 0, 

if Om = 0, 
(24) 

where Om ~ ... ~ 61 are the eigenvalues of H. Under this reparametrization, if 6m > 0 then S E [0,1/6m ]. 

3.2 Computing the step 

Once the trajectory i(s) has been computed, we obtain the next iterate ill the variables .r: from an 
appropriate step along the curve, XI,;+l = XI,; + i(s). The value of 8 is chosen to ensure sufficient descent 
for our merit function, and it is found by performing a backtracking search starting at 80 = 1/6m . We 
determine the step Si as the first value in the sequence {SO/2i }~o that satisfies the following sufficient 
descent condition: 

LA(x +i(s),>,;p) ~ LA(x,>.;p) - aSill'VLA(x,>.;i5)112. (25) 

The scalar a has been chosen as a small value a E (0,1). 

3.3 The multiplier estimates 

The value of >. in (21) should be defined to ensure that the sequence of iterates in the algorithm is 
associated to a decreasing sequence of values for the merit function, to guarantee the global convergence 
of the algorithm. This value is kept fixed at all trial points in the trajectory. For the search of the new 
iterate we define 

if d" =1= 0 
otherwise, 

(26) 

In practice. this approach may not be satisfactory for all iterations. At the end of the search procedure. the 
next iterate ).,1,;.'-1 is defined as >., if there is no negative curvature, the step So is accepted and 0:(80) 2: 0.95. 
Otherwise, we use an approach similar to [15]: the value of ).,k+1 is chosen as the least-squares estimate 
at the accepted step. 
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3.4 Adjusting the penalty parameter 

The traditional role of the penalty parameter in a merit function that includes penalty terms, such as 
(3), is to enforce convergence to points satisfying the constraints c(x) = O. Although the use of the 
Newton direction should generate iterates that satisfy feasibility in the limit, if the penalty parameter 
is not chosen to be sufficiently large, the Newton direction may not be a descent direction for the merit 
function and no valid step will be found. 

In the proposed algorithm, the combination of directions to define the trajectory 'Y(s) automatically 
ensures that sufficient descent will be available at all iterates. As a consequence, the penalty parameter is 
used to attain other reasonable properties for the search trajectory. In particular, we wish to ensure that 
the Newton step will belong to the trajectory whenever there is no negative curvature in the null-space 
of the constraints at the current iterate. Note that this may not be true in all cases; a sufficient condition 
will be that the matrix iI is positive definite, as we will show in Section 4. 

The absence of negative curvature in the null-space of the constraints c implies that the matrix W 
(that is, Gp in (9) or Gp if the existing negative curvature was discarded) is posit.ive definite on the 
subspace spanned by ZA. For the trajectory (22) we would need iI to be positive definite, that is, the 
Hessian W +p\lcT\lc should be positive definite on the subspace spanned by the columns of B, for some 
value of the penalty parameter 15 chosen to enforce this property. 

If we assume that \le has full row rank, iI will be positive definite for large enough values of p. Note 
that W will be positive definite in the subspace spanned by ZA, while \lcT\lc will be positive definite 
on the orthogonal subspace. If we denote by W = BTW Band j = BT\lcT\lcB, we need W + pj to be 
positive definite. As in this case there is no direction of negative curvature, the matrices Wand j have 
dimension 2, and the eigenvalues of W + pJ can be found as the roots of a low-degree polynoIllial in p. 
The value of p is chosen to be larger than the largest root of this polynomial, or zero if it is negative, and 
Pk-rl = p. 

4 Properties of the search 

In this section we present some basic properties of the procedure to compute the next iterate. Our aim 
is not to provide any convergence proof for the algorithIll; a detailed proof of this sort will be a matter 
for a different paper. We only wish to establish t.hat. the procedure to combine the search direct.ions is 
well defined, and has reasonable properties regarding the global convergence of an algorithm that uses 
appropriate search directions and parameter updates. 

We will assume that certain propert.ies are sat.isfied by the functions defining problem (l) and the 
iterates generated by the algorithm. A global convergence proof would be the subject of a separate paper, 
but it should include some of these assumptions and prove that the algorithm satisfies the others. 

