
IEEE Communications Magazine • September 2010152 0163-6804/10/$25.00 © 2010 IEEE

INTRODUCTION
Multihoming (i.e., the connection to the Internet
through multiple providers), has been widely
adopted by Internet sites, mainly to provide fault
tolerance. In the multihoming solution currently
deployed in the IPv4 Internet, the multihomed site
announces a single address block through all its
providers using Border Gateway Protocol (BGP).
As a result, for each multihomed site, multiple
routes toward the multihomed site are available in
the inter-domain routing system. The currently
deployed IPv4 multihoming solution is then one of
the major contributors to the superlinear growth
of the routing tables. Even though some claim it
will be possible to build equipment that can han-
dle the explosive growth of the routing tables, the
equipment lifetime and therefore the economic
viability of the Internet would be affected nega-
tively. This approach is even less suitable for the
expected number of multihomed sites in the future
IPv6 Internet. To illustrate this, consider the
demand for multihoming that can be triggered by
the wide adoption of low-budget broadband access
technologies such as asymmetric digital subscriber
line (ADSL) or cable TV (CATV) in small
office/home office (SOHO) environments. To
address these concerns, an alternative multihom-
ing solution for IPv6 has been developed in the

Shim6 Working Group of the Internet Engineer-
ing Task Force (IETF). In this solution, a multi-
homed network obtains a prefix from the address
block of each of its providers, so end hosts are
assigned with multiple global IPv6 unicast address-
es. In this way the injection of routes into the
global routing system associated with individual
multihomed end sites or networks is no longer
needed. However, to preserve established commu-
nications through outages, the endpoints have to
change the addresses in use during the lifetime of
the communication according to the available pro-
viders. Moreover, this address replacement has to
be performed in a transparent fashion with respect
to transport and application layers, in order to
actually preserve the established communication,
since current applications and transport layers,
such as TCP and UDP, identify the endpoints of a
communication through the IP addresses of the
nodes involved.

The solution proposed relies on a new sublay-
er inside the IP layer, the Shim6 sublayer, along
with two new protocols, Shim6 [1] and ReAcha-
bility Protocol (REAP) [2], which exchange
information between the Shim6 sublayers of two
communicating hosts. The Shim6 sublayer trans-
lates the address used for exchanging packets on
the wire (the locator) to the constant address
that is presented to upper layers (the upper-layer
identifier [ULID]), and from the ULID to the
locators used as source addresses (Fig. 1). In the
Shim6 architecture ULIDs are topologically
valid addresses, so they are also used as locators.
The new sublayer is placed between the IP rout-
ing sublayer, performing forwarding functionali-
ties like determining the next hop for outgoing
packets, and the IP endpoint sub-layer contain-
ing end-to-end mechanisms such as IPsec. The
Shim6 protocol exchanges the locators associat-
ed with a pair of ULIDs (i.e., establishes a Shim6
context in two communicating nodes). At any
given time, a pair of source and destination loca-
tors is used for one direction, and a possibly dif-
ferent pair of locators is used for the other one,
since the Shim6 framework supports a different
path in each direction. Different upper-layer
communications (i.e., different TCP connections
or UDP exchanges) can use the same Shim6
context. The final component of the architecture
is the REAP, a lightweight protocol used to
detect failures in the current communicating

ABSTRACT

The Shim6 architecture enables IPv6 multi-
homing without compromising the scalability of
the global routing system by using provider
aggregatable addresses. To do so, hosts use dif-
ferent addresses as locators for data packet
transmission, but present the same source and
destination identifier pair to transport and upper
layers. The components of this architecture are
the Shim6 entity, which maps and translates
upper-layer identifiers and locators for remote
hosts; the Shim6 protocol, which exchanges map-
ping information between two hosts that com-
municate; and the REAP protocol, which
monitors the existing unidirectional paths and
finds new valid locator combinations in case of
failure. To protect against new vulnerabilities
this architecture may introduce compared to
IPv6, Shim6 hosts use either cryptographically
generated addresses or hash-based addresses.

