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Abstract

Numerical and asymptotic methods are used to investigate the structure of the hydrogen jet dis-
charging into a quiescent air atmosphere. The analysis accounts in particular for the variation
of the density and transport properties with composition. The Reynolds number of the flowRj ,
based on the initial jet radiusa, the densityρ j and viscosityµ j of the jet and the characteristic jet
velocityu j , is assumed to take moderately large values, so that the jet remains slender and stable,
and can be correspondingly described by numerical integration of the continuity, momentum and
species conservation equations written in the boundary-layer approximation. The solution for the
velocity and composition in the jet-development region of planar and round jets, corresponding
to streamwise distances of orderRj a, is computed numerically, along with the solutions that
emerge both in the near field and in the far field. The small value of the hydrogen-to-air molecu-
lar weight ratio is used to simplify the solution by considering the asymptotic limit of vanishing
jet density. The development provides at leading order explicit analytical expressions for the
far-field velocity and hydrogen mass fraction that describeaccurately the hydrogen jet near the
axis. The information provided can be useful in particular to characterize hydrogen discharge
processes from holes and cracks.

1. Introduction

The increased interest in hydrogen utilization promotes attention on safety concerns related
to hydrogen storage. The accidental appearance of small holes or cracks in pressurized contain-
ers may lead to hydrogen jet-like discharge, leading to the formation of flammable mixtures of
hydrogen and air in the surrounding atmosphere. To asses this accidental scenario, there is in-
terest in characterizing the resulting discharging jets, accounting for the large density differences
associated with the small weight of the hydrogen molecule, which cause the associated solution
to be markedly different from that of a constant-density jet.

Different flow configurations relevant to hydrogen leakage have been considered in recent
works [1, 2]. For instance, the far region of a concentrationlayer adjacent to a ceiling wall was
addressed in [1], with constant density and viscosity assumed for the gas mixture. The similarity
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description of a hydrogen buoyant jet was investigated in [2] in the Boussinesq approximation.
In defining the relevant similarity variables, this latter investigation employes semi-analitical ex-
pressions derived in previous experimental works. Just as the previous studies, the present analy-
sis aims at providing increased understanding of a relevanthydrogen flow configuration, leading
to analytical descriptions that can be used in characterizing hydrogen discharge processes. In par-
ticular, numerical and asymptotic methods are used herein to investigate nonbuoyant hydrogen
jets discharging into a quiescent air atmosphere.

When the Reynolds numberRj = ρ ju ja/µ j , based on the density and viscosity of the jet,
ρ j andµ j , the characteristic initial jet velocityu j , and the transverse dimensiona, is sufficiently
larger than unity, the resulting flow becomes slender, with adevelopment length of orderReja≫
a, so that the associated solution can be described with smallrelative errors of orderR−2

j by
numerical integration of the boundary-layer equations, asdone for instance in [3] in the constant-
density case. The corresponding solution applies to steadylaminar flows, which therefore limits
the applicability of the results to configurations with moderately large values of the Reynolds
number below the critical value at which the flow becomes unstable. Even though the theoretical
stability studies [4, 5] indicate that the onset of instability occurs for constant density flows at a
critical Reynolds numbers given byRej ≃ 30 andRej ≃ 40 for planar and round jets, respectively,
the experimental evidence seems to suggest that the critical values are considerably larger. For
instance, in the early work of Andrade and Tsien [6] the laminar steady solution was found to
exist for Reynolds numbers as large asRej ∼ 300 and laminar jets have been obtained in more
recent experiments for values ofRej exceedingRej = 600 [7] and evenRej = 1000 [8]. It is
generally agreed that the development of the instability isslow, so that for values of the Reynolds
number on the order of a few hundred unsteadiness is only noticeable far downstream, at very
large distances on the order of a few hundred nozzle diameters [9, 10], whereas the laminar steady
solution remains valid at smaller distances from the jet exit. In the planar case, the resulting
solution is more unstable than that of the round jet, as was experimentally confirmed in the early
work of Andrade [11], who found the critical Reynolds numberto beRej ≃ 40. Clearly, although
the stability boundaries are expected to be modificed in the presence of density differences, the
laminar steady results presented below can be expected to beapplicable for the description of
configurations with moderately large values ofRej. The ideas developed below could also find
application in simplifying the description of very light turbulent gas jets, an issue that should be
investigated in the future.

