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Abstract

Given a social network, we are interested in the problem of measuring the influence of

a group of agents to lead the society to adopt their behavior. Motivated by the description

of terrorist movements, we provide a markovian dynamical model for non-symmetric soci-

eties, which takes into account two special features: the hard core terrorist group cannot be

influenced, and the remaining agents may change from active to non-active and vice versa

during the process. In this setting, we interpret the absorption time of the model, which

measures how quickly the terrorist movement achieve the support of all society, as a group

measure of power. In some sense, our model generalizes the classical approach of DeGroot

to consensus formation.

Keywords: Collective action, Social networks, Influence and Diffusion models

1 Introduction

The purpose of this paper is to provide a model to determine the influence of a group of in-

dividuals to prompt a given society to adopt their position. Which individuals are able to

prompt the adoption of a particular action alternative?, What kinds of ties are most important

for collective action and what features are especially relevant?, How quickly the new collective

behavior arises?, Can we measure the extent to which any individual or group of individuals is

able to became a opinion leaders group that controls the collective outcome? This kind of ques-

tions arise in many different areas, such us, sociology (e.g. [22], [23], [30]), epidemiology (e.g.

[16], [17]), economics (e.g. [2], [7], [21], [31], [34], [39],[41], [44], [45]), social choice (e.g. [9],[10],
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[43]), computer sciences (e.g. [18], [27], [28], [33]) and systems reliability (e.g. [1]) covering the

analysis of riot behavior, innovation and rumor diffusion, propaganda, strikes, consumption,

network externalities, spread of fashions, migration, runs on banks, voting power, cascading

failures in power systems, etc. With this information, a social planner, a political party, or a

firm’s management may be able to actively address the most powerful individuals and thus

help to prevent or to stimulate action in a given context1.

In order to answer those questions it is crucial to understand the role that the social struc-

ture plays in the sharing of information and the formation of opinions. Therefore, first of all, we

need a model to describe how beliefs and behaviors of a society evolve over time, taking into

account that their members are connected through a social network which is the primary con-

duit of information, opinions, and behaviors. Various models have been proposed to describe

that evolution:

• Decreasing cascade models, proposed by Kempe, Kleinberg and Tardos [27, 2003], [28, 2005],

in which a behavior spreads in a cascading fashion according to a probabilistic rule, be-

ginning with a set of initially active nodes. These models generalize the economic models

of diffusion based on thresholds, where individuals are assumed to have different thresh-

olds that determine wether they will adopt as a function of the number (or proportion) of

others in the population who have already adopted2. In this context, Kempe et al. study

which they called the target set selection problem (to choose a set of individuals to tar-

get such that the cascade is as large as possible in expectation), and show that a natural

greedy algorithm is a good approximation in this case.

• Interactive Markov chains (symmetric) models, in which the next state of an individual de-

pend on his current state and on the current frequency distribution of the population

among the states modeling the different positions. The dynamics of these models where

first considered by Conlisk [11, 1976]3, where the concept of an interactive Markov chain

as a framework for stochastic flows when the effects on the decisions of individuals of

imitation, fashion, popularity, contagion, and so on cannot be ignored was introduced.

The work of Stadje [38, 1997] is a deep generalization of the Conlisk model. However, al-

though the symmetric case provides insight into broad patterns of social behavior, it does

1See, for instance, Rogers [35, 1995], where the important role that opinion leaders play in the dissemination of

information and their influence on opinions and decisions in marketing, social programs, education, campaigning,

an more diffusion properties is studied.
2The dynamics of these models were first studied by Schelling [36, 1971], [37, 1978], Granovetter [23, 1978] and

Granovetter and Soong[24, 1988]. For more recent work, see Valente [39, 1995],[40, 1996],[41, 2005], Macy [30, 1991],

Watts [42, 2002], Dodds and Watts [16, 17, 2004,2005], Lopez-Pintado and Watts [29, 2008], and Young [45, 2009].
3He also studies his original model in [12, 1978], [13, 1982], and [14, 1992].
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not incorporate the micro-details of who interact with whom. To incorporate networked

interactions, a richer non-symmetric structure is needed.

• Interactive Markov chains (non-symmetric) models, in which an individual’s choice of actions

may depend on arbitrary neighborhoods of others. This is precisely, the kind of dynam-

ics we have considered. To be specific, we have adopted the voter model, also called the

invasion process, which has been first introduced along with their dual process called coa-

lescing random walks in Holley and Liggett [25, 1975], and also independently in Clifford

and Sudbury [8, 1973]. Originally developed in the context of interacting stochastic pro-

cesses, the voter model has been also considered as a model of social interaction, as for

instance by Asavathiratham [1, 2000] and Even-Dar and Shaphira [18, 2007]. These au-

thors are also interested in the target set selection problem, and they assume that the set of

initially active nodes can be deactivated during the process, since they are also influenced

by the remaining agents. What all the referred papers based on the voter model have in

common is that they are able to answer their questions by means of analyzing a much

tractable process, the Markov chain obtained when the sociomatrix describing the social

structure is interpreted as a transition matrix. Ni, Xie and Liu [33, 2010] also consider

an interactive Markov (non-symmetric) chain based on a monotonic modification of the

voter model, which they called the incremental chance model.