A.I The iterates Xk generated by the algorithm remain in a compact set, C C lR~. 

A.2 The functions f and c have continuous second derivatives in C. 

A.3 For a given value of the barrier parameter /1k, the iterates Xk are bounded away from zero, Xk ~ 
(3(/1k) > 0, where (32(/1k)/II/1kll ~ 6 > O. 

A.4 The multiplier estimates>. remain bounded in norm at all iterates. 

vVe wiII ignore the iteration subscript in what follows. whenever the context is clear. We start by 
establishing that the algorithm is well-defined. 

Lemma 1 At any iteration k, the search described in Section 3 finds a step satisfying (25) in a finite 
number of iterations. 

Proof. From the continuity of 'Y(t), 'Y(O) = 0 and assumption A.3 there will exist a value t(/1k) > 0 
such that a(t) defined in (23) takes the value one for all t E [0, l(ltd). From the reparametrization in 
(24) and this property, there will exist a value S(/1k) > 0 such that -res) = 'Y(s) for all sE [0, s(p.d). We 
will only consider these values of s in what follows. We will also omit the iteration subscript k to simplify 
the Hotation. 
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From the definition of the function LA in (3), the definition of the curve (22), the reparametrization 
(24) and the Taylor series expansion around s = 0 we have 

- - - T d s2 (d )T 2 - d 
LA(x + 1(s), A; 15) - LA(x, A; 15) = s'\1 LA(x, A; 15) ds 1(0) +"2 ds 1(0) '\1 LA(x, A; 15) ds 1(0), 

where i: = x + (1(s) for some (E [0,1] and 

Note that B has columns that form an orthonormal basis for a subspace spanned by '\1 LA(x, 5.; 15) and 
other directions. This implies BBT'\1 LA(x, 5.; p) = '\1 LA(x, 5.; 15). As a consequence, 

LA(x + 1(S), 5.; p) - LA (x, 5.; p) + O"s 11 '\1 LA(x, 5.; 15)11 2 

2 

-(1- 0")sll'\1LA(x,5.;P)112 + s2 '\1LA(x, 5.; 15f'\12 LA(x,5.;15)'\1LA(x, 5.;15). (27) 

If 0" < 1, the desired result follows from this relationship. D 
To prove global convergence for an algorithm based on this search we should have sufficient descent 

on the merit function in every iteration, this function should be bounded below and we would also need 
the value of the parameter s to be bounded away from zero. As we show in Lemma 2, this last property 
follows from the same arguments as the preceding derivation. 

Lemma 2 The step s along the curve in each 'iteration is bounded away from zem by a positive value, 
s ~ S > O. 

Proof. From the fact that B has orthonormal columns and assumptions A.l to AA, it follows that 
there will exist a positive constant 13 such that 

The dependence on {t is a consequence of the terms AI X- 2 in '\12 LA(i:, 5.; 15) and assumption A.3. 
Given this bound, from (27) it will follow that 

LA(x + 1(s), 5.;15) - LA(x, 5.; 15) - O"sll'\1 LA(x, 5.; 15)11 2 < 0 

for all s E (0, s), where 
_ (1-0") 
s= ----. 

!3 
As a consequence of this result and the backtracking search implemented in the algorithm, the computed 
step will satisfy 8 ~ S == (1 - 0")/(213). D 

\Ve will prove a last result in this section, related to the desirable local convergence properties of the 
algorithm. We show that if the initial trial value 80 is accepted, in that iteration we update the variables 
using the Newton direction. As a consequence, the super linear convergence of the algorithm will follow 
from this result if we are able to accept this step and we update tJ appropriately. Lemma 3 is an extension 
of a similar result for unconstrained problems in [1]. 

