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We propose a new bootstrap resampling scheme to obtain prediction densi­

ties of levels and volatilities of time series generated by GARCH processes. The 

main advantage over other bootstrap methods previously proposed for GARCH 

processes, is that the procedure incorporates the variability due to parameter 

estimation and, consequently, it is possible to obtain bootstrap prediction den­

sities for the volatility process. The asymptotic properties of the procedure 

are derived and the finite sample properties are analysed by means of Monte 

Carlo experiments, showing its good behaviour versus alternative procedures. 

Finally, the procedure is applied to estimate prediction densities of returns and 

volatilities of the Madrid Stock Market index, IBEX-35. 
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1. INTRODUCTION 

It is by now well documented in the literature that high frequency financial time 

series are characterized by having conditional heteroscedasticity. Generalized Autore­

gressive Conditionally Heteroscedastic (GARCH) models were originally introduced 

by Engle (1982) and Bollerslev (1986) to represent the dynamic evolution of condi­

tional variances. One of the motivations of GARCH models was to provide dynamic 

prediction intervals with the intervals being narrow in tranquil times and wide in 

volatile periods. Furthermore, financial market participants have shown an increas­

ing interest in interval forecast as measures of uncertainty. For example, in the area 

of financial risk management, it is of interest to provide density forecasts of portfolio 

prices and to track certain aspects of these densities such as value at risk. However, 

despite the extensive literature related with GARCH models, relatively little atten­

tion has been given to the construction of prediction intervals of GARCH models. 

One step ahead prediction errors of conditionally Gaussian GARCH models are Nor­

mally distributed but the distribution of prediction errors more than one step ahead 

is unknown. Baillie and Bollerslev (1992) use Cornish-Fisher expansions to obtain 

prediction intervals of nonlinear regression functions with ARMA disturbances and 

GARCH(l,l) innovations, making parametric hypothesis on the conditional distrib­

ution of the innovations. However, generalizations for other non Gaussian GARCH 

models are not available. 

On the other hand, the volatility of returns is a key factor in many models of op­

tion valuation and portfolio allocation problems. Therefore, accurate predictions of 

volatilities are critical for the implementation and evaluation of asset and derivative 

pricing theories as well as trading and hedging strategies. However, the literature on 

volatility prediction has only deal with point forecasts without giving any measure 

of prediction uncertainty when forecasting future volatilities. For example, Ander-
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sen and Bollerslev (1998) and Andersen et al. (1999) explore the return volatility 

predictability inherent in high-frequency returns finding that both model misspeci­

fication and parameter estimation error should detract from the predictive power of 

GARCH models. However, there are not results on the distribution of prediction 

intervals for future volatilities. 

Bootstrap based methods allow to obtain prediction intervals that incorporate the 

uncertainty due to parameter estimation without distributional assumptions on the 

sequence of innovations. In the context of linear time series, different bootstrap 

methods have been proposed in the literature to improve the prediction intervals 

based on Box and Jenkins (1976). The procedure originally proposed by Thombs 

and Schucany (1990) try to estimate directly the distribution of the prediction k­

periods ahead of AR(p) models, conditional on the information given by the observed 

data. This approach needs the backward representation of the autoregressive model to 

construct bootstrap replicates that mimic the structure of the original data. The need 

of the backward representation makes this method computationally expensive and, 

what is more important, restrict its applicability to models having this representation, 

excluding GARCH processes. Cao et al. (1997) present an alternative bootstrap 

method for constructing prediction intervals for stationary AR(p) models which does 

not require the backward representation. However, their intervals do not incorporate 

the variability due to parameter estimation. Miguel and Olave (1999) extend the 

procedure of Cao et al. (1997) to construct prediction intervals for ARMA processes 

with ARCH innovations. However, their proposal do not. allow to construct prediction 

intervals for future volatilities. 

More recently, Pascual, Romo and Ruiz (1998) have proposed a bootstrap proce­

dure for autoregressive integrated moving average (ARIMA) processes that is able 

to take into account the uncertainty due to parameter estimation and that does not 

require resampling through the backward representation of the process. In this paper, 

3 

- l 
i 



we generalize the procedure of Pascual, Romo and Ruiz (1998) to estimate prediction 

densities of both, returns and volatilities generated by GARCH models. 

The paper is organized as follows. Section 2 describes the main properties of 

GARCH processes and predictions. In section 3, we present the proposed resampling 

procedure to estimate prediction densitie~ and intervals for returns and volatilities. In 

section 4, we derive the asymptotic properties of the proposed bootstrap procedure. 

Its finite sample behavior is analyzed in section 5 that reports results of an extensive 

Monte Carlo simulation study. Section 6 presents an application with real financial 

data. Finally, the conclusions and some ideas for future research appear in Section 7. 

2. THE GARCH(l,l) MODEL 

The GARCH(1,1) model provides a simple representation of the main statistical 

characteristics of return series of a wide range of assets and, consequently, it is exten­

sively used to model real financial time series. Hence, although it could not be the 

optimal model for volatility forecasting in any given series, it does serve as a natural 

benchmark for the forecast performance of heteroscedastic models based on ARCH. 

In the simplest set up, a GARCH(1,1) model is given by 

Yt (1) 

where et is a white noise process with unity variance, (J't is a stochastic process known 

as volatility that it is assumed to be independent of et and w, et and f3 are unknown 

parameters that satisfy w > 0, et, f3 2: 0 to ensure the positivity of the conditional 

variance. The process Yt is stationary if et + f3 < 1. Notice that (J'F is observable 

with information available at time t-1 and, consequently, given the assumptions on 

the distribution of et, the conditional mean of Yt is zero and (J'F is the conditional 
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variance. Further, the conditional distribution of Yt coincides with the distribution 

of Ct. 

Alternatively, the conditional variance can also be expressed as a function of past 

observations as follows: 

00 

2 _ W ~ (3j( 2 w) 
(Jt - 1 _ a - (3 + a ~ Yt-j-l - 1 - a - (3 . 

)=0 

(2) 

Although the marginal distribution of Yt is, in general, unknown, it is easy to prove 

that the distribution of Yt has thick tails with zero mean and if a+(3 < 1, the marginal 

variance is given by: 

( 
2 W 

E Yt) = (3. 1-a-
(3) 

Finally, the predictor of YT+k given observations of the process up to time T, 

{Yl, Y2, ... , YT}, is zero and its conditional MSE is given by 

( 2) W k-l ( 2 w) VarT (YT+k) = ET (JT+k = 1- a _ (3 + (a + (3) (JT+l - 1- a - (3 . (4) 

If Ct is further assumed to be a Gaussian process then Yt is conditionally Gaussian, 

and one step ahead forecast errors are normally distributed. Therefore, 95% predic­

tion intervals of YT+l are given by ±1.96(JT+1. However, the prediction error distri­

bution when forecasting k-periods ahead for k > 1, is not normal even under the 

Gaussianity assumption. However, the usual approximation to the (1 - a)% predic­

tion interval of returns for k > 1 is given by 

(5) 

where Za/2 is the a/2 quantile of the standard normal density. 

Alternatively, Baillie and Bollerslev (1992) propose an improvement of the intervals 

in (5) based on Cornish-Fisher expansions making parametric assumptions on the 
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distribution of et. However, the prediction error distribution is only known for the 

GARCH(l,l) model and it seems difficult to generalize it to general GARCH(p,q) 

processes. 

With respect to the prediction of future values of volatilities, the point predictor of 

(}~+k is given by (4). Although, Baillie and Bollerslev (1992) derive the expression for 

the conditional MSE for the k-step ahead predictor of the conditional variance, the 

prediction error distribution for the conditional variance is not derived, and therefore, 

prediction intervals can not be obtained. 

3. BOOTSTRAP PREDICTION INTERVALS 

In this section we describe a bootstrap procedure that extends the procedure pro­

posed in Pascual et al. (1998) for ARIMA models, to obtain prediction densities of 

future values of returns and volatilities of series generated by GARCH processes. For 

simplicity in the exposition and because the GARCH(l,l) is the model commonly 

used in practise, we concentrate on it hereafter. In this paper, we follow the main­

stream of the literature in assuming that the specification of the model is known. 

