
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS 1

Brief Papers

Extended Input Space Support Vector Machine

Ricardo Santiago-Mozos, Member, IEEE,
Fernando Pérez-Cruz, Senior Member, IEEE, and
Antonio Artés-Rodríguez, Senior Member, IEEE

Abstract— In some applications, the probability of error of a
given classifier is too high for its practical application, but we
are allowed to gather more independent test samples from the
same class to reduce the probability of error of the final decision.
From the point of view of hypothesis testing, the solution is given
by the Neyman–Pearson lemma. However, there is no equivalent
result to the Neyman–Pearson lemma when the likelihoods are
unknown, and we are given a training dataset. In this brief, we
explore two alternatives. First, we combine the soft (probabilistic)
outputs of a given classifier to produce a consensus labeling
for K test samples. In the second approach, we build a new
classifier that directly computes the label for K test samples.
For this second approach, we need to define an extended input
space training set and incorporate the known symmetries in the
classifier. This latter approach gives more accurate results, as
it only requires an accurate classification boundary, while the
former needs an accurate posterior probability estimate for the
whole input space. We illustrate our results with well-known
databases.

Index Terms— Classifier output combination, multiple sample
classification, Neyman–Pearson, support vector machines.

I. INTRODUCTION

We are given a set of K samples: T = {x∗
1, . . . , x∗

K },
where x∗

j ∈ R
d , and we are told that all of them belong to

one of two possible alternatives. If the competing hypotheses
are represented by their density functions, respectively, p1(x)
and p−1(x), the most powerful test is given by the Neyman–
Pearson lemma, which compares the product of the likelihood
ratios for each x∗

j to a threshold, which is determined by the
size of the test [1]. The Type II error of the test decreases
exponentially with K and the error exponent is given by the

Manuscript received September 14, 2009; revised July 29, 2010 and October
26, 2010; accepted October 27, 2010. This work was supported in part by
Ministerio de Educación of Spain under projects DEIPRO TEC2009-14504-
C02-01 and COMONSENS CSD2008-00010. F. Pérez-Cruz was supported
in part by Marie Curie Fellowship 040883-AI-COM. R. Santiago-Mozos has
been supported in part by Marie Curie Transfer of Knowledge Fellowship
of the EU sixth Framework Programme under contract CT-2005-029611 and
Fundación Española para la Ciencia y la Tecnología, Ministerio de Educación
of Spain.

R. Santiago-Mozos is with the College of Engineering and Informatics,
National University of Ireland Galway, Galway, Ireland (e-mail:
ricardo.santiago-mozos@nuigalway.ie; frsmozos@tsc.uc3m.es.edu).

F. Pérez-Cruz and A. Artés-Rodríguez are with the Signal Theory and Com-
munication Department, Universidad Carlos III de Madrid, Madrid 28903,
Spain (e-mail: fernando@tsc.uc3m.es; antonio@tsc.uc3m.es).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2010.2090668

Kullback–Leibler divergence between p1(x) and p−1(x) [2].
Therefore, the Neyman–Pearson lemma provides a tradeoff
between the number of samples that we take before deciding
and the achievable probability of error.

This problem is standard in many applications of simple
hypothesis testing. For example, in radar [3], several samples
are collected prior to declaring whether a target is present.
In medical applications, a subject is tested several times
before a disease can be diagnosed, because some tests are
unreliable and present high false-positive and misdetection
rates. A neuron collects several spikes [4] before it detects a
certain pattern. Taking a decision with several samples allows
the reduction of the probability of error (misdetections and
false alarms) at the cost of gathering more information and/or
waiting longer. In all these applications, the samples are known
to come from the same class and are gathered to increase
reliability.

In classification problems, the likelihoods p1(x) and p−1(x)
are unknown and we are given a set of samples (i.e., the
training set) that describes each likelihood. If p1(x) and
p−1(x) are known to belong to a parametric family, we could
estimate those parameters and apply the likelihood ratio to
decide the best hypothesis. Nevertheless, for these estimates
the properties described by the Neyman–Pearson lemma do
not hold. And more often than not, p1(x) and p−1(x) cannot
be described by known parametric distributions and we would
need to resort to nonparametric estimation methods. In any
case, if we want to classify T into two alternative hypothesis,
we would be ill-advised to estimate p̂1(x) and p̂−1(x) and
apply a product of likelihood ratio test (because it is an ill-
posed problem [5]) instead of directly building a classifier
from the training set, which assigns a label to our test
data.

