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Abstract

Numerical and asymptotic methods are used to investigatstthcture of the hydrogen jet dis-
charging into a quiescent air atmosphere. The analysisuatedn particular for the variation
of the density and transport properties with compositiolne Reynolds number of the floR,
based on the initial jet radiws the density; and viscosity; of the jet and the characteristic jet
velocity uj, is assumed to take moderately large values, so that thenetins slender and stable,
and can be correspondingly described by numerical intiegraf the continuity, momentum and
species conservation equations written in the boundamgrpproximation. The solution for the
velocity and composition in the jet-development region lafjar and round jets, corresponding
to streamwise distances of ordgy a, is computed numerically, along with the solutions that
emerge both in the near field and in the far field. The smallevafithe hydrogen-to-air molecu-
lar weight ratio is used to simplify the solution by considgrthe asymptotic limit of vanishing
jet density. The development provides at leading orderiex@nalytical expressions for the
far-field velocity and hydrogen mass fraction that descabeurately the hydrogen jet near the
axis. The information provided can be useful in particutacharacterize hydrogen discharge
processes from holes and cracks.

1. Introduction

The increased interest in hydrogen utilization promoteendibn on safety concerns related
to hydrogen storage. The accidental appearance of smalt leoilcracks in pressurized contain-
ers may lead to hydrogen jet-like discharge, leading to ¢tine&tion of flammable mixtures of
hydrogen and air in the surrounding atmosphere. To asseadthidental scenario, there is in-
terest in characterizing the resulting discharging jetspanting for the large densityftirences
associated with the small weight of the hydrogen molecule¢ivcause the associated solution
to be markedly diferent from that of a constant-density jet.

Different flow configurations relevant to hydrogen leakage haes lzonsidered in recent
works [1, 2]. For instance, the far region of a concentrakiyer adjacent to a ceiling wall was
addressed in [1], with constant density and viscosity asslfior the gas mixture. The similarity
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description of a hydrogen buoyant jet was investigated jrinf2he Boussinesq approximation.
In defining the relevant similarity variables, this lattevéstigation employes semi-analitical ex-
pressions derived in previous experimental works. Justeprievious studies, the present analy-
sis aims at providing increased understanding of a reldwaogen flow configuration, leading
to analytical descriptions that can be used in characteyizydrogen discharge processes. In par-
ticular, numerical and asymptotic methods are used heoeimvestigate nonbuoyant hydrogen
jets discharging into a quiescent air atmosphere.

When the Reynolds numb®&; = p;u;a/uj, based on the density and viscosity of the jet,
pj andyj, the characteristic initial jet velocity;, and the transverse dimensianis suficiently
larger than unity, the resulting flow becomes slender, willexeelopment length of ord&ega >
a, so that the associated solution can be described with selative errors of ordeR:? by
numerical integration of the boundary-layer equationsiae for instance in [3] in the constant-
density case. The corresponding solution applies to stizaaipar flows, which therefore limits
the applicability of the results to configurations with moately large values of the Reynolds
number below the critical value at which the flow becomesalsist Even though the theoretical
stability studies [4, 5] indicate that the onset of insti#pibccurs for constant density flows at a
critical Reynolds numbers given IRg ~ 30 andRg ~ 40 for planar and round jets, respectively,
the experimental evidence seems to suggest that the txitikees are considerably larger. For
instance, in the early work of Andrade and Tsien [6] the laansteady solution was found to
exist for Reynolds numbers as largeRe ~ 300 and laminar jets have been obtained in more
recent experiments for values B exceedingRg = 600 [7] and everRe = 1000 [8]. It is
generally agreed that the development of the instabiligjaw, so that for values of the Reynolds
number on the order of a few hundred unsteadiness is onlgesdile far downstream, at very
large distances on the order of a few hundred nozzle diag@et0], whereas the laminar steady
solution remains valid at smaller distances from the jet. ebi the planar case, the resulting
solution is more unstable than that of the round jet, as wpsraxentally confirmed in the early
work of Andrade [11], who found the critical Reynolds numtmebeRg =~ 40. Clearly, although
the stability boundaries are expected to be modificed in thegmce of density flerences, the
laminar steady results presented below can be expectedapieable for the description of
configurations with moderately large valuesRd. The ideas developed below could also find
application in simplifying the description of very lightrhulent gas jets, an issue that should be
investigated in the future.