Let {Yl,"" YT} be a sequence of T observations generated by a GARCH(l,l) 

process given by equation (1). The objective is to estimate directly the distribution 

of YT+k and (}T+k conditional on the available data. The unknown parameters (w, a, (3) 

are estimated by quasi-maximum likelihood (QML), maximizing the Gaussian log­

likelihood function even if the assumption of normality is violated. Bollerslev and 

Woodridge (1992) prove that, under standard conditions, the QML estimator is con­

sistent and has a limiting normal distribution. 

Once the values (w, a, (3) are estimated by QML, say (w, a,~), the conditional 

variances are estimated by 

~2 ~ ~ 2 ~f3~2 T 
(}t = w + aYt-l + (}t-l' t = 2, ... , , 
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with O'i = ~ ~, the estimated marginal variance. Then, the residuals are computed 
1-0-,6 

by the standardized observations given by, Et = yt/O't, t = 1, ... , T. 

To incorporate the uncertainty due to parameter estimation, it is necessary to 

obtain bootstrap replicates {Yi, ... , yf} that mimic the structure of the original series. 

These replicates are obtained from the following recursion 

-... ......... *2 '-'(3~*2 
W + aYt-1 + (Jt-1, (7) 

Y; c;O';, for t = 1, ... , T, 

where c; are random draws from FT, the empirical distribution function of the cen­

tered residuals and the initial value for the volatility is given by (Ji2 = O'i. Once the 

parameters of this bootstrap series are estimated by QML, say (w*, 0;*, ~*) , boot­

strap forecasts of future values are obtained through the following recursions: 

(8) 

with cf+k being random draws from FT and the initial values are given by yf = YT, 

and 
~* T-2 ~* 

~*2 W ~* ~ ~*j ( 2 w) (JT = -----::~:-:;-* + a ~(3 YT-j-1 - ~* . 
1 - 0;* - (3 j=O 1 - 0;* - (3 

(9) 

Notice that in expression (9) although 0';; is different in all bootstrap replicates, its 

value is obtained using the corresponding bootstrap parameter estimates and always 

the original series in such a way that its value is small when the returns at the 

end of the sample period are small and big when they are big in absolute value. 

Consequently, O'~2 only incorporates the variability due to parameter estimation and 

takes into account the state of the process when predictions are going to be made. 

Once we obtain a set of B bootstrap replicates for YT+k, say (Y;~~' ... , Y;~n ' the 

prediction limits are defined as the quantiles of the bootstrap distribution function 
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of Y~+k' More specifically, if Gy (h) = Pr (Y~+k :::; h) is the distribution function of 

Y~+k and its Monte Carlo estimate is Gy,B(h) = #(Y:/+k :::; h)/ E, a 100,% prediction 

interval for Y~+k is given by 

[ Lir,B (y), U;',B (y)] = [Qir'B (1 ; ,) ,Qir,B (
1 ; ,) 1 (10) 

h Q* G*-l were Y,B = Y,B' 

As stated previously, we can also obtain, at the same time, prediction intervals 

for the volatility k periods into the future. Given a set of E bootstrap replicates of 

the volatility for any horizon k, say (a;~~, ... , a;C:~) we proceed as before, using as 

prediction limits the quantiles of the bootstrap distribution function of a~+k' In this 

case, if G~ (h) = Pr (a~+k :::; h) is the distribution function of a~+k and its Monte 

Carlo estimate is G~,B(h) = #(a':j+k :::; h)/ E, a 100,% prediction interval for a~+k is 

given by 

[L;,B(y),U;,B(Y)] = [Q;,B (1 ;') ,Q;,B (1 ;') 1 (11) 

h Q* G*-l were a,B = a,B' 

Summarizing, the steps for obtaining bootstrap prediction intervals are: 

Step 1. Compute the centered residuals Et, and let FT denote their empirical 

distribution function. 

Step 2. Generate a bootstrap series using the recursion in (7) and calculate the 

corresponding bootstrap estimates (w*, (i*, ~*) . 
Step 3. Obtain bootstrap future values of returns and volatilities for any horizon k 

by the recursion in (8). 

Step 4. Repeat the last two steps B times and then go to Step 5. 

Step 5. The endpoints of the prediction intervals are given by quantiles of Gy,B 

and G~,B' the bootstrap distribution functions of Y~+k and a~+k' respectively. 

Alternatively, the bootstrap procedure just described could be also applied to con­

struct prediction intervals conditional on the parameter estimates; hereafter CB (con-
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ditional bootstrap). This procedure has been previously proposed by Miguel and 

Olave (1999) although they only focus on the construction of prediction intervals for 

YT+k and do not consider the construction of prediction intervals for future volatili­

ties. In this case, the estimated parameters are kept fixed in all bootstrap forecasts 

of YT+k and a;+k for k=1,2, . ... Therefore, it is not necessary to generate bootstrap 

replicates of the series as in (7) and the bootstrap forecasts k-steps ahead depend 

only on the resampled residuals. The recursive equations of the CB are 

(12) 

where YT = YT and 17;2 = a~ obtained using (6). 

Since the parameter estimates are kept fixed in all bootstrap replicates of future 

values, the CB prediction intervals do not incorporate the uncertainty due to parame­

ter estimation. Notice that 17;2+1 = W + ay'f + ~a~ is also kept fixed in all bootstrap 

replicates. Consequently, CB does not allow to estimate the one step ahead distri­

bution of the volatility process. This could be expected as in GARCH models, the 

variance is observable one period ahead. 

Notice that, although we have described the construction of prediction intervals 

for GARCH(l,l) models, the proposed bootstrap method can be easily generalized 

to deal with general GARCH(p,q) processes. 

4. ASYMPTOTIC PROPERTIES OF BOOTS TRAP PREDICTION 

INTERVALS 

In this section, we analyze the asymptotic properties of the proposed bootstrap 

procedure. Here and elsewhere Gp (1) stands for boundedness in probability, while 

op (1) denotes convergence to zero in probability. 

Let Y;' _ {y~, ... , YT} be a bootstrap sample generated following the resampling 
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scheme described in the previous section and let P* denote the underlying probability 

measure. We assume that e;, = (w*, (i*, ~*) is the corresponding QML estimator 

calculated at the bootstrap sample, that is, is a function of the data Y; satisfying 

the first order conditions, 

(13) 

Let eo = (wo, ao, (30)' be the true parameter vector, then Lumsdaine (1996) proves 

that eo is the unique maximizer of the Gaussian log-likelihood function L (e) = 

limT-...oo LT (e), and as T --700, 

..-
eT - eo --7 0 in probability, 

and 

where 

A = -E [a
2
ldeo)] dB = TE [aLT (eo) aLT (eo)] 

o aeae' , an 0 ae ae' , 
under the following two assumptions. 

Assumption 1: The true parameter vector eo E e ~ IR.3 is in the interior of e, a 

compact, convex parameter space. Specifically, for any vector (w, a, (3) E e, assume 

that b :::; w :::; W, b :::; a :::; (1 - b) and b :::; (3 :::; (1 - b) for some constant b > 0, 

where Wand b are given a priori, and E [In (ad + (3)] < o. 
Assumption 2: {Et} is i.i.d., drawn from a symmetric, unimodal density, bounded 

in a neighborhood of 0, with mean 0, variance 1, and E (E~2) < 00. In addition, a; is 

independent of {Et, Et+l, ... }. 

Defining the following 

1 { [( 2 ) -8] } ~ "1 - E aoEt + (30 , 

we can write I = (30 + RI + R2, for some constants RI> 0 and R2 > o. Then, define e+ 
to be the restriction of the parameter space e to 0 < b :::; w :::; W, 0 < b :::; a :::; (1 - b) 
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and 0 < 8 ~ {3 ~ 1 - R2 < 1. All the results proven in Lumsdaine (1996) refers to 

this subset of 8, which defines a local (nonzero measure) neighborhood of the true 

parameter space. 

To establish the asymptotic justification of the bootstrap procedure, Assumptions 

1 and 2 should be verified for each bootstrap sample. Moreover, we will prove that 

these Assumptions are satisfied in conditional probability. To achieve this objective, 

the following two Lemmas are needed. 

Lemma 1 Under the usual stationary assumptions for the GARCH(l,l) model, it 

follows that &; - a; = op (1) + {3top (1) . 

