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Abstract 

A frequent propcI1y of data, par1icularly in the financial area, is that the correlogram is lmv but 
remains positive fe)r many lags. A plausible explanation for this is that the process consists of a 
stationary, IOl1g memory component plus a white noise component of much larger variance. The 
implications of such a composition are explored including the consequences for estimation of the 
long memory parameter. 
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1. Introduction I 
An empirical correlogram, that is a plot of estimated autocorrelations against lag length, is 

sometimes found to have a very distinctive shape, with values small but positive for many lags. 

This is particularly found for some long financial data. In this paper, a class of models is 

considered which can produce such shaped empirical correlograms in which a long memory 

process is added to an independent white noise, or possibly a short memory process. 

The paper initially considers the theoretical properties of such a sum and then the 

properties of estimated autocorrelations. Examples of processes having the correlogram with the 

shape analyzed here are discussed in the concluding section. 

2. The j\ lodel and Theon~tical l\ loments 

Let {)·I}:., be a covariance-stationary time series with mean E(YI) = ji and autocovariance at lag 

k given by y,,(k)=E(YI -.u)(YI+k -,ll). Assume that {YI}:, has long memory, so that its 

autocovariance function satisfies, as k -> w, 

(1) y\(k)_}k- a
, )~>o, uE(O,I), 

implying that L.:~_,y,,(k)2 < +::c but L.:=_,ly)k)1 = + OCJ. A leading example is the fractionally 

integrated process, l(d), for which u = 1 - 2d, as discussed later. 

Large sample properties of the sample mean, autocovariances and autocorrelations oflong 

memory time series have been recently reported by Hosking (1996). In this paper we are 

interesting. instead, in the propC:11ies of the slightly modified process 
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where {&, r~", denotes an independently and identically distributed white noise process with zero 

mean and autocovariance function 

(3) 
k=O 

k:t:O 

and where throughout this paper it is assumed that y, and & rare stochastically independent of 

each other for all I. r. t\10reover, it will be assumed that 0'; is large enough with respect to 

(y(O) such that the condition 

, 

(4) 
0'-

s=--"->I 
()O) 

will hold. Under this set-up, the theoretical first and second moments of x, are given by 

(5) E(x,) = )I, 

(7) f,(k) = E(x, - iL)(X'_l - iL) = Y,(k), k = 1,2, ... 

Therefore, x, IS a second-order stationary process with mean E(x,) = f.i, vanance 

f ,(0) > (,(0) and autoco\'ariance function gIven by (x(k) = (y(k). k = 1.2 ..... , so that 

( x (k) - ),k -a for k large. Consequently, the sum of a long memory process with an independent 

white noise process appears to be a new long memory with greater variability but with the same 

degree of dependence as the original long memory process. 

Consider now the shape of the autocorrelation function of x, : 

(S) (k)=(x(k)= (y(k) _ 1 (k) 
Px (0) (0) ,- I + ;: Py , k = 1,2, ... , 

( x (y + 0'; '=' 
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and then, under (4), Px(k) < py{k), k = 1,2, .... Moreover, since XI is a long memory process, I 
from (1) and (8) it follows that 

(9) 
A 

P x (k) - (0) 2 k -a, k -t 00 . 

y... + 0" & 

Notice that expressIOn (9) is just an asymptotic approximation as the lags tend to infinity, 

determining only the slow rate of decaying characterizing the strong dependence processes. It 

does not specify neither the correlations for any fixed finite lag nor the fact that each individual 

correlation can be arbitrarily small making difficult the detection of long memory properties in the 

time series of interest. 

In our case, expression (9) allows us to distinguish between the persistence or the memory of 

the process, given by the \'alue of a from \\'hat we could call the size of the process, given by the 

value of 9(;", S') = )"(Y\ (0) + CT~ ( . The greater the value of a , more difficult it becomes to teE 

whether the autocorrelations follow the hyperbolic decay which characterizes the long memory 

processes or an exponential decay as for a short memory processes. It is clear also from the fact 

that 

(10) 

and the continuity of the size function that, given A, there exists a sufficiently large signal-to-ratio 

( for which the autocovariance function p:(k)-9(A,()k-a will be arbitrarily small. 

Moreover, since it is well-known that the autocovariances of a long memory process are positive 

for a E(O,I), then, under (1)-(4), we have obtained a class of long memory processes, say X;, 

with positive but arbitrary small autocorrelations with near-observational problems in the sense of 
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distinguishing between autocorrelations with hyperbolic decay from autocorrelations with I 
exponential decay on the basis of the shape of the autocorrelation function. 