The jet is initially separated from the outer stagnant flow bya mixing layer that grows from
the injector rim, so that at distances of orderRja the action of molecular diffusion across the jet
is seen to modify significantly the velocity and compositionat the axis. As shown by Schlichting
for the round jet [12] and by Bickley for the planar jet [13], the flow downstream from this devel-
opment region approaches a self-similar solution corresponding to the flow induced by a point
source of momentum. When the jet-gas properties are different from those of the surrounding at-
mosphere, the mixing process in the jet development region is modified through the dependence
of the density and transport properties on the composition and temperature. The modifications
can be very significant in cases where the differences between the jet gas and the ambient gas
are large, as occurs for instance in the presence of large temperature differences [14, 15] or large
molecular weight differences, the latter being the case of a hydrogen jet discharging into air.

The early investigations on the mixing of a gas jet with an atmosphere of a different gas are
summarized in the book of Pai [16]. The problem of mixing of two streams of different gases
was addressed in the early work of Chou [17], who employed forthe first time the equation for
the diffusion of the two gases to analyze mixing in the near-field mixing layer. Numerical results
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obtained for the mixing of gases with different density in laminar and turbulent flow conditions
are reported in [16]. For a light jet, it was found that the rate of radial diffusion of mass is faster
than that of momentum. Correspondingly, in light jets the concentration decays faster than the
velocity along the jet axis. In the far-field, where the density differences are small, the asymptotic
solutions of Schlichting [12] and Bickley [13] apply in the first approximation for the velocity
field. The accompanying composition fields were determined by Crane and Pack [18] and their
results where subsequently confirmed experimentally by Maydew and Reed [20].

Unlike previous works, full account of the density and viscosity variation with the hydrogen
mass fraction is considered herein in integrating the boundary-layer equations. The analysis re-
veals that in the development region the solution for the hydrogen jet near the axis is independent
of the density and viscosity of the air. The solution can be described by using the hydrogen-to-air
molecular-weight ratio as an asymptotically small parameter, an analysis that provides in particu-
lar explicit analytical expressions for the decay of the velocity and hydrogen concentration in the
intermediate zone downstream from the development region where the jet is still much lighter
than the ambient. The comparisons with the numerical solutions indicate that these analytical
solutions give an accurate representation for the hydrogenjet, which can be in particular useful
in characterizing hydrogen discharge processes from smallholes and cracks.

The relative effect of buoyancy on the structure of a hydrogen jet is measuredby the rel-
evant jet Froude numberF j = u2

j/(gaRj), obtained as the ratio of the characteristic values of
the acceleration and the gravity force in the jet development region, whose characteristic length
is Rja for the large Reynolds numbers considered here. The buoyancy-free description given
below therefore applies only to jets with relatively large values of the Froude numberF j ≫ 1
such that gravity can be neglected in the first approximationwhen describing the velocity and
composition fields at donwstream distances of orderRja. Since the momentum-controlled ve-
locity decreases with axial distance from the jet exitx′, the effect of buoyancy can be expected to
become nonnegligible sufficiently far downstream. In particular, according to the scalings iden-
tified below in (18), the gravity force becomes comparable tothe flow acceleration at distances
x′/(Rja) ∼ F1/(2+i)

j . The corresponding plume flow, which should be analyzed in future work,
would include a downstream region with small density variations where the flow that emerges
will be identical to that of a jet with small temperature increments from the ambient temperature
and small Prandtl numbers, a case analyzed earlier by Crane [21].