Proof. Recall that for any given t, the conditional variance in (2) is given by 

t-2 
2 W L . at (e) = {3 + a (31 Zt-j-l, 

1-a-
j=O 

where Zt = y; - l-~-.B and denote by &; = a; (eT) and Zt = y; - l-~-~' In this case, 

( 

~ ) t-2 W W ~~j~ j ~ ~ - {3 + ""' (a{3 Zt-j-l - a{3 Zt-j-l) 
1-a-{3 1-a- L 

1=0 
00 

j=t-l 

C-~_il-l-~-/3) + %(Ci/¥ -a/3i)yi-i_1 

+ f {a'ff ( _ ~ _ ~) - a{3j (1 _ ~ _ (3) } - a f {3j Zt-j-l' 
j=O 1 a {3 j=t-l 

The first three terms go to zero in probability because of the .JT -consistency 

of {eT}' For the last term, since Zj = Op (1), we have that a 'L.';.t-l {3j Zt-j-l = 

a 'L.';.t-l (3jOp(1) = (3tOp(1) obtaining the result .• 
~ 

The next result states that the empirical distribution of the centered residuals, FT, 

approximates the true distribution function F, with the help of the Mallows metric. 
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Lemma 2 fk (F, FT) ---+ 0 in probability as T ---+ 00. 

Proof. We will prove that the Mallows distance between the true distribution func­

tion of the errors, F, and the empirical distribution function of the centered residuals, 
~ 

FT, goes to zero in probability as T ---+ 00. Because d2 is a metric 

From Bickel and Freedman (1981) we have that d2(FT , F) ---+ 0 as T ---+ 00 almost 

everywhere, hence, we just have to prove the consistence to zero of the other term. 

Next, let J be Laplace distributed on {1, 2, ... ,T} , i.e. J j with probability liT 

for each j=l,"', T, and define random variables Xl and Yi with marginal FT and FT 
respectively according to 

Observe that, 

Using the usual central limit theorem, Jr 2.:J=1 Cj = Op(l), we have the convergency 
2 

to zero in probability of the second term. For the first term, we have that ~~j 2 = 
O"jO"j 

Op(l), and (aj - O"j)2 = op (1) + {3jop (1). To prove this last assertion, note that 

a~ - 0"] = (aj - O"j)(aj + O"j) = op (1) + {3jop (1) by Lemma 1. Therefore, because 

(aj + O"j) = Op (1), we have that (aj - O"j) = op (1) + {3jop (1). Consequently, 
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6 T 

T L Op(l) [op (1) + fJjop (1)] 
j=l 

6 T 6 T 

- T L Op(l)op(l) + T LfJjOp(l) 
j=l j=l 

and the first term of this last expression goes to zero in probability as T goes to 

infinity and the same for the other term because 0 ::; fJ < 1, which concludes the 

result .• 

Now, we are ready to justify the bootstrap procedure verifying Assumptions 1 and 2 

for each bootstrap sample in conditional probability. For that, we give the bootstrap 

version for these two assumptions and prove both of them. 

Assumption 1*: The parameter vector eT E e ~ lR.3 is in the interior of e 
(in probability), a compact, convex parameter space. Specifically, for any vector 

(w, a, fJ) E e, assume that 8 ::; w ::; W, 8 ::; a ::; (1 - 8) and 8 ::; fJ ::; (1 - 8) for 

some constant 8 > 0, where Wand 8 are given a priori, and E* [In (o.c;2 + f3)] < 0 

(in probability). 

Assumption 2*: {ca is i.i.d., drawn from a symmetric, unimodal density, bounded 

in a neighborhood of 0, with mean 0, variance 1 (in probability), and E* (c;32) < 00. 

In addition, 0:; is independent of { c;, C;+11 ... } (in probability). 

For verifying Assumptions 1 * and 2*, we need to assume the following hypotheses .. 

Hypotheses 1. s~p E [Iln (o.E; + fJ) 12+'] < 00 for some <; > o. 

Hypotheses 2. sup E [!Et!2+,] < 00 for some <; > o. 
T 

o 
Since () ° is in the interior of e, we can find TJ > 0 such that B (() 0, TJ) c e. Even more, 

by theorem 2 in Lumsdaine (1996) we have that eT -7 ()o in probability as T -7 00. 

Therefore, given TJ/2, exists no E N such that, for all n ;::: no, eT E B (()o, TJ/2) c 
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B (Bo,T}), concluding that eT E e ~ IR3 is in the interior of e (in probability). 

With respect to E* [In (ae;2 + (3)] < 0 (in probability), note that 

T 

E* [In (ae;2 + (3)] = ~ I)n (aE~ + (3) . 
j=l 

By the Weak Law of Large Numbers, the last sum converges in probability to E [In (aE~ + (3)] . 

At the same time, we have by Lemma 2 that In (aE~ + (3) ~ In (ae; + (3) in proba-

bility. Now, by Hypotheses 1, we have that the sequence {In (aZ; + (3)} is uniformly 

integrable and then, by Theorem 25.12 in Billingsley (1986) we have that 

E [In (aE~ + (3)] -t E [In (ae; + (3)] in probatility. 

These two convergencies written together, prove that, 

E* [In (ae;2 + (3)] < 0 (in probability). 

Using the same kind of arguments it is easy to verify Assumption 2*. First of all, we 

have that the sequence of {en is i.i.d from FT, the empirical distribution function of 

the centered residuals; therefore E* [e;] = 0; To see that Var* [e;] = 1 (in probability), 

just note that 

Now, by hypothesis 2, {En is uniformly integrable, then, E [En -t 1 in probability, 

obtaining the result. Even more E* (e*32) < 00 since E* (e*32) = 1. ""T z32 which , t , t T L--J=l t 

is well defined. 
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Finally, to prove that 0';2 is independent of { e;, e;+l, ... } (in probability) just note 

that 

--*2 ..-.. -.. *2 '-"(3~*2 
(Jt w + exYt-l + (Jt-l 

- w + exY:~l + (3O';~l + op (1) 

f (w, ex, (3, e;_l' ... , en + Op (1) , 

and then, since the sequence {en is i.i.d. we have the result. 

Once Assumptions 1* and 2* have been checked, we have available all the results 

in Lumsdaine (1996) for any bootstrap sample (in probability), and in particular, we 

ensure that VT (e; - eT) = Op' (1) in probability. 

We conclude that e; - eo ~ 0 in probability as T goes to 00, for eo the true 

parameter value. This is achieved by using the usual triangular inequality. 

At this point, we are ready to proof that bootstrap future returns and volatili­

ties converge in conditional distribution (in probability) to the corresponding true 

variables as the sample size increases. 

Lemma 3 Let {YT-n+l,'" ,YT} be a realization of size n of a stationary GARCH(1,l) 

process defined by (1). Then, it follows that O'~2 - (J~ = op' (1) + (3nop' (1) in proba­

bility. 

Proof. Using the same notation as in Lemma 1 and denoting by O'~2 = (J~ (e::) , it 
is possible to obtain the following expression 

iT;, - O"} = C _~. _ ~. -1- ~ _ iJ) + ~ (a'~'i - c<iJi ) Y}-i-l 

+ ~ {a*~*j ( _ :*_ ~*) -ex(3j (1- ~ _ (3)} - ex .f (3jZT-j-l' 
J=O 1 ex (3 J=n-l 

The first three terms goes to zero in conditional probability (in probability) as 

stated previously .. For the last term, since Zj = Op (1), ex 2:f=n-l (3j Zt-j-l = (3nOp(l) 

obtaining the result .• 
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Theorem 4 Let {YT-n+l,"" YT} be a realization of size n of a stationary GARCH(l,l) 

process given in (1). Let (w,&:,~) be any QML-estimate of (w,a,{3) and letYT+k be 

obtained following steps 1 to 5. Then, for any distance d metrizing weak convergence, 

d(YT+k , YT+k) ---+ 0 in probability as n---+ 00. 

Proof. We achieve the result using back-substitution. For k=l, the result is trivial. 

In this case, 

By Lemma 2, CT+l ---+ CT+l in conditional distribution (in probability) as n goes to 

00. Even more, by Lemmas 3 and 4, (w*, &:* , ~* , -a~2) ---+ (w, a, (3, a~) in conditional 

probability (in probability) as n goes to 00. 