3. Estimated Autocorrelations 

Consider now the sample counterpart of the theoretical moments reported in the previous section. 

For this, define the sample autocovariances and autocorrelations based on T observations of an 

arbitrary stationary process:: 1 as follows: 

T-k 

(11 ) y:(k)= rIL(=1 -=)(=I+k -z), k = 0,1, ... , T - 1, 
1= I 

and where:: denotes the sample mean. 

One of the standard methods in time series analysis is to construct the plot of the estimated 

autocorrelations (and partial autocorrelations) of the time series of interest against the lag k and, 

as a simple rule, to consider as significant at the 5% level all those correlations outside the band 

± '2/ ft. The justification for this approach relies on the fact that, if the true auto correlations are 

zero, then under some regularity conditions, it can be proved that np; (k) are asymptoticaIiy 

independent standard normal random variables. 

With long memory processes, indeed, the correlograrn IS not a useful diagnostic tool for 

detecting long range dependence. As we have seen in the previous section and is widely known, 

long memory processes have autocorrelations decaying at a slow rate proportional to k- a
. Hence, 

a plot of the sample autocorrelations should exhibit this slow decay. In this sense, however, Beran 

(1994, Chapter 4, Figures 4.7 and 4.8) provides clear graphical evidence that for values of 

a close to one, it is very difficult to distinguish between short and long memory processes. 

Another difliculty with the use of the correlogram in the presence of long range dependence 
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reported also by Beran is that, since long memory is an asymptotic notion, then we should I 
analyzed the correlogram at high lags, which, in turn, cannot be estimated in a reliably way. 

Moreover, as we already noted, even in the case where the value of a of a particular long 

memory process is small, its size can be small as well, implying that the bound ± 2/.ff will not 

detect the presence of long range dependence in the data. In this section we shall ilustrate this 

possibility by deriving the asymptotic behaviour of the estimated autocorrelations of the perturbed 

long memory process x,. For this, one needs to introduce more structure to the underlying 

processes. 

AssIIlJJplion I: 

(a) Yr =)1+ L0/I'-J' 'If -iid(O.eT~,), eT;, <XJ. 

):;- CJ 

(h) 

(c) 'If and c'r ((n; IIl/conduled C;(/lIssiml processjor all t, r. 

Two of the more popular models of long memory processes, namely, the fractional Gaussian 

noise (l'vlandelbrot and Van Ness, 1968) and the fractional ARIMA processes (Granger and 

Joyeux, 1980; Hosking, 1981) have representations of the form (a) and (b). Notice, however, that 

in general, propel1y (I) does not imply (a) and (h). On the other hand, Assumption Le is a 

convenient assumption for our purposes but can be relaxed in certain circumstances and replaced, 

for instance, by the requirement of uni formly bounded fourth moments. 

Under Assumption I, the asymptotic bias and covariance of the Px(k), k~l, can be 

characterized using the following proposition whose proof is given in the Appendix at the end of 

the paper. 
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Propo5 .. ifioll 1: llnder AsslImption I, as T ---* 00, 

1 
(13) ffO<a<"2' 

where 1)1: is (/ Il/od!fll.!d ROSI.!Ilh/ott distrihllfirJll definl.!d hy Hoskillg (1996, expressions (12)-

( 15». 

. 1 
(15) fj-<a<l, . ") 

'/ 

cov(!)x (k), 1\ (I)) - r J 2:: (p,(j)px (j + k - I) + Px (j)px (j -'- k -+- I) 
j=-J 

From expression (12), we learn that the sample autocorrelations of the perturbed long memory 

process XI actually ullderestimate their theoretical counterparts, with the negative bias decaying 

at a slowly rate as the sample size increases, However, as \ve already noted in Section 2, there 

always exists a sufliciently large signal-to-ratio';- for which 9(A., ,;-), and consequently p:(k) 

and the asymptotic bias will be arbitrarily smalL uniformly on a E (0,1) . For such values of f we 

shall expect sample autocorrelations to be arbitrarily close from below of their theoretical 

counterparts and hence, a correlogram of XI with small and positive e:.timated autocorrelations. 
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Such a long memory series, x:, will have a correlogram unidentifiable from a white noise process I 
on the basis of the standard bounds ± 2/ Jf . 

Moreover, from expressions (13)-(15), it follows that for large enough ~, the asymptotic 

covariance of the p.,(k) will tend to zero uniformly on a E(O,l) and the sample correlations at 

different lags of x: will appear uncorrelated with each other. 