ACCEPTED FROM OPEN CALL

Alberto García-Martínez and Marcelo Bagnulo, Universidad Carlos III de Madrid

Iljitsch van Beijnum, IMDEA Networks

The Shim6 Architecture for
IPv6 Multihoming

GARCIA-MARTINEZ LAYOUT 8/24/10 10:50 AM Page 152

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29401722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE Communications Magazine • September 2010 153

paths and determine the new paths to use for
each unidirectional path.

The rest of the article is organized as follows.
In the next two sections we present the Shim6
and REAP protocols, respectively. We then dis-
cuss the security vulnerabilities that may arise
from the use of both protocols, and the protec-
tion measures developed to provide similar secu-
rity to IPv6, mainly by the use of cryptographic
addresses such as cryptographically generated
addresses (CGAs) and hash based addresses
(HBAs). Then we show an example in which two
nodes’ Shim6 hosts communicate, and we draw
some conclusions.

SHIM6 PROTOCOL
As mentioned earlier, the Shim6 protocol is in
charge of making the Shim6 sublayer of the
remote host aware of the different locators avail-
able for a given communication. To do so, a
Shim6 context is established for each pair of
communicating hosts.

Consider the case in which one of the parties
involved in a current or future communication
decides to create a Shim6 context in order to
benefit from the enhanced fault tolerance capa-
bilities of multihoming. We refer to the party
that decides to initiate the context exchange as
the initiator and the other party involved in the
communication as the responder. Note that the
initiator may differ from the actual initiator of
the communication itself and that a Shim6 con-
text can be created well after a communication
has been started (e.g., some heuristic can decide
that the communication may live long enough to
benefit from the protection provided).

To create a Shim6 session, a four-way hand-
shake as depicted in Fig. 2 is defined, in a simi-
lar way to the Host Identity Protocol (HIP) base
exchange [3]. In the next paragraphs we sum-
marily describe the process, delaying the descrip-
tion of the exchange of related security
information to a later section.

Message I1 (Initiator 1) is sent by the initia-
tor to request the creation of a context associat-
ed with a ULID pair. The ULID pair of the
context to be created can be either the locators
being used for the I1 message or a different
address pair, in which case the address pair must
be included explicitly in the I1 message. By the
use of this first message, Shim6 provides denial-
of-service (DoS) attack protection to the respon-
der. This is required because the creation of the
context associated with the session implies the
storage of information in the responder, and an
attacker could try to create a large number of
sessions to exhaust these resources. To prevent
such attacks, the responder does not create any
context related state until the initiator has
proven its location by responding in a later pack-
et with a nonce issued by the responder. In gen-
eral, nonces are used to prevent third parties out
of the communicating path interfering with the
handshake. Although this security measure does
not fully preclude the possibility of DoS attacks,
at least it imposes an additional effort for the
attacker and provides some tracing capabilities.

The I1 message also includes an initiator context
tag, which is a session identifier used to allow the

Shim6 sublayer at the initiator to identify the appro-
priate context for a received data packet in case the
locators have changed. Note that many Shim6 con-
texts may be established for two communicating
hosts, using different ULIDs of the hosts but the
same locator pair for a given direction. Therefore,
some means to identify the context to use when
translating a received data packet has to be provid-
ed. To do so, data packets sent from the responder
to the initiator using locators different from the
ULID of the context carry a Shim6 payload exten-
sion header containing the initiator context tag.
Since all the context tags received by the initiator,
even those belonging to different communications,
are assigned by the initiator itself, it is easy to ensure
its uniqueness. Note that data packets only use the
Shim6 payload extension header when a locator dif-
ferent from the ULID is used, so no overhead is
introduced to data exchange otherwise.