When the likelihoods are unknown and we are given a
training dataset, there is no equivalent result to the Neyman–
Pearson lemma, which tells us how to take a unique decision
for K test samples that are known to come from the same
class, because they have been gathered that way. Two possible
alternatives come to mind. First, train any classifier and
combine its outputs for each of the K test samples to come
up with a unique decision for these samples. We refer to
this solution as the consensus decision and we explore it in
Section II of this brief.

Second, we propose to build a classifier that directly clas-
sifies the K test samples belonging to the same class. This
direct option works with an extended input space that takes
K samples at once and trains the desired classifier. In order
to do this, we need to transform the original d-dimensional
input space into a K d-dimensional space that represents the
same problem and build the classifier with it. We refer to this
solution as the direct decision and we explore it in Section III.

1045–9227/$26.00 © 2010 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29401844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS

We need to exploit the structure embedded in our problem to
obtain a reduced complexity and high-performance classifier.
The set T of test samples are not ordered and any order should
provide the same outcome, as they all come from the same
class. To exploit this symmetry in the extended input space,
we have decided to adapt a support vector machine (SVM)
[6] to this framework. SVMs are state-of-the-art nonlinear
versatile classifiers that are well known and easy to train,
although our procedure also holds for most classification
algorithms of interest. We refer to our extended input space
SVM as ESVM, which takes the set T and gives a binary
decision.

The consensus and direct decisions present different pros
and cons, which make each technique desirable in different
scenarios. The consensus decision needs accurate posterior
probability estimates in the whole range (which might be
hard to come by for high confidence decisions), however, it
only needs to work with an input space of dimension d . The
direct decision, on the one hand, operates with an input space
of dimension K d that has been extended artificially without
having more training samples to build the classifier, so it might
be more exposed to the curse of dimensionality. On the other
hand, the direct decision only needs to return a decision, not
a posterior probability estimate. Also the consensus decision
can be used for any value of K , while in the direct decision
K is specific. It is not clear cut which algorithm would be
preferable, although in the experiments carried out it seems
that the direct approach might be preferable (lower probability
of error).

The rest of this brief is organized as follows. In Section II,
we establish how to combine the posterior probability esti-
mates from each test sample to reach a consensus label. We
present the direct decision in Section III and the extended input
space SVM in Section IV. We introduce an illustrative example
in Section V together with the performance of the proposed
extended input space SVM with well-known databases. We
conclude in Section VI.

II. CONSENSUS DECISION

We want to classify T into two possible alternatives and we
have a soft-output classifier whose output can be interpreted
as a posterior probability estimate, i.e.,

p(y∗|x∗) y∗ ∈ {±1}. (1)

We could be tempted to compute the posterior probability
estimate as

p(y∗ = 1|T) =

K
∏

k=1

p(y∗
k = 1|x∗

k)

K
∏

k=1

p(y∗
k = 1|x∗

k) +
K

∏

k=1

p(y∗
k = −1|x∗

k)

(2)

and decide accordingly. But (2) relies on each of the test
samples being independent, but they are not, because all
the test samples belong to the same class. To assign a
consensus label to the test set with K samples we proceed

as follows:
p(y∗ = 1|T) = p(y∗ = 1)p(x∗

1, . . . , x∗
K |y∗ = 1)

p(x∗
1, . . . , x∗

K)

= p(y∗ = 1)
∏

k p(x∗
k |y∗ = 1)

p(x∗
1, . . . , x∗

K)

=
p(y∗ = 1)

∏

k
p(y∗=1|x∗

k)p(x∗
k)

p(y∗=1)

p(x∗
1, . . . , x∗

K)

=

∏

k p(y∗ = 1|x∗
k)

p(y∗ = 1)K−1
∏

k p(y∗ = 1|x∗
k)

p(y∗ = 1)K−1 +
∏

k p(y∗ = −1|x∗
k)

p(y∗ = −1)K−1

. (3)

To obtain the second equality, we have applied the fact
that the K test samples are independent given the label, and
for the third equality we have applied Bayes rule, as we did
for the first.

