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Newton direction with the gradient of a merit function and a direction of negative curvature, is it
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ABSTRACT

The efficient combination of directions is a significant problem in line search
methods that either use negative curvature, or wish to include additional in-
formation such as the gradient or different approximations to the Newton
direction.

In this paper we describe a new procedure to combine several of these directions
within an interior-point primal-dual algorithm. Basically, we combine in an
efficient manner a modified Newton direction with the gradient of a merit
function and a direction of negative curvature, if it exists. We also show
that the procedure is well-defined, and it has reasonable theoretical properties
regarding the convergence of the method.

We also present numerical results from an implementation of the proposed
algorithm on a set of small test problems from the CUTE collection.
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ods; Nonconvex optimization; Line searches
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1 Introduction

Our goal is to describe a procedure to conibine search directions in algorithins that compute local solutions
for nonlinear optimization problems of the form

min,  f(z)

z)=0 (1)
z 2> 0,

where f : R® — R and ¢ : R* — R™, and we assume all functions to be at least twice continuously
differentiable.

Standard procedures for computing these solutions are based on solving local approxiniations to
the problem at successive iterates xx, and using the solutions for these approximations as the next
iterates. This basic scheme is complicated by the need to ensure global convergence for the resulting
algorithm, attained basically through the use of trust-region schemes or searches along a parametrized
line or curve (linesearch methods); we will concentrate on procedures that are based on this second
alternative. Standard algorithms in this class (see for example Fletcher [13], Gill et al. [17]) rely on some
modified version of the Newton direction and compute the next iterate on the unidimensional subspace
generated by this direction. In some cases, it may be useful or efficient to take into account additional
information to determine this next iterate. For example, the use of directions of negative curvature is
needed to ensure the convergence of the algorithm to second-order KKT points, while perhaps improving
the efficiency of the algorithm. The use of additional descent information, obtained from the gradient,
for example, may provide more robust algorithms and may yield better iterates, particularly away from
the solution. Our goal is to derive a procedure that, by taking into account additional search information
in an efficient manner, requires a reduced number of iterations to obtain a solution for problem (1}, with
a consequently reduced computational cost.

Although these directions might be used in the line searches independently of each otlier to generate
the sequence of iterates, it seems more efficient to combine them before computing the next iterate.
Many proposals based on these ideas can be found in the literature. For example, the dogleg method
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(see Dennis and Schnabel [9], for example) combines the gradient and Newton direction in an attempt
to mimic the behavior of trust-region methods. Moré and Sorensen [21] proposed a procedure to find the
next iterate from a direction of descent and one of negative curvature by following a quadratic curve on
the subspace spanned by both directions.

In this paper we present a proposal based on the approximate solution of a system of ordinary
differential equations. This idea was first proposed in Courant [8]; other related proposals can be found
in Behrman (1], Botsaris [4], Schropp [22] and Zang [27] for the unconstrained case, and Evtushenko
and Zhadan [11] for the constrained case. Our proposal is most closely related to that in [1] for the
unconstrained case, where the iterates were found by constructing a Krylov subspace in each iteration,
performing a standard univariate search on the steepest descent curve defined on this subspace. We apply
similar ideas to the combination of the search directions in a constrained optimization setting.

The main difficulty when combining the different search directions arises from the differences in the
scales of these directions. While the Newton direction is in general well scaled {a step of one is reasonable
in many cases), this is not true either for directions of negative curvature or for the gradient direction,
our choices of additional search directions. One alternative to overcome this difficulty would be to carry
out a search on the reduced-dimension subspace spanned by these search directions. Byrd et al. [6]
conipute the next iterate from a linear combination of a direction of negative curvature and a gradient
direction, and these coefficients are obtained as the solution of a two-dimensional trust-region problem.
Nevertheless, most proposals in the literature reduce first the search to a univariate one, to attain greater
computational efficiency. This will also be our approach; we will construct a curve in the subspace
generated by the directions of interest: descent direction, negative curvature and gradient. A reasonable
curve in this subspace would be the one that corresponds to the trajectory having the steepest descent
at each point; this trajectory would lead to a local solution at the fastest rate, measured in terms of the
objective function. Unfortunately, this curve is in general very expensive to compute, and we will satisfy
ourselves with constructing a steepest descent curve based on a simple (quadratic) local model of the
problem. The next iterate will be obtained as a point on the curve providing sufficient descent for an
appropriate merit function.

This proposal will be introduced as part of a complete algorithm for the solution of problem (1), hased
on a primal-dual interior point niethod and the use of an augmented Lagrangian merit function. The
method computes approxiniate solutions for a sequence of barrier problemns of the form

ming f(z) — 3, ()i log
s.t. o(x) =k0Y (2)

where zix — 0, see Fiacco and McCormick [12], Wright [24] for a theoretical analysis of these procedures.
Note also that we use a vector of barrier parameters & € R™.

In each iteration, the algorithm computes a descent direction and a direction of negative curvature for
problem (2), if it exists. These directions and the gradient of an augmented Lagrangian merit function
(see Bertsekas [2])

LA(z. Xip) = f(z) = ) _ pilog e — ATc(z) + guc(x)[[?, (3)

are then combined to generate a new iterate that provides sufficient decrease for this merit function. This
merit function has been extensively used in optimization packages, see for example Conn et al. [7].

The rest of the paper is organized as follows: In Section 2 we describe the general algorithm to
compute a local solution for problem (1). In Section 3 we motivate and describe the proposal to combine
the directions generated by the algorithm to obtain the next iterate. In Section 4 we justify some basic
properties of this procedure, such as for example that it is well-defined. and that sufficient descent can
be achieved in each iteration. Finally, Section 5 gives the general structure of the algorithm, discusses
some implementation issues and presents and comments some computational results on a set of small
test problems.

