
UNIVERSIDAD CARLOS III DE MADRID
ESCUELA POLITÉCNICA SUPERIOR

DEPARTAMENTO DE
TEORÍA DE LA SEÑAL Y COMUNICACIONES

DOCTORAL THESIS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

SPARSE GAUSSIAN PROCESSES FOR
LARGE-SCALE MACHINE LEARNING

AUTHOR: MIGUEL LÁZARO GREDILLA
SUPERVISOR: DR. ANÍBAL R. FIGUEIRAS VIDAL

LEGANÉS, MARZO 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29401685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TESIS DOCTORAL

Sparse Gaussian Processes for Large-Scale Machine Learning

Autor:
Miguel Lázaro Gredilla

Director:
Dr. Anı́bal R. Figueiras Vidal

Firma del Tribunal Calificador:

Presidente:

Vocal:

Vocal:

Vocal:

Secretario:

Calificación:

Leganés, a

ii

Agradecimientos

Esta tesis es fruto de mucho tiempo dedicado a ponerme al dı́a en un mundo que me
era desconocido, garabatear folios y quedarme absorto mirando una pared, el monitor
del laboratorio o la cortina de la ducha. No muy distinto de lo que solı́a hacer cuando
tenı́a tres años. Supongo que no he cambiado tanto.

En este tiempo he aprendido mucho y aportado un poquito. Y esto ha sido posible
gracias a todas las personas que han estado a mi alrededor, han confiado en mı́, me
han animado y han hecho que esta aventura merezca la pena. Por ello, me gustarı́a
transmitir desde aquı́ mi agradecimiento a todos ellos:

A Anı́bal, que me introdujo en el fascinante mundo de las maquinitas (relativa-
mente) inteligentes y fue el causante de todo esto. Durante estos años, él siempre ha
estado ahı́, ora supervisando mi trabajo, ora haciéndome saber quién inventó lo mismo
hace quince años. Me ha dado ideas, me ha vendido firmas (que afortunadamente aún
no ha cobrado). Me ha enseñado turco. Pero lo más importante es la libertad y con-
fianza con la que me ha permitido explorar mis divagaciones, facilitando mi desarrollo
no sólo aquı́, sino también en otros rincones del mundo. Con esta tesis espero dar
respuesta a una antigua pregunta: “¿Investigando...?”

A mis compañeros de laboratorio originales, Luis, Javi y Jaisiel, que hicieron que
mis primeros pasos entre estas mismas cuatro paredes fueran divertidos y variados.
Hablo de una época en la que los monitores eran CRT y aquı́ se oı́a constantemente
“eh, caracandao...”.

A los tradicionales de estos pasillos, incluidos pasillos paralelos, perpendiculares,
y probablemente oblicuos... Gente interesante y agradable, que ha hecho mi vida aquı́
más cómoda y con la que ha sido muy fácil trabajar. Algunos de ellos: Emilio, siempre
dispuesto a escuchar y aportarme su sabidurı́a. Jero, siempre brillante y con algún
comentario en la recámara. Vanessa, siempre resolutiva y útil. Carlos, siempre wey.

iii

AGRADECIMIENTOS

Manel, experto en plantas, electromagnetismo y sus interrelaciones. Ángel, con una

solución para cada problema. Óscar, que ha aguantado mis insistentes preguntas en los

últimos metros de este documento. Darı́o, melómano, genio y gran persona. Fernando

Pérez, habitante intermitente, con el que me he cruzado pocas veces, pero siempre para

aprender algo, sea sobre comida japonesa, o emborronando folios.

Desgraciadamente, estas lides son duras y algunos de mis viejos compañeros ya no

están con nosotros. De hecho, afortunadamente, han pasado a mejor vida. Me gustarı́a

recordar a Javi, Jaisiel y Manu, a los que se echa mucho de menos, especialmente a

la hora de comer. Aquellas conversaciones casi conseguı́an que pudiera olvidarme de

lo que deglutı́a. ¿Qué fue de la carrera de los números, las vı́vidas descripciones de

Murcia y las discusiones sobre la naturaleza humana y el futuro?

A las siguientes generaciones, compañeros en los laboratorios de tratamiento digi-

tal de cosas y la pista de fútbol: Efraı́n, Luis, Adil, Soufiane...

Aunque es improbable que puedan llegar a leerlo nunca (especialmente en este

idioma), es justo agradecer a la gente de Cambridge, por breve que fuera mi estancia

allı́, su tiempo, dedicación y buenos momentos: Carl, Zoubin y Joaquı́n, entre los

mayores y Finale, Sinead, Jack, Jurgen, Yunus, Marc y Shakir, entre los pequeños. No

dejo de sorprenderme de la cantidad de eminencias por metro cuadrado de esa ciudad...

A Nacho y Steven les agradezco su buena disposición y lo fructı́fero de nuestra

relación, que sin duda no terminó cuando dejé Santander. Estupendo lugar, por cierto.

A Nerea, por los buenos momentos y las nuevas experiencias, por hacer mi vida

más emocionante e impredecible.

A mis amigos de más de media vida, Expósito, Layla, Álvaro (aka Dennis), Ricardo

y Diego. Gracias por no dejar de estar ahı́ a pesar de la distancia. Y por vuestras visitas,

llenas de momentos que no olvidaremos en el resto de nuestras vidas.

A mis abuelos, Porfi y Marcos, por el cariño incondicional recibido a lo largo de

toda una vida.

A mis padres, Fernando y Lourdes, que han sido, con diferencia y como de cos-

tumbre, las personas con las que más he podido contar y de las que más apoyo he

recibido. Me han enseñado a pensar, ser libre y feliz. Me animaron a venir aquı́ a pesar

de resultarles duro y han vivido este tiempo con más intensidad que yo, si cabe.

iv

AGRADECIMIENTOS

A mi hermano, que decı́a que no querı́a estudiar, y está ya a punto de terminar su
segunda ingenierı́a. Uno de los objetivos de esta tesis (omitido en las subsiguientes
secciones) es seguir llevándole ventaja. Aunque sólo pueda ser académicamente. Ve-
remos qué depara el futuro.

A todos, gracias.

v

vi

Abstract

Gaussian Processes (GPs) are non-parametric, Bayesian models able to achieve
state-of-the-art performance in supervised learning tasks such as non-linear regression
and classification, thus being used as building blocks for more sophisticated machine
learning applications. GPs also enjoy a number of other desirable properties: They are
virtually overfitting-free, have sound and convenient model selection procedures, and
provide so-called “error bars”, i.e., estimations of their predictions’ uncertainty.

Unfortunately, full GPs cannot be directly applied to real-world, large-scale data
sets due to their high computational cost. For n data samples, training a GP requires
O(n3) computation time, which renders modern desktop computers unable to handle
databases with more than a few thousand instances. Several sparse approximations that
scale linearly with the number of data samples have been recently proposed, with the
Sparse Pseudo-inputs GP (SPGP) representing the current state of the art. Sparse GP
approximations can be used to deal with large databases, but, of course, do not usually
achieve the performance of full GPs.

In this thesis we present several novel sparse GP models that compare favorably
with SPGP, both in terms of predictive performance and error bar quality. Our models
converge to the full GP under some conditions, but our goal is not so much to faith-
fully approximate full GPs as it is to develop useful models that provide high-quality
probabilistic predictions. By doing so, even full GPs are occasionally outperformed.

We provide two broad classes of models: Marginalized Networks (MNs) and Inter-
Domain GPs (IDGPs). MNs can be seen as models that lie in between classical Neural
Networks (NNs) and full GPs, trying to combine the advantages of both. Though
trained differently, when used for prediction they retain the structure of classical NNs,
so they can be interpreted as a novel way to train a classical NN, while adding the ben-
efit of input-dependent error bars and overfitting resistance. IDGPs generalize SPGP
by allowing the “pseudo-inputs” to lie in a different domain, thus adding extra flexibil-
ity and performance. Furthermore, they provide a convenient probabilistic framework
in which previous sparse methods can be more easily understood.

All the proposed algorithms are tested and compared with the current state of the
art on several standard, large-scale data sets with different properties. Their strengths
and weaknesses are also discussed and compared, so that it is easier to select the best
suited candidate for each potential application.

vii

viii

Resumen extendido en español

En este resumen se pretende dar cuenta de los objetivos de la presente tesis, ası́ como

detallar sus conclusiones y aportaciones originales. Asimismo, se presentan algunas

de las futuras lı́neas de investigación que pueden derivarse de este trabajo.

Introducción y motivación

Los procesos Gaussianos (Gaussian Processes, GPs) son modelos Bayesianos no para-

métricos que representan el actual estado del arte en tareas de aprendizaje supervisado

tales como regresión y clasificación. Por este motivo, son uno de los bloques básicos

usados en la construcción de otros algoritmos de aprendizaje máquina más sofisti-

cados. Asimismo, los GPs tienen una variedad de propiedades muy deseables: Son

prácticamente inmunes al sobreajuste, disponen de mecanismos sensatos y cómodos

para la selección de modelo y proporcionan las llamadas “barras de error”, es decir,

son capaces de estimar la incertidumbre de sus propias predicciones.

Desafortunadamente, los GPs completos no pueden aplicarse directamente a bases

de datos de gran tamaño, cada vez más frecuentes en la actualidad. Para n muestras, el

tiempo de cómputo necesario para entrenar un GP escala comoO(n3), lo que hace que

un ordenador doméstico actual sea incapaz de manejar conjuntos de datos con más de

unos pocos miles de muestras. Para solventar este problema se han propuesto recien-

temente varias aproximaciones “dispersas”, que escalan linealmente con el número de

muestras. De entre éstas, el método conocido como “procesos Gaussianos dispersos

usando pseudo-entradas” (Sparse Pseudo-inputs GP, SPGP), representa el actual es-

tado del arte. Aunque este tipo de aproximaciones dispersas permiten tratar bases de

datos mucho mayores, obviamente no alcanzan el rendimiento de los GPs completos.

ix

RESUMEN EXTENDIDO EN ESPAÑOL

En esta tesis se introducen varios modelos de GP disperso que presentan un rendi-

miento mayor que el del SPGP, tanto en cuanto a capacidad predictiva como a calidad

de las barras de error. Los modelos propuestos convergen al GP completo que aproxi-

man bajo determinadas condiciones, pero el objetivo de esta tesis no es tanto aproximar

fielmente el GP completo original como proporcionar modelos prácticos de alta capaci-

dad predictiva. Tanto es ası́ que, en ocasiones, los nuevos modelos llegan a batir al GP

completo que los inspira.

Objetivos y metodologı́a

El objetivo de esta tesis es introducir y poner a prueba a nuevas ideas para la cons-

trucción de GPs dispersos que alcancen, hasta cierto punto, las ventajas de los GPs

completos y que, al mismo tiempo, sean capaces de manejar conjuntos de datos de

gran tamaño.

Nos restringiremos al desarrollo y análisis de modelos que puedan ser entrena-

dos (incluyendo la fase de selección de modelo) en tiempo O(m2n), puedan hacer

predicciones probabilı́sticas en tiempo O(m2) por caso de test y requieran un espacio

O(mn), es decir, escalen linealmente con el número de muestras1. Existe además un

escalado lineal del tiempo de cómputo con la dimensión de los datos de entrada, pero

esta dependencia se omite en general. El SPGP será nuestra referencia a batir, ya que

tiene precisamente estos órdenes de complejidad y constituye el actual estado del arte

en GPs dispersos. Para que las comparaciones sean significativas, nuestros modelos

se dimensionarán de manera que el factor multiplicativo del coste computacional coin-

cida con el del SPGP, haciendo ası́ que el tiempo de cómputo necesario para nuestros

métodos sea aproximadamente el mismo que el del SPGP.

Las medidas de calidad que usaremos a la hora de evaluar nuestros modelos frente

a la referencia serán el error cuadrático (normalizado con respecto a un predictor trivial

consistente en la media de los datos de entrenamiento) y la log-probabilidad media de

los datos de test. Mientras que la primera medida evalúa sólo la precisión de las predic-

ciones, la segunda evalúa las predicciones probabilı́sticas de manera global, teniendo

1Como comparación, un GP completo se entrena enO(n3), puede hacer predicciones probabilı́sticas

en O(n2) por caso de test y requiere un espacio O(n2).

x

RESUMEN EXTENDIDO EN ESPAÑOL

en cuenta no sólo las medias, sino también las varianzas (es decir las estimaciones de

la incertidumbre de las predicciones).

Ası́ pues, todos los algoritmos propuestos serán puestos a prueba y comparados

con el SPGP sobre varios conjuntos de datos estándar de diferentes propiedades y de

gran tamaño. Se intentarán identificar además las fortalezas y debilidades de cada uno

de los métodos, de manera que sea más sencillo elegir el mejor candidato para cada

aplicación potencial.

Organización

El Capı́tulo 1 sirve de introducción a los modelos Bayesianos y en concreto, a los

GPs. Contiene además un resumen de los principales hitos en la evolución de los GPs

dispersos, haciendo hincapié en las aportaciones de cada uno de estos modelos sobre

el anterior. Para clarificar las relaciones entre los diferentes modelos previos, estos

se enmarcan, cuando es posible, en el esquema unificador propuesto por Quiñonero-

Candela y Rasmussen (2005). Este esquema propone sustituir la vieja interpretación

de los GPs disperso como aproximaciones a GPs completos por una nueva en la que se

les considera GPs exactos bajo un prior modificado que resulta computacionalmente

ventajoso. Todos los modelos de esta tesis se proporcionarán también bajo esta nueva

interpretación.

En el Capı́tulo 2 se introduce el GP de espectro disperso (Sparse Spectrum GP,

SSGP), un modelo Bayesiano trigonométrico que puede usarse para aproximar cual-

quier GP completo estacionario. A diferencia de otros modelos dispersos previos,

el SSGP es un proceso auténticamente estacionario (y no solo una aproximación a

un proceso estacionario). El SSGP se presenta en primer lugar como una aproxi-

mación de Monte Carlo al GP completo, para después proporcionar dos interpreta-

ciones Bayesianas alternativas. Cuando eliminamos el requisito de convergencia al

GP completo, la flexibilidad del SSGP se incrementa, proporcionando resultados alta-

mente competitivos en conjuntos de datos de gran tamaño.

En el Capı́tulo 3 se generaliza el SSGP, insertándolo en una clase de modelos Baye-

sianos más amplia, con la estructura de un modelo lineal generalizado en el que los

“pesos de salida” han sido marginalizados. Nos referiremos a esta clase como redes

xi

RESUMEN EXTENDIDO EN ESPAÑOL

marginalizadas (Marginalized Networks, MNs). Se investigan los problemas resul-

tantes de la aplicación directa de las MNs a problemas de regresión y se proponen

dos maneras diferentes de evitarlos: Ruido acotado y mezcla de redes. Se comprue-

ban las ventajas de estas MNs mejoradas en problemas de gran tamaño y se compara

con el anterior SSGP (ası́ como con el SPGP). Finalmente, se muestra como se puede

aprovechar la estructura de estas redes para reducir linealmente la dimensión de los

datos de entrada (manteniendo su capacidad de predictiva sobre la variable de salida).

En el Capı́tulo 4 se extienden los GPs a múltiples dominios (Inter-domain GPs,

IDGPs). Definiendo un GP sobre más de un dominio, es posible extender el SPGP y

situar las pseudo-entradas2 en otros dominios. Esto tiene dos efectos de interés: Por

una parte, desacopla la forma de las funciones de base de la forma de la función de co-

varianza, y por otra, añade mayor flexibilidad y capacidad expresiva al modelo, mejo-

rando su rendimiento. Se trata de un marco general que incluye a otros modelos de-

sarrollados previamente, tales como los GPs multi-escala de Walder et al. (2008), apor-

tando una nueva perspectiva sobre su significado e interpretación. Los IDGPs también

pueden usarse para otros propósitos no relacionados con la inferencia computacional-

mente eficiente, tales como inferencia entre dominios o imponer restricciones sobre la

función latente, pero no exploraremos esas posibilidades.

En el Capı́tulo 5 se investigan varias extensiones de las ideas previas. En primer lu-

gar, se expresan los perceptrones multicapa como MNs y se comprueba su rendimiento.

A continuación, se proporcionan los detalles necesarios para extender los GPs disper-

sos a verosimilitudes no Gaussianas sin empeorar su eficiencia computacional. Este

proceso se describe de forma general para cualquier modelo con una determinada es-

tructura en su matriz de covarianza, lo que permite aplicar todos los modelos presen-

tados en esta tesis a clasificación y regresión robusta. Desarrollaremos ambos casos y

los aplicaremos en los conjuntos de datos correspondientes.

El Capı́tulo 6 concluye esta tesis con un resumen de las contribuciones realizadas,

una comparativa de los modelos propuestos y un breve resumen de posibles lı́neas

futuras.

Finalmente, se incluyen seis apéndices que sirven de referencia a lo largo de esta

tesis. En ellos se incluyen relaciones básicas de álgebra matricial, identidades útiles

2Al situarlas en otros dominios distintos al de entrada, nos referiremos a ellas como pseudo-

caracterı́sticas.

xii

RESUMEN EXTENDIDO EN ESPAÑOL

para el manejo de distribuciones Gaussianas, demostraciones de convergencia de al-

gunos de los modelos en el lı́mite infinito y los detalles necesarios para una imple-

mentación eficiente de los algoritmos propuestos.

Conclusiones y lı́neas futuras

En esta tesis se han desarrollado y evaluado varios modelos de GP disperso junto con

diferentes estrategias de selección de modelo. Estos GPs dispersos intentan conservar

las ventajas de los GP completos (gran precisión, predicciones probabilı́sticas, inmu-

nidad al sobreajuste), al tiempo que reducen sensiblemente los requisitos cómputo y

memoria deO(n3) yO(n2) aO(m2n) yO(mn), respectivamente. Las comparaciones

con SPGP, el actual estado del arte, muestran que los métodos propuestos proporcio-

nan una mejora significativa en la práctica y pueden por tanto resultar útiles para atacar

bases de datos a gran escala. Aunque este trabajo ha estado principalmente centrado

en modelos de regresión con ruido Gaussiano, hemos mostrado en el Capı́tulo 5 como

estos modelos pueden extenderse directamente para llevar a cabo regresión robusta,

clasificación, etc.

A continuación se resumen las principales contribuciones de esta tesis, se con-

trastan las ventajas y desventajas de los diferentes algoritmos introducidos en un cuadro

comparativo y se mencionan posibles futuras lı́neas de trabajo.

Aportaciones originales

• GP de espectro disperso (SSGP). En el Capı́tulo 2 se ha introducido el SSGP,

en el que se explota la interpretación espectral de los GPs para conseguir una ma-

triz de covarianza dispersa (lo que se traduce directamente en mayor rendimiento

computacional). El SSGP tiene varias propiedades que lo distinguen de otros

modelos dispersos: Tiene una covarianza auténticamente estacionaria (a dife-

rencia de la mayor parte de los GP dispersos, que sólo aproximan dicha esta-

cionariedad), no tiene parámetros espaciales en el dominio de entrada (como

podrı́an ser las pseudo-entradas del SPGP, o el conjunto activo de otros mode-

los), y usa funciones base globales, periódicas (en contraste con las bases locales

xiii

RESUMEN EXTENDIDO EN ESPAÑOL

usadas por la mayor parte de los GP locales). Se han proporcionado tres inter-

pretaciones equivalentes del SSGP, una de las cuales muestra su correspondencia

con un modelo lineal generalizado de bases tipo coseno en el que las fases han

sido marginalizadas.

Se han propuesto dos estrategias alternativas para seleccionar las llamadas “mues-

tras espectrales” (es decir, las frecuencias de las bases usadas en la aproxi-

mación):

(a) Muestras espectrales fijas: Si se generan aleatoriamente a partir de una

densidad de probabilidad p(sr) y se mantienen fijas, el SSGP aproxima un

GP completo cuya función de covarianza es proporcional a la transformada

de Fourier inversa de p(sr). La convergencia al GP completo se alcanza

cuando el número de muestras espectrales tiende a infinito. Tan sólo se

requiere seleccionar un pequeño número de hiperparámetros (los mismos

que para un GP completo), por lo que la selección de modelo es rápida y

se evita el sobreajuste. La contrapartida a estas ventajas es un rendimiento

más limitado.

(b) Muestras espectrales seleccionables: Si aprendemos las muestras espec-

trales (además de los hiperparámetros), la precisión de las predicciones

aumenta sensiblemente. Al introducirse este grado de libertad adicional,

cuando el número de muestras espectrales es grande, existe un riesgo de so-

breajuste. Hemos mostrado empı́ricamente que este sobreajuste (en el sen-

tido explicado en la Sección 2.5) es rara vez un problema (probablemente

debido a la propiedad de marginalización de fase antes mencionada), pero

puede dar lugar ocasionalmente a varianzas predictivas pobres (es decir, el

modelo puede mostrar un exceso de confianza en sus propias predicciones).

• Redes marginalizadas (MNs). En el Capı́tulo 3 se introducen las MNs junto a

dos estrategias de reducción de sobreajuste. Las MNs son, esencialmente, mode-

los lineales generalizados en los que los pesos de salida han sido marginalizados.

Los pesos de entrada pueden generarse a partir de una determinada distribución

de probabilidad y fijarse, o aprenderse junto a los hiperparámetros de potencia de

ruido y de señal. Al igual que con el SSGP, fijar los pesos de entrada evita com-

pletamente el sobreajuste, pero se requieren más funciones de base para obtener

un alto rendimiento (es decir, el modelo es menos disperso). Cuando se aprenden

xiv

RESUMEN EXTENDIDO EN ESPAÑOL

los pesos de entrada, sólo se necesita un número moderado de funciones de base,

pero pueden aparecer problemas de sobreajuste. Para evitarlos, se proponen dos

nuevas estrategias: Ruido acotado y mezcla de redes.

(a) El ruido acotado es una estrategia sencilla y fácil de aplicar: Se es-

tima la potencia del ruido presente en el conjunto de datos y después se

utiliza este valor para acotar inferiormente el hiperparámetro correspondi-

ente. Hemos argumentado teóricamente y comprobado experimentalmente

que esto ayuda a reducir el sobreajuste. Aunque este método consigue su

propósito, dando lugar a predicciones de buena calidad (medias predictivas

precisas), puede producir varianzas predictivas pobres.