To decide for either hypothesis, we need to multiply the
posterior probability estimate for each sample and divide by
the prior probabilities to the K −1 power. We assign the
consensus label to the K test sample set by the following
rule:

y∗ =
⎧

⎨

⎩

1,

∏

k p(y∗ = 1|x∗
k)

p(y∗ = 1)K−1 >

∏

k p(y∗ = −1|x∗
k)

p(y∗ = −1)K−1

−1, otherwise.
(4)

III. DIRECT DECISION

In this section, we describe an algorithm for extending
the training set to a K d-dimensional space, in which we
can classify the K test samples directly. Given a training
set D = {x1

1, . . . , x1
n+, x−1

1 , . . . , x−1
n− }, where xc

i ∈ R
d and

c ∈ {±1} denotes the class label, we define the initial extended
input space training set for class +1 as

Z1
o = [z1

1 z1
2 · · · z1

n̄+] =

⎡

⎢

⎢

⎢

⎢

⎣

x1
�11

x1
�12

· · · x1
�1n̄+

x1
�21

x1
�22

· · · x1
�2n̄+

...
...

. . .
...

x1
�K 1

x1
�K 2

· · · x1
�K n̄+

⎤

⎥

⎥

⎥

⎥

⎦

(5)

which is a K d × n̄+ matrix containing in its columns the
samples of the extended input space with n̄+ = �n+/K �.
The indices li j are samples without replacement for 1, . . . , n+,
consequently, in each column of Z1

o we have an independent
representation of the training set. We can similarly obtain an
extended input space training set for class −1, namely Z−1

o .
Building the training set this way presents a severe limita-

tion, as it reduces the number of training samples by a factor
of K and makes the direct classifier harder to train. But there
are symmetries in this problem that can be readily included in
the training set that increases the number of training samples.
These symmetries additionally impose constraints in the opti-
mization problem, which simplifies its training procedure, as
we explain in the next section. Let us use a representative
example to illustrate this point. Suppose that K = 2 and
n+ = 10, a possible Z1

o might be

Z1
o =

[

z1
1 z1

2 z1
3 z1

4 z1
5

]

=
[

x1
1 x1

4 x1
10 x1

8 x1
6

x1
7 x1

2 x1
5 x1

3 x1
9

]

. (6)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS 3

For example, in this set we have the extended sample z1
1 =

[

x1
1

x1
7

]

, and we should expect the sample

[

x1
7

x1
1

]

to present the

same label, because the ordering of the sample should not
matter. Therefore, we can extend the initial training set by
including this permutation

Z1
p =

[

z1
11 z1

21 z1
31 z1

41 z1
51 z1

12 z1
22 z1

32 z1
42 z1

52

]

=
[

x1
1 x1

4 x1
10 x1

8 x1
6 x1

7 x1
2 x1

5 x1
3 x1

9
x1

7 x1
2 x1

5 x1
3 x1

9 x1
1 x1

4 x1
10 x1

8 x1
6

]

. (7)

In this notation, the first subindex in zi� identifies the
sample, and the second the permutation.

This procedure can be applied for any number of training
samples n+ and n− and any number of test samples K . For
any K , Z1

p , and Z−1
p , respectively, contain n̄+K ! and n̄−K !

columns of dimension K d , as we need to incorporate all
possible permutations z1

i .
Finally, to further increase the sample diversity of the

training procedure, we randomly create R samples for Z1
o and

Z−1
o from D. Then, we build the final training matrix for the

direct classifier as follows:
Z = [

Z1
∣

∣ Z−1
]

= [

Z1
p1

Z1
p2

· · · Z1
pR

∣

∣ Z−1
p1

Z−1
p2

· · · Z−1
pR

]

. (8)

IV. EXTENDED INPUT SPACE SVM

Now we can use the matrix Z in (8) to train any binary
nonlinear classifier of our liking, and we can then classify K
test samples directly. But by doing so, we are ignoring the
symmetries that we have included in this extended training
set, from which the learning machine should benefit. Adding
these symmetries to the learning procedure would be classifier
dependent. Therefore, we operate from now on with SVMs,
although, as mentioned earlier, similar steps can be applied to
most classifiers of interests. We have chosen SVMs, because
they are state-of-the-art learning machines that can be easily
trained and have been used in may different applications
with considerable success. In what follows, we assume the
reader is already familiar with soft-margin nonlinear SVMs
and its primal and dual representations, in any case, a detailed
presentation can be found in [6], [7].