2 The interior-point algorithm

Our main goal is to explore an alternative procedure for the combination of search directions in a line-
search based algorithmi. In this regard, we are interested in determining the impact this approach may



have in the practical behavior of a nonlinear optimization algorithm. As a consequence, we will introduce
an algorithm that uses the combination procedure of interest, but that also computes efficiently the
required search directions. This algorithm is based on a primal-dual interior point approach to generate
the search directions, and uses an augmented Lagrangian merit function to ensure global convergence.
An iterative algorithm of this sort carries out three main tasks in each iteration: i) Compute search
directions at the current iterate. In our case we will obtain a descent direction and a direction of negative
curvature from the KKT system of linear equations, in addition to the gradient of the merit function. ii)
Combine the directions to obtain the next iterate. iii) Update the parameters in the algorithm.

Section 3 will be devoted to our main goal, the description of the combination of directions, while
in this section we will describe those issues related to the first and third items, providing only the basic
details of the procedures implemented in the algorithm. Additional information can be found in Moguerza
and Prieto [20].

2.1 Computing the search directions

In the proposed algorithm we solve a sequence of problems {2) such that g; — 0 for all i, following [12].
The search directions are obtained from the application of Newton's method to the primal-dual equations
for problem (2),

Vf(z) -Vl (z)h -0 = 0,
c(z) = 0, 4)
Yr = g,

where ¥ = diag(o).

Newton’s method provides search directions d,. dy and d,, corresponding to update directions for the
variables z, A and o respectively. From the first-order Taylor series expansion for the primal-dual KKT
conditions {4) about the current values x, A and o, the resulting system of linear equations defining the
search directions is (we omit the dependence on the variables to simplify the notation):

H -V -1 dy ~Vf+VcTA+o
Ve dy | = —c , (5
X X g jt — Zr

where H = V2, L(z,A), L{z, A) is the Lagrangian function, that is, L(z, A) = f(2) = ATc(x). X = diag(z)
and I denotes the identity matrix. From the last set of equations in (5), we have

de = X"Y-0 - X7'5d,. (6)

Replacing (6) into the first two sets of equations in (5), the movement direction d; can be computed
as the solution of the symmetric system

_ T 1
K( dy ):( Vi+Ve' A+ X ;L)7 (7)
—dy —c
where K is defined as . r
Ve
K= ( Ve 0 ) ’ (8)

for G = H+ X~'X. Any ill-conditioning that might arise from the diagonal terms in G is benign, see
Wright [25] for example.

The direction obtained from (7) may fail to provide descent for any reasonable merit function, for
example when the iterates are close to a stationary point that is not a minimizer. We adapt system (7) to
ensure that the direction d, is a sufficient descent direction. The modified system that we use to define
these search directions is

G, VT de N\ _ [ -Vf+VTA+ Xy ©
Ve 0 —d,\ - -C ! )



where its coefficient matrix (and G, in particular) is computed from a modification of

(G, Vel
Ko = ( Ve O )’ (10)

for G, = V2 L(z, ) — pc) + X"1L.

An appropriate matrix G, for (9), such that Z{G,Z4 is positive definite, can be generated in the
process of factorizing K,, where Z 4 has columns that form a basis for the null-space of Ve(z). A modified
Choleski factorization of the reduced Hessian Z4G,Z 4 could be used, as in Gay et al. [15]. This approach
requires forming explicitly the reduced Hessian, and as a consequence it is only useful for problems in
which this reduced Hessian is not too large. We have chosen to use a version of the symmetric indefinite
factorization, see Bunch et al. [5] for example, incorporating the modifications proposed in Forsgren and
Murray [14]. This alternative is able to obtain the desired modification for the reduced Hessian directly
from system (9), it allows the computation of appropriate directions of negative curvature, as we will
indicate below, and it can be applied to medium-sized and large problems. Additional details of the
computation of these directions and the factorization used in the algorithm can be found in [14, 20].

We would also want to satisfy the necessary second-order condition at any limit point. For problem
(2) this condition requires that

ZE (VI Lz, \)+ MX~ %) Z4 is psd, (11)

where M is a diagonal matrix with entries those of p, that is, M = diag(p). We will use directions of
negative curvature to avoid converging to points that do not satisfy (11), but as the direction of negative
curvature will be used to obtain iterates that decrease the merit function (3), we also need to ensure that
such a direction will be appropriate for our merit function. A direction of negative curvature d,, for our
algorithm should lie in the subspace spanned by thie columns of Z4 and should satisfy

dT (V2 L(z, ) — pc)+ MX~?)d, <0. (12)

As we will justify in Section 3, in our case the choice of an appropriate sign for d,, (to ensure descent,
for example) is not relevant, as the search for the next iterate will be performed on a subspace spanned
by a combination of directions including d,,, and the combination chosen by the algorithin will take the
best sign into account automatically.

This direction d,, (assuming that it exists) is computed from the same symmetric indefinite factoriza-
tion used to obtain the descent direction d, from (9). Let K, be the matrix defined in (10), and assume
that its symmetric indefinite factorization K, = UT DU has been computed using the algorithm in [14].
Assume also that from the factorization it has been determined that this matrix has more than m nega-
tive eigenvalues, implying that Z{G,Z4 has at least one negative eigenvalue. Let P be the permutation
matrix associated with the pivoting choices in the factorization algorithm and define w = P, where w

satisfies U v
1 Un wy Y\ _ — 0
( 0 U22 ) ( ’lI)g ) == Amm(DQ) ( Un ) [ (13)

for a partition of U and D such that D, and U;; correspond to all the pivots taken from elements of

Ve, Amin(D2) denotes the most negative eigenvalue of Dy and u) is a unit eigenvector corresponding

to this smallest eigenvalue. The direction of negative curvature d,, is defined as the first n components

of w. Additional details can be found in [14]; in particular, it is shown there that Ve¢(z)d, = 0, and

consequently d, lies in the correct subspace. Also, there exist positive constants k; and k, such that
dTG,d, < —k1 X250 (25G,Z4) and  dTd, £ —kedmin(Z1G,2Z4).

min
The direction of negative curvature computed from (13) will satisfy
dT (V2 L(z, ) — pc) + X "1E)d, <0

If o — X ~1u is sufficiently small and the constraints are close to zero, G, will be close to the Hessian of
the Lagrangian of (2) and the direction d,, computed using the preceding procedure will be a direction



of negative curvature for the merit function LA(z, X; p), given that Ved, = 0. As in general 0 — X1y
may not be small, each time a direction of negative curvature is computed we will also check if (12) is
satisfied. If this is not the case, the direction of negative curvature d,, will not be used.
A third search direction that will be used to generate the next iterate will be the gradient of the merit
function, defined as .
dyg=Vf—-X"pu—vel (A= pe), (14)

where X and g will be defined later on.