Upon the reception of the I1 message, the
responder can discard it if there is no multihom-
ing support or interest in enabling multihoming
for communications with this host, or reply with
an R1 message. This message contains the
responder validator, a hash of the context infor-
mation of I1, plus a secret token of the respon-
der, which will allow the responder to check

Figure 1. Overview of Shim6 operation.

sendto (X1)

Map ULID <Y, X1>
 to Forwd Loc <Y, X2>
 Return Loc <Y, X1>

Application

Transport

Network

Y

Locator X1

Locator X2

Provider 1

Provider 2

TCP: Y, X1

Shim6 sublayer

Dst: X1, Src: Y
Y, X2

recvfrom (Y)

Map ULID <Y, X1>
 to Forwd Loc <Y, X1>
 Return Loc <Y, X2>

Application

Transport

Network

TCP: Y, X1

Shim6 sublayer

Y, X2

Figure 2. Shim6 four-way handshake.

I1: Initiator context tag, initiator
nonce, [ULID pair]

R1: Initiator nonce, responder nonce,
responder validator

I2: Initiator context tag, initiator nonce, responder
nonce, responder validator, [locator list]

R2: Responder context tag, initiator
nonce, [locator list]

Responder Initiator

GARCIA-MARTINEZ LAYOUT 8/24/10 10:50 AM Page 153

IEEE Communications Magazine • September 2010154

later if the parameters used to create the state
were the same received in I1.

After the reception of R1, the initiator sends
the I2 message in which the locator set available
at the initiator can be included.

A responder receiving the I2 message cre-
ates the SHIM6 context, and replies with an R2
message, in which it includes its own context tag
and its locator set. When the initiator receives
this message, both communicating nodes know
the locators of each peer, and the Shim6 context
is established in both ends.

During the communication, it may be
required to change the available locator set for a
host. For that reason, Update Request and
Update Acknowledgment messages are
defined. The Update Request message con-
tains the complete set of available locators for a
host, and the Update Acknowledgment con-
firms reception of the update. The semantics of
the Update Request operation is to replace
the available locator set for the session with the
one included in the message. In this way existing
locators can be removed, for instance, if a failure
occurs and one of the prefixes available in the
multihomed site is deprecated. It should be
noted that an address can be removed as a loca-
tor but still be used as a ULID if that was its
role when establishing the communication. It is
also interesting to highlight that these messages
also provide support for host mobility and site
renumbering, since a host that acquires a new
locator (either through attachment to another
link or renumbering) can inform its peer about it
by means of the Shim6 protocol.

There are no protocol messages to close
Shim6 sessions, so context discarding is per-
formed independently on each host if no data
has been exchanged for a given period of time.

The Shim6 protocol includes some interesting
features such as context forking and context
recovery. Context forking allows a host to fork
an existing Shim6 context in two, to enable the
association of different locator sets with each
context. In order to support Context Forking, a
forked instance identifier (FII) is used to distin-
guish the original context (FII equal of 0) from
the new context (any other value of FII). The
node forking the context initiates a Shim6 four-
way handshake in which the FII for the new con-
text is included. The other host may also fork a
new context as a result of this request.

The context recovery functionality allows
recovering a context that has been lost in one of
the hosts. If a failure in the communication is
detected by the node keeping the context, this
node can select new locators and send data
packets using the context tag initially assigned by
the remote host. The reception of one of these
packets in the node that lost the context triggers
a simplified message exchange composed of an
R1bis message, an I2bis message, and the R2
message. Note that data packets cannot be deliv-
ered to the appropriate upper-layer instance
until the context has been recovered. Context
recovery can be useful for heavy-loaded servers,
which can establish a large number of Shim6
contexts with clients and then discard them
aggressively, leaving the initiative in failure
detection and recovery to the client.

REACHABILITY PROTOCOL

REAP [2] detects failures across the communi-
cating path, that is, verifies reachability for the
locator pair in use for each direction, and finds a
new pair of locators when a failure occurs in any
unidirectional path.