In view of the discussion given below, it is clear that the validity of the buoyancy-free slender
solution presented below is restricted to configurations where the two conditionsRj ≫ 1 and
F j ≫ 1 are simultaneously satisfied. Note that, for a given jet radius, these two conditions can
be written in the formu j ≫ µ j/(ρ ja) andu j ≫ ga2ρ j/µ j thereby providing lower limits for the
jet velocity that can be readily used to check the applicability of the proposed description. For
instance, withµ j/ρ j ≃ 1 cm2/s for hydrogen at normal atmospheric conditions, it can be easily
seen that for a jet of radiusa = 0.1 cm, both criteria are satisfied providedu j be sufficiently larger
than 10 cm/s.

2. Formulation

As previously mentioned, for moderately large values of theReynolds number, the jet re-
mains slender and stable, and is therefore amenable to a boundary-layer description in which ax-
ial diffusion and transverse pressure gradients can be neglected with small relative errors of order
R−2

j . The problem can be formulated in nondimensional form usingthe scales corresponding to
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the development region. In particular, the jet momentum fluxJ is used to define a characteristic
jet velocity

u j =

(

J(i + 1)
2πiρ jai+1

)1/2

(1)

for round (i = 1) and planar (i = 0) jets. Note that this characteristic value is defined such that
it becomes exactly equal to the inlet jet velocity in cases where the velocity profile is uniform.
The valueu j is used to scale the axial velocityu = u′/u j, while the transverse velocityv′ is
scaled withµ j/(aρ j) to give the dimensionless variablev, with the primes denoting dimensional
variables. The jet values are used to define the dimensionless densityρ = ρ′/ρ j and viscosity
µ = µ′/µ j . Furthermore, the transverse coordinater ′ is scaled with the characteristic transverse
dimensiona (the initial radius for the round jet and the initial half-width for the planar jet) and
the axial coordinatex′ is scaled with the characteristic length of jet developmentRja, yielding
the dimensionless coordinatesr = r ′/a andx = x′/(Rja), respectively.

Attention is restricted to configurations in which the jet temperature equals that of the ambi-
ent. Furthermore, the jet velocity is assumed to be much smaller than the sound velocity, so that
the effect of viscous dissipation on the energy balance can be neglected in the first apprximation.
Under those low-Mach-number conditions, the temperature remains uniform in the flow field and
the problem reduces to that of integrating

∂ρr iu
∂x
+
∂ρr iv
∂r

= 0 (2)

ρu
∂u
∂x
+ ρv

∂u
∂r

=
1
r i

∂

∂r

(

r iµ
∂u
∂r

)

(3)

ρu
∂Y
∂x
+ ρv

∂Y
∂r

=
1
r i

∂

∂r

(

r i ρ

S
∂Y
∂r

)

(4)

with boundary conditions forx > 0

r = 0 :
∂u
∂r
= v =

∂Y
∂r
= 0

r → ∞ : u = Y = 0 (5)

and initial conditions atx = 0

0 ≤ r ≤ 1 : u− ui(r) = Y− 1 = 0

r > 1 : : u = Y = 0 (6)

The initial velocity distributionui(r) depends on the shape of the velocity profile at the jet exit.
Cases of interest are the uniform profileui(r) = 1 and the fully developed profileui(r) = B(1−r2),
with B = (

√
15/8,

√
3) for i = (0, 1). Fickian diffusion of hydrogen is assumed in writing (4),

with S = µ j/(ρ jD) = 1.39 being the relevant Schmidt number andD representing the H2-air
binary diffusion coefficient, constant for the isothermal and isobaric conditionsconsidered here
[22]. In the formulation,Y denotes the hydrogen mass fraction. Correspondingly, the isothermal
equation of state becomes

ρ =
1

Y+ ε(1− Y)
(7)

whereε ≃ 0.07≪ 1 is the hydrogen-to-air molecular weight ratio.
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Figure 1: Comparison of measured and calculated viscosity for different H2 molar fractionsXH2 . The curves represent
computations with approximate formulae (dashed: Hirshfelder et al. [22]; dot-dashed: Rosner [23]; solid: Wilke [24]),
while the symbols are the experimental measurements found in [22].