2.2 Updating the parameters

In each iteration the algorithm must update the different parameters involved in the specification of
the barrier subproblems (2) and the merit function (3). In the following paragraphs we describe the
procedures used to change the multiplier estimates and the barrier parameters.

2.2.1 The multipliers

Two sets of dual variables are generated by the algorithm, the equality constraint multipliers A and the
approximations to the multipliers for the bound constraints ¢. The multipliers A will be updated using
dy from (9), as described in Section 3.

The solution of the Newton equations (5) provides a search direction for the multipliers o, d,, defined
in (6). These dual variables will be updated from

O+l =0 + agdy.

The only restriction on the values of the dual variables is their non-negativity. The scalar a4 is chosen
as the largest reasonable value that satisfies this condition, as follows. Let

@y = min <T min ( _(EZS) (d,); < o) ,1) , (15)

where 7 is defined as

7 = max(0.995,1 — ||zl|2). (16)
This definition is introduced to ensure reasonable local convergence properties for the algorithm, see
Yamashita and Yabe [26].

2.2.2 The barrier parameters

The vector of barrier parameters in (2) is also updated in each iteration. The updating rule is based
on the relationship between the satisfaction of the first-order conditions, the complementarity conditions
and the previous values of the barrier parameters. Let F(z, A.o:p) be a measure of the satisfaction of
the first-order KKT conditions for problem (1) at the current iterate, that is,

V()= Ve(z)T(A—pe) =0
F(z,\0;p) = c(z) , (17)
3z

set

b { IF(@, X oipll2 i [1F(z,A,050) 12 2 1, 18)

||F($7/\,0;p)||§ otherwise,
and define y = Xo.
The new value for x is chosen to ensure a reasonably uniform allocation of the distance from optimality

taking into account each complementarity gap. These new values are obtained, in a manner similar to
the procedure in [20], from the solution of the problem

1.7

min,  sptp
s.t. v = (19)
u>0



This solution is given by u* = wy, where w = 8/(yTy). Definition (18) has been introduced to prevent
u from becoming too large when far from a KKT point. On the other hand, if y; is sinall then puf may
become too small. To avoid this situation we compute a reference value fi, similar to that in El-Bakry et
al. {10],

. uTo
/J - n )
and define the new value of u at iteration k as
(tk+1): = min(d max(p;, i), (ux):), (20)

where 8, = min(0.25, exp(—(1/6k))) and 8¢ is given by (18). Note that u; will not be decreased in
every iteration, but only when a sufficient reduction in the satisfaction of the KKT conditions has been
achieved. This definition of 4 ensures that yu — 0 if problem (2) has a solution.

3 The computation of a new iterate

We now describe how to combine in an efficient manner our search directions: descent d., negative
curvature d,, (if it exists) and gradient d,. Classical line search methods compute a direction of movement
(dx,d)) and a scalar & such that the next iterate (z + ad;, A + ad)) provides sufficient decrease for an
appropriate merit function. This approach works quite well in practice whenever there is a single search
direction d;. In our case we may have up to three search directions at a given iteration, and the preceding
procedure must be modified to take into account that we search for the next iterate on a subspace of
dimension three, as opposed to the univariate classical approach. Following our previous discussion, we
proceed first by combining these directions into a trajectory of points of interest, and we then perform a
conventional univariate search (a backtracking search) on this trajectory.

3.1 Combining the search directions

In the unconstrained case, and given our three search directions, it would seern reasonable to select the
new iterate as a point on the trajectory defined by the steepest descent of the objective function from
the current iterate, see [1] for example. For our constrained problem (2), we have chosen to apply these
ideas to our merit function (3). In particular, we construct this trajectory from the gradient field of the
nierit function starting from a given iterate xy; it will be given by the solution of the system of ordinary
differential equations (we omit the iteration subscript to simplify the notation)

() = =VLA(z+~(t). X p), 7(0)=0, (21)

where the reference value for the multipliers, X, and the penalty parameter value, 5. will be defined later
on.

Computing this trajectory is too expensive for most practical cases; we will restrict ourselves to solving
an approximation to it, in the following two senses: ’

s We will approximate locally the right-hand side of (21) by a linear function, to obtain a linear
system of QDEs, having a closed-form solution.

» We will also restrict ourselves to those points lying on the subspace spanned by our three search
directions, to reduce the dimension of the problem and to limit the computational cost.

The ODE that defines the modified trajectory 3(t) on the two- or three-dimensional subspace of
interest will have the following form:

B(t) = -BTd, — BT(W + pvcTVe)BA(t), 6(0) =0,

where B denotes an orthonormal basis for the subspace spanned by the search directions and d, =
VLA(z, X p). The matrix W will be either G, as defined in (10), whenever a direction of negative
curvature is avajlable, or G, if it is not or has been discarded.



If we introduce the notation H = BT(W + pVcTVc)B and § = BTd,, we can obtain a closed-form
solution for this ODE. If this solution is transformed back to the full space, we obtain the trajectory of
interest, J(t), given by:

5(t) = BA(t) = BA™! (exp(-Ht) _ 1) 3. (22)

Note that the computation of this trajectory requires only the determination of the exponential of a
square matrix of dimension two or at most three.