Let a = (aa, aI, a2, a3)' be a vector in IR4 where the first three elements fulfill the 

usual stationarity conditions for the GARCH(l,l) model (see section 2), and for any 

horizon k let define the vector X (k) = (Xl,'" ,Xk)' in IRk. Then, the function 

is continuous at (a, X (1)) for all X (1) in R 

In such a case, YT+1 = gl (b~, c* (1)) and YT+1 = gl (b, C (1)) , for b~ = (w*, &:*, ~*, -a;?)' , 
b = (w, a, (3, a~)' , c* (1) = (CT+l) and C (1) = (cT+1)' Then, by the bootstrap version 

of Slutzky's theorem, 

gl (b~,c* (1)) ---+ gl (b,c(l)) in conditional distribution 

(in probability), as n ---+ 00, since b~ ---+ b in conditional probability (in probability) 

and c* (1) ---+ C (1) in conditional distribution (in probability). 

For forecast horizon k=2, using a recursive argument, we express YT+2 as 
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The function 

g2 (a,X (2)) = X2 (ao (1 + a2) + a1gi (a,X (1)) + a1a2Y~ + a~an1/2, 

is continuous at (a, X (2)) for all X (2) in IR2, and is such that YT+2 = g2 (b~, c* (2) ) 

and YT+2 = g2 (b, c (2)), with b~ and b as before, and c* (2) = (CT+1' CT+2) and 

c (2) = (cT+1' cT+2). Since CT+1 and CT+2 are independent random draws, we have 

that c* (2) --+ c (2) in conditional distribution (in probability) by Cramer-Wald theo­

rem. Therefore, by Slutzky's theorem, 

g2 (b~, c* (2)) --+ g2 (b, c (2)) in conditional distribution 

(in probability), as n --+ 00, that is, 

YT+2 --+ YT+2 in conditional distribution 

(in probability), as n --+ 00. 

For a general horizon k, by the recursive argument, we express YT+k as 

( 
~ ~*j ~*k-1 2 ~*k 2 ~ ~*k-1-j 2 (~ )) 1/2 

YT+k = CT+k CJ* ~ (3 + (i* (3 YT + (3 O'~ + (i* ~ (3 gj b~, c* (j) 

Then, the function 

9k (a, X (k)) = Xk (ao ~ ai + aIa;-Iy~ + a;al + aI ~ a;-l-i 9; (a, X (jll) 1/2 

is continuous at (a, X (k)) for all X (k) in IRk since, by definition, gk is the composition 

of continuous functions gj for j=1,2, ... ,k-1. In such a case, YT+k = gk (b~, c* (k)) and 

YT+k = gk (b, c (k)), where c* (k) = (cT+l? .. ' cT+k) and c (k) = (cT+1, ... , cT+k). 

Since cT + l' ... , CT +k are independent random draws, we have that c* (k) --+ c (k) in 

conditional distribution (in probability) by Cramer-Wald's theorem. Therefore, by 

Slutzky's theorem, 

gk (b~, c* (k)) --+ gk (b, c (k)) in conditional distribution 
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(in probability), as n ---+ 00, that is, 

Y~+k ---+ YT+k in conditional distribution 

(in probability), as n ---+ 00 .• 

TheoreITl 5 Let {YT-n+1, ... ,YT} be a realization of size n of a stationary GARCH(1, 1) 

process given in (1). Let (w,a,~) be any QML-estimate of (w,a,f3) and let O"Y+k be 

obtained following steps 1 to 5. Then, for any distance d metrizing weak convergence, 

d( O"Y+k, O"T+k) ---+ 0 in probability as n---+ 00. 

Proof. We follow the same strategy as in theorem 5. For k=1 the result is obvious 

since in this case, 

*2 ..-.* -* 2 --13* .-.*2 O"T+1 = W + a YT + O"T 

and then, O"y2+1 ---+ 0"~+1 in conditional probability (in probability) as n goes to 00 by 

Lemmas 3 and 4. 

For forecast horizon k=2, we can express O"y2+2 as 

where gl (a, X (1)) is a continuous function defined in theorem 5. Now, using the 

same notation as in that theorem, we define the continuous function at (a, X (1)) for 

all X (1) in JR, 

By construction, this function is such that O";z?+2 = h2 (b~, €* (1)) and 0"~+2 = h2 (b, € (1)) 

and then, using the same arguments as in theorem 5, by Slutzky' s theorem 0"~2+2 ---+ 

0"~+2 in conditional distribution (in probability) as n goes to 00. 

For a general horizon k we express O"y2+k as 

k-1 k-1 
*2 ~* ~ ~f3*j ~*~f3*k-1 2 ~f3*k~*2 ~* ~ ~f3*k-1-j 2 (~b* * ( .)) 

0" T+k = W L + a YT + 0" T + a L gj n' € J . 
j=O j=O 
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Then, the function 

k-l k-l 

h ( X (k 1)) ""' j k-l 2 k 2 ""' k-l-j 2 ( X ( .)) k a, - =aOL a2+ ala2 YT+a2a3+alLa2 9j a, J 
j=O j=O 

is continuous at (a, X (k - 1)) for all X (k - 1) in IRk - 1 since, by definition, hk is 

the composition of continuous functions 9j for j=1,2, ... ,k-1. In such a case, 0';z,2+k = 

hk (b~, c:* (k - 1)) and O'~+k = hk (b, c: (k - 1)). Therefore, by Slutzky's theorem, 

hk (b~, c:* (k - 1)) -+ hk (b, c: (k - 1)) in conditional distribution 

(in probability), as n -+ 00, that is, 

0';z,2+k -+ O'~+k in conditional distribution 

(in probability), as n -+ 00. 

At this point, for any forecast horizon k, we also have the result for the volatilities, 

that is, 

O';z,+k -+ O'T+k in conditional distribution 

(in probability), as n -+ 00, since the squared root is a continuous function in the 

range of (b, c: (k - 1)) by hypotheses .• 

5. MONTE CARLO EXPERIMENTS 

In this section, the finite sample behavior of the proposed bootstrap procedure to 

estimate prediction densities and intervals of future returns and volatilities of series 

generated by GARCH models is analyzed by means of Monte Carlo experiments. 

Prediction intervals of returns build by the proposed procedure (PRR) are compared 

with intervals based on the Normal approximation (STD) in (5) and with CB intervals. 

We generate series by the following GARCH(l,l) model: 
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Yt (14) 

with Gaussian, Studcnt- t with 5 degrees of freedom, exponential centered to have 

zero mean and double-exponential innovations!. The sample sizes considered are 

300, 1000 and 3000 observations. The prediction horizons under study are k=l, 2, 

10 and 20 and the corresponding intervals are constructed with a nominal coverage 

1-0: equal to 0.80, 0.95 and 0.99. For each particular series generated by model 

(15) with a particular sample size and error distribution, we generate R=1000 future 

values of YT+k and O"T+k from that series and obtain 1000:% prediction intervals for 

returns, denoted by (Ly, Uy ) by each of the three procedures considered. PRR and 

CB intervals are constructed based on B=999 bootstrap replicates. The conditional 

coverage of each procedure is computed by 

where YT+k (r = 1, .. . ,R) are future values of the variable generated previously. 

At the same time we obtain a 1000:% prediction interval for the volatility, denoted 

by (L~, U;) and estimate the conditional coverage of each procedure by 

where O"T+k (r = 1, .. . ,R) are the values of the future volatility generated previously. 

The prediction intervals are compared in terms of average coverage and length, and 

the proportion of observations lying out to the left and to the right through all Monte 

Carlo replicates. The Monte Carlo results are based on 1000 replicates. 

1 Results for alternative models are similar to the ones reported and are avalaible from the authors 

upon request. 
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All computations have been carried out in a HP-UX C360 workstation, using For­

tran 77 and the corresponding subroutines of Numerical Recipes by Press et al. 

(1986). In particular, Gaussian and Student-t errors are generated using the sub­

routine" gasdev" and the corresponding transformations in each case. Exponential 

errors are generated using uniform random numbers generated by subroutine" rand2" 

and transforming them as appropriate. The numerical optimization of the Gaussian 

log-Likelihood function has been carried out using the subroutine" amoeba" with the 

maximum allowed function evaluations set equal to 5000 and the fractional conver­

gence tolerance set equal to 10-6 . 