We are interested here in the problem of target selection in a non-symmetric social dynam-

ics where the individuals’ decisions are influenced by those of their neighbors. To be specific,

we are interested on analyzing the social dynamics when there is an active hard core set of in-

dividuals, which are not under the influence of the others. However, contrary to the usual

cascade models and most of the innovation literature (see Young’s comment [44, 2003] on page

5 about this fact), we do not assume monotonicity, so the the rest of individuals may change

from active to non-active, and vice versa. Under these assumptions, we formulate a Markov

model whose transition matrix is derived (but not the same as) the sociomatrix of the process,

and which in this way relates the voter model with the seminal network interaction model of

information transmission, opinion formation, and consensus formation of DeGroot [15, 1974],

and therefore, also with eigenvector-based centrality measures (Katz [26, 1953], Bonacich [4,

1972], [5, 1987] and Brin and Page [6, 1998]). The reader is referred to section 3 for details. The

target selection will be then undertaken by means of a power measure, which is defined as an

absorption time in the Markov chain.

In this study, we were motivated by the analysis of a terrorist movement inside a society,

but applies to a wide range of social networks.

The remainder of the paper is organized as follows. Section 2 is devoted to a general pre-

sentation of the dynamic model we have adopted to describe how beliefs and behaviors of a
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society evolve over time. In Section 3 we introduce the measure (based on that model) that

we propose to evaluate the extent to which any individual or group of individuals is able to

control the collective outcome. In Section 4 monotonicity properties of the proposed measure

(which we will refer to as the power to initiate full action of a group of agents) are analyzed.

2 The model: Influence as a Finite Markov Chain

As we have pointed out, our goal is to define an appropriate measure of the power that a

subgroup of agents in a society has to initiate a certain action (such as to adopt an innovation,

to join a revolutionary movement, to smoke, etc.). We base our study on a model of network

influence in which the social structure of a society is described by a sociomatrix, which is the

primary conduit of information. That is, individuals outweigh actions and opinions of others

depending on the strength of a tie (Granovetter [22, 1973]) as indicated by the corresponding

weight in the sociomatrix. We will interpret this weight as the probability that an actor is

dominantly influenced by it. This assumption - in the spirit of a priori power - provides insight

into the power implications of the network structure itself.

The Society: agents and their relations

The focus will be on a finite and fixed set N = {1, 2, . . . , n} of agents who interact according to

a social network. Relations between agents are exogenously given by a stochastic4 n× n matrix

W = (wij)
j
i , the elements of which are understood as influence parameters; wij is the weight that

agent i assigns to agent j. The matrix W may be asymmetric, and the influences can be one-

sided, so that wij > 0 while wji = 0. We refer to W as the sociomatrix. In our setting, where

agents are updating their probabilities of taking action by calculating weighted averages, wij is

the weight that agent i assigns to the current action of agent j in forming his or her belief for

the next period.

The Social Dynamics: updating process

Agents have two options, to take or not to take action. At each date, agents communicate

with their neighbors in the social network and update their beliefs about taking or not taking

action. The updating process is simple: an agent’s new belief (which determines his/her prob-

ability of taking action) is the weighted average of his/her neighbors’ actions from the previous

period. In that setting, at each date, agents are of two kinds, passive or active, characteristics in-

dicated by 0 or 1, respectively, and determined according to their beliefs at this date. Formally,

consider the following definitions.

4A n × n matrix Q = (qij)
j
i is stochastic if qij ≥ 0 for all i, j = 1, 2, . . . , n, and ∑

n
j=1 qij = 1 for all i = 1, 2, . . . , n.

4



A state of the society (N, W) is a tuple xN ∈ σ(N) := {0, 1}n, xN
i ∈ {0, 1} being the state of

agent i, i = 1, . . . , n, where n is the cardinality of N. Special states are zN , eN ∈ σ(N), according

to which respectively none, and everyone in N takes action. We will unambiguously identify

xN ∈ σ(N) with a vector in R
n. For xN ∈ σ(N), let A(xN) := {i ∈ N | xN

i = 1} the set of active

agents in N.

Definition 1. For each society (N, W), let p : σ(N) → [0, 1]n be the mapping defined by

p(xN) = W · xN , for all xN ∈ σ(N)

Then for each state xN of society (N, W) the number pi(xN) represents the probability that

i takes action upon observing state xN of (N, W). Now, we define mxNyN as the conditional

probability of state xN turning into state yN , given by

mxNyN := P
{

Xt+1 = yN / Xt = xN
}
= ∏

i∈A(yN)

pi(xN) ∏
j∈N\A(yN)

(1 − pj(xN)),

where XN
t = (XN

1t , . . . , XN
nt) is the random vector which describes the state of the society (N, W)

at time t ∈ {0, 1, 2, . . . }. Then, M = {XN
t }t≥0 is a discrete time Markov chain with transition

matrix M given by (Mij)ij = (msN
i sN

j
)ij, for all i, j = 1, 2, . . . , 2n, where the states are ordered

according to the lexicographical order. Then σ(N) = {sN
1 , sN

2 , . . . , sN
2n}, and sN

1 = zN , sN
2n = eN .

Remark 1. As said in the Introduction, note that our model does not assume a traditional

concern in the innovation literature, as we are interested in quite general processes. As H.P.

Young [44, 2003] notes: ”Implicit in some of this literature is the notion that innovation is

essentially a one-way process: once an agent has adopted an innovation, he sticks with it”.