The approach followed for failure detection in
REAP is to require Shim6 entities to care about
the data path status only when they are sending
data. In this case the path is considered to be
valid if incoming traffic is received. Most proto-
cols send data in both directions, and if there is
only traffic in one direction, REAP sends
keepalives in the opposite direction. So with
REAP running, if there is outgoing traffic but no
incoming traffic, there must be a failure. In par-
ticular, a Shim6 entity sending data considers that
communication is proceeding successfully if it
receives at least one packet from the remote host
before its local Send Timer expires. When a
packet is received from the remote host, the
Send Timer is stopped and restarted the next
time the local host sends a packet. Considering
the situation in which two hosts, exchanging data
at rates faster than the Send Timer expiration
rate, and a failure in one of the communication
paths, we can see that the host not receiving
incoming traffic for a Send Timer period will
infer that a communication problem has occurred.

When data traffic cannot be used to provide
positive feedback about the validity of the paths
to a sending entity (e.g., because communication
is unidirectional), a REAP-specific Keepalive
message is generated by the host receiving the
data packets. Keepalive messages are issued by
a Shim6 entity if a given time has elapsed since
the reception of a packet without any data packet
being sent. Consider now that a unidirectional
communication is established between sender A
and receiver B. When both unidirectional paths
are valid, the data of A makes B send
Keepalive messages that are received by A
before the expiration of its Send Timer. On
one hand, if the path from A to B fails, B will
stop sending Keepalive messages, and the
Send Timer will expire in A. On the other
hand, if the path from B to A fails, B will contin-
ue sending Keepalive messages, but these mes-
sages will not arrive to A, resulting in the
expiration of the Send Timer in A. Of course,
if both directions fail, A also detects the commu-
nication problem.

Note that some time after both hosts stop send-
ing data, REAP packet exchanges are also stopped.

When the Send Timer expires in a host, the
host starts sending REAP Probe messages to test
the unidirectional paths currently in use. If it does
not receive a response to this validation, Probe
messages with different combinations of
source/destination locators are sent sequentially,
with an exponential backoff to increase the time
between successive probes. Although parallel prob-
ing would reduce the time to find a new working
path, it would raise concern about signaling storms
in case a failure affects to a large number of Shim6
hosts. When one of these Probe messages is
received at the other end, the remote host includes
this information in its own probes to inform the
other end about the validity of that unidirectional

Context Recovery

can be useful for

heavy-loaded servers,

which can establish a

large number of

Shim6 contexts with

clients, and then

discard them

aggressively, leaving

the initiative in

failure detection

and recovery to

the client.

GARCIA-MARTINEZ LAYOUT 8/24/10 10:50 AM Page 154

IEEE Communications Magazine • September 2010 155

path. The process ends when two unidirectional
paths have been discovered, and both hosts know
the locators to use in each direction.

SECURITY MODEL FOR THE
SHIM6 PROTOCOL

It is worth noting that the separation of identi-
fiers and locators, and the use of a protocol to
exchange this information can introduce new
vulnerabilities to IPv6. In particular, the Shim6
protocol could be used by an attacker to launch
redirection attacks [4] (i.e., attacks that create
false identifier-to-locator mappings). The two
possible types of redirection attacks are hijacking
attacks and flooding attacks. In the next subsec-
tions we describe these types of attack, discuss
the security level that should be provided for
each, and present the corresponding protection
measures provided by Shim6.

HIJACKING ATTACKS
In a hijacking attack the Shim6 protocol can be
used to induce a victim to associate one of the
attacker’s locators with a target ULID. Then,
when the victim sends packets to the target ULID,
it will be actually sending packets to the attacker.
Through this attack, the attacker manages to steal
the target’s identity and hijack the communica-
tions between the target and the victim.