(b) La mezcla de redes es un procedimiento análogo al “bagging” (ver por

ejemplo Breiman (1996)), pero en este caso la diversidad se introduce

utilizando diferentes inicializaciones aleatorias, en lugar de utilizar difer-

entes subconjuntos de los datos. Hemos mostrado empı́ricamente que esta

estrategia mejora tanto las medias como las varianzas predictivas, pro-

duciendo en conjunto unas predicciones probabilı́sticas de alta calidad.

Es posible expresar el SSGP como un tipo particular de MN con restricciones

adicionales sobre los pesos de entrada. Estas restricciones (que dan lugar al

efecto de marginalización de fase) parecen ser la causa de la resistencia al so-

breajuste inherente al SSGP. Como se muestra en el Capı́tulo 2, el SSGP puede

proporcionar buenos resultados incluso sin recurrir al ruido acotado o la mezcla

de redes. A pesar de esto, si el número de muestras espectrales no es pequeño

en comparación con el número de muestras de entrada, se recomienda aplicar

alguna de estas técnicas para reducir el riesgo de sobreajuste.

También se ha mostrado explı́citamente como la estructura de las MNs permite

una reducción lineal de la dimensión de los datos de entrada (manteniendo su

capacidad predictiva) a un coste muy reducido. Esto se puede conseguir:

(a) Forzando una reducción de dimensión en el propio diseño, es decir,

aprendiendo una proyección lineal de los datos de entrada en un espacio de

una dimensión menor, preespecificada.

(b) Descubriendo la dimensión intrı́nseca de la función que se está apren-
diendo a través de la descomposición en valores singulares de la matriz

xv

RESUMEN EXTENDIDO EN ESPAÑOL

de pesos de entrada tras el entrenamiento, lo cual requiere un tiempo de

cómputo de sólo O(mD2).

• GPs inter-dominio (IDGPs). En el Capı́tulo 4 se han extendido los GPs a varios

dominios linealmente relacionados, mostrando como era posible relacionar vari-

ables que se encontraban en diferentes dominios para hacer inferencia conjunta.

Se explotó esta posibilidad para extender el SPGP, permitiendo a las pseudo-

entradas situarse en un dominio diferente al de los los datos de entrada. Al

no encontrarse en el dominio de entrada nos referimos a ellas como “pseudo-

caracterı́sticas”, enfatizando ası́ como cada una de ellas nos informa sobre una

caracterı́stica del conjunto de datos sobre el que se trabaja. Algunas aproxima-

ciones existentes como el propio SPGP o los GPs multi-escala de Walder et al.

(2008) pueden interpretarse como particularizaciones de este modelo. Expresar

una determinada aproximación como un tipo de IDGP puede simplificarnos su

interpretación y darnos más detalles sobre él. Por ejemplo, en el caso de los

GPs multi-escala, se obtiene de manera natural la mejora de la varianza a priori

que se introdujo de manera post-hoc en el modelo original. Y lo que es más

relevante, se muestra que las condiciones propuestas en los GPs multi-escala

no son suficientes para garantizar una interpretación probabilı́stica del modelo.

Las condiciones necesarias para que esta interpretación sea posible se obtienen

directamente de considerarlos como IDGPs.

Los IDGPs se pueden aplicar a cualquier dominio que consista en una trans-

formación lineal del espacio de entrada (incluyendo convoluciones, integrales y

derivadas). En este trabajo hemos desarrollado

(a) IDGPs para (una versión “borrosa” de) el dominio de la frecuencia (Fre-
quency Inducing-Features GP, FIFGP)

(b) IDGPs para un dominio combinado de tiempo y frecuencia (Time-Frequen-
cy Inducing-Features GP, TFIFGP).

Ambos métodos comparten las principales propiedades del SPGP, pero resultan

en un rendimiento mayor (en términos de capacidad predictiva) en los conjuntos

de datos considerados.

• Extensión de las MNs al caso de los perceptrones multicapa y de todos los mo-

delos vistos al caso de verosimilitudes no Gaussianas. En el Capı́tulo 5 no se

xvi

RESUMEN EXTENDIDO EN ESPAÑOL

han introducido nuevas ideas, sino que se proporcionan detalles concretos sobre
como se pueden extender las aproximaciones previas y se presentan experimen-
tos para poner a prueba dichas extensiones. Se consideran las MNs con forma
de perceptrón multicapa y las extensiones a clasificación y regresión robusta de
los métodos dispersos propuestos.

En resumen, esta tesis proporciona un conjunto de GPs dispersos que pueden ser
usados para atacar problemas de aprendizaje supervisado a gran escala y que superan
el actual estado del arte. Se ha intentado enfatizar la flexibilidad y extensibilidad de
dichos modelos, de manera que puedan ser ajustados a las necesidades especı́ficas de
cada tarea concreta de manera directa.

Comparación de las metodologı́as propuestas

Los modelos discutidos en esta tesis se presentan de manera comparada en la Tabla 1.
Cada una de las categorı́as (a las que pueden pertenecer uno o más modelos) está va-
lorada de acuerdo a tres factores relevantes: Precisión (de las predicciones), resistencia
al sobreajuste (en el sentido descrito en la Sección 2.5) y calidad de las varianzas pre-
dictivas (es decir, si evitan confiar excesivamente en sus propias predicciones). Como
cabı́a esperar, ninguno de los modelos es el mejor en todos los aspectos. Sin embargo,
dado el amplio rango de opciones disponibles, se puede presumir que, dada una tarea,
al menos uno de ellos será apropiado.

Además, es posible agrupar estas categorı́as en dos tipos fundamentales:

(a) Modelos que encajan en la estructura de una MN (es decir, tienen la estructura
de modelos lineales generalizados). Cuando los pesos de entrada se aprenden con-
siguen una elevada precisión, pero pueden sobreajustar si se usan directamente.
Recurriendo a estrategias como la marginalización de fase en los SSGP, u otras
más generales como usar el ruido acotado o la mezcla de redes del Capı́tulo 3, es
posible reducir el impacto de este problema y mantener medias predictivas de alta
calidad. La calidad de las varianzas predictivas es razonablemente buena.

(b) Modelos que encajan en la estructura de los IDGPs (es decir, asumen que to-
dos los valores de la función latente son condicionalmente independientes dado un
conjunto de variables, posiblemente pertenecientes a un dominio diferente). En

xvii

RESUMEN EXTENDIDO EN ESPAÑOL

Método Precisión
Resistencia
al sobreaj.

Calidad de la
var. estimada

SSGP-fijos, MN-fijos
(MCN-fijos, MMLP-fijos)

media muy alta alta

SSGP alta media media-baja

BN-MNs
(BN-MCN, BN-MMLP)

alta alta baja

MNmix
(MCNmix, MMLPmix)

muy alta alta media-alta

IDGPS
(SPGP, FIFGP, TFIFGP)

media-alta alta alta

Tabla 1: Comparativa de las fortalezas y debilidades de los métodos propuestos en esta
tesis. El significado de cada columna está descrito en el texto.

este caso, existen restricciones adicionales que aseguran que el IDGP se aproxima
al GP completo lo mejor posible para el conjunto de pseudo-caracterı́sticas se-
leccionadas (minimizando la divergencia de Kullback-Leibler, ver Sección 4.2).
El apropiado manejo de las incertidumbres en estos modelos da lugar a unas vari-
anzas predictivas de alta calidad. Sin embargo, precisamente por ser modelos más
restringidos, normalmente no alcanzan el poder predictivo de las MNs. También
son modelos más complejos, por lo que tı́picamente requerirán más tiempo de
cómputo para un mismo número de funciones de base.

Lı́neas futuras

Algunas de las extensiones más relevantes a las ideas principales de esta tesis ya han
sido expuestas en el Capı́tulo 5. Muchas otras, sin embargo, no se han incluido y serán
objeto de futuras investigaciones. Algunas de ellas son:

• Extensiones para manejar múltiples salidas y aprendizaje multitarea. El
concepto de “compartición de pesos” se utiliza en las redes neuronales —entre

xviii

RESUMEN EXTENDIDO EN ESPAÑOL

otras cosas— para introducir dependencias entre diferentes salidas correspon-

dientes a una misma entrada (regresión multi-salida), o entre diferentes tareas

(regresión multi-tarea). Esta idea no podı́a ser usada en los GPs estándar, dado

que en un GP los pesos han sido marginalizados y por lo tanto no están presentes,

pero puede ser aplicada a muchos de los modelos desarrollados en esta tesis

(aquellos que encajan en la estructura de una MN, mostrados en las primeras

cuatro filas de la Tabla 6.1). Esto puede resultar útil para construir GPs dispersos

que se beneficien de las mejoras de rendimiento proporcionadas por los métodos

propuestos.

Dado que el aprendizaje multi-tarea trata con múltiples conjuntos de datos a la

vez, su coste computacional es particularmente alto. Bonilla et al. (2008) re-

curren a la aproximación Nyström para acelerar los cálculos y mencionan otras

alternativas a este efecto, tales como el SPGP. Algunas de nuestras propues-

tas, particularmente los IDGPs, podrı́an ser apropiados para esta tarea, apor-

tando mayor precisión (en comparación con otros métodos dispersos). Además,

los IDGPs permitirı́an nuevos tipos de acoplo entre tareas si se comparten las

pseudo-caracterı́sticas que los definen. Forzando a diferentes tareas a reutilizar

las mismas pseudo-caracterı́sticas, se podrı́a conseguir que éstas requiriesen de

un menor número de muestras por tarea para aprenderse con la misma precisión,

incrementando ası́ la capacidad predictiva.

• Nuevas “funciones de extracción de caracterı́sticas”. Cada IDGP está definido

por una función de extracción de caracterı́sticas. En esta tesis hemos considerado

cuatro funciones de extracción, las cuales dan lugar al SPGP, FIFGP, TFIFGP y

GPs multi-escala. Resultarı́a interesante explorar otras particularizaciones de los

IDGPs en el futuro; en particular parece razonable que utilizar otros esquemas

de enventanado (tales como múltiples ventanas siguiendo la distribución de los

datos de entrada) podrı́a resultar en métodos de mayor rendimiento.

• Combinación con el esquema variacional de Titsias (2009). Otra lı́nea de tra-

bajo prometedora consistirı́a en combinar los IDGPs con el método variacional

de Titsias (2009) para obtener algoritmos de regresión dispersa que aproximen

con mayor fidelidad la distribución del GP completo. El IDGP variacional se

aproximarı́a al GP completo a medida que el número de pseudo-caracterı́sticas

aumentase, convergiendo a él en el lı́mite.

xix

RESUMEN EXTENDIDO EN ESPAÑOL

• Aplicaciones que requieran de inferencia entre dominios. Hemos mencionado
esta posibilidad en el Capı́tulo 4. Aunque actualmente no conocemos aplica-
ciones en las que se requiera hacer inferencia acerca de datos que provengan de
diferentes dominios linealmente relacionados, tales aplicaciones pueden apare-
cer en el futuro. Por otra parte, incluso cuando todos los datos se encuentran
en un mismo dominio, esta técnica puede ser útil para hacer inferencia sobre
datos en otro (por ejemplo, inferir probabilı́sticamente cuál es la amplitud de
un conjunto de componentes de frecuencia a partir de datos en el dominio del
tiempo).

• Combinación de las MNs con nuevas técnicas de regularización. El sobre-
ajuste es uno de los principales problemas que impiden el uso directo de las MNs.
Aunque hemos proporcionado soluciones especı́ficas para evitar el sobreajuste
en esta tesis, podrı́a ser interesante combinar las MNs con otras técnicas de re-
gularización (existentes o futuras).

xx

Contents

Agradecimientos iii

Abstract vii

Resumen extendido en español ix

Contents xxi

Symbols and notation xxxv

1 Introduction 1

1.1 Gaussian Processes (GPs) . 2

1.1.1 What is a GP? . 2

1.1.2 Covariance functions . 3

1.1.3 Regression using GPs . 5

1.1.3.1 Likelihood . 6

1.1.3.2 Prior . 6

1.1.3.3 Posterior over the latent function 7

1.1.3.4 Posterior over the outputs 9

1.1.3.5 Computation and storage costs 10

1.1.4 Robust regression and classification 10

xxi

CONTENTS

1.1.5 Model selection . 11

1.2 Summary of previous sparse GP approximations 12

1.2.1 Subset of data . 13

1.2.2 The Nyström method . 13

1.2.3 Subset of regressors . 15

1.2.4 Projected Latent Variables 16

1.2.5 Sparse pseudo-Input Gaussian Processes 17

1.2.6 Other approximations . 19

1.3 Overview of the rest of the thesis . 20

2 Sparse Spectrum GPs 23

2.1 The model: Sparse Spectrum GP (SSGP) 24

2.1.1 SSGP as a Monte Carlo approximation to a full GP 24

2.1.2 SSGP as a trigonometric Bayesian model 27

2.1.2.1 The sine-cosine model 27

2.1.2.2 The cosine-phase model 29

2.1.3 Example: the ARD SE covariance case 30

2.2 SSGP properties . 32

2.2.1 Stationary nature . 32

2.2.2 No location parameters . 33

2.2.3 Periodicity . 33

2.2.4 Sparse Fourier Transform 34

2.3 Model selection . 34

2.3.1 SSGP with selectable spectral points 35

2.3.2 SSGP with fixed spectral points 36

2.4 Experiments . 37

2.4.1 One-dimensional toy problem 38

xxii

CONTENTS

2.4.2 Elevators and Pole Telecomm data sets 39

2.4.3 Kin-40k and Pumadyn-32nm data sets 42

2.4.4 Pendulum data set . 43

2.5 Overfitting versus overconfidence 45

2.6 On the effect of learning the phases 48

2.7 Summary and conclusions . 51

3 Marginalized Networks 53

3.1 The Marginalized Network (MN) model 54

3.1.1 Definition . 55

3.1.2 Marginalized Cosine Networks (MCN) 57

3.1.2.1 Model selection 57

3.1.2.2 SSGP as an MCN 59

3.1.3 Drawbacks of MNs . 59

3.2 Bounded-Noise Marginalized Networks (BN-MN) 61

3.2.1 Noise bounding . 61

3.2.2 Obtaining a noise power estimate 63

3.2.3 Bounded-Noise Marginalized Cosine Networks (BN-MCN) . 64

3.2.3.1 Model selection 64

3.2.4 Experiments . 65

3.2.4.1 The effect of noise bounding 66

3.2.4.2 Elevators and Pole Telecomm pole data sets 67

3.2.4.3 Kin-40k and Pumadyn-32nm data sets 68

3.2.4.4 Pendulum data set 70

3.2.4.5 Discussion . 71

3.3 Marginalized Network Mixtures (MNmix) 71

3.3.1 Combining MNs . 72

xxiii

CONTENTS

3.3.1.1 MN mixture model and matching moments Gaussian 73

3.3.1.2 MNmix as a posterior GP 75

3.3.2 Marginalized Cosine Network Mixtures (MCNmix) 76

3.3.3 Experiments . 77

3.3.3.1 The effect of mixing 78

3.3.3.2 Elevators and Pole Telecomm pole data sets 78

3.3.3.3 Kin-40k and Pumadyn-32nm data sets 80

3.3.3.4 Pendulum data set 81

3.3.3.5 Discussion . 82

3.4 Efficient supervised linear dimensionality reduction 83

3.5 Summary and conclusions . 86

4 Inter-Domain GPs 89

4.1 Definition . 90

4.2 Sparse regression using inducing features 91

4.3 On the choice of g(x, z) . 93

4.3.1 Relation with Sparse GPs using pseudo-inputs (SPGP) 94

4.3.2 Relation with Sparse Multiscale GPs (SMGP) 95

4.3.3 Frequency Inducing Features GP (FIFGP) 95

4.3.4 Time-Frequency Inducing Features GP (TFIFGP) 96

4.4 Model selection . 98

4.5 Experiments . 98

4.5.1 Elevators and Pole Telecomm data sets 99

4.5.2 Kin-40k and Pumadyn-32nm data sets 99

4.5.3 Pendulum data set . 102

4.6 Summary and conclusions . 103

xxiv

CONTENTS

5 Extensions 105

5.1 Muti-Layer Perceptrons (MLPs) as MNs 106

5.1.1 Multi-Layer Perceptrons . 106

5.1.2 MLPs in the infinite limit . 108

5.1.3 Marginalized MLPs (MMLPs) 109

5.1.4 Bounded-Noise Marginalized MLPs (BN-MMLPs) 110

5.1.4.1 Experiments . 111

5.1.5 Marginalized MLP Mixture (MMLPmix) 114

5.1.5.1 Experiments . 115

5.1.6 Discussion . 118

5.2 Non-Gaussian likelihoods . 119

5.2.1 Expectation Propagation (EP) 119

5.2.1.1 Approximate marginal posterior 121

5.2.1.2 The cavity distribution 122

5.2.1.3 Obtaining the site parameters 123

5.2.1.4 Model selection and inference 124

5.2.1.5 Summary of the procedure 125

5.2.2 EP for sparse GP models . 126

5.2.2.1 Posterior updates 127

5.2.2.2 Model selection and inference 129

5.2.2.3 Summary of the procedure 130

5.3 Sparse Robust Regression . 131

5.3.1 Sparse GP models with Laplace noise 131

5.3.2 Robust BN-MCN . 134

5.3.3 Experiments . 135

5.3.4 Discussion . 138

xxv

CONTENTS

5.4 Classification . 139

5.4.1 GP classification . 139

5.4.2 Sparse GP classification . 142

5.4.3 FIFGP for Classification (FIFGPC) 142

5.4.4 Experiments . 144

5.4.5 Discussion . 145

5.5 Summary and conclusions . 147

6 Conclusions and further work 149

6.1 Contributions . 149

6.2 A comprehensive comparison of the new techniques 152

6.3 Further work . 154

A Matrix algebra 157

A.1 Matrix inversion lemma . 157

A.2 Matrix determinant lemma . 157

A.3 The Cholesky factorization . 158

A.4 Matrix derivatives . 158

B Gaussian identities 159

B.1 Multivariate Gaussian distribution 159

B.2 Marginal and conditional distributions 159

B.3 Integral of the product of two Gaussians 160

B.4 Gaussian likelihood with linear parameter 160

B.5 Linear transformations . 160

B.6 Generation of random samples . 161

C Mathematical proofs 163

xxvi

CONTENTS

C.1 Rectangular-polar coordinate conversion 163

C.2 Convergence of SSGP-fixed to a full GP for infinite bases 164

C.3 Convergence of MCN-fixed to a full GP for infinite bases 166

D Model implementation 169

D.1 Full GP . 169

D.2 Sparse Spectrum GP . 170

D.3 Marginalized Networks

(also Bounded Noise and Network Mixture cases) 170

D.4 Inter-Domain GP . 171

D.5 EP for sparse models . 171

E Model log-evidence derivatives 173

E.1 Length-scale and power hyperparameters 173

E.2 MNs log-evidence derivatives . 174

E.2.1 SSGP design matrix derivatives 174

E.2.2 MCN design matrix derivatives (also BN-MCN, MCNmix) . . 175

E.2.3 MMLP design matrix derivatives (also BN-MMLP, MMLPmix) 175

E.3 Inter-Domain GP log-evidence derivatives 176

E.3.1 TFIFGP prior covariance derivatives (also FIFGP) 177

E.3.2 SPGP ARD MLP prior covariance derivatives 179

E.4 Non-Gaussian log-evidence derivatives 180

E.4.1 Log-evidence derivatives for IDGP with non-Gaussian likelihood180

E.4.1.1 FIFGPC log-evidence derivatives 181

E.4.2 Log-evidence derivatives for MNs with non-Gaussian likelihood181

E.4.2.1 Robust BN-MCN log-evidence derivatives 182

E.5 Full GP log-evidence derivatives . 183

xxvii

CONTENTS

F Code 185

Bibliography 187

xxviii

List of Figures

1.1 One-dimensional ARD SE covariance function 5

1.2 Prior distribution of the latent function for different length-scales . . . 7

1.3 Posterior distribution of the latent function for different length-scales . 9

2.1 Reconstruction of the ARD SE cov. functions using SSGP 31

2.2 Comparison of SSGP and SPGP on a toy 1-D problem 38

2.3 SSGP performance on the Elevators problem 40

2.4 SSGP performance on the Pole Telecomm problem 41

2.5 SSGP performance on the Kin-40k problem 43

2.6 SSGP performance on the Pumadyn-32nm problem 44

2.7 SSGP performance on the Pendulum problem 45

2.8 Overfitting vs. overconfidence on a toy problem 47

2.9 Linear combination of symmetric-Rayleigh random variables 50

2.10 Illustrating overfitting: SSGP vs. MCN 51

3.1 Reducing overfitting: MCN vs. BN-MCN 66

3.2 BN-MCN performance on the Elevators problem 67

3.3 BN-MCN performance on the Pole Telecomm problem 68

3.4 BN-MCN performance on the Kin-40k problem 69

3.5 BN-MCN performance on the Pumadyn-32nm problem 69

xxix

LIST OF FIGURES

3.6 BN-MCN performance on the Pendulum problem 70

3.7 Reducing overfitting and overconfidence: MCN vs. MCNmix 78

3.8 MCNmix performance on the Elevators problem 79

3.9 MCNmix performance on the Pole Telecomm problem 79

3.10 MCNmix performance on the Kin-40k problem 80

3.11 MCNmix performance on the Pumadyn-32nm problem 81

3.12 MCNmix performance on the Pendulum problem 82

3.13 [S]dd values for the Elevators and Pole Telecomm data sets 84

3.14 [S]dd values for the Kin-40k and Pendulum data sets 85

3.15 [S]dd values and projection matrix for Pumadyn-32nm 86

4.1 (T)FIFGP performance on the Elevators problem 100

4.2 (T)FIFGP performance on the Pole Telecomm problem 100

4.3 (T)FIFGP performance on the Kin-40k problem 101

4.4 (T)FIFGP performance on the Pumadyn-32nm problem 101

4.5 (T)FIFGP performance on the Pendulum problem 102

5.1 BN-MMLP performance on the Elevators problem 112

5.2 BN-MMLP performance on the Pole Telecomm problem 112

5.3 BN-MMLP performance on the Kin-40k problem 113

5.4 BN-MMLP performance on the Pumadyn-32nm problem 113

5.5 BN-MMLP performance on the Pendulum problem 114

5.6 MMLPmix performance on the Elevators problem 116

5.7 MMLPmix performance on the Pole Telecomm problem 116

5.8 MMLPmix performance on the Kin-40k problem 117

5.9 MMLPmix performance on the Pumadyn-32nm problem 117

5.10 MMLPmix performance on the Pendulum problem 118

5.11 Robust BN-MCN performance on the Elevators problem 136

xxx

LIST OF FIGURES

5.12 Robust BN-MCN performance on the Pole Telecomm problem 136

5.13 Robust BN-MCN performance on the Kin-40k problem 137

5.14 Robust BN-MCN performance on the Pumadyn-32nm problem 137

5.15 Robust BN-MCN performance on the Pendulum problem 138

5.16 Examples of sigmoid functions for GP classification. 140

xxxi

xxxii

List of Tables

5.1 FIFGPC performance on a suite of 13 sample problems 146

6.1 Comparative chart of sparse GP models 153

xxxiii

xxxiv

Symbols and notation

We use bold lower case for vectors and bold upper case for matrices. Subscript asterisk
(*) is used to refer to test set quantities, either data points or latent variables. We use
p(·) to denote both probabilities and probability densities.