We agree with Young when he asserts that: ”Yet the same feedback mechanisms that cause

innovations to be adopted also cause them to be abandoned . . . Thus, if we want to know how

long it takes, in expectation, for a ”new” behavior to replace and old one, we must analyze

the balance of forces pushing the adoption process forward (to became active agents, in our

setting) on the one hand, and those pushing it back (to remain passive agents) on the other”.

3 Power to initiate full action: definition and examples

The resulting social dynamics follows the general description of a Markov chain, a probabilistic

model to which the ideas of Coleman [10, 1990] (chapter 9) about the systemic phenomena of

collective behavior directly apply. To be specific, we will be able to measure the three indexes

of voting power proposed by Coleman in his widely cited article [9, 1971]: i) the power of a

collectivity to act, ii) the power to initiate action, and iii) the power to prevent action; which will
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be, respectively given by i) the ability of a group to lead society to adopt their behavior (in

contrast with the case in which society is reluctant to their opinion and remain divided), and

if so, ii), iii) how quickly5 individuals learn? To be specific, question ii) refers to how quickly

individuals learn to became active when the group act as a hard core active group (they remain

forever active), whereas question iii) refers to how quickly individuals learn to became inactive

when the group act as a hard core passive group (they remain forever inactive). We will see that,

according to our model, both questions have the same answer, since the potential of actors to

ignite a chain-reaction coincides with their potential to act as a firewall.

Formally, if we assume that the society (N, W) evolves according to the previously defined

Markov chain, we propose to mesure the power to initiate action of group T ⊆ N by means of the

expected time it takes that participation of T motivates all of the other individuals to became

active, given that those remaining individuals start the process being passive agents.

Thus, as a first step, we need to analyze the scenario in which the members of a subsociety

T ⊆ N confine themselves to act in a certain way in every period, while the remaining agents’

actions are governed by the above defined updating process. Let sT ∈ σ(T) := {0, 1}t , where

t = |T| is the cardinality of T, be the state of subsociety T ⊆ N that describes the position of

agents in T during the whole process, then the social dynamics of the subsociety N \ T ⊆ N are

described by the following partial Markov chain M(sT) = {X
N\T
t (sT)}t≥0. Let us first adapt

the previous definitions to this scenario.

Notation Each combination of sT ∈ σ(T) and xN\T ∈ σ(N\T) defines a state [sT , xN\T] ∈ σ(N)

by

[sT , xN\T]i =

{
sT

i , if i ∈ T,

x
N\T
i , if i ∈ N\T.

Definition 2. For each subsociety T ⊂ N, and for any given state sT ∈ σ(T), let psT
: σ(N \

T) → [0, 1]n−t be the mapping defined by

psT
(xN\T) = W · [sT , xN\T], for all xN\T ∈ σ(N \ T)

As before, for each state xN\T of subsociety N \ T the number psT

i (xN\T) represents the

probability that i ∈ N \ T takes action upon observing state [sT , xN\T] of N. Now, we define

mxN\TyN\T(sT) as the conditional probability of state xN\T turning into state yN\T, given by

mxN\TyN\T(sT) := P
{

Xt+1 = [sT , yN\T] / Xt = [sT , xN\T]
}
=

= ∏
i∈A(yN\T)

psT

i (xN\T) ∏
j∈N\(T∪A(yN\T))

(1 − psT

j (xN\T))

5As Even-Dar and Shapira [18] point out, to convince society quickly is crucial to the early stages of introducing

a new technology into the market.
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Then, M(sT) = {X
N\T
t (sT)}t≥0 is a discrete time Markov chain with transition matrix M(sT) =

(m
s

N\T
i s

N\T
j

(sT))ij, for all i, j = 1, 2, . . . , 2n−t, where the states are labeled according to the lexico-

graphical order. Thus, σ(N \ T) = {s
N\T
1 , s

N\T
2 , . . . , s

N\T
2n−t }, with s

N\T
1 = zN\T, s

N\T
2n−t = eN\T.

Notice that the properties of this (partial) Markov chain will depend on the particular state

sT, and the particular sociomatrix W structure. In order to propose a method to measure the

power to initiate and to prevent action of T group6, we are interested in two special cases: when

agents in T confine themselves to take action (sT = eT), and the opposite one, when agents in

N \ T confine themselves to never take action (sT = zT). In fact, we will only need to analyze

the first case, since the positive influence of every agent to push the remaining agents to take

action equals the negative influence of every agent to push the remaining agents to drop action.

Now, let us consider the Markov chain M(eT) = {X
N\T
t (eT)}t≥0, then we are interested

in the expected total time spent in some of the transient states {s
N\T
1 , s

N\T
2 , . . . , s

N\T

2n−t−1} before

reaching the state s
N\T
2n−t = eN\T, given that the chain starts in state s

N\T
1 = zN\T. However,

before trying to quantify the extent to which a group of agent is able to push the remaining

agent to adopt their behavior, we will need to know if that group is even able to achieve that

goal7. This is very related to the notion of closed group of agents.

Definition 3. Let (N, W) be a given society. A group of agents C ⊆ N is closed relative to W if

i ∈ C and wij > 0 implies that j ∈ C.