4. Perturbed Fractional 'Vhite Noise Process 

In this section we shall give explicit expressions of the theoretical mOffil~nts of the perturbed long 

memory process XI through the study of a particular member of the family of ARFIMA processes, 

namely, the so-called fmcliol/u/ It'hile I/oise process, a discrete time version of the fractional 

Bro\\nian motion process. 

This process is defined as 

with 'll - iid( 0, CT~I)' d is a noninteger number and 

0," = (I - Lt = I - dL + d(d - I)L2 12!- d( d - I )(d - 2)L3 13! +. ... , 

and where by simplicity we assumed that It = 0 . 

The probability properties of this process were developed by Granger and Joyeux (1980) and 

Hosking (19SI). They proved that the process is weakly stationary with long memory if and only 

if 0 < d < 1/2, with Wold decomposition 

(17) )'1=Lr?jlll-j' 
j=() 

( IS) 
r(j + d) 1 .d-l 

r?j = r(d)r(j + I) - r(d).1 as j ---+ 00. 
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Moreover, its autocovariance and autocorrelation functions are 

(19) 

(20) 

(21 ) 

and 

(22) 

(0) = ()~ f(1- 2d) 
Yy "f~(I-d)' 

(k) = ()" r(I - 2d)f(k + d) _ ()2 r(1 - 2d) e d- I as k ~ 00 

Yy " r(I - d)r(k + 1- d)r(d) " r(I- d)r(d) , 

0' 
p)I)= I-d' 

p (k) = f(! - d)f(k + d) _ f(I - d) k2J- 1 as k ~ 00 

y f(k + 1- o')f(d) r(d) , 

respectively, with f( 0) denoting the gamma or generalized factorial function and where the 

asymptotic approximations in (18), (20) and (22) follow from Shephard's Lemma. 

Consequently, Llsing (19)-(22) and the notation in Section 2, it follows that 

(21 ) 
1 _ : r( I - 2d) 
/~-(),,' 

r(I - d)f(d) 

with a = 1 - 2d , 

(22) 

(23) 
, f(I - 2o')f(k + d) " r .(k)= ()- _).}_,i-1 as k~oo 

, 'I r(I - d)f(k + 1- d)f(d) , 

(24) 
t: (); f2(1- cl) 
s = ()~ f(1 - 2d) , 

(25) 
()~f(I - 2d) d 

Px(1) = ()~,r(1 - 2d) + ()~f" (1- d) (1- d) , 
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(26) 
a~r(1 - 2d) r(1 - d)r(k + d) 

p..(k) = a;l(l- 2d) + a;rc (1- d) r(k + 1 - d)r(d) .. 
(J'='1r(I- 2d) r(l- d) "d-J k _ k- as ----,) 00, 

(J'~r(l- 2d) + (J'~r= (1- d) r(d) 

so that in this case the size of the perturbed long memory process Xl is given by 

(27) ~ (J'~r(l - 2d) r(l- d) 
9(;.,;)= (J';,r(l-2d)+(J'~r:(I-d) r(d) 

5. Other Heuristic Approaches to Detecting Long l\femory 

In order to detect long memory from an heuristic approach, a more suitable plot than the 

correlogram suggested by the literature would be the so-called fOR-foR correfogram. obtained by 

plotting 10g\P(k)\ against logk, the idea being that, if the asymptotic decay of the 

autocorrelations of the underlying series is hyperbolic, then the points of this plot should be 

scattered, for large lags, around a straight line with negative slope given by -a, whereas that, if 

the series of interest has sh011 memo!)', then the log-log correlogram should show divergence to 

minus intinity at an exponential rate. 

Indeed, Beran (1994, pages 90-91) provides evidence on the fact that the log-log correlogram IS 

mainly useful in cases of high long range dependence, with a near zero or for very long time 

series. Otherwise, it is very difficult to decide whether there is long memory in the data by looking 

at this device only. Essentially the same criticism applies to other heuristic statistics, such as the 

R / S Plot. the I 'ufiunc:e Piot or the I'oriogram Plot (cf. Beran, 1994, chapter 4 for further 

details). 

In our case, it follov/s from expression (9) that 

(28) 10giPx (k )i- logl.9(J·, ;)1- a logk 
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for large lags, and then the size of the process does not affect the slope of the log-log correlogram I 
which in this sense is a robust device against the near-observational problems found with the 

standard correlogram with perturberd long memory series. 