The jet is initially separated from the outer stagnant flonabmixing layer that grows from
the injector rim, so that at distances of oréga the action of molecular éliusion across the jet
is seen to modify significantly the velocity and compositathe axis. As shown by Schlichting
for the round jet [12] and by Bickley for the planar jet [13jetflow downstream from this devel-
opment region approaches a self-similar solution cornedipg to the flow induced by a point
source of momentum. When the jet-gas properties dferdnt from those of the surrounding at-
mosphere, the mixing process in the jet development regiorodified through the dependence
of the density and transport properties on the compositimhtamperature. The modifications
can be very significant in cases where theattences between the jet gas and the ambient gas
are large, as occurs for instance in the presence of largesterture dierences [14, 15] or large
molecular weight dferences, the latter being the case of a hydrogen jet disclgardo air.

The early investigations on the mixing of a gas jet with anadphere of a dierent gas are
summarized in the book of Pai [16]. The problem of mixing obtatreams of dferent gases
was addressed in the early work of Chou [17], who employedHeffirst time the equation for
the difusion of the two gases to analyze mixing in the near-field ngixayer. Numerical results
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obtained for the mixing of gases withffrent density in laminar and turbulent flow conditions
are reported in [16]. For a light jet, it was found that theerat radial difusion of mass is faster
than that of momentum. Correspondingly, in light jets theaatration decays faster than the
velocity along the jet axis. In the far-field, where the dgndifferences are small, the asymptotic
solutions of Schlichting [12] and Bickley [13] apply in thedl approximation for the velocity
field. The accompanying composition fields were determine@tane and Pack [18] and their
results where subsequently confirmed experimentally byddayand Reed [20].

Unlike previous works, full account of the density and visitpvariation with the hydrogen
mass fraction is considered herein in integrating the bannthyer equations. The analysis re-
veals that in the development region the solution for thabgen jet near the axis is independent
of the density and viscosity of the air. The solution can tsxdbed by using the hydrogen-to-air
molecular-weight ratio as an asymptotically small paranein analysis that provides in particu-
lar explicit analytical expressions for the decay of theveél and hydrogen concentration in the
intermediate zone downstream from the development reglmravthe jet is still much lighter
than the ambient. The comparisons with the numerical soigtindicate that these analytical
solutions give an accurate representation for the hydr@gewhich can be in particular useful
in characterizing hydrogen discharge processes from $rabds and cracks.

The relative &ect of buoyancy on the structure of a hydrogen jet is measoyetie rel-
evant jet Froude numbédt; = u]?/(gaR,-), obtained as the ratio of the characteristic values of
the acceleration and the gravity force in the jet developmegion, whose characteristic length
is Rja for the large Reynolds numbers considered here. The bugsfaee description given
below therefore applies only to jets with relatively larggdues of the Froude numbér; > 1
such that gravity can be neglected in the first approximatiban describing the velocity and
composition fields at donwstream distances of oRl@: Since the momentum-controlled ve-
locity decreases with axial distance from the jet eXithe efect of buoyancy can be expected to
become nonnegligible fliciently far downstream. In particular, according to theliags iden-
tified below in (18), the gravity force becomes comparabltheoflow acceleration at distances
X /(Rja) ~ F1/@". The corresponding plume flow, which should be analyzed iaréuwork,
would include a downstream region with small density vésia where the flow that emerges
will be identical to that of a jet with small temperature ieorents from the ambient temperature
and small Prandtl numbers, a case analyzed earlier by C2ahe [

In view of the discussion given below, it is clear that thadigy of the buoyancy-free slender
solution presented below is restricted to configurationsretihe two condition®; > 1 and
F; > 1 are simultaneously satisfied. Note that, for a given jeiusadhese two conditions can
be written in the formu; > p;/(p;@) andu; > ga?p;/u; thereby providing lower limits for the
jet velocity that can be readily used to check the applidghif the proposed description. For
instance, withuj/p; =~ 1 cn¥/s for hydrogen at normal atmospheric conditions, it can Iséyea
seen that for a jet of radiws= 0.1 cm, both criteria are satisfied providede suficiently larger
than 10 crys.