Now, let (N, W) be a given society, and let T ⊆ N be a given subsociety. Consider the

Markov chain M(eT). Then, if there exists a group of agents C ⊆ N \ T that is closed relative

to W, then the state eN\T is not reachable from zN\T. In that case, group T power to initiate

full action should be 0. Otherwise, the Markov chain M(eT) has two classes, namely, T =

{s
N\T
1 , s

N\T
2 , . . . , s

N\T

2n−t−1} and R = {eN\T}, the first class being transient and the second recurrent.

Moreover, M(eT) is a recurrent Markov chain with an absorbent state. That is, from every state

it is possible to go to the absorbing state eN\T.

Definition 4. Let (N, W) be a given society, and let T ⊆ N be a given subsociety. Then, if there

exists a group of agents C ⊆ N \ T that is closed relative to W, the society remains divided in

group opinions and, therefore T power to initiate full action is defined to be zero8. Otherwise,

the T power to initiate full action is measured by means of an inverse power measure, the society

resistance to group T action, r(T), which is defined as the expected absorbing time of the recurrent

Markov chain M(eT) with an absorbent state that models the evolution of the N \ T remaining

agents when agents in T are acting as a hard active core.

6Which correspond to Coleman’s proposals ii) and iii), see page 5.
7Which will be related with Coleman’s proposal i), the power of a collectivity to act, see page 5.
8In the sequel, we will assume that the society resistance to group T action in that case is defined as r(T) = ∞.
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It is worth noting that the previous condition about the non existence of a group of agents

C ⊆ N \ T that is closed relative to W, is equivalent to assure that each agent in N \ T is directly

or indirectly influenced by someone of the agents in T. Another way to put this is in terms

of the social network. Each sociomatrix W defines a (weighted) directed graph D(W) = (N, E, W)

with agents as nodes and arcs (i, j) ∈ N × N:

(i, j) ∈ E ⇔ wij > 0,

and being wij the weight of arc (i, j). Then the above assumption is equivalent to the statement

that for all i ∈ N \ T there exists an agent j ∈ T such that there exists a directed path P[i, j] from

i to j in D(W)9. Let us denote by I(T) ⊆ N \ T the set of agents that are directly or indirectly

influenced by someone of the agents in T. That is,

I(T) = {i ∈ N \ T / ∃ j ∈ T with P[i, j] in D(W) }.

Then, there exists a closed set C ⊆ N \ T if, and only if, I(T) $ N \ T. Therefore, if the social

structure of the society is described by a strongly connected network (i.e., for all i, j ∈ N there

exists a directed path P[i, j] from i to j in D(W)), then r(T) is finite for all subgroup of agents

T ⊆ N.

Nevertheless, we should remark that we can consider the general case, when the network

can consist of disconnected components, in the same framework. For instance, consider the

following example.

Example 1. let (N, W) be the society defined by N = {1, 2, 3, 4, 5} and sociomatrix

W =




0 1 0 0 0

0 0 1 0 0
1
2 0 1

2 0 0

0 0 0 1
2

1
2

0 0 0 1
2

1
2




Then, r(T) = ∞ (and therefore its power to initiate full action is 0) for all T ⊆ {1, 2, 3} or

T ⊆ {4, 5}. Otherwise, T can influence every agent in N, and therefore r(T) can be calculated.

For instance: r({1, 4}) = 10
3 , r({1, 4, 5}) = 3 and r({1, 3, 5}) = 2.

9A directed path P[i, j] from i to j in D(W) is a subgraph of (N, E) consisting of a sequence of nodes {i1, . . . , ir},

and arcs (i1, i2), (i2, i3), . . . , (ir−1, ir), where i1 = i and ir = j. Alternatively, we shall sometimes refer to a directed

path as a set of (sequence of) arcs (of nodes) without any explicit mention of the nodes (without explicit mention of

arcs).
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Note that in this example the society is actually divided into two independent subsocieties

(N1, W1) and (N2, W2), where N1 = {1, 2, 3}, N2 = {4, 5}, and

W1 =




0 1 0

0 0 1
1
2 0 1

2


 , W2 =

(
1
2

1
2

1
2

1
2

)
,

that evolve independently. Thus, it seems reasonable to assume that agents in T ∩ N1 do not

impose any externality over agents in T ∩ N2, and vice versa. Thus, we will modify slightly the

previous definition in order to impose that condition when the original society is composed by

some independent subsocieties.

Definition 5. Let (N, W) be a given society that is fragmented into independent subsocieties.

That is, the associated (weighted) directed graph D(W) = (N, E, W) is not connected10. Let

C(D(W)) = {(N1, E1, W1), . . . , (Nm, Em, Wm)} be the set of connected components of D(W),

and let T ⊆ N a group of agents which is able to prompt society to became active. Then, we

will define the society resistance to group T action as the maximum resistance of each subsociety

to group T members:

r(T) = max{r(T1), . . . , r(Tm)}, (1)

where r(Tk) is the society resistance to group Tk = T ∩ Nk in the corresponding subsociety

(Nk, Wk), for all k = 1, . . . , m.

Note that I(T) = N \ T implies I(Tk) = Nk \ Tk, for all k = 1, . . . , m, and therefore, r(T)

given by the maximum (1) is well defined. Otherwise, the general definition r(T) = ∞ applies.