To close the problem, the variation of the viscosity with themixture composition needs to be
specified. The semi-empiric expression developed by Rosner[23]

µ =
Y+ (1− Y)ε1/2µa

Y+ (1− Y)ε1/2
(8)

is used in the computations below, whereµa = µ′a/µ j = 1.944 is the air-to-hydrogen viscosity
ratio. The accuracy of this expression is tested in Fig. 1 by comparison with the experimental
data obtained for H2-air mixtures [22], yielding reasonable agreement over thewhole range of
hydrogen mole fractionXH2

= Y/[Y + ε(1− Y)]. The figure also exhibits the viscosity variation
obtained with the semi-theoretical model of Wilke [24] along with the fully theoretical expression
derived by Hirschfelder et al. [22]. Since these two alternative descriptions, which involve
algebraic expressions that are more complicated than (8), do not provide improved accuracy, the
simpler expression (8) is preferred for our jet computations.

Note that in the limit of very light jetsε ≪ 1, the expression (8) simplifies toµ = 1 +
ε1/2(1− Y)(µa − 1)/Y + O(ε), indicating that in regions whereY ≫ ε1/2 the viscosity is, in the
first approximation, that of the light gas. Also of interest is that, since the viscosityµ remains
of order unity regardless of the composition, transverse molecular diffusion of momentum in (3)
is of comparable magnitude all across the jet. The diffusion velocity of the light species is
however linearly proportional to the mixture density, and therefore increases as the hydrogen
mass fraction decays away from the axis. The effective diffusion coefficientρ/S, of order unity
whereY ∼ O(1), becomes of orderε−1 ≫ 1 whereY ∼ ε, thereby promoting significantly the
radial diffusion of the light species into the ambient air.

Before proceeding with the analysis, it is of interest to integrate radially the momentum and
species conservation equations, once written in conservative form with use made of (2), to yield
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the integral constraints
∫ ∞

0
(1+ i)ρr iu2dr = 1 and

∫ ∞

0
(1+ i)ρr iuYdr = q, (9)

to be satisfied by the solution of (2)–(4). The constant

q = (1+ i)
∫ 1

0
r iuidr (10)

represents the initial volume flux and takes the valueq = 1 with uniform inlet velocity profile
andq = (

√
5/6,

√
3/2) for i = (0, 1) with parabolic inlet velocity profile.

3. The hydrogen jet

The solution for the hydrogen jet can be described numerically by integrating the boundary
layer equations (2)–(4) with the boundary conditions givenin (5) and the initial conditions given
in (6). To facilitate the convergence of the solution near the jet exit, the initial conditions were
replaced with the profiles of velocity and hydrogen mass fraction that appear forx ≪ 1, where
an annular mixing layer forms atr = 1 between the jet and the outer stagnant fluid, as described
separately below.

3.1. The hydrogen-air mixing layer

The solution in the initial mixing layer depends in general on the value of the inlet-velocity
gradientA = −dui/dr at r = 1. This gradient equalsA = 2B for the parabolic profile and
becomes larger for nonparabolic inlet velocity profiles with decreasing values of the boundary-
layer thickness. The initial, Goldstein region, of the mixing layer can be described by introducing
a similarity variableη = (r − 1)/(x/A)1/3 together with a stream functionψ = A1/3x2/3F(η),
defined such thatρu = A2/3x1/3Fη andρv = A1/3x−1/3(ηFη/3 − 2F/3), where the subscriptη
indicates differentiation with respect to this variable. The problem reduces to that of integrating
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3

S FYη = 0 (12)

subject to the boundary conditionsF + η2/2 → 0 andY → 1 asη → −∞ andFη/ρ → 0 and
Y → 0 asη → ∞. In this initial mixing-layer region the velocity in the jetis not perturbed,
so that the mixing layer entrains fluid only from the stagnantside, as indicated by the boundary
conditionF + η2/2→ 0 asη→ −∞.

The analysis must be modified when a uniform velocity profileui = 1 is considered. The ap-
propriate similarity coordinate in that case isη = (r − 1)/x1/2 and the normalized streamfunction
F(η) must be defined to giveρu = Fη andρv = x−1/2(ηFη/2− F/2). The resulting equations,
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(
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η













η

+
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2

F
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Fη
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)

η

= 0 (13)

(

ρYη
)

η
+

1
2

S FYη = 0 (14)
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must be integrated with boundary conditionsF − η → 0 andY→ 1 asη → −∞ andFη/ρ → 0
andY→ 0 asη→ ∞.