Interior-point methods ensure the positivity of all iterates, to guarantee that the objective function in
(2), and in particular its barrier term, is well defined in each iteration. As a consequence, the trajectory
defined by 4(t) must be transformed into another trajectory that lies within the strict interior of the
positive orthant. In our algorithm, this is achieved by projecting each point on the trajectory (22) onto
the simple bounds,

A(t) = a(B)3(1),

where the scalar «(t) is chosen for each ¢ as

a(t)=min{1,Txlain{%j"(t)‘ﬁi(t) <o}}, (23)
and 7 is defined as in (16).

The next step would be to determine an acceptable value for the parameter ¢ in 4(¢). As we will show
in Section 4, when H is positive definite we have F(t) — —BH™'§=d,, a reasonable step, as t — 0o. As
a consequence, we may need to handle infinite values of the parameter ¢ to determine the next iterate.
To avoid the complications associated with these values, the curve is reparametrized so that points of
interest, such as this Newton step, can be found by moving a finite distance along 4.

We have chosen to use the following reparametrization, see for instance [1, 19],

-1 —6mt :
o E(e 1) if 6, #0,

t if 6711 = 01

(24)

wlere 8, < ... < 8, are the eigenvalues of H. Under this reparametrization, if §,, > 0 then s € [0.1/8,].

3.2 Computing the step

Once the trajectory 4(s) has been computed, we obtain the next iterate in the variables & from an
appropriate step along the curve, 24, = xx + 4(s). The value of s is chosen to ensure sufficient. descent
for our merit function, and it is found by performing a backtracking search starting at so = 1/d,. We
determine the step s; as the first value in the sequence {sg/2'}%, that satisfies the following sufficient
descent condition:

LA +4(), % 5) < LA(, 3 9) — osi[|[ VLA(z, % ) 1> (25)

The scalar o has been chosen as a small value o € (0,1).

3.3 The multiplier estimates

The value of A in (21) should be defined to ensure that the sequence of iterates in the algorithm is
associated to a decreasing sequence of values for the merit function, to guarantee the global convergence
of the algorithm. This value is kept fixed at all trial points in the trajectory. For the search of the new

iterate we define
. {,\+dA ifd, #0
A= .
A otherwise,

(26)

In practice, this approach may not be satisfactory for all iterations. At the end of the search procedure, the
next iterate A\ is defined as J, if there is no negative curvature, the step sy is accepted and a(sq) > 0.95.
Otherwise, we use an approach similar to [15]: the value of Ax1y is chosen as the least-squares estimate
at the accepted step.



3.4 Adjusting the penalty parameter

The traditional role of the penalty parameter in a merit function that includes penalty terms, such as
(3), is to enforce convergence to points satisfying the constraints c(z) = 0. Although the use of the
Newton direction should generate iterates that satisfy feasibility in the limit, if the penalty parameter
is not chosen to be sufficiently large, the Newton direction may not be a descent direction for the merit
function and no valid step will be found.

In the proposed algorithm, the combination of directions to define the trajectory ¥(s) automatically
ensures that sufficient descent will be available at all iterates. As a consequence, the penalty parameter is
used to attain other reasonable properties for the search trajectory. In particular, we wish to ensure that
the Newton step will belong to the trajectory whenever there is no negative curvature in the null-space
of the constraints at the current iterate. Note that this may not be true in all cases; a sufficient condition
will be that the matrix H is positive definite, as we will show in Section 4.

The absence of negative curvature in the null-space of the constraints ¢ implies that the matrix W
(that is, G, in (9) or G, if the existing negative curvature was discarded) is positive definite on the
subspace spanned by Z,4. For the trajectory (22) we would need H to be positive definite, that is, the
Hessian W + gV ¢T Ve should be positive definite on the subspace spanned by the columns of B, for some
value of the penalty parameter g chosen to enforce this property.

If we assume that Vc has full row rank, H will be positive definite for large enough values of 5. Note
that W will be positive definite in the subspace spanned by Z4, while VcT Ve will be positive definite
on the orthogonal subspace. If we denote by W = BTW B and J = BTVcT VeB, we need W + pJ to be
positive definite. As in this case there is no direction of negative curvature, the matrices W and J have
dimension 2, and the eigenvalues of W + pJ can be found as the roots of a low-degree polynomial in p.
The value of p is chosen to be larger than the largest root of this polynomial, or zero if it is negative, and
Pk+1 = P-

4 Properties of the search

In this section we present some basic properties of the procedure to commpute the next iterate. Our aim
is not to provide any counvergence proof for the algorithm; a detailed proof of this sort will be a matter
for a different paper. We only wish to establish that the procedure to combine the search directions is
well defined. and has reasonable properties regarding the global convergence of an algorithm that uses
appropriate search directions and parameter updates.

We will assume that certain properties are satisfied by the functions defining problem (1) and the
iterates generated by the algorithm. A global convergence proof would be the subject of a separate paper,
but it should include some of these assumptions and prove that the algorithm satisfies the others.

A.1 The iterates x; generated by the algorithin remain in a compact set, C C R7%.
A.2 The functions f and ¢ have continuous second derivatives in C.

A.3 For a given value of the barrier parameter u;, the iterates xx are bounded away from zero, i >
Blux) > 0, where 52(ui)/Illl > 6 > 0.

A.4 The multiplier estimates A remain bounded in norm at all iterates.

We will ignore the iteration subscript in what follows, whenever the context is clear. We start by
establishing that the algorithm is well-defined.

Lemma 1 At any iteration k, the search described in Section & finds a step satisfying (25) in a finite
number of iterations.

Proof. From the continuity of %(¢), ¥(0) = 0 and assumption A.3 there will exist a value #(uy) > 0
such that «(t) defined in (23) takes the value one for all t € [0, (s)). From the reparametrization in
(24) and this property, there will exist a value 5(ux) > 0 such that 4(s) = F(s) for all s € [0, (). We
will only consider these values of s in what follows. We will also omit the iteration subscript & to simplify
the notation.