The SVM primal optimization functional solves

min
w,b,ξi

1

2
||w||2 + C

∑

i

ξi (9)

subject to

yi

(

w� ∑

�

φ(zi�) + b

)

≥ 1 − ξi (10)

ξi ≥ 0 (11)

where we have removed the superindex in zi�, which deter-
mines the class label, and have replaced it by yi , which also
takes the values +1 or −1, depending on the class label.1

In (10) and (11), i = 1, . . . , N , with N = R(n̄+ + n̄−) and

1We have modified the notation in this section to make it compatible with
standard SVM notation, as it makes this section easier to understand.

� = 1, . . . , K ! contains all the possible permutations for any
training sample. The function φ(·), which can be characterized
by its kernel kφ(·, ·) = φ(·)�φ(·), is a nonlinear mapping of
the input to a higher dimensional space [6].

In the standard SVM formulation, the slack variables ξi and
the class label yi would also be indexed by �, because there can
be a nonzero slack for each training sample, and each sample
has its own class label. But by construction, we have included
all the symmetries in the training set, so yi is identical for any
� and w�φ(zi�) is independent of �. To clearly understand this
last point, see the example of a training set in (7), in which the
training set presents all permutations of each training sample,
consequently, given the symmetries, the learning machine has
no information to provide us with different outputs for each
permutation.

The Lagrangian for this problem becomes

L(w, b, ξi , αi , ηi) = 1

2
||w||2 + C

∑

i

ξi −
∑

i

ηiξi

−
∑

i

αi

(

yi (w� ∑

�

φ(zi�) + b) − 1 + ξi

)

(12)

which has to be minimized with respect to the primal variables
(w, b and ξi) and maximized with respect to the dual variables
(αi and ηi). We can now compute the Karush–Kuhn–Tucker
conditions [8]

∂L
∂w

= w −
∑

i

αi yiϕ(zi) = 0 (13)

∂L
∂b

=
∑

i

αi yi = 0 (14)

∂L
∂ξi

= C − ηi − αi = 0 (15)

where we have defined

ϕ(zi) =
∑

�

φ(zi�) (16)

with zi being any zi�.
We can use standard optimization tools to obtain the dual

formulation

max
αi

1

2

N
∑

i=1

N
∑

j=1

αiα j yi yi kϕ(zi , z j) −
N

∑

i=1

αi (17)

subject to (14) and 0 ≤ αi ≤ C . The kernel is given by

kϕ(zi , z j) = ϕ(zi)
�ϕ(z j) =

K !
∑

�1=1

K !
∑

�2=1

φ(zi�1)
�φ(z j�2)

=
K !
∑

�1=1

K !
∑

�2=1

kφ(zi�1, z j�2) = K !
K !
∑

�=1

kφ(zi , z j�).

(18)

The solution for this nonlinear transformation is quite
interesting, because it adds the symmetry in the dual, we are
training with all the possible symmetries of a training sample
without needing to add a support vector for each new sym-
metric sample and we use a single nonlinear transformation.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS

For large K , the computational complexity can be quite high
and we use LibSVM [9] to train the SVM. There are other
approaches that can train the SVM with over a million training
samples [10], [11] and that can also be applied to solve the
ESVM.

V. EXPERIMENTS

We first show a toy 1-D example, in which we illustrate
the benefits of classifying K samples directly, instead of
combining the individual decisions. We then move on to
classify different well-known databases, which allows the
drawing of some general conclusions about the performance
of our extended input space SVM.

In the figures and tables, we denote as SVMK the solution
reached by consensus, combining K SVM outputs. To obtain
the SVMK solution, we have used (4) and have transformed
the SVM soft outputs into posterior probability estimates using
Platt’s method [12]. We use LibSVM [9] to train the SVM,
and the implementation of Platt’s method is given in [13].
We denote as ESVMK the solution of the extended input
space SVM with K samples. We also use LibSVM to train
the ESVM.

In all the experiments, the hyperparameters of the SVM and
ESVM have been computed by cross-validation and we have
used a radial basis function kernel. We have set N = K n
(i.e., R = N/(n̄+ + n̄−)), where n is the number of training
samples in the original database. We have found empirically
that increasing the number of training samples makes the
ESVMK predictions more stable. In any case, the information
in the training sets for the SVM and ESVM is the same.