Lemma 3 In those iterations where no negative C'UT"Uat'UT'e is 'used and the multiplier' estimate 'is taken 
as A + d>., if !imt_oo a(t) = 1 and 15 has been chosen as indicated in Section 3.4, we have 

lim 1(t) = 1(so) = d,". 
t-+oo 
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Proof. From the condition Iimt-+oo a(t) = 1, it will be enough to show that if no negative curvature 
is used then lim1(t) = dx • In this case we have W = Gp, a positive definite matrix, and ,.\ = A + d),. 
From (22), as p has been chosen to ensure that fI is positive definite, 

Hm 1(t) = lim BII- 1 (exp( -fIt) - I) g = -BfI- 1g. 
t-+oo t-+oc; 

From (9) we have 
(W + (ivcT\lc)d x = -\lLA(x,A +d)..;p), 

and using the definitions of fI and g, as B has columns that form an orthonormal basis for a subspace 
containing dx , implying BBT dx = dx , we obtain 

o 

B(BT(W + p\lcT\lc)B)-1 BT(W + p\lcT\lc)dx 

BBTdx = dx . 

5 Implementation and numerical results 

5.1 The algorithm 

We present a scheme of the proposed interior point algorithm (Gradient Flow Interior Point Method -
GFIPM), summarizing those aspects described in the previous sections. 

Algorithm GFIPM 

Choose initial values for xo, AO and (10. 

Choose initial values for the scalar Po and the vector 110 
Set k 0 
repeat 

Compute dx and d), fmm (9) using the factorizat'ion described in [14j, and dIY from (6) 
Compute, if it eX'ists, dn , a direction of negative curvature fmm (13) 
Set dn 0 if (12) is not satisfied 
Comp~de p fmm the proceduTe in 3.4 
Comp~tte ,.\ from (26) 
Compute s using a backtracking search until (25) is satisfied 
Xk+l = Xk + .:y(s) 
Update Ak+l from Ak and d), using the pmcedure in 3.3 
Compute ad from (15) 
(lk+l = (lk + add('f 

Compute the updated barrier vector I1k+l from (20) 
Pk+I P 
k=k+l 

until convergence 

5.2 Numerical results 

We have conducted a set numerical experiments on a collection of test problems using algorithm GFIPM. 
The algorithm has been implemented and the tests have been carried out in MATLAB. The test set we 
ha\'e considered is composed of 140 small problems from the CUTE collection, see Bongartz et aL [3]. 
selected from those llonlinear constrained problems having less than 100 variables and continuous deriva­
tives (note that exact first and second derivatives have been used), The algorithm has been implemented 
to include both lower and upper bounds in the barrier terms. 
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Whenever possible, the initial points given in CUTE have been used. Sometimes these initial points 
do not satisfy the bound constraints. Such points have been transformed following a strategy similar to 
that described in Vanderbei and Shanno [23]. Table 1 shows the results obtained by GFIPM for these 
problems. The termination criterion used has been 

IIF(x,>.,a;p)ll:S /::(1 + IIV'f(x)ll), 

where f = 10-8 , except for problems DISC2 and HS91, where f = 10-7. 

The columns in the table correspond to: 

• Prob.: problem name. 

• Const.: norm of the constraint vector, Ilc(x)ll, at the solution, including slacks. 

• KKT: norm of the first-order KKT conditions at the solution, IIF(x, >., a; p)ll. 

• Iter.: iteration count (number of factorizations of the primal-dual system). 

• Eval.: number of evaluations of the objective function and the constraints. 

• NC: number of iterations in which directions of negative curvature were used. 

In those cases where negative curvature was detected the problem was solved a second time, setting 
the direction of negative curvature to zero. Table 1 includes two lines for those problems, one for the 
results from each of the two versions of the algorithm. 

5.3 Analysis of the results 

The algorithm was able to solve all problems but one, problem HS13 (that does not satisfy a constraint 
qualification at the solution). For some of the problems the code finds better local minimizers than those 
given in [18] (this happened for problems HS105, HS106, HS107, HS112 and HS116), while for other 
problems these local minimizers are worse (HS59, HS70, HS97, HS98 and HSI08). Problem HS99 is an 
example of a badly scaled problem. The termination tolerance is satisfied when the norm of the first-order 
KKT conditions is 0.4994. Introducing a more demanding stopping criterion (a tolerance of 10- 14 ), the 
norm of the KKT conditions goes down to 10-6 after 3 additional iterations. but the value of the merit 
function remains basically unaltered. 