2. Formulation

As previously mentioned, for moderately large values of Regnolds number, the jet re-
mains slender and stable, and is therefore amenable to @aogutayer description in which ax-
ial diffusion and transverse pressure gradients can be neglettesimdll relative errors of order
Frjz. The problem can be formulated in nondimensional form u#iegscales corresponding to
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the development region. In particular, the jet momentum Jlisxused to define a characteristic

jet velocity
U = M e Q)
P\ 2nipjai+t

for round { = 1) and planari(= 0) jets. Note that this characteristic value is defined sheh t
it becomes exactly equal to the inlet jet velocity in casegngtthe velocity profile is uniform.
The valueu; is used to scale the axial velocity= u’/u;, while the transverse velocity is
scaled withu;/(ap;j) to give the dimensionless variablewith the primes denoting dimensional
variables. The jet values are used to define the dimens®dikssityp = p’/p; and viscosity
u = (' /u;j. Furthermore, the transverse coordin@tes scaled with the characteristic transverse
dimensiona (the initial radius for the round jet and the initial halfdth for the planar jet) and
the axial coordinate’ is scaled with the characteristic length of jet developnigaf yielding
the dimensionless coordinates r’/aandx = x'/(R;a), respectively.

Attention is restricted to configurations in which the jebgeerature equals that of the ambi-
ent. Furthermore, the jet velocity is assumed to be muchlentakn the sound velocity, so that
the dfect of viscous dissipation on the energy balance can bectedl@ the first apprximation.
Under those low-Mach-number conditions, the temperagmeins uniform in the flow field and
the problem reduces to that of integrating

dpr'u  dpr'v
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with boundary conditions fox > 0
ou oY
r=0 : E =V= E =0
rLo : u=Y=0 (5)

and initial conditions ak = 0

O0<r<1 : u-u(nH=Y-1=0
r>1: : u=Y=0 (6)

The initial velocity distributionu;(r) depends on the shape of the velocity profile at the jet exit.
Cases of interest are the uniform profilé) = 1 and the fully developed profilg(r) = B(1-r?),

with B = (v15/8, V3) fori = (0,1). Fickian difusion of hydrogen is assumed in writing (4),
with S = uj/(p;D) = 1.39 being the relevant Schmidt number addepresenting the Hair
binary difusion codicient, constant for the isothermal and isobaric conditimmssidered here
[22]. In the formulation) denotes the hydrogen mass fraction. Correspondinglystiteérmal

equation of state becomes
1

PENTe-v)
wheree ~ 0.07 < 1 is the hydrogen-to-air molecular weight ratio.
4
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Figure 1. Comparison of measured and calculated viscasitgifferent B molar fractionsX.,,. The curves represent
computations with approximate formulae (dashed: Hirsteiekt al. [22]; dot-dashed: Rosner [23]; solid: Wilke [24])
while the symbols are the experimental measurements foufa2].

To close the problem, the variation of the viscosity with thigture composition needs to be
specified. The semi-empiric expression developed by R4a8¢r

Y+ (1Y), 8
T Y+ (1-Y)&l2 ®

is used in the computations below, whege= p,/u; = 1.944 is the air-to-hydrogen viscosity
ratio. The accuracy of this expression is tested in Fig. 1dmgarison with the experimental
data obtained for Btair mixtures [22], yielding reasonable agreement oventhele range of
hydrogen mole fractioX,, = Y/[Y + (1 - Y)]. The figure also exhibits the viscosity variation
obtained with the semi-theoretical model of Wilke [24] adowith the fully theoretical expression
derived by Hirschfelder et al. [22]. Since these two altémeadescriptions, which involve
algebraic expressions that are more complicated than@8)ptprovide improved accuracy, the
simpler expression (8) is preferred for our jet computation

Note that in the limit of very light jetz <« 1, the expression (8) simplifies o = 1 +
£Y2(1 - Y)(ua — 1)/Y + O(¢), indicating that in regions wheré > &'/ the viscosity is, in the
first approximation, that of the light gas. Also of interesthat, since the viscosify remains
of order unity regardless of the composition, transverskeoubar diftusion of momentum in (3)
is of comparable magnitude all across the jet. Th@udion velocity of the light species is
however linearly proportional to the mixture density, ahdrefore increases as the hydrogen
mass fraction decays away from the axis. THedive difusion codicientp/S, of order unity
whereY ~ O(1), becomes of order? > 1 whereY ~ &, thereby promoting significantly the
radial difusion of the light species into the ambient air.

