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Abstract – Context knowledge is essential to achieve 

successful information fusion, especially at high JDL levels. 

Context can be used to interpret the perceived situation, 

which is required for accurate assessment. Both types of 

knowledge, contextual and perceptual, can be represented 

with formal languages such as ontologies, which support 

the creation of readable representations and reasoning 

with them. In this paper, we present an ontology-based 

model compliant with JDL to represent knowledge in 

cognitive visual data fusion systems. We depict the use of 

the model with an example on surveillance. We show that 

such a model promotes system extensibility and facilitates 

the incorporation of humans in the fusion loop. 

Keywords: high-level data fusion, computer vision, 

surveillance systems, ontologies. 

 

1 Introduction 

The ultimate objective of a visual fusion system is to detect, 

identify, and predict the actions that are being performed in 

the observation area, in order to provide users with 

knowledge to evaluate threats and to make decisions 

consequently. Inherent to this cognitive process is the 

participation of context knowledge. It is accepted that 

fusion systems, and specifically computer vision systems, 

must incorporate, either implicitly or explicitly, context 

knowledge [1, 2]. Interpretation of data and recognition of 

activities will be hardly successful if contextual information 

is not considered. Context knowledge constrains the 

possible interpretations of the perceptions and aids the 

sensor data to be completed, made sense, and even 

corrected. Nevertheless, the prevailing JDL model for data 

fusion considers context knowledge vaguely [3], which has 

resulted in the proliferation of ad hoc solutions.  

An important amount of knowledge in fusion systems must 

be previously introduced by human analysts. To certain 

extent, this knowledge can be also considered context, since 

it is not directly acquired by (visual) sensors. Human entries 

are not limited to a priori information, and users can 

continuously provide input to the system to be considered in 

the fusion process. In this way, soft human entries must be 

fused with hard sensor data, which causes that humans 

become an important component of the fusion loop.  

The participation of heterogeneous information sources in 

the fusion process requires the use of a common 

representation model. Likewise, the fusion system has to 

make users available suitable tools to interact with it. The 

focus of data fusion has been mainly low-level sensor 

fusion, which does not often require sophisticate knowledge 

representation mechanisms. Recently, this interest is 

shifting to high-level information fusion, which needs 

expressive and interpretable representation and reasoning 

formalisms for situation assessment and impact evaluation. 

Knowledge management for high-level fusion poses various 

challenges to the data fusion community [4]: (i) to discern 

what information should be represented; (ii) to determine 

which representation formalisms are appropriate; (iii) to 

elucidate how acquired and a priori information are 

transformed from numerical measures to symbolic 

descriptions, according to the JDL levels.  

In this paper, we study the use of ontologies to overcome 

these issues. Ontologies have been recognized as 

appropriate representation formalisms in information fusion 

[5] and computer vision [6], since they are formal, 

extensible, and reusable. Ontologies are defined as highly-

expressive, logic-based knowledge models aimed to the 

description of a domain from a common perspective by 

using a language that can be processed automatically [7]. 

This language is usually (equivalent to) a decidable 

Description Logics [8], e.g. OWL [9]. 

We propose an epistemological, functional and structural 

ontology-based model to manage contextual and sensorial 

data in fusion systems, with a special focus on visual fusion 

systems. The model identifies: (i) which information is 

represented in each one of the successive stages that visual 

signals go through to become decision-support information, 

in consonance with the JDL layers; (ii) which are the 

processes that need to be carried out; (iii) how context is 

represented and applied to accomplish them. Accordingly, 

the model establishes a set of ontologies to describe the 

information involved in these processes at each JDL level, 

and a set of procedures to reason and transform information 

between them. The ontology-based model can be adapted to 

different domains, and especially to surveillance and 

security applications. In this paper, we focus on the 

description of the overall architecture of the proposal, the 

structure of the knowledge models, and how they are 
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applied to support data and information fusion procedures 

(mainly at the L1 and L2 JDL levels). 

The main contribution of this research work is that it 

provides a theoretical basis for the design of cognitive man-

machine vision systems that incorporate context knowledge. 