A. Toy Example

We are given n samples generated from a zero-mean unit-
variance Gaussian that describes the class +1, and for the
class −1 we are also given n samples from a unit-mean
Gaussian with variance 4. We first train a nonlinear SVM
with 50 samples from each class. We show in Fig. 1(a) the
posterior estimate given by the SVM using Platt’s method
(dashed line) and the true posterior probability (solid line).
As we mentioned in the introduction, we notice that the SVM
accurately predicts if a sample is correctly classified, because,
if we threshold the decisions at 0.5 in Fig. 1(a), we can
see that the SVM predictions and the true posterior decisions
almost coincide. But the SVM posterior probability estimates
are far from accurate when we are away from the classification
boundary and it does not accurately estimate extreme posterior
probabilities [e.g., x > 4 or x < −4 in Fig. 1(a)].

We have plotted in Fig. 1(b) the Bayes (solid), the SVM2

(dashed), and the ESVM2 (dash-dotted) decision boundaries.
We see that the ESVM2 is closer to the optimal deci-
sion function and it does not have the artifacts that the
SVM2 presents, due to its inaccurate posterior probability
estimates.

In Fig. 2(a) and (b), we show the probability of error
as a function of K for 20 and 50 training samples per
class, respectively. (For this experiment, we did not impose
the symmetries in the kernel and we only train with the

−8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

p(
y

=
1|x

)

SVM + Platt
Bayes

(a)

(z)
1

(z
) 2

−5 −4 −3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

1

2

3
SVM2

ESVM2

Bayes

(b)

Fig. 1. (a) True posterior probability and its estimate using an SVM with 50
training samples and Platt’s method. (b) Optimal decision boundary together
with the SVM2 and ESVM2 classification functions.

extended input space training sets Z1
o and Z−1

o , as K ! grows
exponentially with K .) To obtain these plots, we have run
104 independent trials with 105 test samples. The probability
of error reduces as we increase K . In the figures, we also see
that the performance gap between the SVMK and the ESVMK

increases with K . This is an expected result, because as K
increases the inaccuracies in the SVM posterior probability
estimate are more noticeable, when we compute the consensus
label for the test set. The ESVMK only focuses on the decision
boundary and it does not need to give accurate soft outputs.
It is also noteworthy that the probability of error reduces even
when K becomes larger than the number of training samples
per class. It can be seen that for larger K , the ESVMK and
SVMK solution are better and closer to each other and to the
Bayes solution, but still the ESVMK outperforms the SVMK

for all K .
Finally, in Table I, we show the performance of the SVM2

and ESVM2 as we increase the number of training samples

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS 5

10−2

10−1

Pr
ob

 E
rr

or

SVMK

ESVMK

Bayes

SVMK

ESVMK

Bayes

0 10 20 30 40 50

K

(a)

0 10 20 30 40 50

K

(b)

10−3

10−2

10−1

Pr
ob

 E
rr

or

Fig. 2. Error rate for the toy example as a function of K for (a) 40 and
(b) 100 training samples.

TABLE I

PROBABILITY OF ERROR OF SVM2 AND ESVM2, AS THE NUMBER OF

TRAINING SAMPLES PER CLASS IS INCREASED TOGETHER WITH THEIR

STANDARD DEVIATION

samples 20 50 200
SVM2 0.333 ± 0.154 0.249 ± 0.030 0.240 ± 0.020

ESVM2 0.264 ± 0.040 0.237 ± 0.016 0.225 ± 0.006

per class. Both methods converge to the same solution, which
corresponds to the Bayes classifier whose error is 0.22 for
this problem with K = 2. The results in this table have been
obtained with 104 independent trials with 105 test samples.

B. Real Databases

We have also carried out experiments with the 13 databases
in [14]. Each database has been preprocessed to present zero
mean and unit variance, and 100 training and test samples
sets have been generated, except for Splice and Image, which
only use 20. In Table II, we present the databases and some of

TABLE II

SUMMARY OF THE 13 DATABASES USED IN THIS SECOND EXPERIMENT:

ITS NAME, DIMENSION, NUMBER OF TRAINING AND TEST PATTERNS,

AND THE SVM PREDICTION ERROR

Name Dim # Train # Test SVM
Titanic 3 150 2051 2.28e-1 ± 1.2e-2
Flare-solar 9 666 400 3.23e-1 ± 1.8e-2
Banana 2 400 4900 1.09e-1 ± 5.6e-3
Breast-cancer 9 200 77 2.52e-1 ± 4.5e-2
Diabetes 8 468 300 2.32e-1 ± 1.7e-2
Waveform 21 400 4600 9.80e-2 ± 4.4e-3
Ringnorm 20 400 7000 1.50e-2 ± 9.5e-4
Twonorm 20 400 7000 2.43e-2 ± 1.4e-3
Thyroid 5 140 75 4.62e-2 ± 2.1e-2
German 20 700 300 2.41e-1 ± 2.2e-2
Heart 13 170 100 1.55e-1 ± 3.4e-2
Splice 60 1000 2175 1.08e-1 ± 7.4e-3
Image 18 1300 1010 3.24e-2 ± 6.1e-3

TABLE III

SVM3 SOLUTION COMPARED WITH THE ESVM3 FOR 13 DATABASES.