From the definition of the function LA in (3), the definition of the curve (22), the reparametrization
(24) and the Taylor series expansion around s = 0 we have

- . < ord 2 7 d T < . d
LA(z +4(s), X;9) = LA(z, X; p) = sVLA(z, % 5)T+=5(0) + = [ ==4(0) ) V2LA(Z, X; p)4(0),
ds 2 \ds ds
where Z = z + (%(s) for some ¢ € [0,1] and
d . _d_, dt . T .
o (0)= dt'y(O)ds = —-Bg=~-BB'VLA(z,\;p).

Note that B has columns that form an orthonormal basis for a subspace spanned by VLA(z, X; o) and
other directions. This implies BBTVLA(z, \; 5) = VLA(z, X; p). As a consequence,

LAG@ +4(s), A ) — LAz, ;) + o VLA(z, % p)|2
2 —_ - -
= —(1- )| VLA X )| + 5 VLA, X p)T VALA(#, % D)VLA(z, X 5)- (27)

If ¢ < 1, the desired result follows from this relationship. O

To prove global convergence for an algorithm based on this search we should have sufficient descent
on the merit function in every iteration, this function should be bounded below and we would also need
the value of the parameter s to be bounded away from zero. As we show in Lemma 2, this last property
follows from the same arguments as the preceding derivation.

Lemma 2 The step s along the curve in each iteration is bounded away from zero by a positive value,
§>8§>0.

Proof. From the fact that B has orthonormal columns and assumptions A.1 to A.4, it follows that
there will exist a positive constant 3 such that

Bllu|
B2()

VLA(z,X:p)T V2 LA(Z, X; p)VLA(z, X; p) < (B + ) IVLA(z, X, )| < 28||VLA(z, X; p)||%.

The dependence on p is a consequence of the termis A/X 2 in V2LA(Z, \: p) and assumption A.3.
Given this bound, from (27) it will follow that

LA(z +4(s), 7\ p) — LA(2, A; p) — os| VLA(z, X )I? < 0

for all s € (0, 5), where

_ (1-0)
§=—.
B

As a consequence of this result and the backtracking search implemented in the algorithm, the computed
step will satisfy s > §=(1-0)/(26). 0O

We will prove a last result in this section, related to the desirable local convergence properties of the
algorithm. We show that if the initial trial value sq is accepted, in that iteration we update the variables
using the Newton direction. As a consequence, the superlinear convergence of the algorithmn will follow
from this result if we are able to accept this step and we update u appropriately. Lemma 3 is an extension
of a similar result for unconstrained problems in [1].

Lemma 3 In those iterations where no negative curvature is used and the multiplier estimate is taken
as A+ dy, if limy_o a(t) = 1 and p has been chosen as indicated in Section 3.4, we have

lim 4(t) = A(s9) = da.

t—oo



Proof. From the condition lim; .. a(t) = 1, it will be enough to show that if no negative curvature
is used then limJ(t) = d;. In this case we have W = G, a positive definite matrix, and A = X + dj.
From (22), as § has been chosen to ensure that H is positive definite,

lint 5(t) = lim BA™! (eXp(—Bt) - 1) §=-BH 3.
t— o t—oc
From (9) we have
(W + sVl Ve)d, = —VLA(z, A + dyx; p),

and using the definitions of H and §, as B has columns that form an orthonormal basis for a subspace
containing d, implying BBTd, = d., we obtain

lim §(t) = —B(BT(W +5VcTVe)B) 'BTVLA(z, A + dy; p)

t—ow

B(BT(W + pVcTVe)B) "' BT(W + pVeT Ve)d,
BBTd, =d,.

O

5 Implementation and numerical results

5.1 The algorithm

We present a scheme of the proposed interior point algorithmn (Gradient Flow Interior Point Method -
GFIPM), summarizing those aspects described in the previous sections.

Algorithm GFIPM

Choose initial values for zg, Ay and op.
Choose initial values for the scalar pg and the vector pg
Setk=0
repeat
Compute d; and dy from (9) using the factorization described in [1{], and d, from (6)
Compute, if it exists, d,,, a direction of negative curvature from (13)
Set d,, = 0 if (12) is not satisfied
Compute § from the procedure in 3.4
Compute X from (26)
Compute s using a backtracking search until (25) is satisfied
Zry1 = 2k + ()
Update Ar+1 from A and dy using the procedure in 3.3
Compute og from (15)
Oky1 = Ok + Oqd,
Cornpute the updated barrier vector pg41 from (20)
Pit1 =P
k=k+1
until convergence

5.2 Numerical results

We have conducted a set numerical experiments on a collection of test problems using algorithm GFIPM.
The algorithm has been implemented and the tests have been carried out in MATLAB. The test set we
have considered is composed of 140 small problems from the CUTE collection, see Bongartz et al. [3].
selected from those nonlinear constrained problems Lhaving less than 100 variables and coutinuous deriva-
tives (note that exact first and second derivatives have been used). The algorithm has been implemented
to include both lower and upper bounds in the barrier terms.
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Whenever possible, the initial points given in CUTE have been used. Sometimes these initial points
do not satisfy the bound constraints. Such points have been transformed following a strategy similar to
that described in Vanderbei and Shanno [23]. Table 1 shows the results obtained by GFIPM for these
problems. The termination criterion used has been

1F(z, Ao o)l < (1 + IV F()]]),

where € = 1078, except for problems DISC2 and HS91, where e = 10~7.
The columns in the table correspond to:

e Prob.: problem name.

e Const.: norm of the constraint vector, ||c(z)||, at the solution, including slacks.

KKT: norm of the first-order KKT conditions at the solution. ||F{z, A, o; p)||.
e Iter.: iteration count (number of factorizations of the primal-dual system).
e Eval.: number of evaluations of the objective function and the constraints.

e NC: number of iterations in which directions of negative curvature were used.