To determine the security level required
against hijacking attacks, we can use the rule of
thumb that Shim6 must not add new vulnerabili-
ties to the ones currently present in the Internet.
Hijacking attacks are feasible in today’s Internet
when the attacker is along the path between the
communicating hosts. In other words, current
communications are susceptible to man-in-the-
middle attacks, and an attacker capable of inter-
cepting packets can hijack a communication if no
additional security measures such as IPsec or
transport layer security (TLS) are adopted. There-
fore, the prevention of man-in-the-middle attacks
does not need to be a goal for the Shim6 proto-
col. A special type of hijacking attack is the so-
called time-shifted attack [5], in which the attacker
launches the attack from an on-path position and
then leaves, but the effect of the attack remains
after it has stopped. Current TCP/IP communica-
tions are not susceptible to time-shifted attacks.
In the case of the Shim6 protocol, the attacker
would remain on-path the time required to create
a false ULID-to-locator mapping in the victim’s
host and then it could leave. However, the victim
will preserve the false mapping long after the
attacker has left. Because this is a new vulnerabil-
ity introduced by the multihoming protocol, the
security mechanisms of the protocol must prevent
such time-shifted hijacking attacks.

To provide the protection discussed in the
previous paragraph, the use of CGAs or HBAs
for Shim6 is proposed.

CGAs [6] are regular IPv6 unicast addresses
whose interface identifier (the 64 least signifi-
cant bits of the IPv6 address) is built as a one-
way hash of the CGA parameters structure,
which contains the public key, the prefix of the
address, and a 128-bit modifier, along with other
parameters not relevant to our discussion.

The information used to build the CGA is
conveyed in the R1, I2, and Update Request
messages when the locators are exchanged. Each
host uses the private key of its CGA to sign the
locator set exchanged in messages R1, I2, or the
Update Request . Then the responder to
these messages validates the CGA of the remote
host by regenerating it from its components, and
validates the signature with the public key asso-
ciated with the CGA. By means of this security
chain check, the CGA provides proof of address
ownership, and the locators can be added secure-
ly to the Shim6 context.

To evaluate the security provided by CGA, we
estimate the difficulty for an attacker to hijack a
communication. To do so, an attacker must be
able to sign a locator in its link with a public key
for which the CGA generation procedure results
in the same CGA as the host to be impersonated.
In this way it could start a communication with a
third host using the CGA as ULID, and diverting
the communication to a locator in which the
attacker resides. The attacker may try to obtain
the private key from the public key or a signa-
ture, but this is computationally hard, especially
for long keys. Another approach would be to
generate a key pair, and start an exhaustive
search for a modifier until the resulting CGA
hash is equal to the interface identifier of the
CGA of the host to impersonate. Since there are
59 bits available for placing the result of the
address hash after taking out the u and g bits that
are preserved as defined in the IPv6 specifica-
tion, and the three bits for a parameter used to
provide additional security, the expected number
of iterations is at least O(259). We believe that
the resulting security is enough for protecting
regular traffic that flows unprotected through the
network from potential redirection attacks intro-
duced by multihoming mechanisms [7].

HBAs [8] follow a different approach to provide
security. An HBA set provides a mechanism to
securely chain multiple addresses of a host by
means of a hash, as depicted in Fig. 3. The result of
the HBA generation process is as many different
addresses as prefixes, with different interface identi-
fiers. Each interface identifier is generated as the
hash of the parameter data structure containing the
sequence of prefixes assigned to the host. The
ordering of the prefixes for the different addresses
varies in order to provide privacy by obfuscating the
binding among the addresses of a set. A host com-
municating with an address belonging to an HBA
can evaluate with just one hash if another address
belongs to the HBA set. This provides an inexpen-
sive way to validate if a communication session or
association can safely be diverted to the new
address. As for CGA, the prefix list is exchanged in
the R1, I2, and Update Request messages.

An attacker trying to impersonate a host
identified with one address of the HBA must
create a new HBA set with the following charac-
teristics:
• The HBA address of the attacked host must

be included, that is, its prefix set must
appear in the multi-prefix extension, and
the interface identifier computed for this
prefix must be equal to the address of the
attacked host.

• The prefix set of the HBA must include the

It is worth noting

that the separation

of identifiers and

locators and the use

of a protocol to

exchange this infor-

mation can introduce

new vulnerabilities to

IPv6. In particular,

the Shim6 protocol

could be used by an

attacker to launch

redirection attacks.