On the other hand, knowing the autocovariance function of a process is equivalent to knowing 

its spectral density. Therefore, perturbed long memory dependence can also be analyzed in the 

frequency domuin. In this sense, if we denote the spectral density of an arbitrary stationary time 

series =/ by 

then, under our set-up, it is straightforward to show that 

, 

(29) 
er 

f((tJ) = ./;(w) + .~.((tJ) = f~.((tJ) + 2;' (tJ E[O,Jr], 

so that the spectrum of the perturbed long memory process XI is just the sum of the spectrum of 

the long memory process )'/ plus a constant, which is the spectrum of the white noise component 

of expression (2). 

Consequently, it follows fr0111 expression (9) and Beran (1994, Theorem 2.1) that 

and hence, both processes have exactly the same spectral shape at low frequencies, tending for 

a <1 to infinity at the origin, in spite of the fact that Px(k) <py(k). k= 1,2, .... In the case ofa 

peI1urbed fractional white noise process, the corresponding expression (29) for the exact 

population spectrum is given by 

y (0)( (' ))-2d 2 f(o)=--;--- 2sin °
2 

+~g 
_1t: _1t: 
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(31 ) 
(y,(O)+a~(2Sin(~))'"J ( . (0) y2d y:(O)( . (0)))-2d 

= 2 Sin -) I = -- 2 Sin -
2rc 2 ) 2rc 2 

In this manner, it follows from (22) and (3 I) that, for the consistency of model (2) in this 

particular case, the adding white noise process must have a variance given by 

(32) 
_, , ( . 0)) 2d 

- - - ') -cr" - cr " _ SI n , - 2 

On the other hand, from expressions (21) and (30) we obtain the asymptotic approximation to 

the population spectrum of the perturbed fractional white noise process at low frequencies 

(33) 
, cr ~ r(1 - 2d)r(2d) . ( rc) -cd 

/,(0))=./,(0))- ( sin (1-2d)- 0) , 0) ~O, 
. IT r( I - cl) r cl) 2 

This asymptotic approximations, in turn, directly connect with the observation made by Granger 

(1966) that the typical shape of the spectral density for economic time series would be weB 

approximated as a function with a pole at the origin, It seems, therefore, that in order to 

differentiate between a stationary series with long range dependence and one with short range 

dependence the spectral domain is also a more robust diagnostic tool than the plot of 

autocorrelations, 

G. Portmanteau Tests 

Jointly with the correlogram, most standard econometric packages frequently include by default 

the so-called Box-Pierce statistic 

K 

(34) Qh' = t'[)):(k), 
k=1 

in order to test if XI is well approximated by a white noise process, Under this null hypothesis, 

Qh' asymptotically is chi-square distributed, If XI' however, is a short memory or a long memory 
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process, from the Ergodic Theorem we know that Px(k)~Px(k), k~l, and hence, from I 
Slutsky's Theorem, it follows that 2:~=1 p~ (k) ~ 2:~=1 p; (k) , K fixed, so that 

and the Box-Pierce test is consistent against short and long memory alternatives. 

Notwithstanding, in our framework, \ve know that there may exists a sufficiently large signal-to-

noise ratio, (, for which the long memory series x
t 

is undistinguible from a white noise on the 

basis of the correlogralll. For this class of series, say X:' the estimated autocorrelations, by 

assumption, satisfy the inequality 

for given T, and hence 

(37) Q". < 4K 

. 
for any K. Consequently, it is enterely possible for the class of long memory processes x t not to 

reject the null hypothesis of independence using the Box-Pierce test 

In this sense, the so-called Ljung-Box test, 

(38) c/ = T(T + 2)f_l- ~ 2.(k) 
-" L.. T _ k P., ' 

k=1 / 

by providing a greater bound, 

(39) 
". T+2 ' 

(), < 4"" --= K -" f-;; T-k ' 
K >K, 

can Improve the power of the pOI1manteau tests against the class of perturbed long memory 

. 
processes XI . 
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7. Common Factors I 
As a final section, let us now be concerned with the possibility of the existence of common factors 

among a set of perturbed long memory series. For simplicity, we shall only consider the bivariate 

case 

with YIt 'Y21 two long memory processes of order a I' a 2' respectively, and cll' c21 two 

orthogonal white noise processes with variances er;, CT~ , respectively, and independent of their 

corresponding long memory processes )'11')'21' giving rise to signal-to-noise ratios c;l,c;2' such 

that XII' X 21 are two pel1urbed long memory processes with sizes 9(.,1, I' c;l) and 9 (A. 2 • ~2)' 

respectively. 

Under this framework, we shall be interesting on the following situation 

(42) 

for all t. so that XII and x 21 share a common long memory factor. For example, this situation 

could correspond with tinancial series of two related stock markets with different new information 

c ll ' c'21 in each session. 