The mixing-layer problem defined above was solved with a non-linear shooting method.
Mixing-layer profiles of mass fraction and axial velocityFη/ρ are shown as solid curves in Fig. 2
for a H2-Air mixing layer (S = 1.39, ε = 0.07, µa = 1.944). The computation provides in
particular the initial value of the air entrainment rateΦ(x) = −(ρr iv) asr → ∞, given byΦ =
−F∞x−1/2/2 with F∞ = F(η → ∞) = 2.771 for ui = 1 and byΦ = −2A1/3x−1/3F∞/3, with
F∞ = 2.768 otherwise. The figure clearly shows the effect anticipated previously related to the
diffusion of the light gas. Thus, in regions whereY ∼ 1, momentum and mass fraction diffusion
are similar but, asY becomes small, the effective diffusion coefficientρ/S becomes very large,
so that the decay ofY asη→ ∞ is much slower than that ofu.
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Figure 2: Velocityu = Fη/ρ and mass fractionY obtained forS = 1.39 andε = 0.07 (solid line) andε = 0 (dot-dashed
line) by integration of (11) and (12) (lower plot) and by integration of (13) and (14) (upper plot).

3.2. The boundary conditions far from the axis

The mixing-layer solution was used in constructing the profiles of velocity and hydrogen
mass fraction atx ≪ 1, used as replacement of (6) in integrating (2)–(4). The integration em-
ployes a fully implicit marching procedure, second-order accurate in both axial and transverse
directions [25], in the domainx ∈ [0 10] andr ∈ [0 rmax], with rmax taken to be sufficiently
large, as explained below. A non-uniform grid has been used with a maximum clustering of
points nearr = 0 and close to the jet exitx = 0 where the minimum spacingsδr = 4 × 10−3
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andδx = 2 × 10−4 are utilized. The results were tested by checking that the solution satisfies
everywhere the integral constraints (9) with errors smaller than 1× 10−5.

The treatment of the boundary conditions asr → ∞ deserves specific attention. Sufficiently
far from the axis,u becomes negligibly small and convection is dominated by thetransverse
motion, with an entrainment rateΦ(x) = −(ρvri) that is uniform in the radial direction, as can
be seen from integration of (2) withu = 0. As anticipated above, the decay of the mass fraction
away from the axis is much more slow than that ofu, so that the integration of the jet problem (2)–
(4) would require in principle a prohibitely large transverse integration domainrmax ≫ 1 if the
conditionY = 0 were to be imposed far from the axis. This problem can be avoided by replacing
the boundary conditionY = 0 atr → ∞ with the weak condition

SΦY+ ρr i ∂Y
∂r

= 0 (15)

evaluated at a moderately large value ofr = rmax, where the relation between the value ofY and its
radial gradient is obtained by integrating once (4). The numerical solution obtained by imposing
u = 0 together with (15) atr = rmax was tested to be independent ofrmax, provided a sufficiently
large value was selected in the computation. The results shown below correspond in particular
to rmax = (200, 1000) fori = (0, 1) respectively.

The numerical solution at the boundary determines in particular the entrainment rateΦ(x) of
the jet, which in turn determines the slow decay of the hydrogen mass fraction away from the
axis, given by

Y
Y(1− ε) + ε

= exp[−SΦε(r − R)] (16)

for the planar jet and
Y

Y(1− ε) + ε
=

( r
R

)−SΦε
(17)

for the round jet, as can be obtained by integrating a second time (15) with use made of (7).
The functionR(x) is an apparent radius, of order unity, that can be obtained from the numerical
solution by evaluating (16) and (17) with the value ofY at r = rmax.