In those cases where negative curvature was detected the problem was solved a second time, setting
the direction of negative curvature to zero. Table 1 includes two lines for those problems, one for the
results from each of the two versions of the algorithm.

5.3 Analysis of the results

The algorithmm was able to solve all problems but one, problem HS13 (that does not satisfy a constraint
qualification at the solution). For some of the problems the code finds better local minimizers than those
given in [18] (this happened for problems HS105, HS106, HS107, HS112 and HS116), while for other
problems these local minimizers are worse (HS59, HS70, HS97, HS98 and HS108). Problem HS99 is an
example of a badly scaled problem. The termination tolerance is satisfied when the norm of the first-order
KKT conditions is 0.4994. Introducing a more demanding stopping criterion (a tolerance of 107!4), the
norm of the KKT conditions goes down to 107¢ after 3 additional iterations, but the value of the merit
function remains basically unaltered.

In general, the number of iterations required to solve the problems is fairly small. The number of
function evaluations is higher, but no particular care was taken when implementing a strategy to find a
value of the parameter s that satisfied (25); a standard backtracking search was used. It is also interesting
to note the large number of cases in which a step sg (the equivalent to a unit step) was accepted.

Table 2 presents a brief summary of the results, both iteration counts and function evaluations, for
all problems that make use of negative curvature, as well as the size of these problems.

For the whole test set, negative curvature was used in only 8% of the cases. The gradient direction
would seem to take care of some negative curvature information: in [20], where a standard line search
procedure is used (without any gradient information), negative curvature was used for 23% of the problems
in a similar test set.

The preceding table also includes a certain number of cases in which using negative curvature was
worse than ignoring it. Globally, the reductions in iterations and function evaluations seem to be more
significant than the increases. The largest deterioration in the number of iterations amounted to 9
iterations (39%) for problem PRODPL1 and 25 function evaluations {56%) for problem HS24, while the
largest improvement was 41 iterations (87%) and 63 function evaluations (91%) for problem POLAKS.
Nevertheless, from the observation of the different behavior in the numbers of iterations and function
evaluations, special care should be taken when computing the parameter s in the search, in order to reduce
the number of function evaluations whenever negative curvature is used. For example, a procedure based
on polynomial models for the univariate search would be likely to contribute to the improvenient in the
behavior of the algorithm.
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Table 1: Results for small-size problems

[ Prob. | Obj . [ Const. | KKT | Iter. | Eval. | NC ]
AIRPORT 47952.7017 | 3.1e-14 [ 9.9e-12 15 15] 0
ALJAZZAF 75.005 | 2.5e-09 | 8.9e-07 20 37| o
ALSOTAME 0.08208499 0] 7.1e-11 8 8] o
BIGGSC4 -24.499999 | 1.5e-15 | 5.2e-08 21 26 | 2

-24.5 | 1.8e-15 | 1.9e-15 21 21| ©

CANTILVR 1.33995636 | 3.1e-11 | 3.3e-11 16 58 [ 0
CB2 1.95222449 | 6.9e~12 | 7.6e-12 11 14| o
CB3 2.0 | 2.5e-12 | 2.5e-12 10 23] o
CHACONN1 1.95222449 | 1.6e-11 | 2.8e-11 8 9] o
CHACONN2 2.0 [ 2.50-11 [ 4.3e-11 10 11| 0
CONGIGMZ 28.0 | 8.5e-12 | 8.9e-12 21 3] 0
CSFI1 -49.0752 | 1.3e-10 | 1.5e-09 11 13] 0
CSFI2 55.0176056 | 1.2e-13 | 1.7e-13 14 17| 0
DEMYMALO -3.0 [ 2.3e-11 [ 2.5e-11 11 13] 0
DIPIGRI 680.63006 | 1.6e-08 | 3.6e-08 11 26 | 1
680.63006 | 1.7e-11 | 4.4e-11 12 18| 0

DISC2 1.5624999 | 2.4e-08 [ 2.4e-08 63 208 [ 0
DUAL1 0.035012968 | 1.9e-16 | 7.0e-12 21 21| 0
DUAL2 0.033733671 | 6.1e-16 | 9.0e-09 13 3] 0
DUAL4 0.746090649 | 2.1e-16 | 2.3e-08 14 14| o
EXPFITA || 0.0011366117 | 1.8e-14 | 1.0e-09 32 322 [ 0
FCCU 11.14910914 | 4.4e-15 | 4.2e-14 8 8] o
GIGOMEZ1 -3.0 | 1.9e-14 | 2.0e-14 11 20] 0
HATFLDH -24.5 | 2.7e-15 | 3.5e-15 14 20 | 1
-24.5 | 2.9e-15 | 3.9e-15 13 4] 0

HIMMELBI || -1735.569579 | 8.0e-14 | 3.2e-11 29 29[ 0
HIMMELBK 0.0518143 | 3.5e-12 | 3.5e-12 18 18] 0
HIMMELP2 || -8.19803189 [ 3.8e-14 [ 3.8e-14 11 15| 0
HIMMELP3 || -59.0131239 | 5.2e-10 | 4.9e-09 8 23] 0
HIMMELP4 || -59.0131239 | 9.7e-13 | 9.8e-13 11 12 0
HIMMELP5 || -59.0131239 | 3.5e-09 | 3.6e-09 44 148 [ ©
HIMMELP6 || -59.0131239 | 5.7e-12 | 5.9e-12 16 3] 0
HONG 22.57108736 0] 6.4e-13 7 7] 0
HS10 -0.9999999 | 1.4e-08 | 1.4e-08 13 46 [ 0
HS11 -8.49846422 | 1.4e-14 | 2.4e-14 7 7] 0
HS12 -30.0 | 1.2e-08 | 1.2e-08 8 8] o
HS13 -~ - — - — |-
HS14 1.39346498 | 5.1e-12 | 2.2e-11 9 3] 0
HS15 306.50 | 8.1e-13 | 3.1e-10 16 3] 0
HS16 0.25 | 1.1e-16 | 2.5e-16 13 14] 0
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Table 1: (cont.) Results for small-size problems