GARCIA-MARTINEZ LAYOUT 8/24/10 10:50 AM Page 155

IEEE Communications Magazine • September 2010156

prefix of the attacker to be able to redirect
the traffic to this address.
The attacker can vary the modifier of the

CGA parameters structure until these conditions
are fulfilled, but this requires a brute-force scan
similar to the CGA case, with O(259) expected
iterations.

For compatibility reasons, HBAs are defined
as an extension of CGA, despite the evident
semantic difference, by appending the list of pre-
fixes of the node to the CGA parameters struc-
ture. The Shim6 protocol allows any combination
of CGA and HBA addresses for a host. Hosts
with HBA-only addresses are limited to use the
addresses associated with the prefixes initially
included in the prefix list, but CPU requirements
for validating the address in remote hosts are
lower than in the CGA case. CGA addresses, on
the other hand, allow the dynamic addition of
new locators by signing them with the private
address associated with the CGA. Finally, it is
possible to have a CGA/HBA address in which
both a public key and a set of interface identi-
fiers for different prefixes are bound.

FLOODING ATTACKS
In a flooding attack the attacker starts a commu-
nication with a server, for instance, to download
heavy streaming content. Then the attacker uses
the Shim6 protocol to re-home the communica-
tion to a victim’s locator, causing the server’s
flow to flood the victim.

Flooding attacks are possible in the current
Internet only from an on-path location. Howev-
er, an attacker could use Shim6 to establish a
communication to a server, and then require a
change in the server’s mapping to the locator of
a victim.

Shim6 provides protection against this attack
by means of the inclusion of context tags in the
REAP Probe message checks alternative paths
to a destination: a node can detect that the host
to which the communication is being diverted is
not the same one that established the Shim6
communication because it does not return the
same context tag.

PROTOCOL WALKTHROUGH

In Fig. 4 we show an example of the behavior of
two Shim6 hosts communicating in a common
scenario. Host X has two prefixes assigned, PX1
and PX2, and has configured one key pair to
build a CGA with PX1 (CGA1) and another key
pair to build a CGA with PX2 (CGA2). Host Y is
in a link with three prefixes, PY1, PY2, and PY3,
and has generated one address per prefix accord-
ing to the HBA specification, resulting in address
set HBA1, HBA2, and HBA3.

X initiates a communication with Y. Typically,
an application on X issues a DNS request for a
name associated with Y, obtaining in the request
some subset of the addresses assigned to Y. The
regular address selection process for IPv6 is used
by X to select one of the addresses of Y (e.g.,
HBA1) as the destination address for the outgo-
ing packets, and one of its own addresses
(CGA1) as the source address. In both cases
appropriate configuration of each host and/or
the local network must ensure that packets with
a given source address are forwarded to the
provider from which the address was delegated
so that the packets comply with potential ingress
filters. These addresses selected at the beginning
of the communication will be used as endpoint
identifiers for transport and application layers
when required (i.e., as ULIDs). Note that the
procedure of establishing the communication
happens before any Shim6 protocol exchange.

Consider that Y is a content server that sends
traffic at high rates, while X sends packets sparse-
ly (we assume that the sending period is larger
than the REAP timers). We suppose that some
time later the network layer of X decides through
a heuristic to request higher quality in terms of
reliability, so it initiates the Shim6 exchange (Fig.
4). X has signed the CGA2 address with the pri-
vate key associated with CGA1, so Y validates
CGA1 and the signature of the locator, and asso-
ciates CGA2 as an alternative locator for the con-
text. On the other hand, Y has transmitted to X
all the parameters required for generating the
HBA, and transmitted the alternative locators. X
checks the validity of transmitted locators using
the CGA multi-prefix extension, and associates
the locators with the Shim6 session.

Host X, as an infrequent sender, generates
periodic Keepalive messages to provide feed-
back to Y about the validity of the paths.