3.3. Results of integrations

The results of the integrations of the jet problem for parametric values corresponding to
hydrogen (S = 1.39, µa = 1.944 andε = 0.07) are shown in Figs. 3–6. Initial conditions
include uniform and parabolic inlet velocity profiles. The results plotted include in Fig. 3 the
associated boundary values of the entrainment rateΦ(x) and the functionR(x), obtained as part
of the solution, which describe the behavior of the solutionfar from the axis. Profiles of axial
velocity and hydrogen mass fraction for the planar and roundjets are shown as solid curves in
Figs. 4 and 5, whereas the evolution of their peak values, achieved along the axis, are given in
Fig. 6.

As seen in Fig. 6, the streamwise decay of bothu andY is clearly faster for the round jet
than for the plane jet due to geometrical reasons, a result also found in constant-density com-
putations [3]. The corresponding scaling laws of the velocity and density downstream from the
development region, i.e., for large values ofx, can be anticipated by noting that, provided the
hydrogen mass fraction remains sufficiently larger thanε, the density can be expressed in the
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Figure 3: The functionsΦ(x) andR(x) as obtained from integration of (2)-(4) withS = 1.39,µa = 1.944 andε = 0.07
for planari = 0 (right plots) and axysimmetrici = 1 (left plots) jets with uniform (solid curves) and parabolic (dashed
curves) inlet velocity profiles.

simplified formρ = Y−1, so that the integral constraints (9) yield the order-of-magnitude esti-
matesρu2r1+i ∼ ur1+i ∼ O(1). When these two relationships are used together with thecondition
that acceleration and viscous stresses be comparable in (3), the scalings

r ∼
√

x,Y ∼ u ∼ ρ−1 ∼ x−(1+i)/2 (18)

are obtained. Clearly, these scaling laws remain valid provided Y ≫ ε, so that the far-field
solution defined by (18) applies forx in the intermediate range 1≪ x≪ ε−2/(1+i). At distances
x ∼ ε−2/(1+i) the density becomes comparable to that of the ambient and farther downstream, that
is, at distancesx≫ ε−2/(1+i), the hydrogen mass fraction becomes much smaller thanε, so that,
in the first approximation, the equation of state (7) reducesto ρ = ε−1. The constant-density
solutions of Schlichting and Bickley apply at these very large distancesx ≫ ε−2/(1+i), with the
scalingsr ∼ ε1/3x2/3 andY ∼ u ∼ ε1/3x−1/3 for i = 0 andr ∼ ε1/2x andY ∼ u ∼ x−1 for i = 1
replacing in this case those given in (18).

4. The asymptotic limit ε → 0

It is of interest to exploit further the smallness ofε by considering the limitε → 0, which
will be used in particular to derive simple analytical descriptions for the far-field velocity and hy-
drogen mass fraction. The simplifications begin by noting that, in the region where the hydrogen
mass fraction is of order unity, the equation of state (7) canbe written with small errors of orderε
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the planar jet (i = 0) as obtained from integration of (2)–(4) withS = 1.39, µa = 1.944 and initial parabolic velocity
profile forε = 0.07 (solid curves) andε = 0 (dot-dashed curves). The asymptotic expressions given in(25) and (32) are
represented with dashed curves.

asρ = Y−1. Observation of (8) also indicates that, in this same region, the viscosity is, in the first
approximation, that of hydrogen, so thatµ = 1 with small errors of orderε. The leading-order
description in the limitε→ 0 therefore involves the integration of (2)–(4) forρ = Y−1 andµ = 1
with symmetry conditions at the axis and withu = 0 and the weak boundary conditions (15) at a
large radial location. Integration is initiated atx≪ 1 with use made of the mixing-layer profiles
determined by integrating (11)–(14) forε = 0, which are included in Fig. 2 for completeness.

The results obtained in the limit of vanishing jet density, independent ofε andµa, are included
as dot-dashed curves in Figs. 4–6. As can be seen, the predictions obtained near the axis are quite
satisfactory, despite the expected errors, of order

√
ε, associated with the assumption of constant

viscosity. The accuracy degrades however away from the axis, as the value ofY decreases,
leading first to the failure of the approximationµ = 1 asY reaches values of order

√
ε and then

to the failure of the approximationρ = Y−1 asY ∼ ε. The expressions (16) and (17) can be used
to estimate the radial extent of validity of the different approximations, yielding for instance
r ∼ 1/(Sφε) for the planar jet andr ∼ exp[−1/(Sφε)] for the round jet as the radial distance
required forY to reach values of orderε, for which the approximationρ = Y−1 is no longer valid.