Before proceeding with the analysis, it is of interest t@grate radially the momentum and
species conservation equations, once written in conseevarm with use made of (2), to yield



the integral constraints

f (1+i)or'v®dr =1 and f (1 +i)pr'uydr = g, 9)
0 0

to be satisfied by the solution of (2)—(4). The constant

q= (1+i)folriuidr (10)

represents the initial volume flux and takes the vajue 1 with uniform inlet velocity profile
andq = (v/5/6, V3/2) fori = (0, 1) with parabolic inlet velocity profile.

3. Thehydrogen jet

The solution for the hydrogen jet can be described numdyibalintegrating the boundary
layer equations (2)—(4) with the boundary conditions givefb) and the initial conditions given
in (6). To facilitate the convergence of the solution nearjet exit, the initial conditions were
replaced with the profiles of velocity and hydrogen masstiivachat appear fox <« 1, where
an annular mixing layer forms at= 1 between the jet and the outer stagnant fluid, as described
separately below.

3.1. The hydrogen-air mixing layer

The solution in the initial mixing layer depends in genenaltbe value of the inlet-velocity
gradientA = —duj/dr atr = 1. This gradient equald = 2B for the parabolic profile and
becomes larger for nonparabolic inlet velocity profileshwiecreasing values of the boundary-
layer thickness. The initial, Goldstein region, of the mixlayer can be described by introducing
a similarity variablep = (r — 1)/(x/A)Y/3 together with a stream function = AY3x?3F (),
defined such thagtu = A?3xY3F, andpv = AY3x~13(»F,/3 — 2F/3), where the subscript
indicates diferentiation with respect to this variable. The problem oeduo that of integrating

F, 2_(F,\ 1F}
o)) <5 (), -5 o ay

n

(pY,])n + gs FY,=0 (12)

subject to the boundary conditiofs+ 7?/2 — 0 andY — 1 asp — —co andF,/p — 0 and
Y — 0 asn — oo. In this initial mixing-layer region the velocity in the jé& not perturbed,
so that the mixing layer entrains fluid only from the stagrsidé, as indicated by the boundary
conditionF + /2 — 0 asy — —co.

The analysis must be modified when a uniform velocity prafile 1 is considered. The ap-
propriate similarity coordinate in that casejis: (r — 1)/xY? and the normalized streamfunction
F(n) must be defined to giveu = F, andpv = x ¥?(yF,/2 — F/2). The resulting equations,

)] )

n

(pY,,)n +1s FY,=0 (14)
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must be integrated with boundary conditidhs-  — 0 andY — 1 aspy — —oo andF,/p — 0
andY — 0 asp — oo.

The mixing-layer problem defined above was solved with a lifgar shooting method.
Mixing-layer profiles of mass fraction and axial velocity/p are shown as solid curves in Fig. 2
for a Hy-Air mixing layer (S = 1.39,& = 0.07, ua = 1.944). The computation provides in
particular the initial value of the air entrainment ra#x) = —(or'v) asr — oo, given by® =
—FooxY2/2 with F, = F(n — ) = 2771 foru; = 1 and by® = —2AY3x"1/3F_ /3, with
F. = 2.768 otherwise. The figure clearly shows tHEeet anticipated previously related to the
diffusion of the light gas. Thus, in regions whéfe- 1, momentum and mass fractiorffdision
are similar but, a¥ becomes small, theffective difusion codicientp/S becomes very large,
so that the decay of asn — o is much slower than that of.

1

Figure 2: Velocityu = F,,/p and mass fractiolY obtained forS = 1.39 ands = 0.07 (solid line) anck = 0 (dot-dashed
line) by integration of (11) and (12) (lower plot) and by igtation of (13) and (14) (upper plot).

3.2. The boundary conditions far from the axis

The mixing-layer solution was used in constructing the jpsfof velocity and hydrogen
mass fraction ak <« 1, used as replacement of (6) in integrating (2)—(4). Thegration em-
ployes a fully implicit marching procedure, second-ordecwaate in both axial and transverse
directions [25], in the domaix € [0 10] andr € [0 r,,], with r.. taken to be sfliciently
large, as explained below. A non-uniform grid has been usiéd asmaximum clustering of
points near = 0 and close to the jet exit = 0 where the minimum spacings = 4 x 103
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andoéx = 2 x 107* are utilized. The results were tested by checking that thetien satisfies
everywhere the integral constraints (9) with errors smaftian 1x 107°.