5.1. Prediction intervals for returns 

Table 1 shows the results from the Monte Carlo experiments carried out with se­

ries generated by model (15) with et being Gaussian. In this case, all the procedures 

considered to construct prediction intervals for returns have similar properties for all 

prediction horizons and nominal coverages. It is important to observe that although 

the conditional distribution of YT+k is not normal, it seems that the normality approx­

imation in (2) is not a bad assumption when building 95% prediction intervals. Also, 

notice that the performance of the bootstrap procedures is never worse than with the 

standard approach. Furthermore, when we compare PRR and CB intervals, small 

differences between them are observed. Therefore, introducing or not the variability 

due to the parameter estimation does not lead to an improvement in the performance 

of bootstrap prediction intervals for the returns series. 

Tables 2 and 3 report the results for the same model with et having a Student-t 

distribution with 5 degrees of freedom and for 80% and 99% prediction intervals re­

spectively. In table 2 it is possible to observe that the average coverage and length 

of STD intervals in (5) is always over the empirical coverage even for very big sample 

sizes. On the other hand, in table 3 the STD average cover ages and lengths are under 
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the empirical values and quite different from the bootstrap values for the same quan­

tities. As expected, the distortion does not disappear when the sample size increases. 

Consequently, as pointed out by Pascual, Romo and Ruiz (1998), standard intervals 

are clearly distorted when the error distribution is not Gaussian. On the other hand, 

comparing PRR and CB intervals, both have similar properties. It seems that for 

symmetric distributions, introducing the uncertainty due to parameter estimation 

in prediction intervals is not fundamentaL Notice that the results in tables 2 and 

3 are specially relevant in empirical applications. Bollerslev (1987) argues that the 

conditional normality assumption is not enough and that it is more adequate to use 

Student-t distributions. Therefore, the results in tables 2 and 3 show that in this case, 

it is more appropriate to predict using the PRR intervals. As an illustration, figure 

1 represents kernel estimates of the empirical, the PRR and the standard normal 

densities for a particular series generated by model (15) with T=1000, for predictions 

made one-step-ahead. In figure 2, the same densities are plotted for predictions made 

twenty steps ahead. Notice that the PRR density is remarkably close to the empir­

ical density while the standard normal is a worse approximation, not being able to 

represent the higher kurtosis in the data. 

Finally, table 4 reports the results when the distribution of Et is exponentiaL In 

this case, STD intervals are clearly distorted. Comparing the resampling methods, 

we observe that for a sample size of 300, PRR clearly outperforms CB in the short 

term both in coverage and interval length, and the behavior tends to be similar as 

we go farther into the future. As expected, the differences between PRR and CB 

intervals disappear with the sample size. Figures 3 and 4 plot kernel estimates of 

the PRR densities together with the empirical and standard normal densities for a 

particular series generated by model (15) with exponential innovations and T=1000, 

for one-step and twenty-steps ahead respectively. As expected in this case, the stan­

dard density provides an inadequated approximation to the empirical distribution of 
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futures returns. The PRR density is a better approximation although there is cen­

tered slightly to the left of the empirical distribution. In figures 5 and 6, where we 

represent the same densities as before with T=3000, it is possible to observe that the 

PRR distribution is a remarkable estimation of the empirical distribution. 

5.2. Prediction intervals for volatilities 

We now analyze the performance of PRR and CB prediction intervals for the future 

volatility itself. For this purpose, we use the same Monte Carlo design as for returns. 

In addition, we show the results for lead time k=2, since the behavior of the former 

differs with respect to k=1. 

Table 5 reports the results for 95% prediction intervals when series are generated 

by model (15) with Ct being Gaussian. Notice that in GARCH models the volatility 

is known one-step ahead so the only uncertainty associated with forecasting a~+l 

is due to parameter estimation. Therefore, the empirical length is not reported in 

table 5, since all the mass of the empirical distribution of aT+} conditional on the 

observed series is concentrated on aT+l. If the parameter estimates are considered 

as fixed the CB procedure is not able to give one-step ahead prediction intervals 

for volatilities. Notice that PRR intervals for future volatilities one-step ahead have 

average cover ages close to the nominal values and that, as expected, their performance 

is better the bigger the sample size. Figures 7 and 8 plot kernel estimates of the PRR 

densities of one-step ahead volatilities of one series generated by model (15) with 

Gaussian innovations and T=1000 and 3000 respectively. 

When forecasting two or more steps into the future, the average coverage of CB 

intervals is well under the nominal value. On the other hand, the average coverage 

of PRR intervals is closer to the nominal for all horizons considered. Although the 

average length of PRR intervals is over the empirical length for sample sizes of 300 

observations, it gets closer as the sample size increases. Note that the empirical 
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distribution of future values of volatilities is bounded by w. Since, in practice, w 

should be estimated, it is impossible to achieve exactly this bound with moderate 

sample sizes. In this case, the bootstrap estimate of the conditional distribution of 

(J~+k is smoother than the empirical distribution, and tends to have values under this 

bound. This leads to give larger prediction intervals than the empirical ones, usually 

larger to the left, but with a good performance in terms of coverage. Figures 9 and 10 

represent the empirical and PRR densities estimated for two-steps ahead prediction 

of volatilities generated by model (15) with Gaussian innovations and T=1000 and 

3000 respectively. Notice that although for moderate sample sizes (T=1000) there 

are some distortions in the bootstrap density, when the sample size is big enough, 

the bootstrap density is able to represent the empirical density. In figures 11 and 12, 

we plot the same densities for predictions of the volatility twenty-steps ahead. For 

forecast horizons equal or greater than 2, the shape of the volatility is asymmetric 

and in concordance with the shapes usually found with real data; see for example 

Andersen et al. (1999) . 

Finally, table 6 reports results for the same model with et having a Student-t 

distribution with 5 degrees of freedom. As in the Gaussian case, we may observe that 

the performance of the CB intervals is not adequate. Once more, the PRR intervals 

are too wide although the average length gets closer to the nominal length as the 

sample size increases. 

Therefore, the results in tables 5 and 6 show the necessity of introducing the vari­

ability of the parameter estimates in order to obtain. prediction intervals for the 

volatility with cover ages close to the nominal values. When the variability of the es­

timated parameters is not introduced in the prediction intervals, the average coverage 

and average length are not adequate compared with the empirical values. Although 

when the sample size goes to infinity, CB is asymptotically correct, with the number 

of observations used in this study, it is still necessary to introduce the variability due 
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to parameter estimation. 

6. AN APPLICATION WITH REAL DATA 

In this section we apply the bootstrap procedure described previously to construct 

prediction intervals for returns and volatilities of the Madrid Stock Market index 

IBEX-35. The estimation of the GARCH model used for the prediction of future 

returns and volatilities is based on daily closing prices of the IBEX-35 observed from 

2/1/1996 to 3/3/2000, with a total of 1048 observations. 

Daily percentage returns are obtained as first differences of logarithms scaled by 

multiplying by 100, i.e., 

where Pt denotes the closing price at day t. The returns series is plotted in figure 13 

where it is possible to observe volatility clustering with periods of low (high) volatil­

ity followed by periods of low (high) volatility suggesting the presence of conditional 

heteroscedasticity. Table 7 reports several sample moments of Rt. The estimated 

kurtosis coefficient is significantly bigger than 3 showing that the return distribution 

is leptokurtotic. Table 7 also contains the sample autocorrelations of returns and 

their squares. In this and subsequent tables, the standard deviations of sample auto­

correlations of returns are corrected by ARCH effects as suggested by Diebold (1986) 

by the following expression 

1 { 12(k)}~ s.e. (r(k)) = /iTr 1 + 2' 
yT [1(0)] 

where 1 (0) is the sample variance of Rt and 12 (k) is the kth sample covariance of 

R;. Notice that the order 1 auto correlation of Rt is significative and that the squared 

returns are highly correlated. 