We show in detail how the ontological model is 

materialized, an issue that remains quite unexplored in 

information fusion. The use of ontologies results in several 

advantages: (i) abstract representation of fusion 

information, which improves interpretability of the system 

and make it easier for the user to interact with it; (ii) 

reasoning with logic-based formalisms, which allows 

inferring new knowledge; (iii) extensibility and reusability 

of the knowledge bases, and application of the model in 

diverse application domains; (iv) standardization, which 

facilitates interoperation between different modules and 

systems. 

The remainder of this paper is organized as follows. In Sect. 

2, we review some related work pertaining to the 

incorporation of context knowledge in the JDL model and 

the use of ontologies for knowledge representation in visual 

fusion systems. In Sect. 3, we describe the architecture of 

our approach in relation with the JDL model, paying special 

attention to the role of the context knowledge. In Sect. 4, 

we briefly present the ontologies of the model. In Sect. 5, 

we illustrate the use of the ontology with a practical 

example on surveillance in secured areas. Finally, the paper 

concludes with a discussion of the results and plans for 

future research work. 

2 Related Work 

Context management and exploitation in fusion systems has 

not been intensively studied from a general perspective. The 

last revision of JDL highlights the importance of context 

knowledge [10], especially when it comes to high-level 

fusion or improvement of task performance with high-level 

results, but it is quite unspecific about how it should be 

acquired, represented, and handled during the process. 

A discussion on the role of context knowledge in fusion can 

be found in [1]. In this research work, the authors discuss 

several aspects of context representation and stress its 

applicability in data estimation, association, and alignment. 

Although ontologies are not studied in detail, they are 

proposed as a suitable formalism for representing context 

knowledge. In contrast, classical approaches usually used 

particular formalisms, which make it difficult to reuse and 

extend the knowledge bases. For example, in computer 

vision for surveillance, first order logic-based 

representations have been considered [2, 11].   

Hence, the use of ontologies for data and information fusion 

in different JDL levels is becoming more and more 

frequent, as envisioned in [12]. Nevertheless, most of these 

approaches combine contextual and perceptual information, 

but do not explicitly describe how context is characterized 

and integrated in the fusion loop. 

In [13], an approach to the development of ontologies for 

L2 fusion is presented. The authors propose a methodology 

to create domain-specific ontologies for fusion based on the 

upper-level ontology BFO (Basic Formal Ontology) and its 

sub-models SNAP and SPAN (for entities and process, 

respectively). Other contribution is STO (Situation Theory 

Ontology), which encodes Barwise‟s situation semantics 

[14]. Particularly aimed to computer vision is the research 

work depicted in [15], which presents a proposal for scene 

interpretation based on Description Logics and supported 

by the reasoning features of RACER1 inference engine. 

Security applications are studied in [16], which develops an 

OWL ontology enhanced with rules to represent objects and 

actors in surveillance systems. 

Conversely, other approaches aim at modeling video 

content at L1. For example, in [17] it is presented a 

framework for video event representation and annotation. In 

this framework, VERL (Video Event Representation 

Language) defines the concepts to describe processes 

(entities, events, time, composition operations, etc.), and 

VEML (Video Event Markup Language) is a XML-based 

vocabulary to markup video sequences (scenes, samples, 

streams, etc.). VEML 2.0 has been expressed in OWL-DL. 

Between L0 and L1 can be classified the contribution 

described in [18], which resembles our idea of creating a 

symbolic representation of the actual data managed by the 

tracking algorithms (see Sect. 4.1). 

At L0 level, one of the most important contributions is 

COMM (Core Ontology for MultiMedia) [19], an ontology 

to represent MPEG-7 data with OWL. COMM does not aim 

at representing high-level entities, such as people, events, or 

activities occurring in the scene. Instead, it identifies the 

components of a MPEG-7 video sequence in order to link 

them with (Semantic) Web resources. Similarly, the Media 

Annotations Working Group of the W3C is working in an 

OWL-based language for adding metadata to Web images 

and videos [20].  

3 Model Description  

3.1 Architecture of the Model 

The architecture of the ontological model is depicted in Fig. 

1. The schema shows the structure of the model associated 

to the fusion system, in correlation to the successive JDL 

stages, which range from observed data to decision-ready 

information. From left to right, visual sensor data is 

processed by a tracking algorithm, made corresponding to a 

domain entity, interpreted to recognize the current activity, 

and evaluated to determine the impact of the threat. 