THE HSVM3 SOLUTION SHOWS THE SVM3 PERFORMANCE WITH

HARD OUTPUTS

Name SVM3 ESVM3 HSVM3

Titanic 1.85e-1 ± 2.2e-2 1.36e-1 ± 2.3e-2 1.88e-1 ± 2.3e-2
Flare-solar 2.31e-1 ± 3.7e-2 1.87e-1 ± 3.0e-2 2.46e-1 ± 3.8e-2
Banana 1.78e-2 ± 3.9e-3 1.53e-2 ± 3.3e-3 3.53e-2 ± 4.3e-3
Breast-cancer 1.89e-1 ± 6.8e-2 1.80e-1 ± 6.5e-2 2.46e-1 ± 6.0e-2
Diabetes 1.23e-1 ± 3.1e-2 1.18e-1 ± 2.8e-2 1.74e-1 ± 3.1e-2
Waveform 1.15e-2 ± 2.9e-3 1.04e-2 ± 2.8e-3 3.05e-2 ± 5.0e-3
Ringnorm 3.52e-4 ± 4.7e-4 5.14e-5 ± 1.4e-4 8.75e-4 ± 5.8e-4
Twonorm 3.64e-4 ± 3.6e-4 3.04e-4 ± 3.1e-4 1.83e-3 ± 7.9e-4
Thyroid 4.00e-4 ± 4.0e-3 4.17e-4 ± 4.2e-3 1.03e-2 ± 1.8e-2
German 1.46e-1 ± 3.1e-2 1.47e-1 ± 3.4e-2 1.99e-1 ± 3.7e-2
Heart 5.28e-2 ± 3.7e-2 5.80e-2 ± 4.0e-2 7.13e-2 ± 4.0e-2
Splice 1.65e-2 ± 5.0e-3 2.04e-2 ± 4.5e-3 3.17e-2 ± 6.7e-3
Image 1.04e-3 ± 1.7e-3 4.17e-3 ± 4.6e-3 2.68e-3 ± 2.9e-3

their key features, together with the best SVM solution. For all
the experiments in this section, we have set K = 3, although
the results can be readily extended for larger values of K .
To build the test set for the extended input space with K =
3, we first split the test database into two parts, one for the
class +1 samples and the other for the class −1 samples. We
then take three consecutive examples from each part without
replacement until all the samples have been used. To compute
the prior probabilities for the consensus decision, we use the
relative frequencies in the training set.

In Table III, we report the probability of error for SVM3 and
ESVM3. In Table IV, we compare with two statistics the errors
in Table III to measure the difference between SVM3 and
ESVM3 and report whether these differences are statistically
significant. The first one is the classic t-test [15] and the second
one is a more conservative corrected resampled t-test [16].
We have used boldface to denote that ESVM3 is better than
SVM3 and we have used italic-face when SVM3 is better than
ESVM3. For the t-test, there are seven databases in which
ESVM3 is superior to SVM3 and four otherwise. For the
more conservative test, only six databases pass the statistically
significant threshold. This is an expected result, as the ESVM

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS

TABLE IV

TWO STATISTICS COMPUTED TO COMPARE WHETHER THE DIFFERENCE

BETWEEN ESVMK AND SVMK ARE SIGNIFICANT. BOLDFACED VALUES

INDICATES ESVMK IS SUPERIOR AND ITALICS ARE USED OTHERWISE

Name t-Test in [15] Test in [16]
Titanic 5.26e-200 5.30e-101
Flare-solar 2.23e-195 2.00e-096
Banana 7.25e-073 1.84e-006
Breast-cancer 3.31e-127 1.83e-033
Diabetes 4.49e-102 5.28e-017
Waveform 1.35e-040 0.0279
Ringnorm 1.80e-008 0.543
Twonorm 0.224 0.903
Thyroid 0.730 0.973
German 3.21e-037 0.0451
Heart 9.58e-104 6.90e-018
Splice 7.53e-019 2.62e-007
Image 4.57e-017 5.55e-006

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

number training samples for ESVM3/n

Pr
ob

 E
rr

or

breast−cancer
german
twonorm
banana
splice
image

Fig. 3. Probability of error as we artificially increase the extended input
space training set for six representative databases.

has some limitations and it should not always be better than
SVMK , but it is clear than in some cases it is much better and
for some problems might be the way to improve the solution
as we gather more examples.