Given that the order one autocorrelation is significative, the returns series has been 

corrected of this auto correlation by fitting a MA(l) model with interventions with 
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the following results: 

0.1188 +at+ 0.1037 at-1- 5.2694 Dlt 
(0.046) (0.047) (0.273) 

(15) 

+ 5.8184 D 2t - 6.9508 D 3t - 3.2550 D4t 
(0.287) (0.134) (0.487) 

where Dlt is a pulse dummy variable that takes value 1 on the 4th of March of 1996 

when the Partido Popular (PP) won the elections in Spain by a narrow margin and 

the Stock Market had a sharp decline. The second dummy variable, D2t , corresponds 

to the 4th of January 1999 when the Euro was introduced. The last two dummy 

variables are due to extreme market reactions to external effects. 

Table 8 reports the sample moments of the residuals from model (14). Once more, 

we observe excess kurtosis and significative autocorrelations of squares. From now 

on, the residuals from model (14) will be denoted by Yt. 

To represent the dynamic evolution of squared residuals, we fit a GARCH(1,1) 

model to the filtered returns. The estimated model is 

&; =0.0209 + 0.1060 Y;-l + 0.8866 &;-1. 
(0.011) (0.Q18) (0.020) 

(16) 

The sample moments of the standardized residuals, Et = yt/&t, appear in table 9, 

where it can be observed that the GARCH model in (15) is able to represent ad­

equately the dynamic structure of the volatility process. Although the excess kur­

tosis parameter is no longer significantly different from 3, the skewness coefficient 

significantly different from zero (p-value 0.04). The Jarque-Bera statistic for Nor­

mality equals 9.2996 (p-value=0.0095). Therefore, the standardized residuals are not 

Gaussian. Figure 14 represents a kernel estimate of the density of Et together with 

the normal density. 

Next, we apply the bootstrap procedure previously described to obtain prediction 

intervals of futures returns, YT+k. The empirical out-of-sample forecast analysis is 
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based on 20 temporal aggregates of tick by tick prices observed from 4/3/2000 to 

31/3/2000. For each day in the period used to forecast, we have about 500 intra­

day one-minute observations. The estimated bootstrap densities for k=1 and 20, that 

correspond to predictions made one-day and one-month ahead, appear in Figure 15 

where it is possible to observe the asymmetric shape previously observed in the stan­

dardized returns. Using these densities, we construct 80% and 95% PRR prediction 

intervals that have been plotted in figure 16 together with the point linear prediction 

of YT+k (zero for all horizons), the observed returns and the corresponding prediction 

intervals constructed using the normal approximation. Once more we can see the 

asymmetry of the standardized returns, providing prediction intervals larger to the 

left than those obtained by standard methods. 

Finally, we construct bootstrap prediction intervals for future volatilities. A com­

mon approach for judging prediction intervals is to check whether they contain the 

subsequent realizations of volatility with the desired coverage. However, as volatility 

is not directly observed, this approach is not immediately applicable for prediction 

interval evaluation. Different measures of volatility have been used in the literature 

to check whether GARCH models provide good forecasts of volatility. Andersen and 

Bollerslev (1998) propose to use a cumulative intraday squared-return measure of 

volatility. In this paper, we approximate the latent volatility at day t by the sum of 

the squared tick by tick returns during day t, i.e. 

(17) 

where n is the number of observations obtained at day t. Andersen (2000) points out 

that the magnitude of the measurement error of using a; instead of the true volatility 

is inconsequential, and illustrates the use of the cumulative squared returns in (18) 

for volatility forecast evaluation. 

In figure 17, we plot the histograms for the bootstrap predictions of volatilities 1, 2, 
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10 and 20 steps ahead into the future. Notice that the shape of volatility predictions 

is asymmetric and similar to the one obtained by Andersen et al. (1999) in the 

empirical analysis of very high frequency observations of exchange rates. Figure 18 

shows point linear predictions of volatility together with the corresponding observed 

volatilities computed as in (18) and 80% and 95% PRR prediction intervals. In this 

figure we can see how the proposed resampling scheme gives good prediction intervals 

for both 80% and 95% in the sense that the 80% intervals leave 5 future values out 

when it is supposed to leave 4 and the 95% intervals leave lout that corresponds 

exactly with the nominal coverage. 

7. CONCLUSIONS 

In this paper, we have extended to GARCH processes the bootstrap procedure 

originally proposed by Pascual et al. (1998) to construct prediction intervals for 

ARIMA models. The bootstrap prediction intervals proposed can incorporated the 

uncertainty due to parameter estimation and do not rely on any assumption on the 

error distribution. Furthermore, incorporating the variability of the estimators, we 

can construct prediction intervals not only for future returns but also for volatilities. 

We derive the asymptotic properties of the proposed bootstrap procedure and an­

alyze its finite sample behavior by means of Monte Carlo experiments. The results 

of these experiments show that the standard prediction intervals for returns build 

treating the error distribution as if it were Normal for any prediction horizon, are 

adequate as far as the model is conditionally Normal. . However, it has been often 

observed in empirical applications that the conditional distribution of the errors of 

GARCH models is leptokurtic; see, for example, Bollerslev et al. (1994) and the 

references therein. In this case, the standard prediction intervals for returns are not 

able to deal with non-Gaussian errors while bootstrap intervals do. The results of 

the Monte Carlo experiments also show that incorporating or not the variability due 
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to parameter estimation makes not difference when building prediction intervals for 

returns as far as the error distribution is symmetric. However, to construct predic­

tion intervals for future volatilities it is necessary to introduce the uncertainty due to 

parameter estimation in order to have intervals with cover ages close to the nominal 

values. Although all the results presented in the paper refer to the GARCH(l,l) 

model, the extension to GARCH(p,q) models is straightforward. 

Finally, it is important to mention that the proposed bootstrap prediction intervals 

for future volatilities are too wide when compared with empirical intervals. Extremely 

large sample sizes are needed before the bootstrap intervals have the nominal cover­

ages. However, we think that the problem may be in the way the volatility is modelled 

in GARCH models. Notice that the volatility at time t is observable with informa­

tion available at time t-l. Therefore, there is not uncertainty associated to one-step 

ahead volatilities except for the uncertainty associated with parameter estimation. 

Andersen (2000) shows that volatility diffusion models often used in finance, renders 

discrete-time strong-form ARCH based models invalid because it is impossible for 

a discrete return to serve as a sufficient statistic for the innovation to the volatil­

ity process. Alternatively, volatility can be modelled by Stochastic Volatility (SV) 

models as proposed by Harvey et al. (1994) that represent the volatility as an unob­

servable latent process. It could be worth to investigate the performance of the PRR 

procedure in the context of SV models. 
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Table 1. Moute Carlo results for prediction interv(z[s for returns 

of GARCH(I,I) model with Gaussian innovations 

Lead Sample Average Coverage Average 

I irne Size 11ethod Coverage(se) below / above Length 

T Em pirical 95% 2.5%/2.5% 3.82 

300 STD 94.71(.022) 2.64/2.65 3.86(1.00) 

CB 94.45(.024) 2.70/2.85 3.85(1.03) 

PRR 94.52(.023) 2.69/2.79 3.84(.945) 

1000 STD 95.01(.011) 2.50/2.49 3.84(.846) 

CB 94.86(.014) 2.51/2.62 3.83(.858) 

PRR 94.85(.014) 2.53/2.62 3.83(.823) 

3000 STD 95.01(.009) 2.50/2.49 3.85(.908) 

CIl 94.89(.011) 2.51/2.60 3.85(.928) 

PRR 94.91(.012) 2.50/2.59 3.84(.910) 

10 T Em pirical 95% 2.5%/2.5% 3.90 

300 STD 94.44(.025) 2.78/2.77 3.90(.783) 

CB 94.27(.027) 2.81/2.92 3.91(.833) 

PRR 94.35(.025) 2.78/2.87 3.90(.764) 

1000 STD 94.83(.014) 2.59/2.58 3.90(.588) 

C'1l 94.80(.016) 2.55/2.65 3.91(.609) 

PRR 94.80(.016) 2.55/2.65 3.91(.576) 

3000 STD 94. 8(i (0.01) 2.58/2.56 3.90(.626) 

C'1l 94.90(.012) 2.51/2.59 3.92(.646) 

PRR 9·1.85(.012) 2.53/2.63 3.92(.638) 