The ontologies of our model can be regarded as 

vocabularies to express the fusion knowledge at different 

abstraction levels. From low-level track data to high-level 

situations, ontologies are used to describe: 

  

                                                 
1 http://www.racer-systems.com  
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Figure 1. Architecture of the ontology-based visual information fusion model 

 
 Tracking data (L1). Data from the tracking 

algorithm: tracks and track properties (color, 

position, velocity, etc.), frames, etc. 

 Scene objects (L1-L2). Real-world entities of the 

scene, properties, and relations: moving objects, 

actors, topological relations, etc. 

 Activities (L2). Behavior descriptions: grouping, 

approaching, picking/leaving an object, etc. 

 Impacts and threats (L3). Association of a cost value 

to activity descriptions and predictions of future 

events. 

The ontologies contain both context and perceptual data. 

For instance, the scene objects ontology includes 

primitives for representing dynamic and static objects. 

Dynamic object perceptual features (color, position, 

velocity, etc.) are obtained by the tracking algorithm, 

whereas the static contextual object features are likely to 

be previously specified by a human user. In Sect. 4, we 

analyze how context knowledge is represented in the 

model and how it is used to improve scene interpretation. 

It is also interesting to note that an ontology of a higher 

level includes the ontologies of the lower levels, since the 

more abstract knowledge is expressed in terms of the less 

abstract one. 

The model has been designed with a view on promoting 

extensibility and modularity. At each level, it provides a 

skeleton that includes general concepts and relations to 

describe the mentioned fusion entities and relations. The 

developer must refine this vocabulary and extend the 

ontologies according with her objectives. In this manner, 

we clearly differentiate between general and domain-

specific knowledge, which is essential to guarantee the 

applicability of the approach in assorted application areas. 

Accordingly, the contents of the ontologies of the model 

are a tradeoff between generality and utility. Each one of 

them has to be general to be used in different domains, but 

also it has to include as much description terms as 

possible to make it easy to extend it in each case 

As we explain in the following section, the ontologies of 

the model at lower abstraction levels are larger than 

ontologies at higher levels. This does not mean that in 

final systems less abstract knowledge is prevalent, but that 

our model, which has to be extended, provides fewer 

constructors at high levels.  At low level, more knowledge 

is common to different applications. For instance, tracks 

are managed in every fusion system, and therefore the 

track description ontology of the model has to be scarcely 

extended. On the contrary, high-level ontologies 

describing activities are very domain-specific, and 

therefore, the one of the model will have to be more 

extensively completed.  

In the model, we distinguish two types of reasoning 

processes. Firstly, reasoning procedures can be applied to 

infer additional knowledge from the explicit facts within 

each ontology. By using a Description Logics inference 

engine (e.g. RACER), different standard reasoning tasks 

can be performed. For instance, all concept inclusions 

(asserted and deduced) can be computed, which is known 

as ontology classification. It is as well possible to perform 

other non-standard inferences or even add rules to 

increase the expressivity of the knowledge bases. These 

are cases of deductive reasoning, since they take a set of 

facts as the input and apply logical resolution to compute 

derived information. 

The second reasoning task concerns the transformation of 

numeric data to symbolic objects, where the global input 

of the process is the video sequence and the tracks, and 
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the final output are the activities and impacts associated to 

the scene. In other words, it is necessary not only to 

reason within each stage, but also to transform lower to 

higher level data between stages. This can be regarded as 

a type of abductive reasoning, in contrast to the deductive 

reasoning performed in the former case. Abductive 

reasoning takes a set of facts as the input and finds a 

suitable hypothesis that explains them. In our model, 

determining if a track corresponds to a person or to a 

moving object can be regarded as this type of reasoning. 

Therefore, abductive reasoning processes must be 

performed to convert knowledge expressed in an ontology 

to knowledge expressed in a higher level ontology.   

Abductive reasoning is out of the scope of classical 

Description Logics [21], but in our case, it can be 

simulated by using customized procedures or, more 

interestingly, by defining transformation rules (Sect. 5). 

In the remainder of this section, we discuss the role of 

context knowledge in our model for visual data fusion. In 

the next section, we describe in more detail the ontologies 

that participate in it. 