Some time later a failure in the network occurs,
preventing communication through the provider
delegating the PX1 prefix to host X. Then neither
can possible pending Keepalive messages arrive
at Y, nor is data traffic received by X. As a result,
the Send Timer at Y expires. A Probe message
is sent to X using the current locators to check the
validity of the path in use. Since Y receives no
answer, it initiates exploration for an alternative
locator pair, sending a Probe with different
source and destination addresses. As a result,
responses could be received for any pair not con-
taining the PX1 prefix. Y checks, for example,
<CGA2, HBA1>, and the Probe is received by
X. Then X checks for another locator pair for the
unidirectional path from X to Y, being also
<CGA2, HBA1> in this case, and includes in the
Probe information about the working condition

Figure 3. HBA example.

HBA set: P1::II_1, P2::II_2, P3::II_3

II_1 = hash|64 (parameters, P1, P2, P3)
II_2 = hash|64 (parameters, P2, P1, P3)
II_3 = hash|64 (parameters, P3, P1, P2)

Pref: P1::/64

Pref: P2::/64

Pref: P3::/64

P1:: II_1

P3:: II_3

P2:: II_2

GARCIA-MARTINEZ LAYOUT 8/24/10 10:50 AM Page 156

IEEE Communications Magazine • September 2010 157

of locators <CGA2, HBA1> in the Y to X direc-
tion. When Y receives this information, it updates
the current locator path for sending data in the
Shim6 context, and confirms the locators for the X
to Y unidirectional path. From now on, X will then
receive data packets with the new locators, and
the communication is preserved.

CONCLUSIONS
In this article we have presented the Shim6
architecture for IPv6 multihoming, which pro-
tects communications from failures in a scalable
way. The standardization of the Shim6 mecha-
nism has been completed in the IETF, resulting
in the Shim6 protocol [1], the HBA address for-
mat [8], and REAP [2]. In addition, several
implementations have been reported.1

As for any new technology, the challenge that
Shim6 faces at this stage is wide adoption. The
incentives and hazards for its adoption have been
analyzed in depth in [9]. From our perspective, we
believe that the resulting architecture is easy to
adopt. Shim6 does not require changes in the
applications since it can be implemented as an
operating system service, although Shim6-aware
applications could benefit from improved control
through a Shim6 application programming inter-
face [10]. Additionally, end site management is
simple, since none of the presented mechanisms
require manual configuration, allowing poorly
managed sites to easily deploy the proposed solu-
tion. Shim6 hosts can easily coexist with non-
Shim6-aware nodes, since for these nodes CGA or
HBA addresses, which are valid locators, appear as
regular IPv6 addresses. This coexistence is not pos-
sible for other solutions such as HIP [3], in which a
strict separation between locators and identifiers is
required. Fault tolerance support is directly imple-
mented in the end hosts and works without requir-
ing user configuration. All these features enable
easy adoption of the presented solution in SOHO
environments that lack network administration.

ACKNOWLEDGMENTS
The work of Alberto García-Martínez is sup-
ported by the T2C2 project (TIN2008-06739-
C04-01), funded by the Spanish Ministerio de
Ciencia e Innovació. The work of Marcelo Bag-
nulo and Iljitsch van Beijnum is supported by
Trilogy (ICT-216372, http://www.trilogy-
project.org), a research project partially funded
by the European Community.

REFERENCES
[1] E. Nordmark and M. Bagnulo, “Shim6: Level 3 Multi-

homing Shim Protocol for IPv6,” IETF RFC 5533, June
2009.

[2] J. Arkko and I. van Beijnum, “Failure Detection and
Locator Pair Exploration Protocol for IPv6 Multihom-
ing,” IETF RFC 5534, June 2009.

[3] R. Moskowitz et al., “Host Identity Protocol,” IETF RFC
5201, Apr. 2008.

[4] E. Nordmark and T. Li, “Threats Relating to IPv6 Multi-
homing Solutions,” IETF RFC 4218, Oct. 2005.