The treatment of the boundary conditiongas o deserves specific attention. fBaiently
far from the axis,u becomes negligibly small and convection is dominated bytthesverse
motion, with an entrainment rate(x) = —(ovr') that is uniform in the radial direction, as can
be seen from integration of (2) with= 0. As anticipated above, the decay of the mass fraction
away from the axis is much more slow than thaipgdo that the integration of the jet problem (2)—
(4) would require in principle a prohibitely large transserintegration domain,,, > 1 if the
conditionY = 0 were to be imposed far from the axis. This problem can bedaebby replacing
the boundary conditioll = 0 atr — oo with the weak condition

SOY + prig—T =0 (15)

evaluated at a moderately large value ef r.,, where the relation between the valueradnd its
radial gradient is obtained by integrating once (4). The exical solution obtained by imposing
u = 0 together with (15) at = r,, was tested to be independentrpf, provided a sfiiciently
large value was selected in the computation. The resultsrsielow correspond in particular
to r..« = (200 1000) fori = (0, 1) respectively.

The numerical solution at the boundary determines in paeiche entrainment ra®(x) of
the jet, which in turn determines the slow decay of the hydrognass fraction away from the
axis, given by

m = eXp[—Sd)s(r - R)] (16)
for the planar jet and
Y r —-Sbe
Y1l-&)+& (Fe) (7

for the round jet, as can be obtained by integrating a sedomal {15) with use made of (7).
The functionR(x) is an apparent radius, of order unity, that can be obtairad the numerical
solution by evaluating (16) and (17) with the valueYohtr = r,,,.

3.3. Results of integrations

The results of the integrations of the jet problem for par@imealues corresponding to
hydrogen § = 1.39, us = 1.944 ande = 0.07) are shown in Figs. 3—6. Initial conditions
include uniform and parabolic inlet velocity profiles. Thesults plotted include in Fig. 3 the
associated boundary values of the entrainment®éig and the functiorR(x), obtained as part
of the solution, which describe the behavior of the solufeomfrom the axis. Profiles of axial
velocity and hydrogen mass fraction for the planar and rgatedare shown as solid curves in
Figs. 4 and 5, whereas the evolution of their peak valueseeeti along the axis, are given in
Fig. 6.

As seen in Fig. 6, the streamwise decay of bothndY is clearly faster for the round jet
than for the plane jet due to geometrical reasons, a resdtfalind in constant-density com-
putations [3]. The corresponding scaling laws of the vé&jyoand density downstream from the
development region, i.e., for large valuesxgfcan be anticipated by noting that, provided the
hydrogen mass fraction remainsfistiently larger thare, the density can be expressed in the
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Figure 3: The function®(x) andR(x) as obtained from integration of (2)-(4) with = 1.39, u5 = 1.944 ande = 0.07
for planari = O (right plots) and axysimmetric= 1 (left plots) jets with uniform (solid curves) and parabdldashed
curves) inlet velocity profiles.

simplified formp = _Y‘l, so that the integral constraints (9) yield the order-ofymtude esti-
matesour* ~ ur*' ~ O(1). When these two relationships are used together withdhelition
that acceleration and viscous stresses be comparable thé3calings

F~ VXY ~u~pt~x @2 (18)

are obtained. Clearly, these scaling laws remain valid igeal’Y > &, so that the far-field
solution defined by (18) applies farin the intermediate range & x < 2+, At distances
x ~ ~2/+) the density becomes comparable to that of the ambient atfatownstream, that
is, at distances > ¢~%(*) the hydrogen mass fraction becomes much smaller#haa that,
in the first approximation, the equation of state (7) reduogs = 1. The constant-density
solutions of Schlichting and Bickley apply at these vergéadistancex > £ 2/(+) with the
scalingsr ~ &/3x?3 andY ~ u ~ e¥3x 3 fori = 0 andr ~ £¥2xandY ~u ~ x*fori =1
replacing in this case those given in (18).