[A]pq Element (p, q) from matrix A

[a]p Element p from vector a

Iq Identity matrix of size q × q

f(·) Latent function, usually a Gaussian Process

GP(m(·), k(·, ·)) Gaussian Process with mean m(·) and covariance function k(·, ·)

m(x) Mean function m : RD → R

k(x,x′) Covariance function k : RD×RD → R, parametrized by the hyper-
parameters θ

θ Hyperparameters of the covariance function

n Number of data points in the training set

n∗ Number of data points in the test set

j Running index over data points

m Number of basis functions

i Running index over basis functions

h Number of spectral points

xxxv

SYMBOLS AND NOTATION

r Running index over spectral points

D Dimension of the input space, or equivalently, number of features in
the data set

(x, y) Training data point within the training set, consisting of input vector
x ∈ RD and its corresponding scalar output (label) y

(x∗, y∗) Test data point consisting of input vector x∗ ∈ RD and its corre-
sponding scalar output (label) y∗

D Data set consisting of n data points {xj, yj}nj=1

X Matrix of size n ×D containing all input vectors from the training
set, [x1, . . . ,xn]>

y Vector of size n×1 containing observed values (targets, labels) from
the training set, [y1 . . . yn]>

f Vector of size n × 1, containing the latent function evaluated at the
training points [f(x1) . . . f(xn)]>

p(y|X) Multivariate probability distribution of vector y, given matrix X

E[·] Expectation of a random variable

V[·] Variance of a random variable

cov(·, ·) Covariance of two random variables

N (f |m, K) Multivariate normal distribution over f with mean vector m and co-
variance matrix K, check (B.1) for the complete expression

Kab Matrix of size length(a)×length(b) containing the prior covariance
of vectors a and b, with elements [Kab]pq = cov([a]p, [b]q)

kf∗ Vector of size n× 1 containing the prior covariance of test point x∗

and the training inputs {xj}mj=1, with elements [kf∗]j = cov(xj,x∗)

k∗∗ Autocovariance cov(x∗,x∗) at test point x∗

ka(x) Vector function ka : RD → Rlength(a), with elements [ka(x)]p =

cov([a]p,x)

xxxvi

Chapter 1

Introduction

Machine learning tasks can be broadly divided into three main categories, namely su-

pervised learning, unsupervised learning and reinforcement learning. Some tasks, such

as semi-supervised learning, lie in between these areas. In this thesis we will deal with

supervised learning on large-scale problems. Since supervised learning can be used

as a building block for other learning tasks, the ideas developed here can also find

application within other machine learning categories.

Gaussian Processes (GPs) have been shown to provide state-of-the-art performance

in supervised learning tasks such as regression —Rasmussen (1996)— or classification

—Naish-Guzman and Holden (2008)—. In addition to being highly accurate, they also

present a number of other appealing features: Probabilistic predictions, no overfitting,

a simple model selection scheme, etc. Unfortunately, GPs are not appropriate to handle

large data sets directly, due to their high computational cost. In this thesis we will

develop and test new sparse GP models that strive to reach the quality of full GPs

while dramatically reducing computation time. We will show how the state-of-the-art

sparse GP model is often outperformed by the novel methods, as well as discuss the

strengths and weaknesses of our proposals.

This chapter is organized as follows: In Section 1.1 standard GPs for supervised

learning are reviewed; in Section 1.2 previous relevant contributions to the develop-

ment of sparse GP models are summarized; and in Section 1.3 we outline the contents

of the rest of the thesis.

1

1. INTRODUCTION

1.1 Gaussian Processes (GPs)

The first use of Gaussian Processes (GPs) for multivariate regression dates back to

Matheron (1973) under the name of kriging, within the Geostatistics community. This

name is due to the mining engineer and Geostatistics pioneer Daniel G. Krige. Ear-

lier uses of GPs as time domain stochastic processes appear in classical texts such as

Wiener (1949).

GPs for regression were first introduced to the Statistics community by the seminal

paper of O’Hagan (1978) and then to the Machine Learning community by Williams

and Rasmussen (1996). They have since been actively developed, and extensions

for classification, robust regression, dimensionality reduction and other core machine

learning tasks have appeared. For a thorough treatment of GPs for machine learning,

see Rasmussen and Williams (2006).

1.1.1 What is a GP?

A stochastic process f(x) with f : RD → R is a GP if and only if any finite collection

of its samples f = [f(x1) . . . f(xn)]> forms a multivariate Gaussian random variable.

A GP f(x) is completely specified by its mean functionm(x) and covariance func-

tion k(x,x′). Since we will consider only real-valued GPs, these are defined as:

m(x) = E[f(x)]

k(x,x′) = cov(f(x), f(x′)) = E[(f(x)−m(x))(f(x′)−m(x′))]. (1.1)

We will use the following notation to compactly define f(x) as a GP:

f(x) ∼ GP(m(x), k(x,x′)) .

Usually we will work with zero-mean models, such that m(x) = 0. From the

definition it is also clear that the covariance function is symmetric with respect to the

argument order.

In the traditional setting of stochastic processes defined over time, x would be

reduced to a (possibly discrete) scalar variable. Then f(x) would represent the random

variable corresponding to time point x. In the more general setting presented here, the

2

1.1 Gaussian Processes (GPs)

GP is defined over some input space RD (the index set), so that there is a random
variable assigned to every input space point.

Using the above definitions, the joint distribution of a set of random variables f =

[f(x1) . . . f(xn)]> is1:

p(f) = N (f |m, K), (1.2)

where m = [m(x1) . . .m(xn)]> and [K]pq = k(xp,xq).

The above definition uses k(·, ·) to individually specify the elements of the covari-
ance matrix. This ensures that the GP is consistent, i.e., it fulfills the marginalization
property. Applying (1.2) to some set of samples f yields the same joint distribution as
applying it to a superset of f and then marginalizing out the additional samples. Note
that other possibilities, such as using some function to specify the entries of the inverse
covariance matrix would not fulfill the marginalization property and therefore would
not yield a valid GP.

1.1.2 Covariance functions

Covariance functions encode information about the smoothness and overall properties
of the underlying GP. According to their definition (1.1), they provide a measure of the
degree of correlation between any pair of samples of a GP as a function of the location
of those samples in the input domain. Covariance functions specify our beliefs about
how two samples are related. To allow for some degrees of freedom in the definition of
this relation, additional dependence on some parameters (usually, scaling factors) can
be introduced. These parameters are referred to as covariance hyperparameters, since
they do not parameterize the model itself, but its prior statistics.

The sufficient and necessary condition for any function to be a valid covariance
function is it being positive semidefinite. This ensures that it will produce valid (posi-
tive semidefinite) covariance matrices when evaluated on a finite set of data. Usually,
we will also want it to produce higher covariance values for samples corresponding to
points which are closer in the input domain.

Of special interest is the class of covariance functions that only depend on the
difference of their arguments. Such covariance functions are called stationary, and

1This is standard notation for a Gaussian distribution over f with mean vector m and covariance

matrix K, check (B.1) for the complete expression.

3

1. INTRODUCTION

fulfill that:

kst(x, x′) = kst(x + ∆x, x′ + ∆x), ∀∆x ∈ RD. (1.3)

Such covariance functions are often expressed in terms of this difference:

kst(x
′ − x) = kst(τ). (1.4)

This class of covariance functions produce GPs with constant pointwise variance

k(0) at every point. Coupled with a constant mean function (such as the usual m(x) =

0), they can be useful to model functions which are known to have a stationary behav-

ior, and thus exhibit constant power.

The most common choice by far for the covariance function is the anisotropic,

unnormalized Gaussian:

kARD SE(x,x′) = σ2
0 exp

[
−1

2

D∑
d=1

(xd − x′d)2

`2
d

]
, (1.5)

where xd is component d of vector x, and σ2
0and{`d}Dd=1 are hyperparameters. It is

also called Automatic Relevance Determination Squared Exponential (ARD SE) for

reasons that we will see shortly.

Since this covariance function meets (1.3), it is stationary. The pointwise variance

of the corresponding GP at any point x is k(x,x) = k(0) = σ2
0 . We will therefore call

σ2
0 the “signal power hyperparameter”, assuming m(x) = 0. The remaining hyperpa-

rameters {`d}Dd=1 are called length-scales, because they have the effect of scaling each

input dimension. They can be used to control how rapidly the covariance between two

points decays. As the length-scale corresponding to some input dimension grows, the

effect of that input dimension in the covariance is reduced and, in the infinite limit,

disappears completely. When (1.5) is coupled with a model selection scheme (which

automatically selects the most appropriate hyperparameters, see Section 1.1.5), this

covariance function can effectively remove irrelevant input dimensions and hence the

“Automatic Relevance Determination” part of its name.

Fig. 1.1 shows the shape of the ARD SE covariance function. It decays smoothly to

zero and its width is controlled by the corresponding length-scale. We will be mainly

concerned with this covariance function until Section 5.1, where the ARD Multi-Layer

Perceptron (ARD MLP) covariance function is presented.

4

1.1 Gaussian Processes (GPs)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

x
d
−x’

d

k A
R

D
 S

E
(x

d,x
’ d)

Figure 1.1: One-dimensional ARD SE covariance function (1.5).

1.1.3 Regression using GPs

The regression problem can be stated as follows: Given a data setD consisting of n D-
dimensional input vectors X = [x1 . . .xn] and a corresponding set of continuous scalar
outputs y = [y1 . . . yn]>, predict the output y∗ corresponding to some new test input
x∗. We refer to D ≡ {X,y} as the “training set”, since it contains all the information
that is available to determine the input-output mapping that we are seeking.

Traditional approaches to this problem are based on proposing some input-output
mapping (such as multi-layer perceptrons, radial basis functions networks, etc.) and
then select the free parameters of this mapping (the network weights) so as to minimize
some cost functional (typically, the squared error over the training set). This mapping
provides a point estimate ŷ∗ of the output at any test point x∗.

Regression with GPs, on the other hand, is performed in a Bayesian way. This
means that the parameters of the model are integrated out and, instead of point esti-
mates, full posterior distributions are provided for the parameters of the model and the
predicted outputs.

The process of Bayesian inference can be summarized as follows:

1. Some parametric model is proposed, such that the probability of the observed
data given a concrete set of parameters can be computed (likelihood).

2. Some a priori probability is defined over the parameters space (prior).

3. From the above definitions, a posterior distribution over parameters is obtained
(posterior over parameters).

5

1. INTRODUCTION

4. Forming the product of the likelihood and the posterior and integrating over the

parameters space, predictive distributions for new observations can be obtained.

The posterior distribution at step 3 is obtained from the likelihood and the prior

using Bayes theorem, hence the name “Bayesian”. We will now follow these steps for

the regression task.

1.1.3.1 Likelihood

The GP regression model assumes that the outputs can be modeled as some noiseless

latent function f(x) of the inputs plus independent noise:

y = f(x) + ε. (1.6)

In this case, the latent function plays the role of the model parametrization. As-

suming ε is zero-mean Gaussian noise of power σ2, we can write the likelihood of any

observation as

p(y|f(x)) = N (y|f(x), σ2). (1.7)

1.1.3.2 Prior

Now we need a distribution (over functions) to define the prior probability of f(x),

and here is where GPs come in handy. We set the following zero mean2 prior:

f(x) ∼ GP(0, k(x,x′)). (1.8)

Fig. 1.2 shows 5 samples (functions) drawn from this prior distribution. The ARD

SE covariance function with σ2
0 = 1 is used. Each panel was created with a different

length-scale to illustrate the effect of this hyperparameter on the prior. The smaller the

length-scale is, the faster the latent function is expected to fluctuate. The shaded region

gives an idea of the pointwise distribution by including twice the standard deviation

around the mean.
2It is customary to subtract the sample mean from data, and then to assume a zero mean model.

Extensions to handle arbitrary mean data are straightforward.

6

1.1 Gaussian Processes (GPs)

−15 −10 −5 0 5 10 15
−3

−2

−1

0

1

2

3

x (Input domain)

y
(O

ut
pu

t d
om

ai
n)

(a) Fast length-scale, `2 = 0.5

−15 −10 −5 0 5 10 15
−3

−2

−1

0

1

2

3

x (Input domain)

y
(O

ut
pu

t d
om

ai
n)

(b) Slow length-scale, `2 = 2

Figure 1.2: Samples drawn from the prior distribution of the latent function. The

shaded area accounts for 95% of the prior probability.

1.1.3.3 Posterior over the latent function

We are now ready to obtain the posterior distribution of the latent function at any

location. We will compute it at the training points X and an arbitrary number n∗ of

test points X∗ = {x∗i}n∗i=1 using Bayes rule:

p(f , f∗|y,X,X∗) =
p(y|f , f∗,X,X∗)p(f , f∗|X,X∗)

p(y|X,X∗)
=
p(y|f)p(f , f∗|X,X∗)

p(y|X)
, (1.9)

where we have defined f = [f(x1) . . . f(xn)]> and f∗ = [f(x∗1) . . . f(x∗n∗)]
>. The

second identity follows from the (conditional) independence relations implied by the

chosen likelihood (1.7).

Likelihood (1.7) and prior (1.8), when evaluated at the relevant locations, yield:

p(y|f) = N (y|f , σ2In) (1.10)

p(f , f∗|X,X∗) = N
([

f
f∗

] ∣∣∣∣∣ 0,
[
Kff Kf∗
K>f∗ K∗∗

])
, (1.11)

where the elements of the covariance matrices3 are [Kff]pq = k(xp,xq), [Kf∗]pq =

k(xp,x∗q), [K∗∗]pq = k(x∗p,x∗q), and In is the identity matrix of size n.

3When a single test point is considered, some of these covariance matrices become vectors or scalars,

and we will vary capitalization and/or bold type accordingly.

7

1. INTRODUCTION

The numerator of (1.9) is then the product of (1.10) and (1.11), which is straightfor-

ward to compute and provides an intuitive view of the relationship among the involved

variables:

p(y|f)p(f , f∗|X,X∗) = p(f , f∗,y|X,X∗)

= N


f

f∗
y


∣∣∣∣∣∣∣ 0,

Kff Kf∗ Kff

K∗f K∗∗ K∗f
Kff Kf∗ Kff + σ2In


 , (1.12)

Finally, we can compute the posterior distribution over the latent values f and f∗.

From (1.12) and using (B.3) to condition on y, we obtain the explicit posterior at any

location:

p(f , f∗|y,X,X∗) = N
([

f
f∗

] ∣∣∣∣∣
[
Kff (Kff + σ2In)−1y
K∗f (Kff + σ2In)−1y

]
,[

Kff −Kff (Kff + σ2In)−1Kff Kf∗ −Kff (Kff + σ2In)−1Kf∗
K∗f −K∗f (Kff + σ2In)−1Kff K∗∗ −K∗f (Kff + σ2In)−1Kf∗

])
. (1.13)

Marginalizing out f from (1.13) using (B.2), we have the posterior distribution of

the latent function f∗ = f(x∗) at any point:

p(f∗|y,X,x∗) = N (f∗|µ(x∗), σ
2(x∗)) (1.14a)

µ(x∗) = kf (x∗)
>(Kff + σ2In)−1y (1.14b)

σ2(x∗) = k(x∗,x∗)− kf (x∗)
>(Kff + σ2In)−1kf (x∗) , (1.14c)

where kf (x∗) is a vector-valued function that computes the covariance between the

set of values given as subindex and the latent function evaluated at the point given as

argument.

As an example of posterior distribution for the latent function, consider Fig. 1.3.

It shows 12 randomly spaced observations coming from a low noise sine, and 5 sam-

ples (functions) drawn from the resulting posterior distribution. The shaded region is

centered on the posterior mean and denotes twice the square root of the posterior vari-

ance around it. Both panels show reasonable predictions, but the right panel, whose

length-scale is better suited to the input data, produces more accurate and confident

predictions, and is visually more appealing and less wiggly. Hyperparameters can be

automatically selected to best fit the input data, as we shall see in Section 1.1.5.

8

1.1 Gaussian Processes (GPs)

−15 −10 −5 0 5 10 15
−3

−2

−1

0

1

2

3

x (Input domain)

y
(O

ut
pu

t d
om

ai
n)

(a) Fast length-scale, `2 = 0.5

−15 −10 −5 0 5 10 15
−3

−2

−1

0

1

2

3

x (Input domain)

y
(O

ut
pu

t d
om

ai
n)

(b) Slow length-scale, `2 = 2

Figure 1.3: Samples drawn from the posterior distribution of the latent function. The

shaded area accounts for 95% of the posterior probability. Crosses represent training

data.

1.1.3.4 Posterior over the outputs

The predictive distribution for some new output y∗ follows from (1.7) and (1.14):

p(y∗|y,X,x∗) =
∫
p(y∗|f∗)p(f∗|x∗,X,y)df∗ = N (y∗|µ∗, σ2

∗) (1.15a)

µGP∗ = k>f∗(Kff + σ2In)−1y (1.15b)

σ2
GP∗ = k∗∗ + σ2 − k>f∗(Kff + σ2In)−1kf∗ , (1.15c)

where kf∗ = kf (x∗) = [k(x1,x∗), . . . , k(xn,x∗)]
> and k∗∗ = k(x∗,x∗).

The noise term σ2In that gets added to Kff (which in turn is positive semidefinite by

definition) has a regularizing effect and ensures proper conditioning before inversion.

Additional accuracy and numerical stability can be achieved if these computations are

performed using Cholesky factorizations, see Section D.1.

In the simple regression case, the only difference between the posterior of the latent

function (1.14) and the posterior of the outputs (1.15) is an excess σ2 variance, since

the latter results from adding white noise to the former (1.6). This close similarity does

not hold in general (see for instance the classification model in Section 1.1.4).

9

1. INTRODUCTION

1.1.3.5 Computation and storage costs

The cost of computing equations (1.15b) and (1.15c) for a single test sample is domi-
nated by the inversion of matrix (Kff + σ2In), which is O(n3). When predictions for
several test cases are needed, we can reuse previous computations, so that computing
(1.15b) and (1.15c) takes an extra O(n) and O(n2) time per new sample, respectively.

Storage cost is dominated by the need to keep the covariance matrix and its inverse
in memory, and scales asO(n2). Of course, it is possible to trade computation time for
storage space and recompute their elements each time they are needed.

This high computational complexity means that, in practice, modern desktop com-
puters can only handle GP regression for relatively small data sets, usually up to a few
thousand samples, see Rasmussen (2003).

1.1.4 Robust regression and classification

The robust regression task coincides with that of plain regression discussed above, but
tries to reduce the sensitivity of the model to outliers in the training data set.

A simple approach to robust regression with GPs is to place a leptokurtic4 prior on
noise ε, which in turn translates into some non-Gaussian likelihood. The prior on the
latent function remains unchanged.

The classification problem can be stated exactly as the regression problem, but
constraining the outputs to take only discrete values. In the common case of binary
classification, i.e. y ∈ {+1,−1}, the following likelihood can be used:

p(y = +1|f(x)) = s(f(x))

where s(·) is any sigmoid function (such as the logistic or probit). If the symmetry
condition s(−z) = 1− s(z) is fulfilled, we have that

p(y = −1|f(x)) = 1− p(y = +1|f(x)) = s(−f(x))

and we can express the likelihood of any sample compactly as p(y|f(x)) = s(yf(x)).
As with robust regression, the same GP prior (1.8) can be used on latent function f(·).
Further details on GP classification are given in Section 5.4.1.

4A distribution with positive excess kurtosis (i.e., a higher kurtosis value than a Gaussian distribu-

tion) is called leptokurtic. Leptokurtosis implies a sharp central peak and fat tails.

10

1.1 Gaussian Processes (GPs)

Therefore, both robust regression and binary classification models result from a
slight modification of the regression model. However, this small modification is of
major importance, since having a non-Gaussian likelihood means we cannot obtain an
analytical expression of the posterior any longer. Inference in such models is possible
only by resorting to approximate techniques.

We will develop all the sparse GP models introduced in this thesis for the simpler,
analytically tractable case of regression, and then generalize them for robust regression
and binary classification in Section 5.2.

1.1.5 Model selection

In order to turn the models mentioned so far into usable algorithms, we need an strategy
to select any free hyperparameters. These include covariance hyperparameters (such
as σ2

0 and {`d}Dd=1 for the ARD SE case) and the noise power hyperparameter σ2. We
will collectively refer to them as θ. The dependence on θ is explicitly stated in this
section, but it will generally be omitted for the sake of clarity.

Following a proper Bayesian treatment, one should place a prior on the hyperpa-
rameters and then integrate them out. However, pursuing this option involves solving
several possibly intractable integrals, and therefore resorting to computationally ex-
pensive approximations. For this reason, this approach is often avoided.

A simpler and common approach is to use a single point estimate of the hyperpa-
rameters, the one that maximizes the marginal likelihood of the model (also known as
evidence). This approach is known as type II Maximum Likelihood (ML-II).

The evidence can be obtained from the likelihood and the prior, marginalizing out
the latent function:

p(y|X,θ) =
∫
p(y|f ,X,θ)p(f |X,θ)df . (1.16)

For the specific case of regression, applying the marginalization property to (1.12)
and explicitly including the dependence on θ, we have

p(y|X,θ) = N (y|0, Kff + σ2In). (1.17)

Since we are only interested in finding the maximum wrt θ, often the equiva-
lent problem of minimizing the Negative Log-Marginal Likelihood (NLML) is solved,

11

1. INTRODUCTION

which is numerically better behaved (since p(y|X,θ) tends to zero for high n). The

NLML is:

− log p(y|X,θ) = +
1

2
y>

(
Kff + σ2I

)−1
y +

1

2
|Kff + σ2In|+

n

2
log(2π), (1.18)

and can be computed in O(n3) time. In practice, this equation should be implemented

using Cholesky factorizations as described in Section D.1. If analytical expressions

for the gradients are available (which is usually the case), a local minimum can be

found using (conjugate) gradient descent. A single step of this process takes roughly

the same time as computing (1.15b) and (1.15c) for n test samples, and usually several

steps are needed to reach a solution. Therefore, the time consumed by model selection

often dominates the overall process of learning.