In the Table III, we also report the SVM3 performance with
hard outputs, denoted by HSVM3. These results show that,
even though Platt’s method is inaccurate for short training
sequences, it is better than not using the SVM soft output at all.
Also, if we compare the results for the SVM in Table II and the
ESVM3 or SVM3 in Table III, we can see a significant gain in
all cases. Either of the proposed methods would improve the
performance of the SVM, if we can gather more independent
samples.

Finally, we show the probability of error of six representa-
tive databases for ESVM3 in Fig. 3 when we increase the

number of training samples of the extended input space. We
have generated training sets with 0.25n, 0.5n, n, 2n, 4n,
8n, and 16n, where n is the number of training patterns in
Table II. We notice that once we use n training samples, there
is little improvement, as the amount of information to learn
the classifier is limited by n, not the number of repetitions that
we use.

VI. CONCLUSION

When the likelihoods are unknown and we are given a
training dataset, there is no equivalent result to the Neyman–
Pearson lemma, which tells us how to take a unique decision
for K test samples. We explored two alternatives to solve
this problem. The consensus decision takes the posterior
probability estimates to predict a single label for the set T , and
the direct decision builds a classifier that classifies T in one
take. We have also shown how the symmetries of the extended
input space can be added to SVMs to give more accurate and
reduced complexity classifiers.

REFERENCES

[1] L. Wasserman, All of Statistics. New York: Springer-Verlag, 2004.
[2] T. M. Cover and J. A. Thomas, Elements of Information Theory. New

York: Wiley, 1991.
[3] H. V. Poor, An Introduction to Signal Detection and Estimation, 2nd ed.

New York: Springer-Verlag, 1994.
[4] P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational

and Mathematical Modeling of Neural Systems. Cambridge, MA: MIT
Press, 2005.

[5] V. N. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
[6] B. Schölkopf and A. Smola, Learning with Kernels. Cambridge, MA:

MIT Press, 2001.
[7] F. Perez-Cruz and O. Bousquet, “Kernel methods and their potential use

in signal processing,” IEEE Signal Process, Mag., vol. 21, no. 3, pp.
57–65, May 2004.

[8] R. Fletcher, Practical Methods of Optimization, 2nd ed. New York:
Wiley, 1987.

[9] R.-E. Fan, P.-H. Chen, and C.-J. Lin, “Working set selection using the
second order information for training SVM,” J. Mach. Learn. Res., vol.
6, pp. 1889–1918, Dec. 2005.

[10] T. Joachims, “Training linear SVMs in linear time,” in Proc. 12th ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining, Philadelphia, PA,
2006, pp. 217–226.

[11] S. S. Keerthi and D. DeCoste, “A modified finite Newton method for
fast solution of large scale linear SVMs,” J. Mach. Learn. Res., vol. 6,
pp. 341–361, Dec. 2005.

[12] J. C. Platt, “Probabilities for SV machines,” in Advances in Large Margin
Classifiers, A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans,
Eds. Cambridge, MA: MIT Press, 2000, pp. 61–73.

[13] H. Lin, C.-J. Lin, and R. C. Weng, “A note on Platt’s probabilistic
outputs for support vector machines,” Mach. Learn., vol. 68, no. 3,
pp. 267–276, Oct. 2007.

[14] G. Rätsch, B. Schölkopf, A. J. Smola, S. Mika, T. Onoda, and
K.-R. Müller, “Robust ensemble learning,” in Advances in Large Margin
Classifiers, A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans,
Eds. Cambridge, MA: MIT Press, 2000, pp. 207–220.

[15] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques. San Mateo, CA: Morgan Kaufmann, 2005.

[16] C. Nadeau and Y. Bengio, “Inference for the generalization error,” Mach.
Learn., vol. 52, no. 3, pp. 239–281, Sep. 2003.