Prob. || 0bj. | Const. | KKT | Iter. | Eval. | N_C“‘
HS17 1.0 | 1.7e-12 | 5.5e-10 17 79 0
HS18 5.0 0 | 5.6e-17 28 188 0
HS19 -6961.81388 | 2.1e-11 | 2.0e-08 14 18 0
HS20 40.19873021 | 2.1e-09 | 1.6e-06 6 16 0
HS521 -99.9599999 | 3.6e-15 | 2.9e-14 5 0
HS21MOD ~99.9599999 0| 9.7e-16 11 11 0
HS22 1.0 | 3.3e~09 | 1.5e-08 5 5 0
HS23 2.0 | 1.8e-12 | 1.8e-12 8 9 0
HS24 -4.0e-97 0| 6.4e-19 13 31 1
-1.0 | 7.1e-19 | 7.0e-11 6 6 0
HS29 -22.62741699 | 7.4e-10 | 8.7e-10 7 8 0
HS30 1.0 | 2.4e-09 | 5.0e-09 5 5 0
HS31 5.999999 | 9.4e-12 | 3.9e-09 5 5 0
HS32 1.0 | 7.8e-11 | 4.5e-10 8 9 0
HS33 -4.5857864 | 3.2e-11 | 3.2e-11 8 8 0
HS34 -0.83403244 | 4.3e-12 | 4.3e-12 8 8 0
HS35 0.11111111 | 1.1e-17 | 1.9e-10 7 7 0
HS36 -3299.9999 | 3.5e-15 | 9.8e-12 8 8 1
~-3299.9999 | 2.9e-27 | 9.7e-12 8 8 0
HS37 -3456 | 2.8e-21 | 9.7e-14 6 6 0
HS41 1.92592592 0| 1.4e-12 7 7 0
HS43 -44.0 | 6.5e-12 | 3.2e-11 9 9 0
HS44 -13.0 | 1.0e-15 | 2.2e-15 9 9 0
HS44NEW -13.0 | 1.0e-15 | 2.2e-15 9 9 0
HS53 4.0930232 | 1.8e-15 | 6.2e-14 4 4 0
HS59 -6.749505 | 1.0e-14 | 1.2e-14 66 202 0
HS60 0.03256682 | 6.5e~12 | 1.8e-11 7 7 0
HS63 961.7151721 | 1.2e-08 | 2.4e-08 6 9 0
HS64 6299.84243 | 1.1e-16 | 9.1e-13 17 22 0
HS65 0.95352886 | 3.5e-15 | 4.4e-15 10 14 1
0.95352886 | 7.1le-15 | 7.2e-15 11 12 0
HS66 0.518163274 | 5.1e-15 | 5.3e-15 10 10 0
HS67 -1162.119226 | 2.3e-12 | 2.3e-12 8 10 0
HS68 -0.920425 | 1.2e-16 | 1.2e-14 27 72 0
HS69 -956.712887 | 1.1e-10 | 1.6e-07 12 12 0
HS70 0.1870436431 | 2.9e-11 | 1.2e-09 22 39 0
HS71 17.0140173 | 4.1e-08 | 4.1e-08 8 8 0
HS72 727.67936 | 3.40-16 | 1.2e-13 22 42 0
HS73 29.894378 | 1.0e-08 | 1.1e-08 11 11 0
HS74 5126.4981 | 1.4e-12 | 4.6e-10 8 0
HS75 5174.4127 | 6.8e-13 | 2.0e-09 8 8 0
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Table 1: (cont.) Results for small-size problems

Prob. I Obj. | Const. |  KKT [ Tter. [ Eval. [ NC |
HS76 -4.681818181 [ B.3e-16 1.3e-09 7 7] 0
HS80 0.0539498 | 3.0e-10 3.1e-10 7 9] o
HS81 0.0539498 | 1.5e-10 1.5e-10 8 8| o
HS83 -30665.539 | 3.2e-14 7.7e-13 18 18] 0
HS84 -5280335.13 | 5.6e-08 1.6e-04 19 23] 0
HS86 -32.348679 | 1.0e-14 3.6e-08 14 14] 0
HS88 1.362656815 | 3.2e-14 5.0e~10 24 314 | 0
HS91 1.36265681 | 4.4e-11 4.8e-08 18 167 | 0
HS93 135.075963 | 3.2e-15 1.5e-07 9 9] o
HS95 0.0156195 | 3.4e-12 3.4e-12 11 11| 0
HS96 0.0156195 [ 1.7e-12 1.7e-12 11 1] 0
HS97 4.0712463 | 2.2e-10 4.4e-08 12 34] 0
HS98 4.0712463 | 6.8e-14 6.7e-11 15 33| 0
HS99 -8.3108e+08 | 2.9e-11 | 0.49945443 6 6] 0
HS100 680.630057 | 1.6e-08 3.6e-08 11 26| 1

680.630057 | 1.7e-11 4.4e-11 12 18| 0
HS104 3.9511634 | 4.4e-10 2.4e-09 9 12 0
HS105 1044.725129 | 2.0e-17 1.1e-10 16 19 1