As we have announced in the Introduction, the voter model can be related with the seminal

network interaction model of DeGroot [15], and therefore, also with eigenvector-based central-

ity measures (Katz [26], Bonacich [4], [5] and Brin and Page [6]). To be specific, if we consider

that the set T ⊆ N of initially active nodes can be deactivated during the process, then we will

always work with the general Markov chain M = {XN
t }t≥0 which is a recurrent chain with

two absorbent states, namely zN and eN , when the sociomatrix W is irreducible. In that case

(see Stadje [38]), the probability of absorption in eN , given that the initial state is [eT , zN\T] equals

πeN [eT , zN\T] = ∑
i∈T

ξi,

where (ξi)i∈N is the stationary distribution of the irreducible sociomatrix W. If W is not ir-

reducible, then the society (N, W) is fragmented into independent subsocieties (as in the pre-

vious definition), and the probability of absorbtion can be calculated as the product of the

corresponding absorption probabilities on each of the subsocieties.

10We will say that two nodes i and j are connected in D(W) if the graph contains at least one path (not necessarily

directed) from node i to node j.
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If M(eT) is recurrent the Markov chain with an absorbent state (that is, there is no closed

group of agents C ⊆ N \T), then we can use standard Markov chain theory’s results to calculate

r(T). The society resistance to group T action will be given by the sum of the first row of the

fundamental matrix D(eT) of the recurrent Markov chain with an absorbent state:

r(T) =
2n−t−1

∑
j=1

d1j(e
T),

where the fundamental matrix D(eT) = (I2n−t−1 − Q)−1, and Q(eT) is obtained from the tran-

sition matrix M(eT) deleting its last row and its last column.

Of course, we are aware of the difficulties in tracking the full joint distribution of the

Markov chain M(eT), which is defined by means of a 2n−t × 2n−t transition matrix. For large

societies the computational effort can be excessive. However, the power of a group can be

estimated by means of simulating the behavior of the corresponding Markov chain. This is

precisely the method we propose to deal with our proposal. Nonetheless, we include here the

above standard result, as well as some small examples, since we think that the fundamental

matrix is very interesting by itself.

Example 2. Consider a society of 4 members with socio-matrix:

W =




1/3 1/3 1/3 0

1/3 1/3 1/3 0

1/4 1/4 1/4 1/4

0 0 1/2 1/2




,

which can represent the following social network, when each agent gives the same weight to

himself and all his direct neighbors.

4 3

2

1

In that case, agent 3 should be the most powerful agent, whereas agent 4 should be the less

powerful one. Agents 1 and 2, who occupy a symmetric position in the society, should have an

intermediate strength.

Now, to calculate the power of agent 1 the state space of theM(e1) Markov chain, σ({2, 3, 4}),

will be given by the matrix

σ({2, 3, 4}) =




0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1


 ,
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where σ({2, 3, 4})ij represents the action of the i-th agent of {2, 3, 4} in the j-th state of σ({2, 3, 4}).

The transition matrix of the Markov chain will be given by

M(e1) =




1
2

1
4

1
6 0 1

12 0 0 0
1
6

1
3

1
6 0 1

3 0 0 0
1
12

1
6

1
12

1
12

1
6

1
6

1
12

1
6

1
6

1
12

1
6

1
6

1
12

1
12

1
6

1
12

0 1
8 0 0 3

8
1
8 0 3

8
1
24

1
12

1
8

1
24

1
4

1
12

1
8

1
4

0 0 0 1
12 0 1

6
1
4

1
2

0 0 0 0 0 0 0 1




Then, the fundamental matrix of the absorbing system, D(e1) = (I7 − Q(e1))
−1 will be given

by

D(e1) ≈




2.779 1.651 0.889 0.131 1.681 0.439 0.201

1.010 2.463 0.708 0.109 1.819 0.418 0.173

0.674 0.944 1.492 0.204 1.223 0.510 0.296

0.907 0.947 0.645 1.333 1.167 0.479 0.448

0.294 0.628 0.226 0.050 2.186 0.361 0.096

0.459 0.677 0.422 0.143 1.109 1.388 0.310

0.203 0.256 0.165 0.180 0.376 0.362 1.452




And the expected time it takes that participation of agent 1 motivates all of the other individuals

to take action, that is the resistance of the society against 1, will be

7

∑
j=1

d(e1)1j ≈ 2.779 + 1.651 + 0.889 + 0.131 + 1.681 + 0.439 + 0.201 = 7.771.

The society resistance against agents 2, 3 and 4, are, 7.771, 4.17 and 15, respectively. Taking

into account that agents 1 and 2 are fully symmetric, the power of all possible proper coalitions

appear in the following table:

GROUP {1} {3} {4} {1, 2} {1, 3} {1, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4}

RESIST. 7.77 4.17 15 5.33 2.3 3.12 3.86 2 1.33 1.5

To understand the impact of the network architecture we shall analyze the impact that the

deletion of a certain link has over the individual power to initiate full action. For instance, if

the link between agents 1 and 2 is deleted, then the new social network is a star centered in

agent 3. In that case, the individual powers are:

RESISTANCE = (11.9053, 11.9053, 3.1429, 11.9053)

11



The power of agents 3 and 4 has increased and agents 1 and 2 power has decreased. Agents 3

and 4 profit from higher strength of ties on the minimal path to 1 and 2.