Another popular model selection procedure is cross-validation. While cross-vali-

dation is often the only possibility for model selection on non-Bayesian approaches,

it limits the parameter space to a discrete grid, which has to be thoroughly explored

and whose size grows exponentially with the number of free parameters. In contrast,

Bayesian methods such as GPs can benefit from ML-II continuous parameter space

exploration, which usually takes a modest number of iterations.

Additionally, the inclusion of Occam’s razor is automatic in GPs. While the first

term in equation (1.18) measures data fit, the second term penalizes model complexity.

These terms express the (opposing) desiderata of both fitting training data accurately

and avoiding overcomplex models that could perform badly on out-of-sample data.

Achieving a good trade off between these two purposes has been a long-standing prob-

lem for non-Bayesian models, but one which is automatically handled by GPs.

1.2 Summary of previous sparse GP approximations

Several sparse approximations have been proposed in order to make GP regression

affordable when working with large data sets, e.g.: Csató and Opper (2002); Seeger

et al. (2003); Silverman (1985); Smola and Bartlett (2001); Snelson and Ghahramani

(2006); Tresp (2000); Williams and Seeger (2001); etc. We will now review the main

milestones in the development of sparse GPs, devoting special attention to the current

state of the art, the Sparse Pseudo-inputs GP (SPGP) on Section 1.2.5. SPGP is used as

12

1.2 Summary of previous sparse GP approximations

a benchmark in this thesis and forms the basis of the sparse inference method presented

in Chapter 4.

Many sparse GP approximations were initially thought of as approximate inference

methods for GP models with some exact prior. In Quiñonero-Candela and Rasmussen

(2005) it is shown that, for most proper probabilistic approximations, it is possible to

cast the approximate GP as an exact GP with an approximate prior. Using this alter-

native and perhaps more natural interpretation, the cited work unifies different approx-

imations within a single framework, in spite of their varying origins and motivations.

The new interpretation provides more hints about the quality of each approximation,

whether it corresponds to an exact probabilistic model or not and how all of them re-

late to each other. In the subsections below, for each sparse GP approximation we

also note the corresponding effective prior within the unifying framework described in

Quiñonero-Candela and Rasmussen (2005).

1.2.1 Subset of data

Probably the simplest way to reduce complexity when faced with a big data set is just

to discard the data that we cannot afford to process. This is a reasonable option when

data is redundant enough, so that most of the available information can be present in

some selected subset.

If all data points are equally informative, this subset can be selected randomly,

but there is usually an advantage to more sophisticated selection heuristics. Several

greedy selection criteria have been proposed, such as the Differential Entropy Score,

Lawrence et al. (2003), and Information Gain, Seeger et al. (2003). In both cases,

samples added to the subset are chosen to maximize some measure of the information

held in it. After the inclusion of a new sample, relevant matrices are incrementally

grown using low rank updates, so that sample selection does not increase the overall

computational complexity of sparse regression.

1.2.2 The Nyström method

Using the Nyström method as described in Baker (1977), an approximation to the

eigenvectors and eigenvalues of a matrix can be obtained. In Williams and Seeger

13

1. INTRODUCTION

(2001) this idea is applied for efficient GP regression: A few columns of the covari-

ance matrix are used to approximately obtain its eigenvectors and eigenvalues, which

are in turn used to reconstruct the full matrix. This yields the following low rank

approximation to the covariance matrix:

Kff ≈ Qff = KfuK−1
uuK>fu, (1.19)

where u a re the so-called inducing variables. For the Nyström approximation u is a

subset of latent variables f of size m� n. Set of inputs X ⊂ X corresponding to u is

called the active set. Recall that we use Kab to refer to the covariance matrix between

the elements from a and b. Therefore, Kfu is an n ×m matrix consisting of a subset

of the columns of Kff and Kuu is an m ×m matrix consisting of the same subset of

the rows and columns of Kff .

The Nyström method can be used to approximate the prior covariance between

any two sets of variables, so we will also use the more general definition Qab =

KauK−1
uuK>bu.

Replacing Kff with low rank matrix Qff on equations (1.15b) and (1.15c), matrix

inversion lemma (A.1) can be applied. With this approximation, precomputations can

be performed in O(m2n) time and predictions for new test samples can be made in

O(n) time for the mean and O(nm) for the variance. Storage needs are reduced to

O(nm), since the full covariance matrix is never used.

It is worth noting that this is a numerical approximation with no probabilistic foun-

dation and can produce meaningless results. The effective joint prior for training and

test data is

pNyst(f , f∗|X,X∗) = N
([

f
f∗

] ∣∣∣∣∣ 0,
[
Qff Kf∗
K∗f K∗∗

])
, (1.20)

where the exact prior covariance for training data has been replaced with the Nyström

approximation, whereas the remaining prior covariances are kept exact. Doing so

yields an inconsistent joint probability distribution whose prior covariance is not even

guaranteed to be positive definite. The approximate posterior cannot be regarded as

GP and absurd results such as a negative predicted variances can occur. The approxi-

mation can be too crude for low m, but as m approaches n, it trivially converges to the

full GP.

14

1.2 Summary of previous sparse GP approximations

1.2.3 Subset of regressors

This approximation stems from considering a degenerate GP model that yields the
same predictive mean as the standard GP model described in Section 1.1.3. It was in-
troduced by Silverman (1985). The degenerate model is a generalized linear regression
model of the form:

f(x) =
n∑
j=1

αjk(x,xj)

with Gaussian prior on the weights p(α) = N (α|0,K−1
ff). It is easy to show that the

predictive mean of this model is that of a standard GP (1.15b). The predictive variance,
however, is different, as we will see below.

Sparsity (and therefore computational advantages) appears if we only consider a
subset of the regressors (corresponding to the active set):

f(x) =
m∑
i=1

αik(x,xi) with p(α) = N (α|0,K−1
uu).

This subset of regressors (SR) model is equivalent to the following prior on f(x):

f(x) ∼ GP(0, kSR(x,x′)) with kSR(x,x′) = ku(x)>K−1
uuku(x′), (1.21)

where ku(x) = [k(x1,x) . . . k(xm,x)]>. Note that this approximate covariance func-
tion, when evaluated for every input pair, produces the Nyström approximation (1.19).
The difference between the Nyström method and SR is that the former only replaces
the training data covariance matrix, whereas the latter replaces the covariance function
itself, thus yielding a proper GP.

The posterior mean and variance of the outputs under SR are:

pSR(y∗|x∗,D) = N (y∗|µSR∗, σ
2
SR∗)

µSR∗ = k>u∗(K
>
fuKfu + σ2Kuu)−1K>fuy

σ2
SR∗ = σ2 + σ2k>u∗(K

>
fuKfu + σ2Kuu)−1ku∗ ,

which can be derived from (1.15) using the approximate covariance function (1.21),
and we use the shorthand ku∗ = ku(x∗). As mentioned before, if instead of a subset
we used all regressors (by setting u = f), this predictive mean would match that
of the full GP (1.15b), but the predictive variance would be different, generally an
underestimation of the correct value.

15

1. INTRODUCTION

This problem gets worse when only a subset of the regressors is used. For in-

stance, when approximating a stationary local covariance function, such as the often-

used ARD SE (1.5), the prior pointwise variance kSR(x,x) tends to zero as x moves

away from the active set (from the definition (1.21) and the local character of ku(x)).

Since the posterior variance is never bigger than the prior variance, the predicted un-

certainty of the latent function will tend to zero as we move away from training data,

precisely where maximum uncertainty is expected.

The SR approximation does not specify a concrete method to select the active set

and the simplest approach is just to select a random subset of the input data. A more

refined option is to use the greedy forward selection method presented in Smola and

Bartlett (2001).

Following Quiñonero-Candela and Rasmussen (2005), this approximation can be

summarized by the effective joint prior on f , f∗, which tries to approximate the original

prior (1.11) while producing computationally simpler posterior expressions:

pSR(f , f∗|X,X∗) = N
([

f
f∗

] ∣∣∣∣∣ 0,
[
Qff Qf∗
Q∗f Q∗∗

])
. (1.22)

Precomputations can be performed in O(m2n) time and predictions for new test

samples can be made inO(m2) time for the mean andO(m2) for the variance. Storage

needs are reduced to O(nm), as with the Nyström approximation.

1.2.4 Projected Latent Variables

Projected Latent Variables (PLV) were introduced in Seeger et al. (2003), taking ideas

from Csató and Opper (2002). This method is referred to as Projected Process Approx-

imation (PPA) in Rasmussen and Williams (2006) and Deterministic Training Condi-

tional (DTC) in Quiñonero-Candela and Rasmussen (2005).

PLV’s contribution with respect to SR is to replace the approximate prior on the

test latent variables with the exact one. Following Quiñonero-Candela and Rasmussen

(2005), this method can be summarized as:

pPLV(f , f∗|X,X∗) = N
([

f
f∗

] ∣∣∣∣∣ 0,
[
Qff Qf∗
Q∗f K∗∗

])
, (1.23)

16

1.2 Summary of previous sparse GP approximations

which is the same as (1.22) except for the covariance of f∗. This modification yields

the following predictive equations:

pPLV(y∗|x∗,D) = N (y∗|µPLV∗, σ
2
PLV∗)

µPLV∗ = k>u∗(K
>
fuKfu + σ2Kuu)−1K>fuy

σ2
PLV∗ = σ2 + σ2k>u∗(K

>
fuKfu + σ2Kuu)−1k>u∗

+ k∗∗ − k>u∗K
−1
uuku∗ ,

which keep the predictive mean of SR while healing its predictive variance. The two

last extra terms of the predictive variance of y∗ represent the predictive variance of x

given u, which makes up for the loss of prior variance in kSR(x,x). Since the effective

covariance function used for training and test data is different, the consistency property

of GP models is lost and PLV do not correspond exactly to a GP. They do, however,

correspond to a proper probabilistic model in which f and f∗ are treated differently, see

Quiñonero-Candela and Rasmussen (2005). Computational complexity and storage

needs are the same as for SR.

The downside of this approximation is that the selection of the active set and the

hyperparameters interfere with each other, as noted in Seeger et al. (2003). This hap-

pens because the optimization of the marginal likelihood wrt the hyperparameters must

be interleaved with the selection of the active set, and reselecting the active set causes

non-smooth fluctuations in the marginal likelihood, which in turn jeopardize conver-

gence.

1.2.5 Sparse pseudo-Input Gaussian Processes

The above proposals have been superseded by the Sparse Pseudo-inputs GP (SPGP)

model, introduced in Snelson and Ghahramani (2006). SPGP represents the state of

the art in approximate GPs, so it will be used as a benchmark for the approximations

developed in this thesis.

One of the novelties of this model is that the constraint that the samples of the active

set (which are called pseudo-inputs in this context) must be selected among training

data is relaxed, allowing them to lie anywhere in the input space. This permits both

pseudo-inputs and hyperparameters to be selected in a joint continuous optimization

and increases flexibility, resulting in much superior performance.

17

1. INTRODUCTION

SPGP was later renamed to Fully Independent Training Conditional (FITC) model
to fit in the systematic framework of Quiñonero-Candela and Rasmussen (2005). Since
the sparse model introduced in Chapter 4 also uses a fully independent training condi-
tional, we will stick to the first name when referring to this method to avoid possible
confusion.

The key idea of SPGP is to augment the existing training data setD with a noiseless
pseudo-data set D ≡ {X,u} with pseudo-inputs X = [x1 . . .xm] and pseudo-outputs
u = [u1 . . . um]> (which is smaller than the original data set, m� n) and assume that
all latent variables (either from the train or test set) are conditionally independent given
the pseudo-data set. The pseudo-data set consists therefore ofm additional locations X

and their corresponding latent function values (the inducing variables u). The pseudo-
outputs can be integrated out and the pseudo-inputs learned maximizing the evidence
of the model.

Conditioning on the pseudo data set, the marginal conditional distribution of a
single latent function value fj can be obtained:

p(fj|xj,D) = N (fj|kjK−1
uuu, kj − qj)

where kj is the j-th row of Kfu, kj is the j-th element of the diagonal of Kff and qj
is the j-th element of the diagonal of Qff = KfuK−1

uuKuf . The expression for the
conditional distribution of a test latent value is analogous.

Assuming conditional independence, it is possible to replace the joint conditional
distribution of the latent values with the product of the marginal conditional distribu-
tions and thus the SPGP approximation arises:

p(f , f∗|X,X∗,X,u) ≈
n∏
j=1

p(fj|xj,X,u)
n∏
j=1

p(f∗j|x∗j,X,u).

The original prior over the latent variables (1.11) is thus approximated by:

p(f , f∗|X,X∗,X) =
∫
p(f , f∗|X,X∗,X,u)p(u)du

≈
∫ n∏

j=1

p(fj|xj,X,u)
n∏
j=1

p(f∗j|x∗j,X,u)p(u)du

= pSPGP(f , f∗|X,X∗,X)

= N
([

f
f∗

] ∣∣∣∣∣ 0,
[
Qff + diag(Kff −Qff) Qf∗
Q∗f Q∗∗ + diag(K∗∗ −Q∗∗)

])
.

18

1.2 Summary of previous sparse GP approximations

where diag(·) is an operator that sets all off-diagonal elements to zero.

In the typical setting where a single test case is considered at a time, the only dif-
ference between this approximate prior and that of PLV (1.23) is the extra diagonal
matrix diag(Kff −Qff) in the training data covariance matrix, which has the effect of
replacing the approximate diagonal elements with the original, exact ones. According
to Snelson and Ghahramani (2006), this difference makes it much easier to select the
pseudo-inputs by maximizing the evidence using conjugate gradients. Adding a diag-
onal matrix to the covariance matrix can be interpreted as the adding heteroscedastic
white noise to the GP, enabling SPGP to model data sets with input-dependent levels
of noise.

The pseudo-inputs and the hyperparameters of the model can be jointly selected
by maximizing the evidence. For the ARD SE covariance function, this results in an
optimization over (m+ 1)D + 2 real values. Optimization is usually performed using
conjugate gradient methods, since gradients can be computed analytically.

This approximation is equivalent to a standard GP with covariance function:

kSPGP(x,x′) = ku(x)>K−1
uuku(x′)(1− δxx′) + k(x,x′)δxx′ ,

where Kronecker delta δxx′ equals one if x = x′ and zero otherwise. The predictive
equations are:

pSPGP(y∗|x∗,D) = N (y∗|µSPGP∗, σ
2
SPGP∗)

µSPGP∗ = k>u∗(Kuu + K>fu)−1K>fuΛ−1
y y

σ2
SPGP∗ = σ2 + k∗∗ + k>u∗((Kuu + K>fu)−1 −K−1

uu)ku∗ ,

where Λy = diag(Kff −Qff) + σ2In. The computational complexity of SPGP is the
same as that of SR and PLV.

1.2.6 Other approximations

Other probabilistically-founded approximations not covered here include Csató and
Opper (2002), which develop an online version of PLV and the Bayesian Commit-
tee Machine (BCM) of Tresp (2000), in which predictions from different clusters of
training data are combined. The BCM needs the location of the test samples X∗ to be
available at training time, making this approach transductive rather than inductive.

19

1. INTRODUCTION

A different class of computationally efficient algorithms arises from the use of nu-
merical approximations. It was suggested by Gibbs (1997) that the product of the
inverse of the covariance matrix and an arbitrary vector could be computed as the so-
lution of a linear system, using a conjugate gradient (CG) solver. This is a convex
problem known to converge in n steps. If only m steps of the CG solver are actu-
ally run, an approximate solution can be obtained in O(mn2) time. The prediction
equations for GPs can then be expressed in terms of this basic matrix-vector product,
rendering the overall computational cost O(mn2). Note that this is in contrast with
previous methods, which only needed O(m2n) computation time. Other approxima-
tions involving some fast way to perform matrix-vector multiplications include Shen
et al. (2006) and Yang et al. (2005).

1.3 Overview of the rest of the thesis

The objective of this thesis is to propose and test some new ideas to build sparse GP
models that achieve, to some level, the benefits of full GPs and, at the same time, are
able to handle large-scale data sets.

We will restrict ourselves to the development and analysis of models that can be
trained (including model selection) in O(m2n) time, can make probabilistic predic-
tions inO(m2) time per test case, and requireO(mn) storage space, i.e., scale linearly
with the number of training data5. The dependence of computation time on the dimen-
sionality of data is linear and will be omitted in general. These complexity orders will
make state-of-the-art SPGP an adequate benchmark, since it incurs in the same costs.
Additional care will be taken for each method to also match the constant multiplicative
factor of SPGP, so that computation time for all methods is roughly the same.

All the sparse GP models proposed in this thesis are proper GPs and fit in the frame-
work of Quiñonero-Candela and Rasmussen (2005). Therefore, they can be interpreted
either as approximations to full GPs or as GPs in their own right with a modified, com-
putationally advantageous prior. In our exposition we will favor the latter, more recent
view.

In Chapter 2 we introduce the Sparse Spectrum GP (SSGP), a stationary trigono-
metric Bayesian model that can be used to approximate any stationary full GP. Unlike

5Recall that for full GPs computation time scales cubically, and storage space, quadratically.

20

1.3 Overview of the rest of the thesis

previous sparse models, SSGP is a truly stationary process (not only an approximation

of a stationary process). SSGP is first presented as a Monte Carlo approximation to a
full GP and then two alternative Bayesian interpretations are provided. If the constraint
of convergence to the full GP in the infinite limit is dropped, the flexibility of SSGP
can be increased, yielding very competitive results on large-scale regression problems.

In Chapter 3 we generalize SSGP to a broader class of Bayesian models with the
structure of generalized linear models where the “output weights” have been marginal-
ized out. We call them Marginalized Networks (MNs). We investigate the drawbacks
of the direct application of MNs to regression problems and we propose two different
ways to overcome them: Noise bounding and network mixing. We check the useful-
ness of these improved MNs on large-scale problems and compare them with SSGP.
Finally, we show how to take advantage of the structure of these networks to perform
linear dimensionality reduction.

In Chapter 4 we extend the index set of GPs to include other domains. We call
the resulting processes Inter-Domain GPs (IDGPs). By defining a GP over more than
one domain, it is possible to extend SPGP and to place the “pseudo-inputs” in other
domains6. This has two interesting effects: It detaches the form of the basis functions
from the form of the covariance function, and it adds extra flexibility that results in
improved performance. This is a general framework which includes other previously
developed sparse models such as SPGP or the Sparse Multi-Scale GPs from Walder
et al. (2008), giving further insights on how they work. IDGPs can also be used for
other purposes not related to efficient inference, such as inference across domains or
constraining the latent function, but we do not pursue these possibilities here.

In Chapter 5 we investigate possible extensions of the previous ideas. First, we
cast Multi-Layer Perceptrons as MNs and test their performance. Then we provide
details on how sparse GP models with certain covariance structure (including, but not
restricted to, those described in this thesis) can be efficiently extended to handle non-
Gaussian likelihoods. Finally, extensions for robust regression and classification are
developed and tested on the corresponding data sets.

Chapter 6 concludes this work with a summary of the contributions, a comparison
chart of the proposed models and a brief discussion about further work.

6Since pseudo-inputs will no longer be in the input domain, we refer to them as “inducing features”

in this context.

21

22

Chapter 2

Sparse Spectrum GPs

In this chapter we introduce a stationary trigonometric Bayesian regression model

which retains the computational efficiency of aforementioned approaches such as SR,

PLV or SPGP (Sections 1.2.3-1.2.5), while improving the accuracy of the predictions.

The model consists of a weighted sum of trigonometric functions where both weights

and phases are integrated out. Frequencies can be both fixed or learned. Hyperpa-

rameters (and possibly frequencies) are learned by jointly maximizing the evidence of

the model. We will show that this model is a stationary sparse GP that approximates

any stationary full GP, provided that the frequencies follow a given distribution. This

approximation improves with the number of frequencies and converges to the full GP

in the infinite limit. A technical report with a preliminary version of our results was

published in Lazaro-Gredilla et al. (2007). Shortly after this report, Rahimi and Recht

(2008) proposed a related approximation in the context of Support Vector Machines us-

ing a finite set of random Fourier features. In that work the frequencies were selected

randomly, in contrast to our work where these quantities can also be learned.

This chapter is organized as follows: We will derive the model from different equiv-

alent perspectives in Section 2.1. The properties of the model are discussed in Section

2.2. Model selection is described in Section 2.3. In Section 2.4, the performance of

the model is investigated on several data sets and compared to SPGP. Some thoughts

regarding overfitting are discussed in Section 2.5. The implications of learning the

phases versus integrating them out are considered in Section 2.6. We wrap-up in Sec-

tion 2.7.

23

2. SPARSE SPECTRUM GPS

2.1 The model: Sparse Spectrum GP (SSGP)

The Sparse Spectrum GP is based on a sparse approximation to the frequency domain

representation of a GP. It can be derived and presented from different equivalent per-

spectives. In this thesis we have chosen to start off introducing it as a numerical Monte

Carlo approximation to a full GP and then provide the equivalent Bayesian perspective

as a trigonometric model.

2.1.1 SSGP as a Monte Carlo approximation to a full GP

The power spectral density (or power spectrum) S(s), with s ∈ RD, of a stationary

random function tells us how the power is distributed over the frequency domain. The

total power over the whole frequency domain is equal to the prior pointwise variance

k(0) = σ2
0 . Both frequency and input domains have the same dimension, D, and

the d-th element of s can be interpreted as the frequency associated to the d-th input

dimension. The Wiener-Kintchine theorem (see for example Carlson (1986, p. 162))

tells us that the power spectrum and the autocorrelation of a random function constitute

a Fourier pair. In our case, given that f(·) is drawn from a stationary Gaussian process,

the autocorrelation function is equal to the stationary covariance function, and we have:

k(τ) =
∫

RD
e2πis>τS(s)ds, (2.1)

S(s) =
∫

RD
e−2πis>τk(τ)dτ . (2.2)

We thus see that there are two equivalent representations for a stationary GP: The

traditional one in terms of the covariance function in the input domain, and a perhaps

less usual one as the power spectrum in the frequency domain.

Bochner’s theorem —Stein (1999, p. 24)— states that any stationary covariance

function k(τ) can be represented as the Fourier transform of a positive finite measure.