In genera\. the number of iterations required to solve the problems is fairly small. The number of 
function evaluations is higher, but no particular care was taken when implementing a strategy to find a 
value of the parameter 8 that satisfied (25); a standard backtracking search was used. It is also interesting 
to note the large number of cases in which a step 80 (the equivalent to a unit step) was accepted. 

Table 2 presents a brief summary of the results, both iteration counts and function evaluations, for 
all problems that make use of negative curvature, as well as the size of these problems. 

For the whole test set, negative curvature was used in only 8% of the cases. The gradient direction 
would seem to take care of some negative curvature information; in [20], where a standard line search 
procedure is used (without any gTadient information), negative curvature was used for 23% ofthe problems 
in a similar test set. 

The preceding table also includes a certain nunlber of cases in which using negative curvature was 
worse than ignoring it. Globally, the reductions in iterations and function evaluations seem to be more 
significant than the increases. The largest deterioration in the number of iterations amounted to 9 
iterations (39%) for problem PRODPLl and 25 function evaluations (56%) for problem HS24, while the 
largest improvement was 41 iterations (87%) and 63 function evaluations (91%) for problem POLAK5. 
Nevertheless, from the observation of the different behavior in the numbers of iterations and function 
evaluations, special care should be taken when computing the parameter 8 in the search, in order to reduce 
the number of function evaluations whenever negative curvature is used. For example, a procedure based 
on polynomial models for the univariate search would be likely to contribute to the improvement in the 
behavior of the algorithm. 
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Table 1: Results for small-size problems 

Prob. Obj. I Const. I KKT I Iter. Eval. NC 

AIRPORT 47952.7017 3.1e-14 9.ge-12 15 15 0 
ALJAZZAF 75.005 2.5e-09 8.ge-07 20 37 0 
ALSOTAME 0.08208499 0 7.1e-ll 8 8 0 
BIGGSC4 -24.499999 1. 5e-15 5.2e-08 21 26 2 

-24.5 1.8e-15 1. ge-15 21 21 0 
CANTILVR 1.33995636 3.1e-11 3.3e-ll 16 58 0 
CB2 1.95222449 6.ge-12 7.6e-12 11 14 0 
CB3 2.0 2.5e-12 2.5e-12 10 23 0 
CHACONNl 1.95222449 1. 6e-ll 2.8e-ll 8 9 0 
CHACONN2 2.0 2.5e-ll 4.3e-ll 10 11 0 
CONGIGMZ 28.0 8.5e-12 8.ge-12 21 34 0 
CSFIl -49.0752 1.3e-l0 1.5e-09 11 13 0 
CSFI2 55.0176056 1. 2e-13 1.7e-13 14 17 0 
DEMYMALO -3.0 2.3e-11 2.5e-ll 11 13 0 
DIPIGRI 680.63006 1.6e-08 3.6e-08 11 26 1 

680.63006 1. 7e-11 4.4e-11 12 18 0 
DISC2 1.5624999 2.4e-08 2.4e-08 63 208 0 
DUALl 0.035012968 1.ge-16 7.0e-12 21 21 0 
DUAL2 0.033733671 6.1e-16 9.0e-09 13 13 0 
DUAL4 0.746090649 2.1e-16 2.3e-08 14 14 0 
EXPFITA 0.0011366117 1.8e-14 1.0e-09 32 32 0 
FCCU 11.14910914 4.4e-15 4.2e-14 8 8 0 
GIGOMEZl -3.0 1. ge-14 2.0e-14 11 20 0 
HATFLDH -24.5 2.7e-15 3.5e-15 14 20 1 