If we delete the link between agents 1 and 3, then the new social network is the 4 node chain

1 − 2 − 3 − 4 and

RESISTANCE = (15.9689, 7.6143, 7, 6143, 15.9689)

In comparison to the first scenario, the power of agents 1 and 3 has decreased, and the power

of agent 4 too. Note that, the minimal paths from 4 to the other agents were not affected when

link (1, 2) is deleted, but they are affected when link (1, 3) is deleted.

Example 3. Consider the following socio-matrix:

W =




1/3 1/3 1/3 0

1/2 0 0 1/2

1/3 0 1/3 1/3

0 1/3 1/3 1/3




In this case, the social network is the four node wheel

1

2 3

4

in which agents 1, 3 and 4 act as in the previous example. However, agent 2 gives no influence

to his own past action. This fact breaks the symmetry of the wheel. Now, all agents but 2 are in

a more advantageous position.

Taking into account that agents 1 and 4 are fully symmetric, the power to initiate full action

in the non-symmetric wheel described by the above socio-matrix is given by:

GROUP {1} {2} {3} {1, 2} {1, 3} {1, 4} {2, 3} {1, 2, 3} {1, 2, 4} {1, 3, 4}

RESIST. 6.72 7.30 6.42 3.86 3.27 1.5 1.87 1.5 1.5 1

The power to initiate full action in a symmetric wheel is given by

GROUP {i} connected {i, j} unconnected {i, j} {i, j, k}

RESIST. 7.29 3.86 1.87 1.5

12



Thus, the power of all groups which 2 belongs to has not changed, whereas the power of all

other groups have increased (to convince agent 2 is easier than before).

As we have commented in the introduction, our approach allows us to analyze questions

related with the measurement of voting power. In that context, the objective is to quantify the

extent to which a voter or a group of voters is able to control the outcome of a vote (Felsenthal

and Machover [19, 1997]). Thus, the question is just how long it takes to have convinced a

minimal number q of participants, instead of convincing all of them, where q plays the role of

the quota in voting games. If that is the case, we must define the absorbent state accordingly11

in order to deal with that new situation. Moreover, a general non-symmetric voting game can

also be considered. For a deep analysis on this approach the reader is referred to Yeh and Koster

[43, 2009], where this model is used to theoretically assess the properties of actual voting power

when power is conceived as a balanced measure between constitutional voting system effects

and social network effects.

4 Monotonicity

Let us consider a subsociety T ⊆ N of a certain society N. In section 3 it was defined the

society resistance to the group T action as an (inverse) measure of the power of T, given by

the resistance of the individuals in N\T to take action, assuming that the individuals in T are

confined themselves to do it. An interesting issue concerns the monotonicity of the resistance,

i.e., if T ⊆ T′ implies that the resistance to the group T′ is smaller than the resistance to the

group T. Before giving a proof, we will describe an argument to check the monotonicity of a

measure of this kind.

We set henceforth the framework, following [32, 2002]. Consider two Markov processes,

X = {Xt}t∈N and Y = {Yt}t∈N, whose state space S is discrete and partially ordered, say

(S,≺S). Then the process X is stochastically smaller than Y if, for every a ∈ S and t ∈ N, we

have P{Xt ≻S a} ≤ P{Yt ≻S a}. This definition has some equivalent formulations, see [32]

(chapter 1). In the sequel, we will assume that �st stands for the stochastic order, although a

big part of the following results remains true for other orders.

It is interesting to remark that checking this condition for a certain natural number t in-

volves the knowledge of the evolution of the process until the time t, a lot of information which

is frequently not available. Then, it is useful to find characterizations of the order that could be

checked, at least for homogeneous processes, only in terms of the transition matrix of the pro-

cess. For this sake, denote by PS the space of the probability distributions over the state space

11An absorbent sate is any state with q or more active members.
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S , and let T and T′ be two transition operators over PS with state space S . Then T is said to be

smaller than T′ if for every P ∈ PS we have TP�stT
′P for the partial order in PS . Moreover,

T is said monotone if TP�stTP′ for every P, P′ ∈ PS such that P�stP
′. In these conditions, we

have the following fundamental result (see [32], Theorem 5.2.2):

Proposition 1. Let P and P′ be two homogeneous Markov processes in discrete time, T and T′ their

transition operators. Then Pt�stP
′
t for every positive t if the following three conditions hold:

(i) P0�stP
′
0 for the initial distribution.

(ii) T�stT
′.

(iii) There exists a monotone operator T′′ such that T�stT
′′�stT

′.

The best way to apply this characterization to our particular problem is via the transition

kernels.

Given a homogeneous Markov chain X = {Xt}t∈N and a subset B ⊆ S of the state space,

the transition kernel Q(x, B) is described as the conditional probability

Q(x, B) = P { Xt+1 ∈ B / Xt = x } , for x ∈ S .

Moreover, a set C ⊆ S is said increasingly closed with respect to a partial order �S in S if for

every x, y ∈ S such that x �S y and y ∈ S , then x ∈ S . We have the following criterion:

Proposition 2. If T and T′ are two transition operators, then T�stT
′ if, and only if, Q(x, C) ≤

Q′(x, C) for every x in the state space S and every increasingly closed C ⊆ S .