This means that the power spectrum (2.2) is a positive finite measure, and in particular

that it is proportional to a probability measure, S(s) ∝ pS(s). The proportionality

constant can be directly obtained by evaluating (2.1) at τ = 0. We obtain the relation:

S(s) = k(0) pS(s) = σ2
0 pS(s). (2.3)

24

2.1 The model: Sparse Spectrum GP (SSGP)

We can use the fact that S(s) is proportional to a multivariate probability density
in s to rewrite the covariance function in (2.1) as an expectation:

k(x,x′) = k(τ) =
∫

RD
e2πis>(x−x′)S(s) ds = σ2

0

∫
RD
e2πis>x

(
e2πis>x′

)∗
pS(s)ds

= σ2
0EpS

[
e2πis>x

(
e2πis>x′

)∗]
, (2.4)

where EpS
denotes expectation wrt pS(s) and superscript asterisk denotes complex

conjugation (not to be confused with the subscript asterisk indicating test quantity).
This last expression is an exact expansion of the covariance function as the expectation
of a product of complex exponentials with respect to a particular distribution over their
frequencies. Instead of exactly evaluating this average by integrating over all values of
s, we propose to obtain a Monte Carlo estimate by taking the average of a few samples
corresponding to a finite set of frequencies, which we call spectral points.

Since we are dealing with real-valued functions, covariance function k(τ) can only
take real values as well. By the properties of the Fourier transform, this implies that
S(s) = S(−s) and therefore, pS(s) = pS(−s). It is then possible to draw samples
from pS(s) in pairs of the form {sr,−sr} and still have a valid Monte Carlo procedure.
The advantage of drawing samples in symmetric pairs is that we preserve the property
of exact expansion (2.4) that the imaginary terms cancel out. Drawing h sample pairs
and evaluating the product of complex exponentials at them, we can approximately
reconstruct the covariance function as a finite sum:

k(x,x′) ' kSSGP(x,x′) =
σ2

0

2h

h∑
r=1

[
e2πis>r x

(
e2πis>r x′

)∗
+ e2πi(−sr)>x

(
e2πi(−sr)>x′

)∗]

=
σ2

0

2h

h∑
r=1

[
e2πis>r x

(
e2πis>r x′

)∗
+
(
e2πis>r x

)∗
e2πis>r x′

]

=
σ2

0

h
Re
[
h∑
r=1

e2πis>r x
(
e2πis>r x′

)∗]
, (2.5)

where Re [·] denotes the real part of a complex number. The approximation becomes
exact when h tends to infinity, since we recover (2.4). Note that only one spectral point
out of each symmetric pair appears in the final expression.

In order to avoid working with complex numbers we expand the complex expo-
nential in sines and cosines. Defining a column vector of length 2h containing the
evaluation of the h pairs of trigonometric functions at x

φ(x) =
[

cos(2πs>1 x) sin(2πs>1 x) . . . cos(2πs>mx) sin(2πs>mx1)
]>
, (2.6)

25

2. SPARSE SPECTRUM GPS

we can express the approximate covariance function (2.5) as a dot product:

kSSGP(x,x′) =
σ2

0

h
φ(x)>φ(x′) =

σ2
0

h

h∑
r=1

cos
(
2πs>r (x− x′)

)
, (2.7)

which is a stationary covariance function, with constant pointwise variance σ2
0 .

This approximation is equivalent to replacing the original spectrum S(s) by a set
of h pairs of Dirac deltas of amplitude σ2

0

2h
distributed according to S(s)/σ2

0 . This is
why this approach is said to “sparsify” the spectrum of the GP.

This yields the following low rank approximation to the covariance matrix:

Kff '
σ2

0

h
Φ>f Φf , (2.8)

where Φf = [φ(x1), . . . ,φ(xn)] is a 2h× n matrix, usually referred to as the “de-
sign matrix”. Substituting this approximation in (1.17), the marginal likelihood of the
model is obtained

p(y|X) = N
(

y|0, σ
2
0

h
Φ>f Φf + σ2I

)
. (2.9)

The predictions and marginal log-likelihood can be evaluated using eqs. (1.15) and
(1.18), although direct evaluation is computationally inefficient when 2h < n. Using
matrix inversion lemma (A.1), we can express the predictive distribution efficiently as:

pSSGP(y∗|x∗,D) = N (y∗|µSSGP∗, σ
2
SSGP∗) (2.10a)

µSSGP∗ = φ(x∗)
>A−1Φfy (2.10b)

σ2
SSGP∗ = σ2 + σ2φ(x∗)

>A−1φ(x∗) , (2.10c)

where we have defined A = ΦfΦ
>
f + hσ2

σ2
0

I2h. This expression clarifies that the pos-
terior mean is a linear combination of m = 2h basis functions. Similarly, using (A.1)
and (A.2), an efficient expression to compute the negative log marginal likelihood is
obtained:

− log pSSGP(y|X, θ) =
[
y>y − y>Φ>f A−1Φfy

]
/(2σ2)

+
1

2
log |A| − h log

hσ2

σ2
0

+
n

2
log 2πσ2. (2.11)

The actual implementation of these equation should be done via Cholesky decom-
position, as detailed in Section D.2 of Appendix D. Both the predictive distribution

26

2.1 The model: Sparse Spectrum GP (SSGP)

and the marginal likelihood can be computed in O(nm2) (recall that m = 2h is the
number of basis functions). Predictive mean and variance at additional test data points
can be computed inO(m) andO(m2) respectively. The storage costs are also reduced,
since we no longer store the full covariance matrix (of size n× n), but only the design
matrix (of size n× 2h). Storage needs are then O(nm).

2.1.2 SSGP as a trigonometric Bayesian model

In this section we will describe Bayesian inference in a linear regression model with
trigonometric basis functions and relate it to the GP approximation derived in the pre-
vious section.

2.1.2.1 The sine-cosine model

Consider the following model for the latent function

f(x) =
h∑
r=1

[
ar cos(2πs>r x) + br sin(2πs>r x)

]
, (2.12)

where the basis functions are parametrized by the m D-dimensional vectors {sr}hr=1,
containing spectral frequencies. Note that each pair of basis functions shares frequen-
cies, but each has independent amplitude parameters, ar and br. We will treat the
frequencies as deterministic parameters and the amplitudes in a Bayesian way. The
priors on the weights are independent Gaussian

p(ar) = N (ar|0, σ2
0/h) , p(br) = N (br|0, σ2

0/h) ,

where the variances are scaled down linearly by the number of basis functions.

By re-arranging the weights as a single vector w = [a1, b1, a2, b2, . . . , ah, bh]
>

and evaluating the latent function at the training points X, we can rewrite the linear
model in vectorial form, f = Φfw, and the prior is then

p(w) = N (w|0, σ2
0I2h/h).

The observed outputs are obtained from the latent values by adding noise y = f +n

with p(n) = N (n|0, σ2In), so that the likelihood is

p(y|X,w) = N
(
y|Φfw, σ

2In
)
. (2.13)

27

2. SPARSE SPECTRUM GPS

The marginal likelihood of the model is then

p(y|X) =
∫
p(y|X,w)p(w)dw =

∫
N
(
y|Φfw, σ

2In
)
N (w|0, σ2

0I2h/h)dw

= N (y|0, σ2
0Φ
>
f Φf/h+ σ2In), (2.14)

where (B.4) can be used to solve the integral.

The posterior over the weights can be obtained using Bayes rule

p(w|D) = p(w|X,y) =
p(y|X,w)p(w)

p(y|X)
= N (w|A−1Φfy, σ

2
nA
−1) , (2.15)

and the predictive posterior at some test point x∗, using (2.13) and (2.15), is

pSSGP(y∗|x∗,D) =
∫
p(y∗|x∗,w)p(w|D)dw

=
∫
N (y∗|φ(x∗)

>w, σ2)N (w|A−1Φfy, σ
2
nA
−1)dw

= N (y∗|φ(x∗)
>A−1Φfy, σ

2 + σ2φ(x∗)
>A−1φ(x∗)), (2.16)

where the integral is again easily solved using (B.4).

Eqs. (2.9) and (2.14) describing p(y|X) are identical, thus proving that the Monte

Carlo approximation and the Bayesian combination of trigonometric functions are

equivalent models. The predictive distributions obtained in both cases are necessar-

ily identical too, as (2.10) and (2.16) demonstrate.

We have thus provided two alternative derivations of the SSGP model. The Bayesian

derivation additionally provides posterior densities over the amplitudes of each fre-

quency, whereas the connection with full GPs and the infinite limit convergence is

more clearly shown in the Monte Carlo derivation.

This derivation shows that a combination of sines and cosines with random, Gaus-

sian distributed amplitudes is equivalent to a full GP with arbitrary stationary covari-

ance as the number of basis tends to infinity, if their frequencies (i.e. the spectral points

{sr}hr=1) are distributed according to the spectral density of that stationary covariance

function. A detailed proof is given in Section C.2 of Appendix C. This is a more gen-

eral result than that of MacKay (2003, ch. 45), which only applies to the ARD SE

covariance function.

28

2.1 The model: Sparse Spectrum GP (SSGP)

2.1.2.2 The cosine-phase model

There is yet another way to express the SSGP model within the Bayesian framework.
Consider the following regression model:

f(xj) =
h∑
r=1

cr cos(2πs>r xj − ϕr) . (2.17)

where {cr}hr=1 and {ϕr}hr=1 are amplitude and phase parameters. As before, we con-
sider the spectral points {sr}hr=1 as given deterministic parameters.

Following a proper Bayesian treatment, we place a prior on the parameters of the
model, {cr}hr=1 and {ϕr}hr=1. For the phases, the most reasonable prior is a uniform
distribution, since no concrete value is to be preferred. Since the cosine is 2π periodic,
any uniform distribution covering a 2π range accounts for all possible phase values.
We will therefore use

p(ϕr) =

{
1

2π
if − π < ϕr < π

0 otherwise .
(2.18)

For the weights we will use a symmetric-Rayleigh distribution:

p(cr) =
1

2v
|cr| exp

(
− c

2
r

2v

)
, with v =

σ2
0

h
. (2.19)

In order to be able to conveniently integrate out both weights and phases from the
model without resorting to any approximation, we make the following variable change:

ar = cr cosϕr and br = cr sinϕr . (2.20)

that allows us to rewrite our model as follows:

f(x) =
h∑
r=1

[
ar cos(2πs>r x) + br sin(2πs>r x)

]
.

Given the independent priors placed on {cr}hr=1 and {ϕr}hr=1 and the relation es-
tablished in (2.20), we prove in Section C.1 of Appendix C that {ar}hr=1 and {br}hr=1

are also independent and Gaussian distributed. In this case their distributions are

p(ar) = N (ar|0, σ2
0/h) , p(br) = N (br|0, σ2

0/h) ,

so the sine-cosine model (2.12), with the same priors, is retrieved.

29

2. SPARSE SPECTRUM GPS

The importance of this derivation is to show that SSGP corresponds to a trigono-

metric model in which phases have been integrated out. Unlike most sparse GP mod-

els, no location hyperparameters need to be selected in SSGP. This results in enhanced

robustness. We will investigate in more detail the effect of fixing/integrating out the

phases in Section 2.6.

It is also interesting to note that predictive mean (2.10b) can be expressed either as

a linear combination of sines and cosines (without phase) or as a linear combination

of cosines (with phase), in line with both equivalent models (2.12) and (2.17). We can

illustrate this by first computing coefficients [a′1, b
′
1, . . . , a

′
h, b

′
h]
> = A−1Φfy and

then re-expressing the predictive mean in both ways

µSSGP∗ =
h∑
r=1

[
a′r cos(2πs>r x∗) + b′r sin(2πs>r x∗)

]

=
h∑
r=1

√
a′2r + b′2r cos(2πs>r x∗ − arctan(b′r/a

′
r)) ,

where arctan b′r
a′r

is the angle corresponding to coordinates (a′r, b
′
r).

2.1.3 Example: the ARD SE covariance case

The probability density associated to ARD SE covariance function (1.5) can be ex-

pressed in the form

pARDSE
S (s) =

1

kARDSE(0)

∫
RD
e−2πis>τkARDSE(τ)dτ =

√
|2πL2| exp

(
−1

2
(s>(2πL)2s

)

where L is a diagonal matrix of size D × D whose elements are the length-scales

`1, . . . `D.

Spectral points following this distribution can be generated in two steps: First, h

random vectors {ωr}hr=1 are drawn from a normal distributionN (ω|0, ID). Then, they

are scaled to produce the spectral points sr = (2πL)−1ωr. The advantage of this two-

step procedure is that we can learn only the length-scales {`d}Dd=1 (keeping {ωr}hr=1

fixed) or every single spectral point (learning both {`d}Dd=1 and ωr).

For illustration purposes, we compare the exact squared exponential covariance

function with its spectral approximation in Figure 2.1. The spectral points have been

generated randomly from the appropriate probability density, which in this case is also

30

2.1 The model: Sparse Spectrum GP (SSGP)

Gaussian. The approximation is more accurate around the origin, in a range that can

be extended by using more spectral points. Note that even if the number of spectral

points is too low to achieve a good approximation within a wide range, the resulting

covariance function can still be good enough for most purposes.

−8 −6 −4 −2 0 2 4 6 8
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

τ

C
ov

ar
ia

nc
e

fu
nc

tio
n

SE covariance function
10 spectral points approx.

(a) 10 spectral points

−8 −6 −4 −2 0 2 4 6 8
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

τ

C
ov

ar
ia

nc
e

fu
nc

tio
n

SE covariance function
50 spectral points approx.

(b) 50 spectral points

Figure 2.1: Squared exponential covariance function and its reconstruction from a few

spectral samples.

For low dimensions, the quality of the reconstruction can be good enough even if a

small number of points is used. For higher dimensions, the number of spectral points

required to cover equally well the spectrum is much larger (since the volume of the

space grows exponentially with the dimension). In this case, to be able to take the

most representative samples of the spectrum with just a few points we need to resort to

learning their locations.

If {ωr}hr=1 are learned, the probability density that they represent may also change,

which in turn changes the covariance function being approximated. This additional

flexibility both improves performance (since we are effectively learning the covariance

function) and increases the risk of overfitting. In practice, when working with large

data sets and a number of basis functions m� n, overfitting rarely occurs. In Chapter

3 we present and explore two methods for enhanced overfitting resistance.

In Section 2.3 we will describe model selection, suggesting to initialize the spectral

points to approximate the ARD SE covariance function, drawing them from pARD SE
S (s)

as derived here. Of course, they can be initialized to approximate any stationary co-

variance function, using the corresponding probability density.

31

2. SPARSE SPECTRUM GPS

2.2 SSGP properties

In this section, we will review some unique properties that set SSGP apart from other
sparse GP models.

2.2.1 Stationary nature

The most popular covariance function in GP regression is the ARD SE covariance
function (1.5), which is stationary, i.e., it is only a function of the relative position of
the inputs. This is very reasonable for many data sets, since it means that the degree
of coupling between any two points does not depend on their absolute location within
input space, but only on where they are located with respect to each other. Interestingly,
the covariance function of SSGP is kSSGP(x,x′) =

σ2
0

h

∑h
r=1 cos

(
2πs>r (x− x′)

)
which

depends only on the difference of the inputs, and is therefore stationary.

This property, which is unique to SSGP within existing sparse GP models, means
that no matter how the spectral points {sr}hr=1 are arranged, the covariance between
points with the same relative position will be the same. Conversely: Spectral points
can only be arranged in a way that fits pairwise interactions all throughout the model,
so as to maximize the evidence. This constraint helps to reduce overfitting in cases
where many spectral points are selected.

We can look at the effect of stationarity from another perspective: From (1.14),
we know that the predictive mean of a GP with some prior covariance k(·, ·), can be
expressed as a summation of “kernels”:

E[f(x)] =
n∑
j=1

αjk(xj,x); ,

where n is the number of samples, {xj}nj=1 are the input data and {αj}nj=1 are scaling
factors derived from the predictive equations for GP.

Each kernel k(xj,x) is said to be “centered” at the input sample xj . The only
difference between all kernels is a shifting, with shapes being conserved, only if k(·, ·)
is stationary. If k(·, ·) is non-stationary, the shape of the kernels centered at different
points may be different.

Since SSGP has a stationary covariance function, the interpolating function is com-
posed of the summation of the same shape centered at the input points, with different

32

2.2 SSGP properties

scales. That shape is constrained to provide a good fit to data when used all throughout

the input space. Since the shape is solely determined by the arrangement of the spec-

tral points, these are also constrained. When the locations of the spectral points are

learned, stationarity implies some overfitting resistance: Every spectral point location

is constrained by every input-target pair.

2.2.2 No location parameters

Since SSGP is only parametrized by the spectral points1, no location parameters need

to be adjusted. This is in contrast with most previous approximations, where some

kind of input-space parametrization was always present: The pseudo-inputs in SPGP,

active set selection in SR and PLV, etc. SSGP cannot get lost in irrelevant parts of the

input space while trying to learn location parameters, which is sometimes a problem

with SPGP.

2.2.3 Periodicity

One might be tempted to assume that this model would only be useful for modeling

periodic functions (as the Bayesian derivation suggests), since strictly speaking a linear

combination of periodic signals is itself periodic, but in practice periods can be made

big enough to render it useful for the general regression case (which makes sense when

considering the Monte Carlo derivation).

Periodicity implies that predictions made far away from the training data set can be

different from zero, in contrast to models using localized basis functions. Furthermore,

infinite replicas of the predictive mean and variance will appear in the input space,

forming a grid. The spacing of this grid in each of the possible dimensions corresponds

to the overall period of the model in that direction.

For any given dimension, the overall period of the model corresponds to the least

common multiple of the individual periods of the constituting basis functions. Suppose

for a moment that the frequencies (spectral points) of the basis functions were arranged

in a grid, so that any spectral point could be expressed as sr ≡ [t1rs1, t2rs2, . . . , tDrsD],

1It is also parametrized by {`d}Dd=1, σ2
0 and σ2 but this hyperparameters also appear in the full GP

and are not related to input domain locations.

33

2. SPARSE SPECTRUM GPS

where tdr ∈ Z and sd is the frequency spacing for dimension d. In this case, the overall

period for any single dimension would be 1/sd. Therefore, the finer the grid is made,

the bigger the period becomes. If we want the model to cover some fixed range of fre-

quencies, increasing the number of basis results in a finer grid, and replicas get spaced

away.

Since we will not be arranging the spectral points in a grid, but randomly, previous

analysis is pessimistic. The least common multiple of the periods corresponding to

random frequencies is much bigger, but it is still true that grows with the density of the

frequencies. The same principle is used (interchanging input and frequency domains)

in uneven sampling to space apart frequency replicas an avoid aliasing, see for instance

Bretthorst (2000).

In practice, replicas are sufficiently spaced even for a very moderate number of

spectral points and thus the model has practical use for modeling non-periodic func-

tions. However, we are warned that the model could produce meaningless predictive

values if used for strong extrapolation. In Section 2.4.1 we will show an extrapolation

example to understand the effects of periodicity.

2.2.4 Sparse Fourier Transform

A by-product of the inference process is a Sparse Fourier Transform of the multidimen-

sional signal y, unevenly sampled at points {xj}nj=1. This Sparse Fourier Transform

strongly resembles the model presented in Qi et al. (2002), with the important differ-

ence that whereas SSGP automatically selects a discrete set of frequencies, the model

of the cited work assumes that these frequencies are given. Equation (2.15) provides

the posterior distribution over the Fourier Transform at selected frequencies.

2.3 Model selection

In order to be able to effectively use this model, we need a method to select σ2
0 , σ2

n

and {`d}Dd=1 (the hyperparameters of a standard GP) as well as the spectral points,

represented in this case by ωr, since sr = (2πL)−1ωr.

34

2.3 Model selection

Following the discussion on Section 1.1.5, we will use Type II Maximum Likeli-

hood to select these values. This implies selecting them so as to minimize the Negative

Log Marginal Likelihood (NLML) of the model, which can be efficiently computed

using (2.11).

2.3.1 SSGP with selectable spectral points

We will first consider the case in which the spectral points are learned along with the

rest of the hyperparameters. It might seem at first that since sr = (2πL)−1ωr, we could

avoid learning the length-scales {`d}Dd=1, considering them contained in ωr instead.

However, when using practical optimization techniques, this over-parameterization

proves useful, allowing to locate better minima of the NLML. In particular, this re-

dundancy is critical for the model to correctly perform ARD. If a problem has some

non-informative dimension, it can be pruned by setting the corresponding length-scale

to a big value. Though this is equivalent to setting the corresponding component of

all spectral points to a very small value, from an optimization point of view it is much

easier to learn a single length-scale hyperparameter.

Model selection is therefore as follows:

1. Initialize {`d}Dd=1, σ2
0 , and σ2 to some sensible values. (An example of this would

be: one half of the ranges of the input dimensions, the variance of the outputs

{yj}nj=1 and σ2
0/4, respectively).

2. Initialize {ωr}hr=1 from N (0, ID) (to initially approximate the ARD SE covari-

ance function).

3. Since analytical derivatives of the NLML wrt to all previous hyperparameters

can be computed from (2.11), use conjugate gradient descent to jointly minimize

NLML.

This method uses non-linear optimization to select theD+2+hD hyperparameters

of the model. In terms of basis functions this isD+2+mD/2, i.e., roughly one half the

number of hyperparameters needed by SPGP, D + 2 +mD. The exact location of the

spectral points (which account for the vast majority, hD, of the hyperparameters being

selected) is not critical, as long as they cover the spectrum of the data set relatively

35

2. SPARSE SPECTRUM GPS

well. Equivalently, in SPGP, the exact location of the pseudoinputs is not determinant,

as long as they are distributed covering the input space of the data set well enough.

The remaining D+ 2 hyperparameters that account for the length-scales, signal power

and noise power are more critical, but also much fewer, so that we can hope for them

to be well determined from data. In fact, they are exactly the hyperparameters used by

a standard GP with ARD SE covariance function. When using a very large number of

spectral points some overfitting might appear, but this is not generally the case. In fact,

SSGP seems to be quite resistant to overfitting as we will see in Section 2.4. Some

theoretical justification for this was provided in Section 2.2.1.

It is possible to compute all of the D + 2 + mD/2 required NLML derivatives

in O(m2n) time. This is achieved using (A.6), (A.7) on (2.11) and then noticing that

the m NLML derivatives wrt all components corresponding to a single dimension of

the spectral points can be computed as a block in O(m2n) time (see Section E.2 of

Appendix E for details). Therefore, model selection does not cause any overhead to

the complexity order mentioned above. Derivatives are computed at every iteration of

the optimization process, so this cost often dominates the overall process when making

predictions.