The far-field jet development at distancesx ≫ 1 can also be addressed in this limit of van-
ishing jet density by employing the scales identified above in (18) in defining the corresponding
self-similar problem. The set of rescaled variables include the similarity coordinateξ = r/

√
x,

the reduced mass fractiony = x(i+1)/2Y and the stream functionψ = x(i+1)/2G, the latter defined
such that

ρr iu =
∂ψ

∂r
= xi/2Gξ ρr iv = −

∂ψ

∂x
=

1
2

x(i−1)/2[ξGξ − (1+ i)G], (19)

where the subscriptξ denotes differentiation with respect to this variable. In the self-similar
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formulation, the integral constraints (9) become
∫ ∞

0
(1+ i)(yG2

ξ/ξ
i)dξ = 1 and

∫ ∞

0
(1+ i)yGξdξ = q. (20)

The problem is solved by introducing expansions forG andy of the formG(ξ, x) = G0(ξ) +
x−(1+i)/2G1(ξ) + · · · and y(ξ, x) = y0(ξ) + x−(1+i)/2y1(ξ) + · · · into (3) and (4) and solving se-
quentially for the different expansion terms with use made of (20) in determining the integration
constants. In the development, a constant viscosityµ = 1 is assumed in (3), which implies that
the description applies strictly only in the region 1≪ x≪ ε−1/(1+i) whereY, much smaller than
unity, is still larger than

√
ε.

At leading order, the problem reduces to that of integrating












ξi

(

y0G0ξ

ξi

)

ξ













ξ

+
1+ i

2

(

G0
y0G0ξ

ξi

)

ξ

= 0 (21)

1
S

(

ξi
y0ξ

y0

)

ξ

= 0 (22)

with boundary conditionsG = (Gξ/ξ
i)ξ = yξ = 0 at ξ = 0 andGξ = y = 0 asξ → ∞.

Because of the relatively small density existing in this far-field region, transverse diffusion is the
dominant transport mechanism for hydrogen. Correspondingly, the solution for (22) indicates
that y0 is constant, as corresponds to a leading-order mass fraction descriptionY = x−(i+1)/2y0
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Figure 6: The evolution of the velocityu and mass fractionY along the axis as obtained from integration of (2)-(4) with
ε = 0.07 (solid curves) andε = 0 (dot-dashed curves) for uniform (left plots) and parabolic (right plots) inlet velocity
profiles. The asymptotic far-field expressions given in (27)and (28) are included in the figure with dashed curves.

that is uniform in the radial direction. Using this result inintegrating (21) gives

G0 = (6/q)1/2 tanh
[

(6/q)1/2ξ/4
]

i = 0 (23)

G0 =
4ξ2

8q/3+ ξ2
i = 1, (24)

after the conditionG0(∞) = q
∫ ∞
0

(G2
0ξ
/ξi)dξ, obtained at this order from (20), is applied. The

second integral constraint in (20) can be used to determine the constanty0 = q/[(1 + i)G0(∞)],
giving y0 = q3/2/

√
6 andq/8 for i = (0, 1), respectively. Note that, although the functional

forms obtained for the stream functionG0 in (23) and (24) may appear to be equivalent to those
of Bickley and Schlichting, respectively, they are fundamentally different in that both involve a
similarity variableξ = r/

√
x that does not correspond to those of the constant-density jets, where

r ∼ x1/3 andr ∼ x for i = (0, 1), respectively.
These leading-order results can be used to construct the axial velocity profiles

u =
[(3q)/(8x)]1/2

cosh2{[3/(8q)]1/2(r/x1/2)}
for i = 0 (25)

and

u =
8q2/(3x)

(8q/3+ r2/x)2
for i = 1, (26)

which are plotted in Figs. 4 and 5 along with the results of thenumerical integrations. As can be
seen, the agreement is reasonable, with discrepancies, larger for the round jet, being especially
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noticeable away from the axis, where the approximations leading to (25) and (26) can be expected
to fail, as discussed above. The accompanying predictions for the downstream evolution of peak
velocity and mass fractions in the planar jet

u =

(

3q
8x

)1/2

and Y =

(

q3

6x

)1/2

(27)

and in the round jet

u =
3
8x

and Y =
q
8x

(28)

are tested in Fig. 6. As can be seen, the near-axis behavior iswell described by the limit of van-
ishing jet density, so that the expressions given in (27) and(28) constitute a sufficiently accurate
representation for the jet evolution.