Substituting (42) into (40) and (41) and rearranging, yields 

where ZI = c'21 - P c'll' so that the error term ZI is a iid white noise process with zero mean and 

variance CT~ = CT~ + (.J 2 CT~ . Therefore, it follows that XII and x21 are cointegrated long memory 

processes CJ( a, a) . 
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Assume now, however, that the signal-to-noise ratio of Xlt is so large that Xlt has the I 
identification problems that we are trying to illustrate along the different sections of this paper. 

Once more, in sllch case, the series X;t will appear white noise on the basis of the estimated 

correlogram, concluding that the two series, x ~t and x 2t are unbalanced. 

In this event, however, the log-log correlogram appears to be a particularly useful device in 

order to correct the above misspecification. Indeed, since Zt is white noise, it follows that 

(44) 10gpJk) = I, k~l, 

and hence, if \ve plot logpx, (k), logp" (k) and logp;(k) against logk, we shall obtain two 

. 
paralell lines of slope -a corresponding to Xlt and xct plus a constant line at the level 1, 

corresponding to =t. 

Since in general p is un~no\Vn, so is the Zt series. However, a consistent estimator of z .. can 

be constructed trough the least squares estimation ofp in expression (43). =, = x2t - {ax it , 

sll1ce 

7. Conclusions And Example 

It is suggested that a correlogram shape that occurs fairly frequently with financial data can easily 

be explained. If the explanation is accepted, it follows that important properties of some financial 

series may be missed if the effects of a strong white noise are not allowed for. 
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An extreme form of the property being considered is to be found in Steigerwald (1997). Using I 
the squares of the daily prices changes of the Ne'.v York Stock Exchange Composite Index for a 

period January I, 1990 to November 29, 1996, giving a sample of size 1748, Table 1 shows the 

autocorrelations and corresponding Box-Pierce (Q) statistics for lags 1 to 36. Although these 

autocorrelations are very small, all but one are positive. Thus, it would seem that the process 

contains long memory but the autocorrelations are all greatly discounted, and so the theory 

proposed above applies. 

8. Appendix: Proof of Proposition 1 

Along the proof of this result, we shall assume, without loss of generality and in the sake of 

simplicity that E(x t) = £(J't) = ° . Alternatively, suppose that we are working with the centered 

time series. 

Under expressions (1)-(3) and Assumption 1, it follows from the Wold Representation Theorem 

and the Gaussianity assumption that the perturbed series x t is a Gaussian long memory series 

(AI) !,(k)-)k·rl,»O,OE(O,I), 

decomposition given by 

(A2) Xt=LVhUt-h' 
iJ={l 

Consequently, using expression (2) and Assumption la we have that 

and collecting terms of the same power, yields 
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CA3) /i/ . = A.. - (5;-P 
'1') '1/) .I' I 

as j -j. 00 , with fJ = (1 + a) / 2 under Assumption 1 h. 

Finally, since Assumption le implies that the disturbance term Vc is Normally distrubuted with 

finite second moment, Theorem 6 of Hosking (1996) applies to the perturbed long memory 

process x/ and Proposition 1 follows. Q.E.D. 
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C()rrcl()~ram of SDCOl\1POSITE I 
Date: O-l/O 1/97 

Time: 09:30 
Sample I: 17-l8 

Included Observation: 17-l7 

AC O-Stat 
I 0.061 6.5672 
2 0.091 21.196 
3 0.0-l5 2-l.757 
-l 0.102 42.866 
5. 0.063 -l9.722 
6 0.1-l3 85.520 
7 0.012 85.755 
8 O.lW; 86.301 
9 o .OG-l 93.603 
10 O.()]() 95.8-l0 
11 (l.OS5 IOS.-l1 
12 0.020 109.11 
I~ .' o.m» 121.20 
l-l 0.095 137.1-l 
15 0.056 1-l2.68 
IG (J.(152 1-l7.-l9 
17 O.O() I 1-l7.-l9 
18 O.O-lO 150.30 
10 (l.(Wi 15-l.02 
20 0.109 17-l.91 
2J -O.()(12 17-l.92 
22 O.O-l5 178.50 
n O.()I-l 178.83 
2-l 0.052 183.70 
25 O. ()(j() 191.33 
2G O.O2-l 192.37 
27 0.036 19-1.(j8 

2X (1.020 195.35 
20 0.058 201.26 
3() 0.038 203.82 
11 O.()]O 2()5.-l8 
:12 ().O-l6 209.30 
33 0.050 213.83 
3-l 0.026 215.0-l 
35 0.01-l 215.38 
36 0.023 21G.30 
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