2.3.2 SSGP with fixed spectral points

Another possibility is to let {ωr}hr=1 fixed at their initialization values, and learn only

the remaining hyperparameters. This completely avoids any overfitting problems, but

comes at the cost of needing a larger number of spectral points to reach the same

performance. In the experimental section we will consider this case for comparison,

and will refer to it as SSGP-fixed. For problems in one or two dimensions, this should

be the method of choice, since the spectrum is already well covered with the initial

values of {ωr}hr=1 (remember that length-scales are still learned).

This option has the attractive property of converging to the full GP as the number

of spectral samples grows, see Section C.2 of Appendix C. Observe that if the spectral

points were learned, their overall distribution could be distorted, and convergence to

the desired full GP would not be achieved. Additionally, this option is as immune to

overfitting as a full GP, since both have the same number of hyperparameters, which is

very small.

36

2.4 Experiments

It should be emphasized that SPGP in its typical setting (i.e., with its pseudo-inputs
being selected through ML-II) does not converge to the full GP as the number of basis
function grows. For SPGP to converge to the full GP, the pseudo-inputs must be initial-
ized to a subset of training data and kept fixed (which in turn degrades the performance
of SPGP in the sparser regime).

2.4 Experiments

In this section we are going to thoroughly explore the properties and performance of
SSGP2, first on a toy problem and then on bigger, real world problems. We will use the
current state of the art for sparse GP regression, SPGP3, as benchmark for comparison
and will quote the results obtained by a full GP as a reference. Both SPGP and the full
GP use the ARD SE covariance function, and SSGP is initialized to approximate it.

Both approximations run in O(m2n). To match the constant multiplicative factor,
we will use the same number of basis functions for both methods (this matches the
size of the involved matrices, so that computational cost becomes roughly identical).
In other words, SPGP will be using two pseudo-inputs per spectral point of SSGP.
Actually, we have compared the speeds of SPGP and SSGP (both running on the same
platform), and even using only one pseudo-input per spectral point, SSGP is still faster.
This is due to SSGP being a simpler model, so that NLML derivatives and predictions
can be expressed more compactly and are much faster to compute. Nonetheless, we
will maintain the more conservative option of using the number of basis functions as
the basis for comparison.

We will report the test Normalized Mean Square Error (NMSE) and the test Mean
Negative Log Probability (MNLP) as performance measures. They are defined as:

NMSE =

∑n∗
j=1(y∗j − µ∗j)2∑n∗
j=1(y∗j − y)2

(2.21a)

MNLP =
1

2n∗

n∗∑
j=1

(y∗j − µ∗j
σ∗j

)2

+ log σ2
∗j + log 2π

 , (2.21b)

where µ∗j and σ2
∗j are, respectively, the predictive mean and variance for the j-th test

output and y∗j is the actual test output value. The average of the training output values
2For our code implementing SSGP, check Appendix F.
3The implementation from its authors is used, see http://www.gatsby.ucl.ac.uk/∼snelson.

37

http://www.gatsby.ucl.ac.uk/~snelson

2. SPARSE SPECTRUM GPS

is denoted as y = 1
n

∑n
j=1 yj , so that the NMSE is normalized with respect to the MSE

of a constant predictor. The number test samples is n∗.

The NMSE measures the accuracy of the predictive mean, ignoring the predictive

variance. For traditional non-Bayesian regression methods, only this error measure

was available. The MNLP, on the other hand, takes into account the predictive vari-

ance, weighting the error by the predicted degree of certainty.

2.4.1 One-dimensional toy problem

To illustrate the behavior of SSGP under extrapolation and evaluate the effect of its

inherent periodicity, let us learn a simple noisy sinc function. We will generate 100

samples, for random values of x ∈ [−1, 5], and add white Gaussian noise of vari-

ance σ2 = 0.052. We will compare SSGP and SPGP using 20 spectral points and

40 pseudo-inputs respectively, sampled from the corresponding distributions. The re-

maining hyperparameters will be learned.

The predictive mean and a shaded area accounting for 95% of the (noise free)

posterior probability are plotted in Fig. 2.2, for a very wide range of inputs.

0 5 10 15
−1

−0.5

0

0.5

1

x

f(
x)

(a) SSGP

0 5 10 15
−1

−0.5

0

0.5

1

x

f(
x)

(b) SPGP

Figure 2.2: Three random samples of the joint posterior distribution obtained by (a)

SSGP and (b) SPGP, when 100 noisy observations (plusses) of sinc(x) are provided.

The shaded area accounts for 95% of the posterior (noise free) probability. Both meth-

ods use 40 basis functions.

38

2.4 Experiments

SPGP provides an almost perfect match within the interpolation area and correctly

predicts zero outside it. Since in the interpolation area data is dense enough, the pre-

dictive variance is approximately that of the injected noise, and we have verified that it

remains almost constant at σ2
∗(x) ≈ σ2 = 0.052. In the extrapolation area, the variance

grows and the correlation decays. This effect is clearly shown in Fig. 2.2.(b) for x > 5:

The lack of correlation turns the posterior samples into white noise, so a cloud of dots

is displayed.

SSGP performs equally well within the [−1, 5] range where data is located. In fact,

NMSE within that area for 600 test data points is 0.0022 for SSGP and 0.0023 for

SPGP. The predictive variance in that range is also close to σ2 = 0.052.

In the strong extrapolation area, for values of x > 6, the localized bases of SPGP

correctly return to zero, whereas the periodic basis of SSGP do not. SSGP’s undesir-

able behavior suggests we should avoid using it for strong extrapolation. Though in

this case the incorrect predictive means are correctly flagged as unreliable by a cor-

responding growth in the predictive variance, for very big extrapolations, predictive

variances are no longer trustworthy either.

2.4.2 Elevators and Pole Telecomm data sets

We will now experiment with some large,4 real world data sets5, previously used in

other works such as Potgietera and Engelbrecht (2002, 2007); Torgo and da Costa

(2000). Ten repetitions are run for each data set and number of basis functions. Aver-

age values of the performance measures are reported for each of the considered meth-

ods: SPGP, SSGP-fixed, SSGP, and full GP. We will run all methods using the general

hyperparameter initialization proposed in Section 2.3.

The first problem is the Elevators data set, which has been obtained from the task

of controlling an F16 aircraft. The target variable is related to the action taken on the

elevators of the aircraft. After removing some constant inputs, it has 17 dimensions.

We use the original split with 8752 data for training and 7847 for testing. Results are

displayed in Fig. 2.3.

4To be able to quote full GP performances, we have had to resort to a 16 cpu 64 GB RAM machine.
5Both have been taken from http://www.liaad.up.pt/∼ltorgo/Regression/DataSets.html.

39

http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html

2. SPARSE SPECTRUM GPS

10 24 50 100 250 500 7501000
0.1

0.15

0.2

0.25

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

FITC
SSGP fixed spectral points
SSGP
Full GP on 8752 data points

(a) NMSE (log-log plot)

10 24 50 100 250 500 7501000

−4.8

−4.6

−4.4

−4.2

−4

−3.8

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

FITC
SSGP fixed spectral points
SSGP
Full GP on 8752 data points

(b) MNLP (semilog plot)

Figure 2.3: NMSE and MNLP for SPGP, SSGP-fixed, SSGP and full GP for the Ele-

vators problem.

SSGP performs much better than SPGP on this data set, both in terms of NMSE

and MNLP. The data set is well represented with as few as 50 basis functions, with

SSGP achieving a performance close to that of the full GP. It is interesting to notice

how pouring many more basis than needed (up to 1000) into the model and fitting their

frequencies does not produce any significant overfitting.

This data set shows an interesting effect for SSGP-fixed. Looking at the NMSE,

it seems to perform very badly when the number of basis functions is low, quickly

catching up when they are around 250-500. On the other hand, according to the MNLP,

its performance seems to be quite good overall (significantly better than SPGP). It turns

out that since the spectral points of SSGP-fixed cannot be adapted, on some runs the

initial random disposition is not able to represent well the data set, thus resulting in a

high NMSE that spoils the average over the ten runs. The model is correctly aware of

its limitations, so for test points at unrepresented locations, large predictive variances

are obtained, minimizing its impact on the MNLP. When the number of spectral points

is big enough, it is less likely that big areas of the spectrum are left uncovered, so this

effect disappears.

40

2.4 Experiments

10 24 50 100 250 500 1000
0.01

0.02

0.03

0.04

0.05

0.1

0.15

0.2

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

FITC
SSGP fixed spectral points
SSGP
Full GP on 10000 data points

(a) NMSE (log-log plot)

10 24 50 100 250 500 1000
2.5

3

3.5

4

4.5

5

5.5

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

FITC
SSGP fixed spectral points
SSGP
Full GP on 10000 data points

(b) MNLP (semilog plot)

Figure 2.4: NMSE and MNLP for SPGP, SSGP-fixed, SSGP and full GP for the Pole

Telecomm problem.

The second data set, Pole Telecomm, is a commercial application described in

Weiss and Indurkhya (1995), related to a telecommunications problem. After remov-

ing constant inputs, there are 26 input dimensions. Again, we use the original split,

10000 data for training and 5000 for testing. Upon inspection of the data set, we no-

tice that both the inputs and the outputs take a discrete set of values. In particular,

the outputs take values between 0 and 100, in multiples of 10. Though a multi-class

classification method could be more suited to solve this problem, we will treat it as a re-

gression problem. However, since the outputs are quantized, we are going to take this

into account, lower bounding the value of σ2 to the value of the quantization noise,

which is bin2
spacing/12. This lower bounding is applied to all the methods compared.

The effect of the bound is to provide a slightly better estimate for σ2 and therefore,

better MNLP measures, but we have observed that this modification has no noticeable

effect on NMSE values. Resulting plots are in Fig. 2.4.

SSGP performance is widely better in terms of NMSE. In terms of MNLP, both

methods perform similarly, though SSGP seems to get worse as the number of basis

functions grows. This shows how SSGP may sometimes produce wrong predictive

41

2. SPARSE SPECTRUM GPS

variances for a high number of spectral points.

SSGP-fixed improves steadily with the number of spectral samples, though does

not have enough flexibility to compete with the other two methods.

2.4.3 Kin-40k and Pumadyn-32nm data sets

We now run SSGP on the same regression tasks presented in Seeger et al. (2003)

and also used by Snelson and Ghahramani (2006), where SPGP was introduced. We

follow precisely their preprocessing and testing6 methods on the original splits. Each

problem is run ten times and averaged. Data sets are Kin-40k (8 dimensions, 10000

training samples, 30000 testing) and Pumadyn-32nm (32 dimensions, 7168 training,

1024 testing), both artificially created using a robot arm simulator. They are highly

non-linear and low noise.

Again, we will compare SPGP, SSGP-fixed, SSGP and a full GP. The sparse meth-

ods discussed in Seeger et al. (2003) are not included in the plots to avoid clutter, since

SPGP already outperforms all of them. All hyperparameters are initialized as proposed

in Section 2.3 unless stated otherwise.

Results for Kin-40k are shown in Fig. 2.5. SSGP performance on this data set

is clearly superior to SPGP. Both data sets reach a tie in MNLP only for a very big

number of basis functions. At that point, SSGP is still making much better predictions

than SPGP (NMSE plot), but the noise power estimation is slightly low, making MNLP

slightly worse. It is still remarkable the big amount of basis necessary to show a slight

increase in the MNLP and that no overfitting is present in the NMSE.

Starting at 500 basis functions, SPGP’s NMSE stops improving and even degrades

slightly. On the other hand, SSGP not only keeps improving, but to our surprise,

beats the full GP. This means that this particular regression task seems to be better

represented by a set of trigonometric basis functions than it is by an (even infinite)

set of localized squared exponentials. This might also help explain the much supe-

rior performance of SSGP compared to SPGP. Again, SSGP-fixed presents a modest

performance, which improves steadily.

6For some reason, some previous works on these data sets provide an error measure that, together

with their particular preprocessing, equals one half of the NMSE. We follow the same preprocessing but

show NMSE values, so error measures coming from previous works have been adapted accordingly.

42

2.4 Experiments

24 50 100 200 300 500 750 1250

0.001

0.005

0.01

0.05

0.1

0.5

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

FITC
SSGP fixed spectral points
SSGP
Full GP on 10000 data points

(a) NMSE (log-log plot)

24 50 100 200 300 500 750 1250
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

FITC
SSGP fixed spectral points
SSGP
Full GP on 10000 data points

(b) MNLP (semilog plot)

Figure 2.5: NMSE and MNLP for SPGP, SSGP-fixed, SSGP and full GP for the Kin-

40k problem.

The Pumadyn-32nm problem can be seen as a test of the ARD capabilities of a

regression model, since only 4 out of the 32 input dimensions are relevant. Following

Snelson and Ghahramani (2006), to avoid the optimization process getting stuck at

some high NLML value, length-scales are initialized from a full GP on a subset of

1024 training data points, for all compared methods. Then joint optimization over all

hyperparameters is performed. Results are shown in Fig. 2.6.

All methods correctly perform the ARD, raising the length-scales of all inputs ex-

cept [4, 5, 15, 16], which are the ones really related to the prediction task. SSGP looks

superior overall, achieving full GP performance with just 10 spectral points. It remains

quite insensitive to overfitting when this number is increased.

2.4.4 Pendulum data set

So far we have seen data sets where SSGP was very competitive, producing excel-

lent NMSE figures and reasonably good MNLP figures. Though this seems to be the

common case, we can find tasks were SSGP fails to give proper predictive variances.

43

2. SPARSE SPECTRUM GPS

10 24 50 74 100
0.04

0.05

0.1

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

FITC
SSGP fixed spectral points
SSGP
Full GP on 7168 data points

(a) NMSE (log-log plot)

10 24 50 74 100
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

FITC
SSGP fixed spectral points
SSGP
Full GP on 7168 data points

(b) MNLP (semilog plot)

Figure 2.6: NMSE and MNLP for SPGP, SSGP-fixed, SSGP and full GP for the

Pumadyn-32nm problem.

The small data set Pendulum (9 dimensions, 315 training samples, 315 testing)

represents the problem of predicting the change in angular velocity of a simulated me-

chanical pendulum over a short time frame (50 ms) as a function of various parameters

of the dynamical system. The target variable depends heavily on all inputs. Fig. 2.7

shows results for the considered methods.

Results up to 800 basis functions are shown. This is for investigation purposes,

since using more basis functions than samples7 (315 in this case) presents no computa-

tional advantage with respect to a full GP. SSGP is shown to perform very badly on the

MNLP measure. Unlike the NMSE, the MNLP takes the predictive variances into ac-

count penalizing more the errors in predictions with low variances (high certainty), see

2.21b. In this data set predictive means are quite accurate (as the NMSE plot shows)

but predictive variances are exceedingly small, resulting in very bad MNLP figures.

Wild disagreement among predictive distributions coming from different random ini-

tializations was also observed. It is interesting to note that the noise hyperparameter

7SPGP’s pseudo-inputs are usually initialized to a random subset of the input samples. Whenm > n,

all the input samples are used and additional m − n pseudo-inputs are generated by a random convex

combination of the existing inputs.

44

2.5 Overfitting versus overconfidence

10 24 50 100 200 400 800
0.25

0.3

0.4

0.5

0.6

0.7

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

FITC
SSGP fixed spectral points
SSGP
Full GP on 315 data points

(a) NMSE (log-log plot)

10 24 50 100 200 400 800

2

4

6

8

10

12

14

16

18

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

FITC
SSGP fixed spectral points
SSGP
Full GP on 315 data points

(b) MNLP (semilog plot)

Figure 2.7: NMSE and MNLP for SPGP, SSGP-fixed, SSGP and full GP for the Pen-

dulum problem.

gets determined correctly, so it is not the cause of the small predictive variances.

This example shows that SSGP should be used with caution in tasks where predic-

tive variances are of importance. We will show how to improve this type of behaviors

in Chapter 3.

2.5 Overfitting versus overconfidence

A model is said to overfit when it is not only describing the underlying relationship

between inputs and outputs in some data set, but also its inherent random noise. A

model that overfits might seem good because it describes training data quite accurately

(it has learned even part of its random fluctuations), but it is not: When tested on a

separate data set with the same underlying relationship, results are much worse (since

the random noise in the test data set is obviously different). In short, a model overfits

when it learns random variations in training data and does not generalize well to unseen

data.

45

2. SPARSE SPECTRUM GPS

Overfitting typically appears when a model has a high expressive power or is ex-

cessively complex, i.e. it has too many degrees of freedom in relation to the amount

of available data. When some generalization error measure (such as the test NMSE)

is plotted versus the complexity of the model, overfitting can be easily spotted at the

point at which models of higher complexity no longer reduce the error measure and

instead increase it.

Bayesian models provide both an estimation of the output µ∗ and an estimation of

its uncertainty σ2
∗ . There are cases, such as the Pendulum example in Section 2.4.4, in

which as the complexity of a model grows, the generalization error measure (NMSE)

decreases steadily, but the MNLP of the predicted values (which take the uncertainty

estimation into account) increases. Thus, we can have a model which makes accurate

predictions on unseen data but which is so overconfident that the actual data is unlikely

under the predictive posterior.

Though overconfidence is sometimes regarded as plain overfitting, in this thesis we

want to make a clear distinction between both, because whereas overfitting renders a

model useless, an overconfident model can still be used successfully if we are only

interested in mean predictions (by disregarding the uncertainty estimates).

Overfitting usually implies overconfidence, but the converse is not necessarily true.

If a model overfits (in the sense given here of fitting noise), the noise power σ2 is going

to be underestimated, thus reducing the predictive variance and probably making the

model overconfident too. If a model does not overfit, the noise component present in

the uncertainty estimate is going to be large enough, but the projection of test data

on seen examples kf (x∗)
>(Kff + σ2In)−1kf (x∗) can nonetheless be overestimated.

Overestimating this term in (1.15c) reduces the predictive variance and therefore an

overconfident prediction can be made despite the absence of overfitting.

We will illustrate these ideas with a simple example. We draw a random function

from a GP with one-dimensional ARD SE covariance function and sample it at 20

random points in the intervals (−4,−3) and (3, 4), leaving a relatively wide unsampled

gap in (−3, 3). Then we try to learn the underlying function from which those data

points were drawn without any knowledge about the generating process. We use a full

GP in which all hyperparameters are learned. Two possible covariance functions are

considered: ARD SE (1.5) and linear (kLin(x,x
′) = σ2

0(1 + x>x′)). The posterior

distribution is plotted in Fig. 2.8 for both cases.

46

2.5 Overfitting versus overconfidence

−5 0 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

x, input

y,
 o

ut
pu

t

95% confidence area
Training data points
Mean prediction

(a) GP with ARD SE cov. fun.

−5 0 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

x, input

y,
 o

ut
pu

t

95% confidence area
Training data points
Mean prediction

(b) GP with linear cov. fun.

Figure 2.8: Shaded areas account for 95% of the posterior probability mass, given

training data (crosses). Both panels correspond to full GP models where hyperparam-

eters are learned via ML-II.

If we direct our attention to the area around x = 0, far away from data, the mean

predictions from both models look equally reasonable. The uncertainty estimations,

however, are clearly different. The non-linear GP in the left panel seems to be doing

the right thing, almost reverting to the prior variance at x = 0, showing big uncertainty

at a point which is far away from seen data. On the other hand, the linear model is

much more confident about its predictions, because it is only considering the hypoth-

esis space of linear models to determine the uncertainty. When tested on unseen data

(which, as we know, comes from a non-linear model), the linear model would produce

overconfident predictions yet no one would claim that the linear model is “overfitting

data”. If anything, it is underfitting it (the noise level estimate is bigger for the linear

model than for the non-linear one).

Generalized linear models, such as SSGP, only consider a reduced hypothesis space

with finitely many basis functions (a linear GP would be an extreme case in which

only D bases are considered). Full ARD SE GPs, on the other hand, consider in-

finitely many basis functions. Thus, for a given data set of unknown nature, the former

models, seeing less possible explanations for data, will (incorrectly) be more confident

about their own predictions. A set of basis functions that describes well the underlying

transformation for some data set but does not include enough alternative interpreta-

tions is going to produce overconfident predictions, yet not overfit, at least in the sense

47

2. SPARSE SPECTRUM GPS

described here.

If the set of basis functions is independent from data (such as in SSGP-fixed), the

quality of the uncertainty estimates will grow as more bases are considered, since more

alternative explanations are included. This is not necessarily the case when the bases

are selected through ML-II, since they will try to better match available data, possibly

resulting in overconfidence and, if enough basis functions are used, in overfitting.

Though SSGP may occasionally result overconfident, it rarely overfits data (it never

did in the experiments shown in the previous section), provided that the number of

spectral points is kept low in relation to the number of data points. If we want to make

sure SSGP does not overfit, even for a large number of spectral points, we can do so by

using a technique described in Section 3.2.1. Note that this technique does not protect

against overconfidence.

Unlike SSGP, SPGP is an entirely different approximation that can not be inter-

preted as a generalized linear model. Instead, it uses a set of inducing variables as a

bottleneck to make inference about data. The predictive uncertainties derived from this

process are also considered in its predictions, so it hardly ever suffers from overfitting

or overconfidence.

2.6 On the effect of learning the phases

In Section 2.1.2.2 we showed that SSGP can be regarded as a linear combination of

cosines with some amplitude and phase, where both the amplitudes and the phases

were integrated out. In this section, we investigate the benefits of integrating out the

phases, by comparing with a very similar model where phases are regarded as deter-

ministic hyperparameters instead.

The proposed deterministic-phase model is analogous in structure to SSGP

fMCN(x) =
m∑
i=1

ci cos(2πs>i x− ϕi) , (2.22)

but {ϕi}mi=1 are now regarded as hyperparameters. Additionally, for analytical tractabil-

ity, we will also replace the symmetric-Rayleigh prior placed on {ci}mi=1 with a matching-

moments Gaussian p(ci) = N (ci|0, 2σ2
0/m).

48

2.6 On the effect of learning the phases

We will refer to this deterministic-phase model as Marginalized Cosine Network

(MCN), since it is a analogous to a Neural Network with cosine activation8, where the

output weights have been marginalized out. We will devote Chapter 3 to the study and

improvement of general Marginalized Networks and will use MCNs as our running

example. MCNs can be considered as a cosines-only approximation to SSGP.

The only two differences between MCNs and SSGP are that they use different

priors on the weights and that SSGP integrates out phases whereas MCNs do not. We

will now argue that the first difference is almost irrelevant in practice.