20 T Empirical 95% 2.5%/2.5% 3.94 

300 STD 94.30(.026) 2.84/2.86 3.92(.682) 

CIl 94.12(.029) 2.87/3.00 3.93(.762) 

PRR 94.23(.024) 2.82/2.95 3.93(.713) 

1000 STD 94.73(.015) 2.62/2.64 3.92(.447) 

CIl 94.71(.017) 2.59/2.70 3.94(.475) 

PRR 94.77(.016) 2.55/2.68 3.95(.452) 

3000 STD 94.77(0.01 ) 2.60/2.63 3.92 (.436) 

CB 94.85(.012) 2.50/2.65 3.96(.481) 

PRR 94.83(.012) 2.52/2.65 3.95(.452) 
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Table 2. Monte Cu.rio r'esults Jor prediction intervuls for return~ 

of GARCH(l,l) modd with Student-5 innovations 

Lead Sample Average Coverage Average 

t irne Size ~1 dhoti Covcrage(se) below/above Length 

T Em pirical 80% 10%/10% 2.15 

300 STD 83.21(.041) 8.38/8.41 2.42(.869) 

CB 79.58(.046) 10.15/10.27 2.19(.776) 

PRR 79.12(.046) 10.26/10.33 2.16 (.672) 

1000 STD 83.74(.027) 8.13/8.14 2.40(.734) 

CB 79.81(.032) 10.05/10.14 2.15(.645) 

PRR 79.77(.031) 10.04/10.19 2.15(.619) 

3000 STD 84.01(.018) 7.98/8.01 2.46(.729) 

CB 79.88(.023) 10.02/10.10 2.20(.655) 

PRR 79.90(.023) 9.98/10.12 2.19(.638) 

10 T Empirical 80% 10%/10% 2.14 

300 STD 84.27(.043) 7.86/7.87 2.51(.716) 

CB 79.58(.045) 10.15/10.26 2.17(.514) 

PRR 79.41(.044) 10.22/10.37 2.14(.432) 

1000 STD 84.63(.031) 7.70/7.67 2.48(.575) 

CB 79.82(.033) 10.06/10.11 2.15(.441) 

PRR 79.70(.032) 10.09/10.21 2.13(.408) 

3000 STD 84.95(.021) 7.53/7.52 2.52(.518) 

CB 79.98(.024) 9.90/10.12 2.17(.428) 

PRR 79.80(.025) 10.01/10.18 2.16(.416) 

20 T Empirical 80% 10%/10% 2.14 

300 STD 8,1.56(.050) 7.75/7.69 2.55(.669) 

Cll 79.52(.048) 10.23/10.24 2.16(.414) 

PRR 79.28(.045) 10.32/10.39 2.14(.370) 

1000 STD 84.97(.034) 7.52/7.50 2.53(.504) 

CB 79.81(.034) 10.07/10.12 2.15(.343) 

PRR 79.71(.032) 10.18/10.11 2.13(.309) 

3000 STD 85.36(.023) 7.34/7.30 2.55(.386) 

CB 79.98(.025) 9.97/10.0.5 2.16(.287) 

PRR 79.82(.025) 10.02/10.15 2.15(.282) 
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Table 3. At Onte Carlo results for prediction iuterV(lis for returns 

oJ GARCH(l,l) model with Student-5 innovations 

Lead Sample Average Coverage Average 

time Size ~Iethod Coverage( se) below/above Length 

T Em pirical 99% 0.5%/0.5% 5.92 

300 STD 97.68(.012) !.l6/l.l5 4.92(1.76) 

CB 98.42(.012) .75//.81 6.00(2.52) 

PRR 98.59(.010) .68/.73 6.07(2.35) 

1000 STD 97.88(.007) 1.07/1.05 4.88(1.49) 

CB 98.78(.007) .57/.66 5.92(1.94) 

PRR 98.81(.007) .55/.64 5.95(1.88) 

3000 STD 97.96(.005) 1.03/1.01 4.99(1.48) 

CB 98.86(.005) .53/.61 6.04(1.93) 

PRR 98.87(.005) .52/ .61 6.01(1.84) 

10 T Empirical 99% 0.5%/0.5% 6.31 

300 STD 97.56(.012) 1.22/1.22 5.12(1.45) 

CB 98.47(.012) .72/.81 .66(2.39) 

PRR 98.61(.010) .65/.74 6.48(2.22) 

1000 STD 97.73(.008) !.l4/ l.l3 5.04(l.l7) 

CB 98.77(.007) .56/.67 6.33(1.73) 

PRR 98.81(.007) .54/.65 6.39(1.74) 

3000 STD 97.82(.006) !.l0/1.0S 5.12(1.05) 

CB 98.90(.005) .51/.58 6.48(1.56) 

PRR 98.88(.005) .52/.50 6.43(1.51) 

20 T EmpiriCfd 99% 0.5%/0.5% 6.51 

300 STD 97.13(.013) 1.27/1.29 5.19(1.36) 

CB 98.41(.013) .76/.83 6.52(2.23) 

PRR 98.50(.011) .71/.79 6.63(2.20) 

1000 STD 97.61(.009) !.l9/l.l9 5.13(1.02) 

CB 98.71(.008) .58/. 71 6.56(1.72) 

PRR 98.75(.007) .57/.68 6.57(1.58) 

3000 STD 97.74(.006) !.l2/l.l4 5.18(.784) 

CB 98.85(.005) .51/.64 6.62(1.31) 

PRR 98.86(.005) .52/.62 6.59(1.24) 
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Table 4. Monte Cu1"io results Jar prediction intervals for nturns 

of GARCIl(I,I) mariti with EXIJOne1ttial irwovatio7Ls 

Lead Sample Average Coverage Average 

time Size l\lethod Covcrage{se) below/above Length 

T Empirical 99% 0.5%/0.5% 4.87 

300 STD 96.96(.012) .00/3.04 4.81(1.85) 

CB 97.63(.041) 1.44/.93 4.88(2.15) 

PRR 99.02(.012) .13(.85 5.04(2.04) 

1000 STD 97.20(.008) .00/2.80 4.88(1.79) 

CB 98.37(.023) .94/.69 4.93(1.97) 

PRR 99.19(.009) .13(.67 4.98(1.90) 

3000 STD 97.22(.006) .00/2.78 4.91(1.99) 

CB 98.51(.019) .85/.64 4.93(1.99) 

PRR 99.20(.008) .15/.65 4.96(2.20) 

10 T Empirical 99% 0.5%/0.5% 5.70 

300 STD 97.02(.013) .06/2.92 5.00(1.60) 

CB 97.76(.029) 1.32/.92 5.59(2.36) 

PRR 98.25(.017) .88/.86 5.74(2.14) 

1000 STD 97.31(.010) .04/2.65 5.07(1.42) 

CB 98.53(.012) .79/.69 5.73(1.91) 

PRR 98.64(.010) .67/.69 5.75(1.88) 

3000 STD 97.35(.006) .03/2.62 5.09(1.52) 

CB 98.74(.007) .62(.64 5.72(1.75) 

PRR 98.78(.007) .58(.63 5.78(2.03) 

20 T Ern pirical 99% 0.5%/0.5% 5.97 

300 STD 96.96(.014) .10/2.94 5.10(1.55) 

CB 97.12(.027) 1.58/1.00 5.79(2.44) 

PRR 98.00(.020) 1.07 /. 93 5.93(2.20) 

1000 STD 97.28(.010) .08/2.64 5.17(1.26) 

CB 98.35(.013) .93/.72 5.97(1.83) 

PRR 98.50(.011) .79(.71 6.03(1.93) 

:lOOO STD 97.36(.007) .07/2.57 5.17(1.21) 

CB 98.68(.008) .67/.65 6.01(1. 73) 

PRR 98.75(.007) .61/.64 6.03(1.80) 
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Table 5. A! ante Ctlr-io results for prediction intervu.l3 of vo[atilities 

of GARCH(I,I) model with Cuu8sian innovations 

Lead Sample Average Coverage Average 

time Size 1lethod Coveragc(se) below/above Length 

T Empirical 95% 2.5%/2.5% 

300 CB 

PRR 91.50(.279) 3.40/5.10 .65(.667) 