-24.5 2.ge-15 3.ge-15 13 14 0 
HIMMELBI -1735.569579 8.0e-14 3.2e-11 29 29 0 
HIMMELBK 0.0518143 3.5e-12 3.5e-12 18 18 0 
HIMMELP2 -8.19803189 3.8e-14 3.8e-14 11 15 0 
HIMMELP3 -59.0131239 5.2e-l0 4.ge-09 8 23 0 
HIMMELP4 -59.0131239 9.7e-13 9.8e-13 11 12 0 
HIMMELP5 -59.0131239 3.5e-09 3.6e-09 44 148 0 
HIMMELP6 -59.0131239 5.7e-12 5.ge-12 16 39 0 
HONG 22.57108736 0 6.4e-13 i 7 0 
HS10 -0.9999999 1.4e-08 1.4e-08 13 46 0 
HSll -8.49846422 1.4e-14 2.4e-14 7 7 0 
HS12 -30.0 1.2e-08 1.2e-08 8 8 0 
HS13 -- -- -- -- -- --
HS14 1.39346498 5.1e-12 2.2e-11 9 38 0 
HS15 306.50 8.1e-13 3.1e-l0 16 34 0 
HS16 0.25 1.le-16 2.5e-16 13 14 0 
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Table 1: (cont.) Results for small-size problems 

I Prob. Obj. I Const. I KKT I Iter. I Eval. I NC I 
HS17 1.0 1.7e-12 5.5e-l0 17 79 0 
HS18 5.0 0 5.6e-17 28 188 0 
HS19 -6961.81388 2.1e-11 2.0e-08 14 18 0 
HS20 40.19873021 2.1e-09 1.6e-06 6 16 0 
HS21 -99.9599999 3.6e-15 2.ge-14 5 5 0 
HS21MOD -99.9599999 0 9.7e-16 11 11 0 
HS22 1.0 3.3e-09 1.5e-08 5 5 0 
HS23 2.0 1. 8e-12 1.8e-12 8 9 0 
HS24 -4.0e-97 0 6.4e-19 13 31 1 

-1.0 7.1e-19 7.0e-ll 6 6 0 
HS29 -22.62741699 7.4e-l0 8.7e-l0 7 8 0 
HS30 1.0 2.4e-09 5.0e-09 5 5 0 
HS31 5.999999 9.4e-12 3.ge-09 5 5 0 
HS32 1.0 7.8e-ll 4.5e-l0 8 9 0 
HS33 -4.5857864 3.2e-ll 3.2e-11 8 8 0 
HS34 -0.83403244 4.3e-12 4.3e-12 8 8 0 
HS35 0.11111111 1.le-17 1. ge-l0 7 7 0 
HS36 -3299.9999 3.5e-15 9.8e-12 8 8 1 

-3299.9999 2.ge-27 9.7e-12 8 8 0 
HS37 -3456 2.8e-21 9.7e-14 6 6 0 
HS41 1.92592592 0 1.4e-12 7 7 0 
HS43 -44.0 6.5e-12 3.2e-11 9 9 0 
HS44 -13.0 1.0e-15 2.2e-15 9 9 0 
HS44NEW -13.0 1.0e-15 2.2e-15 9 9 0 
HS53 4.0930232 1.8e-15 6.2e-14 4 4 0 
HS59 -6.749505 1. Oe-14 1.2e-14 66 202 0 
HS60 0.03256682 6.5e-12 1. 8e-ll 7 7 0 
HS63 961. 7151721 1.2e-08 2.4e-08 6 9 0 
HS64 6299.84243 1.1e-16 9.1e-13 17 22 0 
HS65 0.95352886 3.5e-15 4.4e-15 10 14 1 

0.95352886 7.1e-15 7.2e-15 11 12 0 
HS66 0.518163274 5.1e-15 5.3e-15 10 10 0 
HS67 -1162.119226 2.3e-12 2.3e-12 8 10 0 
HS68 -0.920425 1.2e-16 1.2e-14 27 72 0 
HS69 -956.712887 1.le-1O 1.6e-07 12 12 0 
HS70 0.1870436431 2.ge-ll 1.2e-09 22 39 0 
HS71 17 .0140173 4.1e-08 4.1e-08 8 8 0 
HS72 727.67936 3.4e-16 1. 2e-13 22 42 0 
HS73 29.894378 1.0e-08 1.le-08 11 11 0 
HS74 5126.4981 1.4e-12 4.6e-l0 8 8 0 
HS75 5174.4127 6.8e-13 2.0e-09 8 8 0 
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Table 1: (cont.) Results for small-size problems 