The prior on the weights only affects the model through the effect it produces on

the prior on f . This latter prior is a linear combination of the priors on the weights9, so

y will end up having an almost-Gaussian density if the number of independent weights

is big enough, due to the Central Limit theorem. Replacing the symmetric-Rayleigh

prior on the weights with a matching-moments Gaussian replaces that almost-Gaussian

density on f with an actual Gaussian of matching-moments. The effect of this change

is negligible, even for a small number of weights.

To see that the number of symmetric-Rayleigh weights that need to be combined to

achieve an almost-Gaussian density is very low, we provide Fig. 2.9. In panel (a), we

show a symmetric-Rayleigh distribution and a matching-moments Gaussian. In panel

(b), we show the density of a linear combination of just ten independent weights, for

both densities. Recall that linearly combining random variables amounts to scaling

and convolving their densities, hence a linear combination of independent symmetric-

Rayleigh distributed weights does not have a density with zero mass around zero, de-

spite all independent weights having it.

The second difference between SPGP and MCN, regarding the phases as determin-

istic hyperparameters instead of integrating them out, has deeper implications: The

stationarity property is lost. In particular, the point wise variance of SSGP was con-

stant (σ2
0), but in MCN, it is input-dependent

V[fMCN(x)] =
m∑
i=1

V[ci] cos2(2πs>i x− ϕi) =
2σ2

0

m

m∑
i=1

cos2(2πs>i x− ϕi) ,

8To be more precise, to a Multi-Layer Perceptron (MLP) architecture with a single hidden layer,

using cosine-type activation for the hidden layer and linear activation for the output layer.
9Recall that f = w>φ(x) and φ(x) is deterministic.

49

2. SPARSE SPECTRUM GPS

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

c
L

pd
f

Gaussian
Symmetric Rayleigh

(a) pdf of independent variables

−15 −10 −5 0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

c
L

pd
f

Linear comb. of Gaussian
Linear comb. of symmetric Rayleigh

(b) pdf of linear combination

Figure 2.9: (a) Symmetric Rayleigh pdf and Gaussian pdf, both with the same mean

and variance. (b) Resulting pdf of the linear combination of 10 independent random

variables with given pdfs.

and takes values in the range [0, 2σ2
0]. For the ranges of the input domain where the

prior variance takes near-zero values, the predictions may be overconfident (since the

predictive variance can only be smaller than the prior variance). This problem is similar

to that of the SR approximation, discussed in Section 1.2.3.

Perhaps a simpler way to illustrate the close relation between SSGP and MCN is

by inspecting the effective covariance function of the latter

kMCN(x,x′) =
σ2

0

m

m∑
i=1

cos(2πs>i (x− x′)) +
σ2

0

m

m∑
i=1

cos(2πs>i (x + x′)− 2ϕi) ,

and noticing that its first term is precisely the SSGP covariance function (2.7), whereas

the second term adds a non-stationary perturbation. Since the second term is an average

of cosines, if the phases {ϕi}mi=1 are uniformly distributed, the perturbation vanishes as

more basis functions are added. Further details on the infinite-limit convergence and

the derivation of this covariance function can be found in Section C.3 of Appendix C.

The derivation of the predictive equations for the MCN model (see Section 3.1.2

and (3.4) for details) is almost identical to that of SSGP. Model selection is also per-

formed similarly, by jointly optimizing the NLML wrt all hyperparameters (which now

include the phases). Phases are initialized randomly from a uniform density in the in-

terval [0 . . . 2π]. The detailed procedure is provided in Section 3.1.2.1. One advantage

50

2.7 Summary and conclusions

10 24 50 100 250 500 1000
0.01

0.02

0.03

0.04

0.05

0.1

0.15

0.2

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

FITC
SSGP Cosines Only
SSGP
Full GP on 10000 data points

(a) NMSE (log-log plot)

10 24 50 100 250 500 1000
2.5

3

3.5

4

4.5

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

FITC
SSGP Cosines Only
SSGP
Full GP on 10000 data points

(b) MNLP (semilog plot)

Figure 2.10: NMSE and MNLP for SPGP, MCN, SSGP and full GP for the Pole

Telecomm problem.

of the MCN model is that, for a fixed number of frequencies h, the design matrix con-

sists only of h columns (as opposed to the 2h columns of SSGP). That roughly halves

storage costs and divides computational costs by four. Conversely, for a fixed number

of basis functions, MCN uses twice as many frequencies as SSGP.

Despite this advantage, MCN is less accurate than SSGP in the data sets discussed

in the experimental section. As an example, we show its performance on the Pole-

Telecomm data set in Fig. 2.10 (keeping, as in Section 2.4.2, σ2 > bin2
spacing/12). We

can observe how MCN starts overfitting at m = 500 basis functions (both error mea-

sures start degrading) whereas SSGP keeps improving. This shows the benefit of phase

integration, which is the fundamental difference among both methods.

2.7 Summary and conclusions

In this chapter we have introduced Sparse Spectrum GPs (SSGP), a sparse GP model

that can be regarded as a linear combination of trigonometric basis functions where

51

2. SPARSE SPECTRUM GPS

both weights and phases have been integrated out. Hyperparameters are jointly se-
lected by minimizing the NLML of the model, which can be done in a very efficient
manner. This model presents the following properties:

• It has no location parameters.

• It is stationary.

• It has a deep connection with stationary full GPs: It can approximate any station-
ary full GP by making the spectral points follow the distribution of the spectral
density of the full GP’s covariance. The approximation becomes exact as the
number of spectral points tends to infinity.

The performance and behavior of the new model has been tested extensively. Learn-
ing the spectral points results, in most cases, in significant improvement over the cur-
rent state of the art, SPGP. Fixing the spectral points yields a less accurate method, but
one that (unlike SPGP) is known to converge to the full GP in the infinite limit, and for
which only a very small number of hyperparameters needs to be selected.

Two potential problems with SSGP (only present when the spectral points are
learned) have been identified:

• SSGP may overfit if too many spectral points (in relation to the number of avail-
able data samples) are used. If this happens, noise power is typically underesti-
mated and the predictive means and variances degrade. This problem is hardly
ever the case (never was in the experiments). A simple workaround for this type
of problem will be described in Section 3.2.

• SSGP may be overconfident. On some regression tasks, even when predictive
means and noise power are properly determined, the predictive variances can be
underestimated due to the limited hypothesis space of the model, as discussed in
Section 2.5. This problem appeared only in the Pendulum data set, and is only
relevant if we are interested in uncertainty estimates. A possible workaround
will be presented in Section 3.3.

Despite these potential problems, SSGP (both with fixed and selectable spectral
points) seems to be a promising approach for tackling large-scale regression problems
that require both efficiency and accuracy.

52

Chapter 3

Marginalized Networks

In this chapter we will introduce Marginalized Networks (MNs), which generalize the

SSGP model described in Chapter 2. MNs are generalized linear regression models

that encompass traditional network topologies such as Multi-Layer Perceptrons or Ra-

dial Basis Functions Networks. However, unlike traditional networks, MNs regard the

weights of the output layer as random variables which can be marginalized out instead

of learned. Although this gives MNs some advantages over their classical counter-

parts, some problems, such as overfitting, are still present. In order to overcome these

problems and develop practically useful methods for large-scale learning, we propose

two new methods: A simple technique, called “noise bounding”, and a more sophis-

ticated one called “network mixing”. Both of them run within the same complexity

order as previously proposed approaches, and improve on the accuracy of SPGP and

even SSGP.

This chapter is organized as follows: In Section 3.1 we formalize the concept of

Marginalized Networks and describe their associated drawbacks; in Section 3.2 we

introduce noise bounding and provide experiments to show its usefulness, including

comparisons with SPGP and SSGP; in Section 3.3 we introduce network mixing and

provide analogous experiments; in Section 3.4 a scheme for supervised dimensionality

reduction using MNs is described; finally, Section 3.5 summarizes and concludes the

chapter.

53

3. MARGINALIZED NETWORKS

3.1 The Marginalized Network (MN) model

Consider the generalized linear model

f(x) =
m∑
i=1

wiφ(ui,x) , (3.1)

where {φ(u, ·)}mi=1 is a family of scalar basis functions parametrized by {ui}mi=1 (the
so-called “input weights”) and {wi}mi=1 is a set of weights that control the scaling of
each basis function (the “output weights”). This model represents an arbitrary nonlin-
ear mapping between samples x ∈ RD in a multidimensional input space and some
scalar output space.

Many classical regression methods can be represented by this model, notably Ra-
dial Basis Functions Networks (RBFNs) and Multi-Layer Perceptrons (MLPs) with a
single hidden layer, both of which are a type of Neural Networks (NNs). Networks of
this type are usually trained by selecting their weights {wi,ui}mi=1 so as to minimize
the squared error over the training set, i.e.

∑n
j=1(f(xj)−yj)2. This results in a number

of problems:

• Overfitting: When m is large, the model is too flexible and it fits the data set
almost perfectly, as if no noise was present in the observations. This results in
bad generalization and poor predictions on new data. Thus m is not only used to
control the amount of computation we are willing to spend on some regression
task, but it is also a critical parameter that we must select carefully: Larger values
of m, though devoting more computing power, may result in less performance.

• Non-convex cost functional (with respect to the input weights): The squared
error cost functional is not convex for this type of networks, so convergence to
poor local minima is possible.

• Cross-validation must be used: The squared error cost functional is not appro-
priate to select other sensitive parameters (such as m or the amount of weight
decay in MLPs), so these parameters must be selected through cross-validation.
This has some drawbacks: Only a discrete set of values for the parameters is
considered, computational cost scales exponentially with the number of param-
eters, and validation sets are required, thus reducing the number of samples that
can effectively be used during model selection.

54

3.1 The Marginalized Network (MN) model

• Deterministic predictions: Estimates of the outputs for new data points are pro-

vided without a hint about its uncertainty. Also, no estimation of signal-to-noise

ratio in the data set under consideration is provided.

On the positive side, they are very cheap to train, taking only O(mn) time per

epoch1 for simple, gradient-based optimizations algorithms andO(m2n) time for more

sophisticated algorithms such as Levenberg-Marquardt2. Several epochs must of course

be run until convergence is achieved.

A possible solution to the aforementioned problems is to use a non-parametric,

Bayesian approach: Use an infinite number of basis functions, place a prior on all the

weights of the network, and integrate them out. Difficult as it seems, it turns out that for

some sets of basis functions, it is possible to do this analytically, as proved in Williams

(1997). The resulting model in these cases is precisely a full GP, for which, as we

know, it is possible to make inference with a finite (but huge) amount of computation.

Instead of integrating out all the parameters of the network and then sparsify the

resulting model, in this chapter we propose to enforce sparsity by design, integrating

out only the output weights. We will call this model Marginalized Network (MN).

3.1.1 Definition

We define a Marginalized Network as a Bayesian regression model following these

equations:

y = f(x) + ε f(x) = w>φ(x) (3.2a)

p(ε) = N (0, σ2) p(w) = N (w|0, σ2
0/(mσ

2
p)Im), (3.2b)

where w = [w1, . . . , wm]> and φ(x) = [φ(u1,x), . . . , φ(um,x)]>. Values σ2
0 ,

σ2 and {ui}mi=1 are regarded as hyperparameters and σ2
p is a normalizing constant to

ensure that σ2
0 properly represents the average signal power E[f 2(x)]. Constant σ2

p is

1In the context of NNs, an epoch refers to a complete sweep of the optimization process over all data

samples.
2When quoting the computational cost of our algorithms, we usually omit the dependence on D,

which is linear. For Levenberg-Marquardt, though, this dependence is quadratic. Thus Levenberg-

Marquardt is computationally more expensive than the algorithms presented in this thesis.

55

3. MARGINALIZED NETWORKS

just the average power of the basis functions over the input space, so it is known a
priori.

Design matrix Φf = [φ(x1), . . . , φ(xn)] of the training set can be used to express
the joint distribution of the latent values compactly:

pMN(f |{xj}nj=1) = N (f |0, σ2
0/(mσ

2
p)Φ>f Φf),

which is just a GP with the following (noiseless) covariance function

kMN(x,x′) =
σ2

0

mσ2
p
φ(x)>φ(x′). (3.3)

The definition of MN corresponds to a sparse GP. When the number of basis func-
tions is infinite and the input weights are selected according to some distribution, a full
GP arises. This distribution, together with the functional form of φ(·, ·), determines
whether the covariance of the full GP can be computed analytically. When working
with full GPs, only combinations of distributions and functional form that yield ana-
lytical covariance functions can be used. On the contrary, when considering MNs, any
combination can be used.

We can use all the equations from the GP framework just by replacing Kf f with the
low rank matrix σ2

0

mσ2
p
Φ>f Φf . Suitable values for the input weights and the signal and

noise hyperparameters (σ2
0 and σ2) are found by jointly optimizing the NLML (1.18).

Since the covariance matrix of this GP is low rank by construction, previous GP
equations can be re-stated in a computationally cheaper form. Thus, for making pre-
dictions at new test points, (1.15) becomes:

pMN(y∗|x∗,D) = N (y∗|µMN*, σ
2
MN*) (3.4a)

µMN* = φ(x∗)
>A−1Φfy (3.4b)

σ2
MN* = σ2 + σ2φ(x∗)

>A−1φ(x∗) (3.4c)

where A = ΦfΦ
>
f +

mσ2
pσ

2

σ2
0

Im is an m×m matrix, much smaller than the covariance
matrix. To select select free parameters through type II Maximum Likelihood (ML-II),
(1.18) can be expressed in the following computationally-efficient form:

− log pMN(y|θ) =
[
y>y − y>Φ>f A−1Φfy

]
/(2σ2)

+
1

2
log |A| − m

2
log

mσ2
pσ

2

σ2
0

+
n

2
log 2πσ2. (3.5)

56

3.1 The Marginalized Network (MN) model

Equations (3.4) and (3.5) can be computed in O(m2n), the same bound offered

by SPGP. Actually, for the same number of basis functions, MNs are faster because

the low rank decomposition of the covariance matrix is simpler. Further computational

savings and numerical accuracy can be achieved by using the Cholesky decomposition,

as detailed in Section D.3 of Appendix D. The largest matrix in this computations is

the design matrix Φf , so only O(nm) storage space will be needed.

It is interesting to notice how the predictive mean can be expressed as the output

of a traditional network, i.e. in the format of (3.1), using the selected input weights

and w = A−1Φfy as output weights. Unlike SPGP, MNs preserve the structure of

traditional networks, so they can be used to train RBFNs, MLPs, etc.

3.1.2 Marginalized Cosine Networks (MCN)

Choosing the family of basis functions

φ(u,x) = cos(u>x̃)

parametrized by u, where x̃ = [1, x>]> is the augmented input vector, and plugging it

into (3.2) retrieves the Marginalized Cosine Network mentioned in Section 2.6.

Constant σ2
p , needed for (3.4) and (3.5), can be derived from the family of basis

functions

σ2
p = lim

L→∞

1

LD

∫
CL

cos2(u>i x̃)dx =
1

2
,

where the region CL is a cube of edge L, centered at the coordinate origin.

3.1.2.1 Model selection

We will describe model selection for MCNs, but the procedure for other types of MNs

is analogous. MCNs are trained by minimizing the Negative Log Marginal Likeli-

hood (NLML) of the model, as described by (3.5). Each input weight ui is in turn

parametrized as follows: ui = [ϕi, (L−1ωi)
>]>, where L is a diagonal matrix of size

D × D whose elements are the length-scales `1 . . . `D. With this definition, to com-

pletely define a model we must specify σ2
0 , σ2, {`}Dd=1, {ωi}mi=1 and {ϕi}mi=1.

57

3. MARGINALIZED NETWORKS

MCN with selectable input weights First, we will consider the case in which all

the aforementioned hyperparameters are learned. Selecting both {`d}Dd=1 and {ωi}mj=1

effectively overparametrizes the model, but as we discussed in Section 2.3 for SSGP,

this eases the optimization process and enables ARD to be correctly performed. The

detailed model selection procedure is:

1. Initialize {`d}Dd=1, σ2
0 , and σ2 to some sensible values. (We will use: One half

of the ranges of the input dimensions, the variance of the outputs {yj}nj=1 and

σ2
0/4, respectively).

2. Initialize {ω}mi=1 from N (ω|0, ID) and {ϕi}mi=1 from a uniform distribution in

[0, 2π). This initially approximates the ARD SE covariance function (see below).

3. Minimize (3.5), the NLML of the model, wrt to {`}Dd=1, σ2
0 , σ2, {ωi}mi=1 and

{ϕi}mi=1. Since analytical derivatives are available, conjugate gradient descent

can be used. Recall that for cosine basis, σ2
p = 1/2.

As with SSGP, it is possible to compute all of the D + 2 + m(D + 1) NLML

derivatives in O(m2n) time. Details on how to do this in a numerically stable way

are provided in Section E.2 of Appendix E. As in previous methods, storage space is

dominated by the design matrix, so it is O(mn).

SPGP usesD+2+mD hyperparameters, so for the same number of basis functions

MCN and SPGP roughly need the same number of hyperparameters. The additional

flexibility of MCNs with respect SPGP does not come from the m − D additional

degrees of freedom3, but from the nature of the approximation, that is not constrained

to approximate any concrete covariance function.

MCN with fixed input weights We know from Chapter 2 that if vectors {si =

(2πL)−1ωi}mi=1 are distributed according to the spectral density of some stationary

covariance function, as m tends to infinity SSGP converges to a stationary full GP

with that stationary covariance function. This also holds for MCN, provided that the

phases are uniformly distributed in any [n1π, n2π] range with n1, n2 ∈ Z : n2 > n1.

See convergence proofs in Sections C.2 and C.3 of Appendix C.

3Recall that D of MCN’s hyperparameters are redundant

58

3.1 The Marginalized Network (MN) model

This explains the proposed initialization for {ω}mi=1 and {ϕi}mi=1: If we draw {ωi}mi=1

from a N (ω|0, ID) distribution, then {si = (2πL)−1ωi}mi=1 will be distributed as
N (s|0, (2πL)−1), which in turn corresponds to the ARD SE covariance function, as
per Section 2.1.3. Thus, for finite m, the model will be initialized to approximate a GP
with the ARD SE covariance.

If we let {ϕi,ωi}mi=1 fixed during the third step of the process, the model keeps
being an approximation to the full GP, and it has roughly the same properties as SSGP-
fixed (though it is not stationary). By only fixing {ωi}mi=1 we retain most of the prop-
erties of SSGP-fixed, though strict convergence to the full-GP is lost. We will refer to
this latter model as MCN-fixed. As opposed to MCN, MCN-fixed:

(a) barely overfits, since just D + m + 2 hyperparameters are selected, (in contrast
with the D + 2 + (D + 1)m hyperparameters that need to be selected for MCN);

(b) can be trained much faster, for the same reason; and

(c) needs more basis functions to fit data, since input weights are fixed (up to a com-
mon scaling).

3.1.2.2 SSGP as an MCN

SSGP can be obtained as an instantiation of MCN by additionally constraining input
weight vectors {ui}mi=1 to have paired form {[0, 2πs>r]>, [−π/2, 2πs>r]>}hr=1. For h
spectral points, the total number of basis functions is thereforem = 2h. As we showed
in Section 2.1.2.2, this constraint has the effect of integrating out the phase, thus mak-
ing the model more robust to overfitting and having slightly less hyperparameters. The
improved robustness of SSGP over MCN was shown in Section 2.6.

3.1.3 Drawbacks of MNs

MNs achieve to some extent the advantages of full GPs (probabilistic predictions, ML-
II model selection, and some overfitting resistance) while still being a computationally
tractable model for big data sets. If the input weights are fixed, they can be safely
used, without any risk of overfitting, but in most cases, this does not yield state-of-
the-art performance. If the input weights are selected by ML-II, higher performance is
achieved, but new problems appear:

59

3. MARGINALIZED NETWORKS

1. When the number of basis functionsm is large, the quality of the predictive mean
may deteriorate, i.e. the model may overfit. Even though this effect is reduced by
integrating out the output weights, selecting the input weights makes the model
flexible enough so as to fit part of the noise present in the data set.

2. If m is large, the quality of the predictive variance may deteriorate too, usually
resulting in an underestimation of the uncertainty level. This problem may ap-
pear even when predictive means are accurately estimated, (the overconfidence
problem, see Section 2.5).

3. ML-II model selection is possible for MNs (there is no need to resort to cross-
validation), but the dimension of the search space is large (such as that of tradi-
tional networks). Convergence to local minima is possible.

Problem 3 is typical of most sparse GP algorithms (including SPGP): Selecting a
sparse set of basis functions to fit the data set is almost never a convex problem and
thus can suffer from local minima. Fortunately, in most cases, local minima are good
enough solutions. In the rare case in which this problem appears, there are two possible
workarounds: a) restart the algorithm with a different initialization, hoping for a better
solution to be reached; and if this does not work, b) try a different family of basis
functions, since this will change the search space itself. Solution b) usually implies
also a change the covariance function that is being approximated. However, in Chapter
4, we will present a variation of SPGP that allows to maintain the target covariance
function while changing the family of basis functions.

If we are only interested in mean predictions (as it is always the case for people us-
ing traditional regression networks), we can disregard problem 2. In that case, problem
1 can be solved in a simple and efficient manner as we detail in Section 3.2,

If we are also interested in full probabilistic predictions, we need to reduce the ef-
fect of the limited hypothesis space. This can be achieved by mixing several networks.
We detail this procedure in Section 3.3. Though for big enough m predictive variances
may still be underestimated, mixing drastically reduces overconfidence.

Of course, for very sparse models (small m), problems 1 and 2 do not apply, so
good results are expected even if we use plain MNs. Since MNs are improved versions
of classical networks, they are also amenable to classical solutions for overfitting (such
as using cross-validation to select a suitable, small enough, value for m).

60

3.2 Bounded-Noise Marginalized Networks (BN-MN)

3.2 Bounded-Noise Marginalized Networks (BN-MN)

In this section we introduce Bounded-Noise Marginalized Networks (BN-MNs), a sim-
ple yet effective improvement over MNs, that prevents predictive means from degrad-
ing as the number number of basis functions m grows. This renders BN-MNs an effi-
cient tool for those problems in which point estimates are the main interest. Predictive
variances are also improved (and often become reasonably good, even for large m),
but are not completely reliable, as we show in the experimental section. We will see
in Section 3.3 a method which is better suited for problems where accurate predictive
variances are needed.