1000 CB 

PRR 93.70(.243) 3.0/3.30 .32(.249) 

3000 CB 

PRR 94.70(.224) 3.20/2.10 .18(.174) 

T Em pirical 95% 2.5%/2.5% .50 

300 CB 57.88(.358) 30.92/11.21 .56(1.01) 

PRR 91.54(.193) 3.63/4.82 .96(1.25) 

1000 CB 70.52(.274) 25.69/3.78 .52(.324) 

PRR 94.19(.122) 2.91/2.90 .68(.433) 

3000 CB 77.46(.223) 19.67/2.87 .51 (.321) 

PRR 94.42(.090) 2.91/2.66 .59(.406) 

10 T Empirical 95% 2.5%/2.5% 1.33 

300 CB 75.87(.263) 14.06/10.07 1.33(2.11) 

PRR 87.61(.162) 5.76/6.62 1.56(2.05) 

1000 CB 89.52(.099) 6.56/3.92 1.34(.733) 

PRR 92.57(.074) 3.91/3.52 1.41(.756) 

3000 CB 93.26(.04) 3.80/2.94 1.37(.715) 

PUR 9U7(.03) 2.96/2.87 1.39(.750) 

20 T Em pirical 95% 2.5%/2.5% 1.62 

:lOO CB 75.85(.254) 13.68/10.46 1.58(2.23) 

PRR 85.73(.167) 6.80/7.47 1.79(2.15) 

1000 CB 89.64(.091) 6.18/4.17 1.62(.805) 

PRR 91.83(.074) 4.35/3.81 1.68(.807) 

3000 CB 93.35(.040) 3.27/1.79 1.65(.728) 

PRR 93.90(.035) 3.11/2.99 1.66(.737) 
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Table G. Monte Curia r·eslllts for prediction intervals oJ vol(J,lilities 

of GARCH(l,l) model with Student·5 inno1!ations 

Lead Sample Average Coverage Average 

time Size Method Coverage(se) below/above Length 

T Empirical 95% 2.5% /2 .5% 

300 CB 

PRR 89.00(.313) 3.20/7.80 .94(1.30) 

1000 CB 

PRR 93.20(.252) 1.60/5.20 .53(.937) 

3000 CB 

PRR 91.00(.237) 2.20/3.80 .32(.417) 

T Empirical 95% 2.5%/2.5% .58 

300 CB 56.31(.396) 30.80/12.88 .78(2.10) 

PRR 91.87(.201) 2.80/5.33 1.42(2.59) 

1000 CB 65.59(.345) 28.84/5.57 .60(.773) 

PRR 94.83(.123) 1.84/3.32 .92(1.24) 

3000 CB 70.27(.297) 26.59/3.14 .62(.528) 

PRR 95.13(.105) 2.20/2.67 .77(.718) 

10 T Em pirical 95% 2.5%/2.5% 1.83 

300 CB 72.57(.294) 16.93/10.50 2.16(4.23) 

PRR 89.22(.155) 4.01/6.77 2.42(3.35) 

1000 CB 85.17(.162) 10.05/4.77 1.85(2.12) 

PRR 92.80(.091) 3.13/4.07 2.02(2.28) 

3000 CB 91.10(.090) 5.80/3.10 1.92(1.43) 

PRR 94.33(.058) 2.71/2.95 1. 99 (1.43) 

20 T Empirical 95% 2.5% /2 .5% 2.25 

300 CB 72.68(.285) 16.28/11.04 2.47(3.54) 

PRR 87.37(.164) 4.95/7.68 2.80(3.55) 

1000 CB 86.36(.142) 8.73/4.91 2.33(2.66) 

l'RR 91.93(.091) 3.63/4.44 2.44(2.52) 

3000 CB 91.76(.075) 7.17/2.07 2.36(1.48) 

PRR 94.01(.053) 2.92/3.07 2.42(1.46) 

Sample size Mean Median S.D. Skewness Kurtosis Max. Min. 

1065 0.1095 0.1634 1.4199 -0.4661 6.7675* 6.3232 -7.3389 

Autocorrelations r(l) r(2) r(3) r(4) r(5) r(10) r(20) 

Rt 0.104* -0.083* -0.045 0.011 0.030 0.051 -0.071 

[s.e.] [0.045] [0.044] [0.045] [0.045] [0.042] [0.046] [0.041] 

Rr 0.206 0.187 0.203 0.215 0.164 0.219 0.142 

Table 7. Sample moments of returns series of daily IBEX35 index. 
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Sample size Mean Median S.D. Skewness Kurtosis Max. Min. 

1065 -0.0001 -0.0019 1.3697 -0.3098 5.9578* 5.7889 -7.1571 

Autocorrelations r(l) r(2) r(3) r(4) r(5) r(10) r(20) 

Yt -0.007 -0.066 -0.020 -0.005 0.041 0.066 -0.058 

[s.e.] [0.047] [0.044] [0.044] [0.047] [0.045] [0.048] [0.042] 

Y; 0.273 0.225 0.224 0.274 0.228 0.304 0.179 

Table 8. Sample moments of residuals from MA(l) model with interventions. 

Sample size Mean Median S.D. Skewness Kurtosis Max. Min. 

1045 0.0067 0.0026 0.9932 -0.2257 3.1470 2.6983 -3.8791 

Series/Lag r(l) r(2) r(3) r( 4) r(5) r(10) r(20) 

et -0.007 -0.029 -0.002 0.026 0.013 0.028 -0.032 

[s.e.] [0.030] [0.031] [0.032] [0.031] 10.030] [0.030] [0.031] 
~2 

et -0.007 0.026 0.039 0.026 -0.003 -0.014 0.010 

Table 9. Sample moments of standardized residuals. 
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FIG. L Estimated kernel densities of one-step ahead predictions of returns of a par­

ticular series generated by model (15) with student-5 innovations and T=1000. 
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FIG. 2. Estimated kernel densities of twenty-step ahead predictions of returns of a 

particular series generated by model (15) with student-5 innovations and T=1000. 
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FIG _ 3_ Estimated kernel densities of one-step ahead predictions of returns of a par­

ticular series generated by model (15) with exponential innovations and T=1000 . 
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FIG _ 4_ Estimated kernel densities of twenty-step ahead predictions of returns of a 

particular series generated by model (15) with exponential innovations and T=1000. 
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FrG. 5. Estimated kernel densities of one-step ahead predictions of returns of a par­

ticular series generated by model (15) with exponential innovations and T=3000. 
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FrG. 6. Estimated kernel densities of twenty-step ahead predictions of returns of a 

particular series generated by model (15) with exponential innovations and T=3000. 
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FIG. 7. Estimated kernel densities of one-step ahead predictions of volatilities of a 

particular series generated by model (15) with Gaussian innovations and T=1000. 
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FIG. 8. Estimated kernel densities of one-step ahead predictions of volatilities of a 

particular series generated by model (15) with Gaussian innovations and T=3000. 
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FrG. 9. Estimated kernel densities of two-step ahead predictions of volatilities of a 

particular series generated by model (15) with Gaussian innovations and T=1000. 
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FrG. 10. Estimated kernel densities of two-step ahead predictions of volatilities of a 

particular series generated by model (15) with Gaussian innovations and T=3000. 
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FI G. 11. Estimated kernel densities of twenty-step ahead predictions of volatilities of 

a particular series generated by model (15) with Gaussian innovations and T=1000. 
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FIG. 12. Estimated kernel densities of twenty-step ahead predictions of volatilities of 

a particular series generated by model (15) with Gaussian innovations and T=3000. 
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FIG _ 13_ Returns of IBEX-35 index of Madrid Stock Exchange observed dayly from 

2/1/1996 to 31/3/2000 
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FIG. 14. Estimated kernel density of filtered returns standardized by GARCH(l,l) 

estimated volatilities and standard normal density 
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FIG. 15. Estimated kernel densities of one and twenty steps ahead predictions of 

returns 
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FIG. 16. Prediction intervals offuture returns together with real observations (.) and 

point linear predictions (0) 
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FIG. 17. Histograms of bootstrap predictions of future volatilities of returns 
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FIG. 18. Bootstrap prediction intervals of future volatilities of returns together with 

true volatilities (.) and point linear predictions (0) 
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