1044.725129 | 2.6e-18 5.0e-11 16 19| 0
HS106 7049.24802 | 3.9e-10 3.9e-10 10 54 [ 0
HS107 4797.98188 | 2.6e-10 1.0e-05 10 78] 0
HS108 -0.6749814 | 1.5e-14 1.9e-14 12 5] 0
HS109 5362.06918 | 4.8e-08 4.9e-08 12 32| 0
HS110 -45.7784697 —— 4.8e-13 5 5] 0
HS111 -47.7610913 | 2.7¢-08 4.9¢-08 12 2] 0
HS112 -47.7610908 | 2.5e-06 1.8e-08 11 1] o
HS113 24.306209 | 1.6e-11 2.9e-11 33 55 | 0
HS114 -1768.80696 | 2.1e-11 7.9e-11 16 6] 0
H5116 97.5875096 | 5.6e-09 7.6e-09 33 4] 0
HS117 32.3486790 | 3.4e-10 1.0e-09 17 19 0
HS118 664.820450 | 2.1e-14 1.1e-12 14 4] 0
HS119 244.899697 | 6.3e-16 2.9e-07 11 1] o
HS268 4.9e-9 | 9.7e-15 9.8e-09 17 19] 0
HUBFIT 0.016893495 | 2.9e-17 2.8e-09 ki 7] 0
KIWCRESC 1.2e-09 | 3.3e-09 3.8e-09 11 6] 0
LAUNCH 9.004903149 | 6.8e-08 6.8e-08 22 24] 1

9.004903149 | 5.1e-10 3.8e-07 15 15| 0
LIN -0.020198312 | 4.4e-17 7.5e-15 15 6] o
LOADBAL || 0.4528510391 | 1.3e-13 2.0e-10 13 13] 0
MADSEN 0.616432435 | 9.7e-12 4.7e-11 15 33| 0
MAKELA1 [| -1.414213564 | 1.1e-13 1.8e-11 19 24] 0
MAKELA2 7.1999999 | 6.4e-11 8.5e-11 7 7] 0
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Table 1: (cont.) Results for small-size problems

Prob. [ Obj. | Const. [ KKT [ Iter. [ Eval. | NC |
MIFFLIN1 -1.0 [ 3.2e-09 | 1.5e-08 5 5] 0
MIFFLIN2 -0.9999999 [ 1.4e-10 | 1.8e-10 13 28] 0
MINMAXBD || 115.7064397 | 6.4e-11 | 6.4e-11 25 36] 0
MINMAXRB 3.5e-17 | 1.3e-11 | 1.3e-11 7 3]0
MISTAKE -1.0 [ 5.6e-09 | 6.3e-09 10 10] 0
ODFITS -2380.026775 | 8.0e-13 | 8.4e-13 8 8] 0
POLAK1 2.718281833 | 3.5e-14 | 6.1e-14 8 8| o
POLAK3 5.9330033 | 2.2e-09 [ 4.7e-09 15 50] 0
POLAK4 6.0e-17 | 3.9e-14 | 3.9e-14 20 2] 0
POLAKS 49.99999 | 1.4e-08 | 1.7e-08 6 6| 1
49.99999 | 2.0e-08 | 2.0e-08 47 69 | 0

PRODPLO 58.79009997 | 2.3e-09 | 4.5e-08 16 6] 0
PRODPL1 35.73896744 | 2.4e-12 | 1.7e-11 23 37| 2
35.73896744 | 2.1e-14 | 3.4e-13 14 16| 0

QPCBLEND -0.0078425 [ 5.3e-15 | 4.1e-11 43 43] ©
QPNBLEND || -0.00913614 | 1.4e-14 | 5.8e-08 23 23] 0
ROSENMMX -44.0 [ 1.7e-13 [ 1.7e-13 31 87 ] ©
3268 4.9e-09 | 9.7e-15 | 9.9e-15 17 19 0
TAME 3.1e-33 0 [ 2.0e-15 3 4] 0
TENBARS4 || 368.4931619 | 9.9e-12 | 9.9e-12 15 18] 0
TRUSPYR1 || 11.22874087 | 2.4e-12 | 1.1e-11 9 9] o0
TRUSPYR2 || 11.22874090 | 5.9e-12 | 6.0e-12 12 12] 0
TRY-B 1.2¢-25 | 1.9e-10 [ 1.9e-10 10 11| o
TWOBARS 1.508652417 | 2.3e-15 | 4.0e-15 13 170] ©
WOMFLET 6.6e-13 | 5.6e-10 | 5.6e-10 11 23] 0
ZECEVIC2 -4.125 [ 6.3e-16 | 9.0e-09 8 40] ©
ZECEVIC3 || 97.30945002 | 7.0e-09 | 3.1e-08 10 10] 0
ZECEVIC4 || 7.557507769 | 4.8e-16 | 7.3e-15 9 13] 0
Zy2 2.0 | 3.8e-09 [ 3.8e-09 6 6] 0

Table 2: Problems using directions of negative curvature.

| Prob. ” Var. Cons. || Iter.cn Iter. | Eval.cn Evaf‘
HS24 2 3 13 6 31 6
HS36 3 1 8 8 8 8
HS65 3 b 10 11 14 12
POLAKS 3 2 6 47 6 69
BIGGSC4 4 7 21 21 26 21
HATFLDH 4 7 14 13 20 14
DIPIGRI 7 4 11 12 26 18
HS100 7 4 11 12 26 18
HS105 8 1 16 16 19 19
LAUNCH 25 28 22 15 24 15
PRODPL1 60 29 23 14 37 16
TOTAL 155 175 237 216
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6 Conclusions

We have described a procedure to combine different search directions. including directions of negative
curvature if they exist, and an algorithin to solve general nonlinear optimization problems, based on a
primal-dual approach, that uses the combination procedure. The algorithm has been shown to be efficient
on a set of siall test problems. The combination of the directions is also very efficient, as shown 1n the
reduced number of iterations required by the algorithin. A clear advantage is that the scaling of the
different directions is done in a natural way.

Although this procedure has been applied to cases in which we had either two or three directions to
combine, it would be straightforward to extend it to additional directions, such as for example additional
directions of negative curvature if they are available.

The impact of the negative curvature is not very significant on these small problems (it is used in only
8% of them), possibly due to the use of the gradient in the search, but it can be quite important in some
cases. Given the limited cost of computing a direction of negative curvature whenever an appropriate
factorization is used to obtain the movement directions, we think it is reasonable for nonconvex problems
to take into account this second-order information whenever it is available.
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