These conditions lead us to the main result we will use (see [3, 2006], Proposition 2.9):

Proposition 3. Let {Xt}t∈N and {Yt}t∈N two Markov chains over the same finite and partially ordered

state space, and assume that the last state is absorbing for both chains. If Xt�stYt for every t, then the

absorption time in {Yt}t∈N is smaller than the absorption time in {Xt}t∈N for every initial state.

Once we have reviewed the monotonicity conditions which are useful in our context, we

will precisely define the Markov processes which are involved in our framework.

Consider a society N = {1, . . . , n} and two subsocieties T and T′, in such a way that T =

T′ ∪ {j}, for some j ∈ N \ T′. Without loss of generality, we identify T′ with the set {1, . . . , m},

m < n, and T with {1, . . . , m + 1}. Our goal is to compare the society resistance to T′ to the

society resistance to T, and to check that the former should be, as intuition suggests, greater

than the latter.

14



There is a difficulty one has to overthrow when facing this problem: the process M(eT) =

{X
N\T
t (eT)}t≥0 whose absorption time is the society resistance to T (see section 3) has not the

same state space as the corresponding process for T′, M(eT ′
) = {X

N\T ′

t (eT ′
)}t≥0. Indeed, the

state space for the first process is S(T) := σ(N \ T), which has cardinal 2n−m−1, while the

second one, S(T′) := σ(N \ T′), has cardinal 2n−m. Hence, when comparing the two processes,

we should define at least another one who mimics the stochastic properties of one of them, and

whose state space is the same as the one of the other.

The idea here is to redefine the process M(eT) as a process in the state space of T′. Recall

that σ(N \ T′) = {0, 1}n−m is identified in a natural way with the last 2n−m components of

σ(N) = {0, 1}n , and σ(N \ T) = {0, 1}n−m−1 with the last 2n−m−1 components of σ(N). Now,

we define a process T̃ such that S(T̃) = S(T′) and that reproduces the stochastic features of

the former. For any initial state [1, x], the states [0, y] will be avoided in any instant of time,

and the probabilities of going from state [1, x] to states [1, y] and [1, z] will be defined as in the

process M(eT). To be specific, the new transition probabilities are given by the following rule

(we use the notation of section 3). Here x ∈ σ(N\T), and q([·, x]) = peT′

m+1([·, x]) represents the

probability that m + 1 takes action upon observing state [·, x] ∈ σ(N \ T′) in the Markov chain

M(eT ′
).

• The transition probability from [0, x] to [0, y] is zero if q([0, x]) > 0. Otherwise, it equals

the transition probability from [0, x] to [0, y] in M(eT ′
).

• The transition probability from [0, x] to [1, y] is zero, equal to the transition probability

from [0, x] to [1, y] in M(eT ′
) if q([0, x]) = 0.

Otherwise, it is defined by m[0,x][1,y](e
T ′
)/q([0, x]), which is the transition probability from

[0, x] to [1, y] in M(eT ′
) conditioned to agent m + 1 takes action.

• The transition probability from [1, x] to [0, y] is zero for every y ∈ N\T.

• The transition probability from [1, x] to [1, y] equals the transition probability from [1, x]

to [1, y] in M(eT).

Note that the transition matrix of the extended Markov chain has the following block de-

scription, where E := {[1, x] / x ∈ N \ T} := [1,S(T)] and Ec = {[0, x] / x ∈ N \ T} :=

[0,S(T)]:

M(eT̃) =

(
QEc QEcE

0EEc M(eT)

)

Then, if the successive visits of M(eT̃) = {Y
N\T ′

t (eT ′
)}t≥0 to E take place at time epochs 0 <

t1 < t2 < · · · < · · · . Then the chain {Y
N\T ′

u (eT ′
) = Y

N\T ′

tu
(eT ′

), u = 1, 2, . . . }, which is called
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the M(eT̃) censored chain with censoring set E = [1,S(T)], has as transition matrix QE = M(eT)

(see [46, 1996]).

Proposition 4. Let (N, W) be a given society, and let T and T′ two subsocieties defined as before. Then,

if there exists a partial order �S over the state space S(T̃) = S(T′) = σ(N \ T′) such that:

(Oi) Given states x and y on S(T̃), if for every active component in x, the corresponding component

in y is also active, then x �S y,

(Oii) The transition matrix of the extended Markov chain, M(eT̃), is monotone.

Then r(T) ≤ r(T′).

Proof. Let (S(T̃),�S ) a partial order satisfying conditions (Oi) and (Oii). It is clear that eN\T ′
,

the absorbing state, is the unique maximal element. Then, we can invoke Proposition 3 to com-

pare absorption times in both chains, when we start from the same initial state. Let us consider

[1, zN\T] ∈ σ(T′) as the initial state. We will show that the absorption time in M(eT ′
) is grater

or equal than the corresponding absorption time in the extended Markov chain M(eT̃). There-

fore, we must prove that the process M(eT ′
) is stochastically smaller than M(eT̃). By Proposi-

tion 1, this amounts to prove that the transition operators for the first process are smaller than

the ones for the second, and moreover that we can set a monotone matrix between the matrices

of the processes. Note that this last condition is precisely what condition (Oii) ask for.