4. Theasymptoticlimite — 0

It is of interest to exploit further the smallness©by considering the limie — 0, which
will be used in particular to derive simple analytical dgstions for the far-field velocity and hy-
drogen mass fraction. The simplifications begin by notirad,tim the region where the hydrogen
mass fraction is of order unity, the equation of state (7)mawritten with small errors of order
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Figure 4: Numerical profiles of velocity (upper half) and mass fraction (lower half) at diferent axial locations of
the planar jeti(= 0) as obtained from integration of (2)—(4) wigh= 1.39, ua = 1.944 and initial parabolic velocity
profile fore = 0.07 (solid curves) and = 0 (dot-dashed curves). The asymptotic expressions givé&bjnand (32) are
represented with dashed curves.

asp = Y~1. Observation of (8) also indicates that, in this same regfamviscosity is, in the first
approximation, that of hydrogen, so that 1 with small errors of ordet. The leading-order
description in the limit: — 0 therefore involves the integration of (2)—(4) for Y-* andu = 1
with symmetry conditions at the axis and witk= 0 and the weak boundary conditions (15) at a
large radial location. Integration is initiatedyak 1 with use made of the mixing-layer profiles
determined by integrating (11)—(14) fer= 0, which are included in Fig. 2 for completeness.
The results obtained in the limit of vanishing jet densitgeépendent of andu,, are included
as dot-dashed curves in Figs. 4-6. As can be seen, the poediobtained near the axis are quite
satisfactory, despite the expected errors, of orderassociated with the assumption of constant
viscosity. The accuracy degrades however away from the asighe value oY decreases,
leading first to the failure of the approximatipn= 1 asY reaches values of ordeys and then
to the failure of the approximatign= Y~ asY ~ &. The expressions (16) and (17) can be used
to estimate the radial extent of validity of theffédrent approximations, yielding for instance
r ~ 1/(S¢e) for the planar jet and ~ exp[-1/(S¢e)] for the round jet as the radial distance
required forY to reach values of ordet for which the approximatiop = Y~* is no longer valid.
The far-field jet development at distances> 1 can also be addressed in this limit of van-
ishing jet density by employing the scales identified abov@ B) in defining the corresponding
self-similar problem. The set of rescaled variables ineltite similarity coordinaté = r/ /X,
the reduced mass fractign= x(*/2Y and the stream functian = x(*1/2G, the latter defined
such that
oy 1

= X126, - (1+10)G], (19)

PV ==X = 2

where the subscripg denotes dferentiation with respect to this variable. In the self-ami
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Figure 5: Numerical profiles of velocity (upper half) and mass fraction(lower half) at diferent axial locations of the
round jet ( = 1) as obtained from integration of (2)—(4) with= 1.39, 5 = 1.944 and initial uniform velocity profile for
& = 0.07 (solid curves) and = 0 (dot-dashed curves). The asymptotic expressions givE@6jand (33) are represented
with dashed curves.

formulation, the integral constraints (9) become

[ wriocexE=1 and [ @+iyee-a (20)
0 0

The problem is solved by introducing expansions@®andy of the formG(&, X) = Go(¢) +
x 2G (&) + -+ andy(&, X) = yo(&) + x T2y, (&) + --- into (3) and (4) and solving se-
guentially for the diferent expansion terms with use made of (20) in determiniagrttegration
constants. In the development, a constant viscasityl is assumed in (3), which implies that
the description applies strictly only in the regiord x < £~¥1*) whereY, much smaller than
unity, is still larger tham/e.

At leading order, the problem reduces to that of integrating

. (YoGo 1+i YoGo,

! e — |G ] =0 21

(f(f' )f)f 2(°§' )f @D
1/(.,Yo
—|1&=] =0 22
S(SYO)g (22)

with boundary condition§ = (G¢/¢); = ¥ = 0 até = 0 andG; = y = 0 as¢ — oo.
Because of the relatively small density existing in thisffald region, transverse filusion is the
dominant transport mechanism for hydrogen. Correspomtgitite solution for (22) indicates
thatyp is constant, as corresponds to a leading-order mass fnag#iscriptionY = x (+1/2y,
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Figure 6: The evolution of the velocityand mass fractiolY along the axis as obtained from integration of (2)-(4) with
& = 0.07 (solid curves) and = 0 (dot-dashed curves) for uniform (left plots) and parab@light plots) inlet velocity
profiles. The asymptotic far-field expressions given in @TJ (28) are included in the figure with dashed curves.

that is uniform in the radial direction. Using this resulimegrating (21) gives

Go = (6/0)tanh|(6/a)"%/4] =0 (23)
42 .
Go = W i=1 (24)

after the conditiorGg(co) = qfom(Ggf/g-‘i)df, obtained at this order from (20), is applied. The
second integral constraint in (20) can be used to deterrhmednstanyy = q/[(1 + i)Go(c0)],
giving yo = g¥%/ V6 andq/8 fori = (0,1), respectively. Note that, although the functional
forms obtained for the stream functi@y in (23) and (24) may appear to be equivalent to those
of Bickley and Schlichting, respectively, they are fundamtadly different in that both involve a
similarity variables = r/ /X that does not correspond to those of the constant-dentstyybere
r ~x2andr ~ xfori = (0, 1), respectively.