The analysis must be carried to the following order to enableradial variations ofY to be
described. The correctiony1 can be obtained by integration of

1
S

(

ξiy1ξ

)

ξ
+

1+ i
2

y2
0G0ξ = 0 (29)

to give

y1 − y1(0) = −S(q3/3) ln
{

cosh
[

(6/q)1/2ξ/4
]}

i = 0 (30)

y1 − y1(0) = −S(q2/32) ln
[

1+ 3ξ2/(8q)
]

i = 1, (31)

where the correction at the axisy1(0) would be determined in terms of the value ofG1(∞) form
the integral constrainty0G1(∞)+

∫ ∞
0

G0ξy1dξ = 0, obtained at this order from the second equation
in (20).

The two-term expansiony = y0 + x−(1+i)/2y1 improves predictions of hydrogen mass frac-
tion near the axis. The diverging character ofy1 for increasing values ofξ limits however its
applicability to the region whereξ is of order unity, corresponding to radial distancesr ∼

√
x.

In constructing a uniformly valid expression forY, applicable also at large distances from the
axis, it is therefore better to use the alternative expression y = y0/(1 − x−(1+i)/2y1/y0), which is
equivalent to the two-term expansiony = y0 + x−(1+i)/2y1 for ξ ∼ O(1) but ensures a decaying
H2 mass fraction asξ → ∞. If the small correctiony1(0) is further neglected for simplicity, the
corresponding expressions forY simplify to

Y =
q3/2/(6x)1/2

1+ [2 S q3/2/(6x)1/2] ln
{

cosh[(3/(8q))1/2(r/x1/2)]
} i = 0 (32)

Y =
q/(8x)

1+ [S q/(4x)] ln
[

1+ 3r2/(8qx)
] i = 1. (33)

The accuracy with which these expressions describe the hydrogen mass fraction is tested in
Figs. 4 and 5. As can be seen, the agreement is reasonably good, with the results of the planar
case being in particular very accurate over the whole range of x considered.

5. Conclusions

Numerical and asymptotic methods have been employed to investigate the structure of planar
and round hydrogen jets with full account of the variation with composition of the density and
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transport properties. The information provided serves to characterize in detail the velocity and
mass fraction fields in laminar configurations with moderately large jet Reynolds numbers,Rj ,
for which the jet remains slender and stable. Profiles of axial velocity u and hydrogen mass
fractionY in the near field and also in the jet development region are computed in the boundary-
layer approximation, given the results shown in Figs. 2, 4 and 5. The downstream evolution of
the accompanying peak values ofu andY, found along the axis, is plotted in Fig. 6. Analytical
expressions are given in (16) and (17) for the radial decay ofY away from the axis, where the
functionsR(x) andΦ(x) are plotted in Fig. 3

The analysis has exploited the small valueε =Wj/Wair = 0.07 of the hydrogen-to-air molec-
ular weight ratio, by considering the asymptotic limit of vanishing jet densities. This limit was
demonstrated to give an approximate description, independent ofε and of the air viscosity, that
describes with sufficient accuracy many aspects of the hydrogen jet. In particular, the develop-
ment provides simple explicit expressions for the velocityand mass fraction, which are summa-
rized in (25)–(28), (32) and (33). These expressions are valid in the intermediate far-field region
whereY is much smaller than unity and still much larger thanε1/2, corresponding to distances
from the jet exitx′ in the range 1≪ x′/(Rja)≪ ε−1/(1+i), wherea is the initial jet radius.
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