Let us check then the condition M(eT ′
)�stM(eT̃) using Proposition 2. Let us denote by

Q̃(x, B) and Q′(x, B) the corresponding transition kernels. By Proposition 2, it is enough to

prove that for every increasingly closed set C and every x ∈ S(T′), Q′(x, C) ≤ Q̃(x, C), or

equivalently,

P
{

X
N\T ′

t+1 (eT ′
) ∈ C / X

N\T ′

t (eT ′
) = x

}
≤ P

{
Y

N\T ′

t+1 (eT ′
) ∈ C / Y

N\T ′

t (eT ′
) = x

}
.

If C is an increasingly closed set, then C consists of a number of states of the form [0, zi], with

1 ≤ i ≤ j, and a number of states of the form [1, zi], 1 ≤ i ≤ j′, with j ≤ j′. Observe that the

condition on the ordering implies that if [0, zi] belongs to C for a certain i, then so does [1, zi].

Suppose that x = [0, z] for a certain (n − m − 1)-uple z. If q([0, z]) = 0, then the probability

of all transitions from x to [1, zi] is zero in both processes, whereas transitions to [0, zi] are

equally probable in both processes too by definition. Thus, Q̃(x, C) = Q′(x, C). Otherwise,

for brevity, we will denote the transition probability from x to [1, zi] in the M(eT ′
) process

by mi = m[0,z][1,zi](e
T ′
), for all 1 ≤ i ≤ j′. Then, the transition kernel Q′(x, C) is equal to

1
p ∑

j
i=1 mi + ∑

j′

i=j+1 mi, while Q̃(x, C) = 1
p ∑

j′

i=1 mi. As p ≤ 1, Q̃(x, C) ≥ Q′(x, C). The case

beginning with x = [1, z] is similar.
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Thus, Proposition 3 assures that AT[1,zN\T](M(eT̃)) ≤ AT[1,zN\T](M(eT ′
)), where AT[1,zN\T](·)

denotes the absorption time when the initial state is [1, zN\T].

Now, we must relate those two absorption times with resistances r(T) and r(T′).

We will first show that AT[1,zN\T](M(eT ′
)) ≤ r(T′), that is the absorption time in M(eT ′

)

when the initial state is [1, zN\T ] ∈ S(T′) is less or equal than the absorption time when the

initial state is zN\T ′
= [0, zN\T] ∈ S(T′). This can be easily analyzed by means of its dual

processes (called coalescing random walk in the context of Percolation Theory, see [25, 1975]). If

the Markov chain M(eT ′
) has been absorbed in t periods when the initial state is [0, zN\T] then,

for all k ∈ {m + 1, . . . , n} there exists a random walk12 of length t starting at k and ending in

T′. Thus, also exist random walks of length t starting at k and ending in T = T′ ∪ {m + 1}, for

all k ∈ {m + 1, . . . , n}. Therefore, M(eT ′
) has been absorbed in t′ ≤ t periods when the initial

state is [1, zN\T ].

Finally, we will show that r(T) ≤ AT[1,zN\T](M(eT̃)), that is the absorption time in M(eT)

when the initial state is zN\T ∈ S(T) is less or equal than the absorption time in M(eT̃) when

the initial state is [1, zN\T] ∈ E := [1,S(T)] ⊆ S(T′). This relation follows from being M(eT)

the M(eT̃) censored chain with censoring set E, see Property 7 in [20, 2007]

Note that a partial order satisfying condition (Oi) obviously always exists. However, the

existence of a partial order verifying condition (Oii) is much more difficult to prove in general,

as it seems not easy to find a general order in the state space such that one of the operators

involved is monotone. However, we have checked the existence in some random examples,

which give us great hope that such an order always exists. We discuss in detail one of these

examples.

Consider a society with four members and socio-matrix

W =




1/5 0 4/5 0

0 1/2 1/4 1/4

1/3 0 1/3 1/3

0 1/2 0 1/2




.

We consider the subsocieties T′ = {1}, T = {1, 2}. Then the state space of the processes

12Where the probability of jumping from node k ∈ {m + 1, . . . , n} to any other node j ∈ N is defined to be wkj

(i.e., the probability that agent k adopts the current opinion of agent j in the previous step). Note that the probability

of jumping from node k ∈ T′ = {1, . . . , m} to any other node j ∈ N with j 6= k is 0.
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M(eT̃) and M(eT ′
) will be given by the columns of the matrix

S({1}) := σ({2, 3, 4}) =




0 0 1 0 1 0 1 1

0 1 0 0 1 1 0 1

0 0 0 1 0 1 1 1


 .

We assume that a state x is smaller than y in the previous state space if the corresponding

column for x is at the left of the column for y. Obviously, that order verifies (Oi). Now, we will

check that it also holds condition (Oii). So we consider the matrix associated to the process

M(eT̃), in which we suppose that the states are ordered using the previous order:

M(eT̃) =




2/3 1/3 0 0 0 0 0 0

0 0 1/3 0 2/3 0 0 0

0 0 1/3 0 1/6 0 1/3 1/6

0 0 1/6 0 1/3 0 1/6 1/3

0 0 1/6 0 1/3 0 1/6 1/3

0 0 0 0 1/2 0 0 1/2

0 0 0 0 0 0 1/3 2/3

0 0 0 0 0 0 0 1




According to Property 1 in [20, 2007], it is enough to see that for every (i, i′, j) with i, i′, j ≤ 8

and i < i′, ∑
8
k=j ai j ≤ ∑

8
k=j a′i j. This is easy to see by inspection, so M(eT̃) is monotone.
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