These leading-order results can be used to construct tabvetocity profiles

[(3a)/(8X)]1*/2

- ri=0 (25)
cosf{[3/(8a)] Y/4(r/x1/2)}
and 867/(3%)
__ 8q7/(SX _
= B30 for i=1, (26)

which are plotted in Figs. 4 and 5 along with the results ofrthmerical integrations. As can be
seen, the agreement is reasonable, with discrepancigsr far the round jet, being especially
12



noticeable away from the axis, where the approximatiorditggto (25) and (26) can be expected
to fail, as discussed above. The accompanying predictmrtbé downstream evolution of peak
velocity and mass fractions in the planar jet

1/2 311/2
u= (g) and Y = (g_x) (27)

and in the round jet
u=8£x andesﬂX (28)

are tested in Fig. 6. As can be seen, the near-axis behavi@llislescribed by the limit of van-
ishing jet density, so that the expressions given in (27)(@8j constitute a dticiently accurate
representation for the jet evolution.

The analysis must be carried to the following order to enadtkal variations ofY to be
described. The correction can be obtained by integration of

< (), + T ¥BG0 =0 (29)

to give
y1 - y1(0) = ~S(q%/3) In{cosh|(6/0)"%/4|} i=0 (30)
y1 - y1(0) = =S(c?/32) In[1+ 3¢%/(80)| i=1 (31)

where the correction at the axig(0) would be determined in terms of the valueGf(co) form
the integral constrai%Gl(oo)+f0°° Go,y10¢ = 0, obtained at this order from the second equation
in (20).

The two-term expansion = yo + x"3*)/2y; improves predictions of hydrogen mass frac-
tion near the axis. The diverging characterygffor increasing values of limits however its
applicability to the region wherg& is of order unity, corresponding to radial distances +/x.

In constructing a uniformly valid expression fi¥r applicable also at large distances from the
axis, it is therefore better to use the alternative expoesgi= yo/(1 — x /2y, /yo), which is
equivalent to the two-term expansign= yo + x 1*)/2y; for £ ~ O(1) but ensures a decaying
H, mass fraction a§ — . If the small correctiory;(0) is further neglected for simplicity, the
corresponding expressions féisimplify to

v o2/ (6x)M2
~ 1+[2S ¢2/(6X)¥?] In {cosh((3 (8a))Y(r/x1/2)]}
v - q/(8x)
1+[Sg(4x)]In[1+3r2/(8qgX)]
The accuracy with which these expressions describe theobgdrmass fraction is tested in

Figs. 4 and 5. As can be seen, the agreement is reasonablywittodhe results of the planar
case being in particular very accurate over the whole rafgeonsidered.

i=0 (32

i=1  (33)

5. Conclusions

Numerical and asymptotic methods have been employed tetigate the structure of planar
and round hydrogen jets with full account of the variatiothaiomposition of the density and
13



transport properties. The information provided serveshtaracterize in detail the velocity and
mass fraction fields in laminar configurations with moddyat@rge jet Reynolds numberR;,
for which the jet remains slender and stable. Profiles oflasdbocity u and hydrogen mass
fractionY in the near field and also in the jet development region argxeted in the boundary-
layer approximation, given the results shown in Figs. 2, d BnThe downstream evolution of
the accompanying peak valueswéndY, found along the axis, is plotted in Fig. 6. Analytical
expressions are given in (16) and (17) for the radial decay afvay from the axis, where the
functionsR(x) and®(x) are plotted in Fig. 3

The analysis has exploited the small vadue W;/W,;; = 0.07 of the hydrogen-to-air molec-
ular weight ratio, by considering the asymptotic limit oinghing jet densities. This limit was
demonstrated to give an approximate description, indegreraf £ and of the air viscosity, that
describes with sficient accuracy many aspects of the hydrogen jet. In paatictiie develop-
ment provides simple explicit expressions for the veloaitg mass fraction, which are summa-
rized in (25)—(28), (32) and (33). These expressions aid irathe intermediate far-field region
whereY is much smaller than unity and still much larger th&f?, corresponding to distances
from the jet exitx’ in the range k x'/(Rja) < e V), whereais the initial jet radius.
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