3.2 Context Knowledge 

There is not a consensus about what should be considered 

context in fusion and vision systems. A traditional 

definition of context, appeared in the area of Ubiquitous 

Computing, establishes that context is any information 

(either implicit or explicit) that can be used to characterize 

the situation of an entity [22]. Other definitions have been 

expressly proposed for computer vision [2], most of them 

focusing on the distinction between the perceived stimulus 

and the outer information that affect their comprehension. 

These authors highlight that context includes information 

about the scene environment, information about the 

parameters of the recording, information previously 

computed by the vision system, and user-requested 

information.  

In accordance to these approaches, we consider that 

context is all the additional information about the 

interesting entities of the scene. By additional, we exclude 

all the data that can be automatically extracted from the 

scene. Insofar as visual information fusion is concerned, 

context is external knowledge used to complete the purely 

quantitative interpretation of a scene that is performed by 

image analysis algorithms. For instance, we do not 

consider track properties (obtained by the tracking 

algorithm) as context information. Conversely, static 

objects features, such as motionless object size, position, 

occlusion, etc., are regarded as context information. Time 

and location of the scene, acquired from sensors or 

introduced by the user, are also considered context 

information. Another example of context is a rule stating 

that the density of tracks in a frame is higher during rush 

hours. In any case, the delimitation between contextual 

and non-contextual knowledge is not exhaustive and can 

be adapted to the requirements of each application, 

without prejudice to the generality of our approach.  

As a result of this definition of context, the role of the 

human analysts is crucial. A large amount of context 

knowledge is expected to be provided by these users, and 

the cognitive ability of the system strongly depends on it. 

Part of the context is a priori and common-sense 

knowledge that is introduced before the initialization of 

the system. For instance, a region of the video can be 

marked as a door, which means that tracked entities go in 

and out of the scene through it. Part of the context is learnt 

during the execution of the system. For instance, if tracks 

are created or removed more frequently when they enter a 

region of the image, it can be supposed that this region is 

a door. In both situations, participation of the user is 

useful (required in the former case, desirable in the latter 

one). As emphasized in the introduction, users must be 

provided with usable presentation and control interfaces. 

The ontology-based model describes abstractly the system 

information, in such a way that it is more easily 

interpretable, and therefore interaction procedures can be 

implemented straightforwardly. 

Context knowledge spans through all the levels of the JDL 

model. Context knowledge may be physical, logical, or 

cognitive; static or dynamic; general or specific; 

descriptive or deductive; etc. This means that we have 

sub-context models at L1, L2, etc. Thus, context is 

included at each level along with acquired knowledge, 

sometimes even indistinguishably. It can be considered 

however that a global context model exists and it 

encompasses all the contextual knowledge embedded in 

the tracks, entities, activities, and impact sub-ontologies. 

The distinction can be made explicit if a different 

namespace is associated to context knowledge. Context 

knowledge is used in the two types of reasoning 

procedures described in the previous section. Along with 

perceptual knowledge, it can be applied to enhance 

deduction within a level and abduction between levels.  

Necessarily, the granularity and the amount of context 

knowledge managed by the fusion system determine the 

possible interpretation of the scenes. For example, if only 

L1 context is considered, scene interpretation will be 

restricted to individual object properties, and interactions 

between them will not be analyzed. If L2 context is 

considered, the scene will be interpreted in terms of object 

properties and relations between objects. Clearly, the 

incorporation of more context knowledge results in better 

recognition of the situations.  

4 Model Ontologies 

An excerpt of the model ontologies is presented in Fig. 2. 

This figure depicts the layered structure of the model, as 

well as the distinction between general (i.e. in the 

ontologies of the model) and domain-specific (i.e. to be 

created by developers) knowledge. 

Fig. 2 shows some classes of the ontologies, the relations 

between them, and restrictions to these relations. Concepts 

in grey are the entities that link the representations at 
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different levels. For instance, SceneObject, which is a L1 

concept, is imported by L2 ontologies, which describe 

activities from object interactions. 