Prob. Obj. I Const. I KKT I Iter. I Eval. I NC I 
HS76 -4.681818181 8.3e-16 1. 3e-09 7 7 0 
HS80 0.0539498 3.0e-l0 3.1e-l0 7 9 0 
HS81 0.0539498 1.5e-l0 1.5e-l0 8 8 0 
HS83 -30665.539 3.2e-14 7.7e-13 18 18 0 
HS84 -5280335.13 5.6e-08 1. 6e-04 19 23 0 
HS86 -32.348679 1.0e-14 3.6e-08 14 14 0 
HS88 1. 362656815 3.2e-14 5.0e-l0 24 314 0 
HS91 1.36265681 4.4e-11 4.8e-08 18 167 0 
HS93 135.075963 3.2e-15 1.5e-07 9 9 0 
HS95 0.0156195 3.4e-12 3.4e-12 11 11 0 
HS96 0.0156195 1.7e-12 1.7e-12 11 11 0 
HS97 4.0712463 2.2e-l0 4.4e-08 12 34 0 
HS98 4.0712463 6.8e-14 6.7e-11 15 33 0 
HS99 -8.3108e+08 2.ge-ll 0.49945443 6 6 0 
HS100 680.630057 1.6e-08 3.6e-08 11 26 1 

680.630057 1. 7e-ll 4.4e-11 12 18 0 
HS104 3.9511634 4.4e-l0 2.4e-09 9 12 0 
HS105 1044.725129 2.0e-17 1.le-l0 16 19 1 

1044.725129 2.6e-18 5.0e-11 16 19 0 
HS106 7049.24802 3.ge-l0 3.ge-l0 10 54 0 
HS107 4797.98188 2.6e-l0 1.0e-05 10 78 0 
HS108 -0.6749814 1. 5e-14 1.ge-14 12 15 0 
HS109 5362.06918 4.8e-08 4.ge-08 12 32 0 
HS110 -45.7784697 -- 4.8e-13 5 5 0 
HS111 -47.7610913 2.7e-08 4.ge-08 12 32 0 
HSl12 -47.7610908 2.5e-06 1. 8e-08 11 11 0 
HSl13 24.306209 1. 6e-ll 2. ge-11 33 55 0 
HSl14 -1768.80696 2.1e-ll 7. ge-11 16 16 0 
HSl16 97.5875096 5.6e-09 7.6e-09 33 40 0 
HSl17 32.3486790 3.4e-l0 1.0e-09 17 19 0 
HSl18 664.820450 2.1e-14 1.le-12 14 14 0 
HSl19 244.899697 6.3e-16 2.ge-07 11 11 0 
HS268 4.ge-9 9.7e-15 9.8e-09 17 19 0 
HUBFIT 0.016893495 2.ge-17 2.8e-09 7 7 0 
KIWCRESC 1.2e-09 3.3e-09 3.8e-09 11 16 0 
LAUNCH 9.004903149 6.8e-08 6.8e-08 22 24 1 

9.004903149 5.1e-l0 3.8e-07 15 15 0 
LIN -0.020198312 4.4e-17 7.5e-15 15 16 0 
LOADBAL 0.4528510391 1.3e-13 2.0e-l0 13 13 0 
MADSEN 0.616432435 9.7e-12 4.7e-11 15 33 0 
MAKELAl -1.414213564 1.le-13 1.8e-11 19 24 0 
MAKELA2 7.1999999 6.4e-ll 8.5e-11 7 7 0 
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Table 1: (cont.) Results for small-size problems 