[5] P. Nikander et al., “Mobile IP Version 6 Route Optimiza-
tion Security Design Background,” IETF RFC 4225, Dec.
2005.

[6] T. Aura, “Cryptographically Generated Addresses
(CGA),” IETF RFC 3972, Mar. 2005.

[7] M. Bagnulo, A. García-Martínez, and A. Azcorra, “Effi-
cient Security for IPv6 Multihoming,” ACM Comp. Com-
mun. Rev., vol. 35, no. 2, Apr. 2005, pp. 61–68.

[8] M. Bagnulo, “Hash-Based Addresses (HBA),” IETF RFC
5535, June 2009.

[9] R. Clayton, “Internet Multi-Homing Problems: Explana-
tions from Economics,” 8th Annual Wksp. Economics
Info. Security, London, June 2009.

[10] S. Sugimoto, Ed., “Socket Application Program Inter-
face (API) for Multihoming Shim,” draft-ietf-shim6-mul-
tihome-shim-api-11, work in progress, Dec. 2009.

BIOGRAPHIES
ALBERTO GARCIA-MARTINEZ (alberto@it.uc3m.es) received a
telecommunication engineering degree in 1995 and a
Ph.D. in telecommunications in 1999, both from the Poly-
technic University of Madrid, Spain. In 1998 he joined the
University Carlos III of Madrid (UC3M), where he has been
an associate professor since 2001. He has published several
papers in technical journals, magazines, and conferences.
His main interest areas are IPv6, layer 2 routing, and inter-
domain routing.

MARCELO BAGNULO (marcelo@it.uc3m.es) received an electri-
cal engineering degree in 1999 from the University of
Uruguay, and a Ph.D. in telecommunications in 2005 from
the UC3M. In 2000 he joined UC3M, where he has been an
associate professor since 2006. He has published several
papers in technical journals, magazines, and conferences.
His main interest areas are IPv6 and interdomain routing.

ILJITSCH VAN BEIJNUM (iljitsch.vanbeijnum@imdea.org)
received his Bachelor of Information and Communication
Technology degree from the Haagse Hogeschool at The
Hague, The Netherlands in 2005, and his Master of Telem-
atics Engineering degree from UC3M in 2008. He has
worked in the Internet service provider business since
1995, and has written books about BGP and IPv6 and
many articles in the trade press. He currently works for
IMDEA Networks as a research assistant, pursuing a Ph.D.
degree at UC3M.

Figure 4. Example of data exchange between two Shim6 hosts.

Data packet: [CGA1->HBA1]

Data packet: [HBA1->CGA1]

Data packet: [HBA1->CGA1]

Data packet: [HBA1->CGA1]

Data packet: [HBA1->CGA2]

Probe: [HBA1->CGA1]

Probe: [HBA1->CGA2]

Send timer
expires

Send timer
expires

Keepalive
timer
expires

Keepalive
timer
expires

Probe: [CGA2->HBA1]: X received probe [HBA1->CGA2]

Probe: [HBA1->CGA2]: Y received probe [CGA2->HBA1]

Data packet: [HBA1->CGA1]
X loses connectivity through CGA1

Keepalive: [CGA1->HBA1]

Keepalive: [CGA1->HBA1]

[...]

[...]

I1: [CGA1->HBA1] init. context tag, init. nonce

I2: [CGA1->HBA1] init. context tag, init. nonce, resp. nonce
resp. validator, locator list {CGA2}, CGA parameters structure

{CGA1}, signature of locator list with PubKey_CGA1

R1: [HBA1->CGA1] init. nonce, resp. validator

R2 [HBA1->CGA1]: resp. context tag, init. nonce, loc. list {HBA2,
HBA3}, CGA parameters structure + multi-prefix extension {HBA}

X Y

1 Information about
implementations of
Shim6 can be found at
http://www.shim6.org.

GARCIA-MARTINEZ LAYOUT 8/24/10 10:50 AM Page 157

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