EXPETS

owltime:
DateTime

Description

hasSnapshot
(some, inverseFunctional)

isValidIn
(some, inv(contains))

hasGrouped
(only, inv(isGroupedWith))

(disjoint)

recordedAt
(only)

Frame
Track

Snapshot
Track

GroupedTrack
Snapshot

ActiveTrack
Snapshot

Position

hasValue
(exactly 1)

Active
Properties

PositionValue

hasProperties
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hasPosition
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(some)

StaticObject

SceneObjectPerson
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SCOB
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SceneObject
Snapshot
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V
a
lid
In

(s
o

m
e,

 in
v(
co
n
ta
in
s)

)

hasSnapshot
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Object
Properties

hasProperties
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ACTV

L2

Situation/
Event

involves
(min 1)

Behavior
Interpretation

Contextualized
Event

Status

CostEvaluation CostValue

L3

IMPC

hasCost
(exactly 1)

hasValue
(exactly 1)

EventDuration

hasDuration
(min 1)

Grouping

involves
(min 2)

Specific Knowledge Model General Knowledge Model

2DPoint

pval
(exactly 1)

SceneRegion

pointLU
(exactly 1)

pointRD
(exactly 1)

 

 Figure 2. Model ontologies structure 

4.1 Object Assessment Knowledge 

The L1 ontologies represent tracks and tracked entities 

information. We have separated these two types of 

knowledge in the tracking entities (TREN) and the scene 

objects (SCOB) description ontologies, respectively. 

4.1.1 Representation of Tracking Data 

The core concepts in TREN are Frame and Track. A frame 

is identified by an ID and is marked with a time stamp 

(using OWL-Time [23]). The definition of tracks is more 

complex. It is necessary to design an ontology that can 

represent the temporal evolution of the scene, and not only 

its state in a given instant. That is, we want to keep all the 

information related to a track during the complete 

sequence (activity, occlusions, position, size, velocity, 

etc.), which changes between frames, and not only its 

lastly updated values. Therefore, we must connect tracks, 

frames, and track properties at each frame, which is a 

ternary relation. Furthermore, track features must be 

defined as general as possible, in such a way that they can 

be extended.  

To solve the first issue, we have followed a design pattern 

proposed by the W3C Semantic Web Best Practices and 

Deployment Working Group to define ternary relations in 

OWL ontologies [24]. We have associated a set of 

TrackSnapshots to each Track. Each TrackSnapshot, with 

property values, is asserted to be valid in various Frames. 

To solve the second issue, we have followed the qualia 

approach, used in the upper ontology DOLCE [25]. This 

pattern distinguishes between properties themselves and 

the space in which they take values. For instance, we have 

defined a Position concept that is related with a 

positionValue property to a value of the PositionValue space. 

Since the TREN ontology is specifically intended to 

describe the data provided by the tracking algorithm, our 

definition of context is hardly applicable at this level. 

Nevertheless, additional axioms or rules to calculate 

complex properties of tracks (e.g. distances), as well as 

spatial relationships (inclusion, adjacency, etc.), could be 

regarded and created as TREN context. 

4.1.2 Representation of Scene Objects 

Scene objects are real-world entities that have a visual 

materialization. A general representation for these objects 

and their properties to be extended in particular 

applications is defined in the SCOB ontology. For 

example, in surveillance applications, concepts such as 

person, door, or column, will be created to extend the 

more general SCOB concepts. SCOB mainly contains L1 

knowledge, that is, knowledge about single object without 

considering interactions between them. However, it may 

be interesting to represent some relations between objects 

not strictly pertaining to activities. For this reason, the 

tracked entities knowledge and the associated context 

knowledge is halfway between L1 and L2. 

The main concept in SCOB is SceneObject. SceneObject is 

an abstract class that includes all the interesting objects in 

the scene, either dynamic (i.e. TrackedObject) or contextual 

(i.e. StaticObject). SceneObjects have properties, e.g. 

position, illumination, behavior, etc. Properties are also 

represented in terms of snapshots and quales, in the same 

manner as it has been explained for TrackSnapshots. In this 

way, it is possible to describe the properties of an object 

during its whole life and to add new properties easily.  

An abductive reasoning procedure to calculate the 

correspondence between graphical tracks (TREN 

instances) and real-world objects (SCOB instances), i.e. to 

determine „correspondence‟ between observed tracks and 

expected objects, must be developed. The implementation 

still remains to the application developer, but with the 

advantage that it can rely on the ontological model. With 

context and sensor data described formally, semantic 

procedures can be created without effort. In the next 

section we provide an example of abductive reasoning for 

achieving correspondence by using rules. 