Prob. Obj. 1 Const. 1 KKT 1 Iter. 1 Eval. NC 

MIFFLINl -1.0 3.2e-09 1. 5e-08 5 5 0 
MIFFLIN2 -0.9999999 1.4e-l0 1.8e-1O 13 28 0 
MINMAXBD 115.7064397 6.4e-11 6.4e-11 25 36 0 
MINMAXRB 3.5e-17 1. 3e-ll 1. 3e-11 7 13 0 
MISTAKE -1.0 5.6e-09 6.3e-09 10 10 0 
ODFITS -2380.026775 8.0e-13 8.4e-13 8 8 0 
POLAKl 2.718281833 3.5e-14 6.1e-14 8 8 0 
POLAK3 5.9330033 2.2e-09 4.7e-09 15 50 0 
POLAK4 6.0e-17 3.ge-14 3.ge-14 20 22 0 
POLAK5 49.99999 1.4e-08 1.7e-08 6 6 1 

49.99999 2.0e-08 2.0e-08 47 69 0 
PRODPLO 58.79009997 2.3e-09 4.5e-08 16 16 0 
PRODPLl 35.73896744 2.4e-12 1. 7e-11 23 37 2 

35.73896744 2.1e-14 3.4e-13 14 16 0 
QPCBLEND -0.0078425 5.3e-15 4.1e-11 43 43 0 
QPNBLEND -0.00913614 1.4e-14 5.8e-08 23 23 0 
ROSENMMX -44.0 1. 7e-13 1.7e-13 31 87 0 
S268 4.ge-09 9.7e-15 9.ge-15 17 19 0 
TAME 3.1e-33 0 2.0e-15 3 4 0 
TENBARS4 368.4931619 9.ge-12 9.ge-12 15 18 0 
TRUSPYRl 11.22874087 2.4e-12 1.1e-11 9 9 0 
TRUSPYR2 11. 22874090 5.ge-12 6.0e-12 12 12 0 
TRY-B 1.2e-25 1. ge-l0 1. ge-l0 10 11 0 
TWOBARS 1.508652417 2.3e-15 4.0e-15 13 170 0 
WOMFLET 6.6e-13 5.6e-l0 5.6e-l0 11 23 0 
ZECEVIC2 -4.125 6.3e-16 9.0e-09 8 40 0 
ZECEVIC3 97.30945002 7.0e-09 3.1e-08 10 10 0 
ZECEVIC4 7.557507769 4.8e-16 7.3e-15 9 13 0 
ZY2 2.0 3.8e-09 3.8e-09 6 6 0 

Table 2: Problems using directions of llegative curvature. 

Prob. 11 Vax. Cons. 11 Iter.en Iter. 1 Eval.en Eval. 

HS24 2 3 13 6 31 6 
HS36 3 1 8 8 8 8 
HS65 3 1 10 11 14 12 
POLAK5 3 2 6 47 6 69 
BIGGSC4 4 7 21 21 26 21 
HATFLDH 4 7 14 13 20 14 
DIPIGRI 7 4 11 12 26 18 
HS100 7 4 11 12 26 18 
HS105 8 1 16 16 19 19 
LAUNCH 25 28 22 15 24 15 
PRODPLl 60 29 23 14 37 16 
TOTAL 155 175 237 216 
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6 Conclusions 

We have described a procedure to combine different search directions. including directions of negative 
curvature if they exist, and an algorithm to solve general non linear optimization problems, based on a 
primal-dual approach, that uses the combina.tion procedure. The algorit.hm has been shown to be efficient 
on a set of small test problems. The combination of the directions is also very efficient., as shown m the 
reduced number of iterations required by the algorithm. A clear advantage is that the scaling of the 
different directions is done in a natural way. 

Although this procedure has been applied to cases in which we had either two or three directions to 
combine, it would be straightforward to extend it to additional directions, such as for example additional 
directions of negative curvature if they are available. 

The impact of the negative curvature is not very significant on these small problems (it is used in only 
8% of them), possibly due to the use of the gradient in the search, but it can be quite important in some 
cases. Given the limited cost of computing a direction of negative curvature whenever an appropriate 
factorization is used to obtain the movement directions, we think it is reasonable for nonconvex problems 
to take into account this second-order information whenever it is available. 
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