4.2 Representation of Activities and Impacts 

The ACTV ontology provides a vocabulary for describing 

scene activities. Activities are defined in terms of relations 
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between scene objects expressed in the SCOB ontology. 

That means that the ACTV ontology imports SCOB. 

Likewise, the IMPC ontology, which contains terms to 

describe activity impacts, is built on top of ACTV. 

Since the number of possible scenes is countless, only 

very general activities have been defined in ACTV. 

Domain-specific activities must be created by refinement 

of the elements of the ACTV ontology (e.g. Grouping). In 

this approach to the problem, we have reused part of the 

formulation of the ontology presented in [26]. We have 

also introduced some properties to establish the temporal 

duration of the activities. The IMPC ontology, in turn, 

contains a vocabulary to associate an evaluation value to 

ACTV activities. This value can be a simple numerical 

assessment or, more probably, a complex expression 

suggesting or predicting future actions. 

At these levels, the difference between contextual and 

sensorial knowledge is practically inexistent. It is not 

possible to state that an activity is exclusively perceived 

or contextual, since its expression relates static and 

dynamic objects. Furthermore, activities are recognized by 

taking into account a considerable amount of external and 

a priori knowledge. This means that it is not possible to 

make a distinction, and that context is embedded at the L2 

level. This argument is directly applicable to L3. 

In accordance, it is important to stress once again that the 

ontology can be only used for describing activities and 

inferring implicit actions from the explicit assertions. 

Interpreting a scene („recognition‟) based upon scene 

object properties requires abductive reasoning. The 

advantage is that objects and activities are formally 

characterized with the SCOB and ACTV ontologies, which 

assist this procedure. These considerations are also valid 

for the evolution between ACTV and IMPC („evaluation‟). 

5 Example 

To exemplify the creation of and the reasoning with scene 

descriptions, we have used a sequence of the PETS 

dataset2. In this recording, various people walk in front of 

a shop window. We have developed a specific EXPETS 

ontology that adapts the generic model presented in the 

previous section to this scenario by adding concepts such 

as person, door, or column. The PETS video is processed 

by a tracking algorithm and then, the result data is inserted 

as ontology instances. In the first example, we show how 

a track is described with the TREN ontology and how 

knowledge is used to assign the track to a predefined type 

of object. In the second example, we show how activities 

can be recognized by applying abduction rules. 

                                                 
2  The Performance Evaluation of Tracking and Surveillance (PETS) 

dataset has available numerous scenarios. We have chosen a minute-long 

sequence from the PETS2002 workshop, where the underlying task was 

to track pedestrians in indoor video sequences of a shopping mall 

(http://www.cvg.cs.rdg.ac.uk/PETS2002/pets2002-db.html).  

 

Figure 3. Person in PETS sequence 

Example 1. Fig. 3 shows a frame of the sequence. A 

person is moving in the scene, which is detected by the 

underlying video tracking algorithm. An excerpt of the 

description in OWL Manchester syntax [27] of the track 

instance detected by the algorithm using TREN (the L1 

ontology) concepts and relations is shown below. 

Instances are marked in italics, and concepts are 

underlined. 

Individual: track1 

  Types: Track 

  Facts: 

    hasSnapshot: tr1sn1 

Individual: tr1sn1 

  Types: TrackSnapshot 

  Facts: 

    isValidIn   frame2 

    hasActualProperties prop1  

Individual: prop1 

  Types: ActiveProperties 

  Facts: 

    hasPosition pos1 

    hasSize siz1 

Individual: pos1 

  Types: Position 

  Facts: 

    hasValue posval1 

Individual: posval1 

  Types: PositionValue 

  Facts: 

    pval point1 

Individual: point1 

  Types: 2DPoint 

  Facts: 

    x 250 

    y 100 

Abductive if-then rules expressing a priori contextual 

knowledge can be defined to create objects to associate 

tracks to, that is, to transform L1 knowledge into L2 

knowledge. For example, the following rule infers that, 

given the size and the region where is located a track 

snapshot which has not been identified, it can be guessed 

that it is a person. The rule is written in RACER rule 

language. We assume that suitable implementation for 

new predicates (dimensions, inclusion, etc.), marked in 

bolds, have been also developed. Terms preceded by „?‟ 

are variables, and terms in italics are constants. Concept 

and property predicates are show in roman.  
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Track(?t) ^ 

TrackSnapshot(?tsn) ^  

hasSnapshot(?t, ?tsn) ^ 

isValidIn(?tsn, currentFrame) ^  

not(hasAssociatedTrack(?an_obj, ?t)) ^ 

inside(?tsn, region1) ^ 

width(?tsn, ?w) ^ height(?tsn, ?h) ^ 

greaterThan(?w, l1) ^ greaterThan(?h, l2) 

--->  

Person(?p) ^ 

hasAssociatedTrack(?p, ?t) ^ 

ObjectSnapshot(?new_osn) ^ 

hasSnapshot(?p,?new_osn) ^ 

isValidIn(?new_osn, currentFrame) 
 

 

 

Figure 4. People grouping in PETS sequence 

Example 2. Let us suppose now the situation of Fig. 4, 

which shows two persons grouping. A rule such as the 

following could be defined to infer the higher level 

activity from the lower-level object descriptions: The 

following rule establishes that if the distance between two 

persons, with associated tracks, is reduced during a 

predetermined number of successive frames, they are 

grouping. 

Person(?p1) ^ Person(?p2) ^ 

hasSnapshot(?p1, ?psn1) ^ 

hasSnapshot(?p2, ?psn2) ^ 

isValidIn(?psn1, currentFrame) ^ 

isValidIn(?psn2, currentFrame) ^ 

distance(?psn1, ?psn2,?d)) ^ 

hasSnapshot(?p1, ?psn1prev_1) ^ 

hasSnapshot(?p2, ?psn2prev_1) ^ 

isValidIn(?psn1prev_1, prevFrame_1) ^ 

isValidIn(?psn2prev_1, prevFrame_1) ^ 

distance(?psn1, ?psn2, ?dprev_1)) ^ 

… 

lessThan(?d,?dprev_1) ^…^ lessThan(?…,?dprev_n) 

---> 

Grouping(?act) ^ 

involves(?act, ?p1) ^ involves(?act, ?p2) ^ 

hasDuration(?act, ?duration) ^ 

begins(?duration, prevFrame_n) ^ 

ends(?duration, currentFrame) ^ 

This example is quite simple, but it can be easily seen that 

the procedure can be extended without difficulty to more 

complex object interactions. 

6 Conclusions and Future Work 

In this paper, we have proposed a context-based model to 

support information and data fusion in computer vision. 

The model encompasses a set of ontologies that are used 

to describe the sensorial and contextual knowledge of the 

system. We have studied the information that should be 

considered at each JDL level and we have created general 

ontologies to represent it. General ontologies are 

specialized in each application domain, offering a 

common and reusable framework for the development of 

visual data and information fusion systems. The model 

explicitly considers context knowledge, which is a key 

factor to accomplish fusion objectives, and provides 

suitable mechanisms to represent it. 

Formal representation of knowledge in fusion has several 

advantages. The symbolic model of the scene is more 

interpretable, which facilitates the incorporation of the 

human analyst in the fusion loop. It is also possible to 

reason with them in order to: (i) deduce implicit 

knowledge from the explicit descriptions; (ii) infer 

explanations for the observed facts with the aim of 

creating more abstract representations. The use of 

ontologies makes it easy to extend the knowledge bases 

and to interoperate between components and with other 

systems. Interestingly enough, our representation allows 

the description of the temporal evolution of the system, 

and not only its state in a precise instant. 

We plan to continue this research work various directions. 

First, we will fully integrate the ontological representation 

with our tracking software [28]. This may imply further 

refinements or simplifications of the current model, which 

has been developed with a very broad scope. To test the 

solution in real domains, suitable descriptive ontologies 

extending the model and abduction rules will have to be 

created (manually or semi-automatically), which poses a 

serious challenge because it may require a considerable 

effort. External context data sources (e.g. weather) will be 

also considered, which will require implementing 

appropriate middleware to incorporate them into the 

model. Moreover, we will study how reasoning within the 

model could be applied to provide feedback to the 

tracking system, i.e. how to modify the behavior of the 

algorithm according to the scene and the context. We 

strongly believe that the use of our formal knowledge 

representation model will result in a significant 

improvement of the computer vision system, which will 

be able to understand more aspects of the scene and apply 

this knowledge to enhance image-processing algorithms. 
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