3.2.1 Noise bounding

The probabilistic regression models that we are using are always of the form y =

f(x) + ε, i.e., observation y consists of a latent function f(x) (the desired signal)
plus Gaussian noise ε. We use hyperparameter σ2

0 to denote the average power of
f(x), whereas σ2 denotes the noise power. Both hyperparameters are unknown and
are selected so as to maximize the evidence of the model for a given data set. After
the model selection procedure converges and we have estimates of σ2

0 and σ2, it is
reasonable to expect the empirical power of the observations 1

n

∑n
j=1 y

2
j to be roughly

equal to the average power of the model, σ2
0 + σ2. Thus, model selection is used to

determine how the power of the observations is split between signal and noise. This
values can be used to obtain a Signal-to-Noise Ratio (SNR) estimate for a given data
set.

When the number of basis functions m in an MN is too small, only a coarse fit
to available data can be provided, due to the lack of expressive power. As m grows,
the fit improves and, when testing on a separate set of data, the NMSE decreases.
However, if we keep increasing m, at some point the number of basis functions will be
large enough so as to fit not only signal f(x), but also the observation noise. This still
decreases the training NMSE, but the test NMSE gets increased, since noise in both
sets is not correlated. This undesirable noise-fitting effect is known as overfitting.

A traditional approach to avoid overfitting is to limit the expressive power of the
model. In this case, we would have to select a value form (e.g., using cross-validation)
that is large enough so as to fit available data whereas it is small enough so as not to

61

3. MARGINALIZED NETWORKS

start fitting noise. This approach has two clear drawbacks: Choosing which values

of m are going to be swept during cross-validation is not a trivial problem. Also,

assuming that we somehow know the M potential values of m that we are going to

consider, the model selection procedure must be run MNfolds times, where Nfolds is the

number cross-validation folds (5 is a typical value). The overall multiplicative factor

can be very big, thus defeating the purpose of a sparse, fast method.

When overfitting appears in an MN, at least some part of the noise is not being

identified as such, and f(x) is fitting both the signal and that part of the noise. In such

a model, σ2 is underestimated (since less noise is needed to account for the deviations

of the observations from f(x)) and σ2
0 overestimated (since more power is needed to

account for both the signal and the part of the noise that is identified as signal). Thus,

some of the power that should be identified as noise gets identified as signal, but σ2
0+σ2

keeps being roughly equal to the average power of the observations.

In this context, we reason as follows: If we knew beforehand a good approxima-

tion σ2
min of the true noise power and only allowed model selection to search in the

interval σ2 ∈ [σ2
min,∞), noise could not be underestimated. Thus σ2

0 could not be sig-

nificantly overestimated (since σ2
0 +σ2 is roughly constant for each given data set) and

f(x) should only fit the signal (since noise is already fitted). We call this idea “noise

bounding”, and MNs using it Bounded-Noise Marginalized Networks (BN-MNs).

The reason for the noise power σ2 to be lower-bounded by an estimation σ2
min in-

stead of just fixing it to the estimation is twofold: First, during model selection, the

easiest path between the starting model and the desired model might traverse higher

noise parts of the model space, so even if σ2 takes the value σ2
min both at the starting

and finishing value, letting it take higher values might ease optimization. Second, if

f(x) underfits data for some reason, the value of σ2 must be higher, to compensate for

the lack of fit.

It is also possible to give another argument about why lower-bounding σ2 provides

protection against overfitting for the predictive mean. The predictive mean of an MN

is:

µMN* = φ(x∗)
>
(
ΦfΦ

>
f +

mσ2
pσ

2

σ2
0

Im

)−1

Φfy,

which has the form of regularized linear regression in the feature space induced by the

basis functions. The regularization factor is mσ2
pσ

2

σ2
0

. Thus, by lower bounding σ2 we

62

3.2 Bounded-Noise Marginalized Networks (BN-MN)

are additionally imposing a lower bound on the regularization level4. Regularization is

known to avoid overfitting, and assuming again that some noise power estimation σ2
min

is available, we can estimate the regularization factor.

An interesting observation follows: The optimal regularization constant for any

network following (3.1) (notably including classical networks such as RBFNs and

MLPs) is inversely proportional to the SNR of the observations, with known propor-

tionality constant mσ2
p .

3.2.2 Obtaining a noise power estimate

To effectively apply this idea to train a BN-MN we also need a reasonably accurate

estimation σ2
min of the noise power. A simple method to achieve this is to run model

selection on an MN of the appropriate size (same m as the BN-MN), with the input

weights selected from some distribution and fixed (i.e., MN-fixed5), then take the se-

lected value of σ2 as σ2
min. Since the basis functions are fixed, the model cannot overfit

the data. Thus, the selected σ2
min would be, if anything, above the true noise level.

In the concrete cases of SSGP and MCN, we already know that fixing the input

weights (also known as spectral points in the SSGP model) to be distributed according

to the normalized spectral density of some stationary covariance function provides

an approximation which tends to a full GP with that stationary covariance function

as m tends to infinity. This convergence, as well as the absence of overfitting was

experimentally shown in Section 2.4. For other types of MNs with different activation

function, there may or may not be analytical expressions for the covariance function

achieved in the infinite limit, but they will nonetheless converge to a full GP and present

no overfitting.

When m is small, only a few fixed basis functions are used, so data is probably

underfit. The unfitted part of the signal is then taken as noise, so σ2
min is probably an

overestimation of the real amount of noise power present in the observations. As m

4Values m and σ2
p are constant and known beforehand. The denominator, σ2

0 , is estimated via ML-II

and is known to be close to 1
n

∑n
j=1 y

2
j − σ2, as reasoned above.

5In this case only few hyperparameters need to be selected (D + 2 values in the case of the ARD

kernel). This implies that only a small number of iterations is required for convergence, so that the

overhead with respect to training a full MN is very small.

63

3. MARGINALIZED NETWORKS

grows, more accurate estimations are expected, and in the concrete case of SSGP-fixed
and MCN-fixed, we get closer to the corresponding stationary full GP.

Using an overestimated σ2
min in BN-MN may force it to underfit. However, when

m is small, BN-MN is expected to underfit anyway. And when m grows and the value
of σ2

min becomes more critical, so does the accuracy of σ2
min.

Despite this rationale, when m is small, the amount of underfitting of MN-fixed is
bigger than that of the corresponding MN (since the MN can adjust the input weights).
This means that for small m, BN-MN is forced to underfit slightly more than MN.
Thus, for small m, BN-MNs will perform slightly worse than MNs. This is the price
paid in exchange for enhanced performance in a wide range of m values.

3.2.3 Bounded-Noise Marginalized Cosine Networks (BN-MCN)

In Section 2.6, before the concept of marginalized networks was formalized, we in-
troduced MCNs as a relaxation of the phase integration property of SSGP. However,
as the experiment in that section showed (Fig. 2.10), MCNs suffered of the general
overfitting problem of MNs, whereas SSGP, due to the additional constraints placed
on the input weights, did not overfit. Now we are in position to turn MCNs into a
useful method by applying the noise bounding trick. We call the resulting algorithm
Bounded-Noise Marginalized Cosine Networks (BN-MCN).

3.2.3.1 Model selection

As we have seen, BN-MNs have exactly the same structure as MNs, and use the same
prediction (3.4) and NLML (3.4) equations, but they use a slightly different training
procedure consisting of two steps: First a lower bound σ2

min for the noise level is esti-
mated keeping input weights fixed, then model selection is carried out while keeping
noise lower-bounded.

This procedure is similar for any BN-MN; here, we provide details for BN-MCNs,
since this is the method we will use in the experiments:

64

3.2 Bounded-Noise Marginalized Networks (BN-MN)

1. Run MCN-fixed:

• Initialize {`d}Dd=1, σ2
0 , and σ2 to some sensible values. (We will use: One

half of the ranges of the input dimensions, the variance of the outputs
{yj}nj=1 and σ2

0/4, respectively).

• Fix {ω}mi=1 to random values drawn from N (ω|0, ID) (to approximate the
ARD SE covariance function). Initialize {ϕi}mi=1 from a uniform distribu-
tion in [0, 2π).

• Minimize (3.5), the NLML of the model, wrt to σ2
0 , σ2, {`d}Dd=1, and

{ϕi}mi=1 (keeping {ω}mi=1 fixed).

2. Run BN-MCN:

• Initialize {`}Dd=1, σ2
0 , σ2, {ωi}mi=1 and {ϕi}mi=1 to the values they had after

MCN-fixed converged.

• Set σ2
min to the value found for σ2 after convergence of MCN-fixed. Initial-

ize σ2 slightly above σ2
min. (We will use 1.5σ2

min).

• Minimize (3.5), the NLML of the model, wrt to {`d}Dd=1, σ2
0 , σ2, {ωi}mi=1

and {ϕi}mi=1 , with the constraint σ2 > σ2
min.

3.2.4 Experiments

In this section we will compare BN-MCNs with the method developed in the previous
chapter, SSGP, as well as with the current state of the art for sparse regression, SPGP.
Performance of a full GP on these tasks is also provided as a reference of state-of-the-
art performance, only available at a high computational expense. Both SPGP and the
full GP use the ARD SE covariance function, SSGP, MCN and BN-MCN are initial-
ized to approximate it. For our code implementing SSGP, MCN and BN-MCN check
Appendix F. For SPGP, the publicly available implementation from its authors is used.

All approximations run inO(m2n). To match the constant multiplicative factor, we
will use the same number of basis functions for all methods (this matches the size of the
involved matrices, so that computational cost becomes roughly identical). The number
of spectral points/pseudo-inputs is therefore matched for BN-MCN/SPGP, whereas
SSGP uses one spectral point per two pseudo-inputs (since it uses two basis functions
per spectral point).

65

3. MARGINALIZED NETWORKS

We will report as performance measures the test Normalized Mean Square Error

(NMSE), which only checks the accuracy of the predictive means, and the test Mean

Negative Log Probability (MNLP) which also takes into account the predictive vari-

ances. Both measures are described by (2.21). As usual, we report average values over

ten repetitions.

3.2.4.1 The effect of noise bounding

10 24 50 100 250 500 1000

0.01

0.02

0.03

0.04

0.05

0.1

0.15

0.2

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

MCN
BN−MCN
SSGP
Full GP on 10000 data points

(a) NMSE (log-log plot)

10 24 50 100 250 500 1000
2.5

3

3.5

4

4.5

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

MCN
BN−MCN
SSGP
Full GP on 10000 data points

(b) MNLP (semilog plot)

Figure 3.1: NMSE and MNLP for MCN, BN-MCN, SSGP and full GP, for the Pole

Telecomm problem.

In Section 2.6, we tried to use MCN as an alternative to SSGP on the Pole Telecomm

data set. However, the result was unsatisfactory because some overfitting appeared. We

can assess whether noise bounding is helpful to reduce it by looking at Fig. 3.1. As

we knew, MCN overfits data starting at m = 500. We can see that BN-MCN does not.

Predictive means and variances are also clearly improved for big m.

As described in Section 2.4.2, some unavoidable quantization noise bin2
spacing/12 is

present in this data set, so σ2 is already lower bounded due to prior knowledge. Ac-

cording to the reasonings in Section 3.2.1, this lower bound provides MCN with some

66

3.2 Bounded-Noise Marginalized Networks (BN-MN)

overfitting protection. But BN-MCN has its own means to determine the appropriate

lower bound and can raise6 it as needed, which turns out to be helpful.

3.2.4.2 Elevators and Pole Telecomm pole data sets

Now we will compare the performances of SPGP, SSGP and BN-MCN on two large

data sets, Elevators and Pole Telecomm, described in Section 2.4.2.

Results for Elevators are displayed in Fig. 3.2. BN-MCN performs slightly better

than SSGP both in NMSE and NMLP terms, whereas both hugely outperform SPGP.

No overfitting appears in the plots, despite using up to 1000 basis functions.

10 24 50 100 250 500 7501000

0.1

0.15

0.2

0.25

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP
BN−MCN
SSGP
Full GP on 8752 data points

(a) NMSE (log-log plot)

10 24 50 100 250 500 7501000

−4.8

−4.6

−4.4

−4.2

−4

−3.8

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP
BN−MCN
SSGP
Full GP on 8752 data points

(b) MNLP (semilog plot)

Figure 3.2: NMSE and MNLP for SPGP, BN-MCN, SSGP and full GP, for the Eleva-

tors problem.

We have already seen the performance on Pole Telecomm of BN-MCN and SSGP

compared with plain MCN in Fig. 3.1. In Fig. 3.3, we compare with our benchmark

SPGP. BN-MCN manages to beat SPGP in NMSE but not on MNLP. No overfitting is

reflected in any of these plots.

6While determining σ2
min using MCN-fixed, the lower bound bin2

spacing/12 is applied, so that σ2
min >

bin2
spacing/12.

67

3. MARGINALIZED NETWORKS

10 24 50 100 250 500 1000

0.01

0.02

0.03

0.04

0.05

0.1

0.15

0.2

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP
BN−MCN
SSGP
Full GP on 10000 data points

(a) NMSE (log-log plot)

10 24 50 100 250 500 1000
2.5

3

3.5

4

4.5

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP
BN−MCN
SSGP
Full GP on 10000 data points

(b) MNLP (semilog plot)

Figure 3.3: NMSE and MNLP for SPGP, BN-MCN, SSGP and full GP, for the Pole

Telecomm problem.

In conclusion, in these two data sets the predictive mean of BN-MCN is clearly

superior to that of SPGP, as the NMSE plots show. The same cannot be said about the

predictive variance, though it is not outrageous either.

3.2.4.3 Kin-40k and Pumadyn-32nm data sets

Now we consider the regression tasks presented in Seeger et al. (2003) and Snelson

and Ghahramani (2006), as described in Section 2.4.2.

Fig. 3.4 displays results for the Kin-40k problem. As before, BN-MCN shows

much better predictive means (smaller NMSE), whereas predictive variances are not

so good (MNLP is slightly worse than SPGP).

As we know, for problem Pumadyn-32nm only 4 out of the 32 input dimensions

are useful to make predictions. Using the same length-scale initialization as the other

methods, BN-MCN correctly performs ARD and singles them out to be dimensions

[4, 5, 15, 16]. Its NMSE and MNLP are also better than those of SPGP.

68

3.2 Bounded-Noise Marginalized Networks (BN-MN)

24 50 100 200 300 500 750 1250

0.001

0.005

0.01

0.05

0.1

0.5

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP
BN−MCN
SSGP
Full GP on 10000 data points

(a) NMSE (log-log plot)

24 50 100 200 300 500 750 1250
−1.5

−1

−0.5

0

0.5

1

1.5

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP
BN−MCN
SSGP
Full GP on 10000 data points

(b) MNLP (semilog plot)

Figure 3.4: NMSE and MNLP for SPGP, BN-MCN, SSGP and full GP, for the Kin-40k

problem.

10 24 50 74 100
0.04

0.05

0.1

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP
BN−MCN
SSGP
Full GP on 7168 data points

(a) NMSE (log-log plot)

10 24 50 74 100
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP
BN−MCN
SSGP
Full GP on 7168 data points

(b) MNLP (semilog plot)

Figure 3.5: NMSE and MNLP for SPGP, BN-MCN, SSGP and full GP, for the

Pumadyn-32nm problem.

69

3. MARGINALIZED NETWORKS

3.2.4.4 Pendulum data set

Now we turn to the “problematic” Pendulum data set, described in Section 2.4.4. De-

spite providing good predictive means, SSGP produced exceedingly bad predictive

variances in this data set, for any m bigger than 10. Closer inspection revealed that for

most test samples, the predicted variances were too small.

In Fig. 3.6, we see that this is the case for BN-MCN too (as expected, since BN-

MCN does not provide particularly good predictive variances). Like SSGP, BN-MCN

correctly determines the noise power present in data, so the small predictive variances

are not due to noise underestimation.

10 24 50 100 200 400 800

0.25

0.3

0.4

0.5

0.6

0.7

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP
BN−MCN
SSGP
Full GP on 315 data points

(a) NMSE (log-log plot)

10 24 50 100 200 400 800

2

4

6

8

10

12

14

16

18

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP
BN−MCN
SSGP
Full GP on 315 data points

(b) MNLP (semilog plot)

Figure 3.6: NMSE and MNLP for SPGP, BN-MCN, SSGP and full GP, for the Pendu-

lum problem.

BN-MCN predictive means, as usual, are better than those of SPGP. It is interesting

to notice how, using 800 basis, the state-of-the-art full GP is outperformed. Since we

have only 315 data, computationally-wise it is not sensible to use a sparse method with

more than 315 basis, since a full GP would be cheaper to train. However, if we have

enough computing power, using more basis functions than data points can provide a

performance boost on some problems.

70

3.3 Marginalized Network Mixtures (MNmix)

3.2.4.5 Discussion

From the results obtained in all these data sets, it is possible to conclude that BN-MCNs

(and more generally, BN-MNs) are a good replacement for classical networks:

(a) BN-MNs are much cheaper to train than a GP (the cost is similar to that of training

a classical network, if Levenberg-Marquardt or a similar procedure is used).

(b) Predictive means (point estimates) with almost full-GP quality are provided.

(c) This quality does not degrade as m grows.

Furthermore, the presented approach can be considered as a novel way to train a

classical network. Equation (3.4b) has network structure, so if we drop the probabilis-

tic interpretation after training, we can consider the predictive means as the results

obtained from a classical network.

Similar considerations can be made about SPGP, but two differences that favor

BN-MNs are:

(a) The basis functions in SPGP must have the same form as the covariance function,

whereas BN-MNs can be used with any family of basis functions.

(b) The mean performance of BN-MNs is better than that of SPGP.

SPGP provides more reliable predictive variances, but since predictive variances

are not computed by classical networks anyway, this is not a disadvantage for tasks

where the latter are used.

3.3 Marginalized Network Mixtures (MNmix)

MNs are defined (3.2) by integrating out the output weights of a general network struc-

ture (3.1). The input weights, however, have to be selected through ML-II so as to max-

imize the evidence. This design enforces sparsity, but results in two problems when m

is big, as detailed in Section 3.1.3: Selecting many hyperparameters may result in over-

fitting, deteriorating the quality of both predictive means and variances; and the lack

71

3. MARGINALIZED NETWORKS

of richness of the hypothesis space can produce overconfident predictive variances.

Additionally, input weights selection may get stuck at inadequate local maxima of the

evidence, but this is an unavoidable potential problem when working with sparse mod-

els7. Bayesian methods for NNs have been developed by Neal (1992, 1993, 1996), but

they involve the use of Markov Chain Monte Carlo (MCMC) or other highly expensive

methods.

A simple workaround against overfitting is to use noise bounding, as described in

the previous section. This enhances both predictive means and variances, but the latter

are still too unreliable.

In this section we propose an alternative solution based on combining several MNs

that produces even better predictive means than noise bounding while almost removing

the overconfidence problem, thus making them useful for cases where the full predic-

tive posterior is required.

3.3.1 Combining MNs

Since the input weights of an MN are initialized randomly, a different model will be

obtained for each run, corresponding to a different local optimum. With some approx-

imations, it is possible to combine these different models into a single GP. Combining

several different, independently trained models has a similar effect to “integrating out”

the free parameters of the model. Since only a finite number of models are considered,

this marginalization effect is only an approximation to proper Bayesian treatment.

We will approach the problem of combining several MNs from two different per-

spectives that lead to the same model: First, as a Gaussian approximation to the mix-

ture model of the outputs of several MNs (which is simpler and computationally more

efficient), and then, as a combination of the posteriors over the output weights (which

more clearly elucidates the GP structure of the outputs under this model).

7In most cases, local optima found through (conjugate) gradient descent are good enough. The

symmetry of the network, in which the roles of the basis functions can be freely interchanged and the

sign of the input weights altered, implies that each (local or global) optimum can be obtained by a large

number (m!2m) of equivalent configurations.

72

3.3 Marginalized Network Mixtures (MNmix)

3.3.1.1 MN mixture model and matching moments Gaussian

Consider first the full Bayesian approach in which the free parameters of the model are

exactly integrated out. The predictive distribution of y∗ at a new test point x∗ is

p(y∗|x∗,D) =
∫
pMN(y∗|x∗,M,D)p(M|D)dM. (3.6)

whereM ≡ {σ2
0, σ

2,u1, . . .um} collects the signal and noise power hyperparameters

and the input weights, i.e., the free parameters of the model.

Predictions using (3.6) will incur in no overfitting, since all parameters are inte-

grated out. However, this integral is analytically intractable, so we will have to resort

to numerical methods to compute it. Using Monte Carlo integration we have

p(y∗|x∗,D) ≈ pMix(y∗|x∗,D) =
1

K

K∑
k=1

pMN(y∗|x∗,Mk,D) (3.7)

pMN(y∗|x∗,Mk,D) = N (y∗|µMN∗k, σ
2
MN∗k) ,

where {Mk}Kk=1 are samples drawn from p(M|D) and {µMN∗k, σ
2
MN∗k} are computed

using (3.4) on the MN model described by Mk. The Monte Carlo approximation

converges to exact value in the infinite limit. Therefore, for K = ∞, (3.7) would

coincide with the exact Bayesian posterior (3.6) and no overfitting would be present.

When only a few samples are used (small K), the approximation is more coarse, but

nonetheless introduces some overfitting resistance.

{Mk}Kk=1 must be sampled from the posterior probability p(M|D). This is not

a trivial distribution and drawing samples from it usually requires to resort to ex-

pensive Markov Chain Monte Carlo Methods (MCMC). Since we only need a few

samples (as little as 4 in our experiments), it is possible to use a much simpler strat-

egy, such as choosing the samples to be the local modes of pMN(M|D), i.e., high-

probability samples according to our exploration of the distribution. Since the modes

of p(M|D) correspond to the modes of the log-likelihood log pMN(y|{xj}nj=1,M) for

a flat prior overM, it is possible to obtain {Mk}Kk=1 as a set of local maximum like-

lihood estimates, which is the approach followed here. With these considerations,

{pMN(y∗|x∗,Mk,D)}Kk=1 correspond to the posterior distributions of K independently

trained MNs, which we assume to have converged to different modes of the likelihood.

The mean and variance of the exact Bayesian posterior (3.6) can be approximated using

73

3. MARGINALIZED NETWORKS

(3.7), yielding

µMNmix∗ =
1

K

K∑
k=1

µMN∗k (3.8a)

σ2
MNmix∗ =

1

K

K∑
k=1

µ2
MN∗k + σ2

MN∗k − µ2
MNmix∗ (3.8b)

where µMN∗k and σ2
MN∗k are the predictive mean and variance provided by the k-th MN,

respectively.

Though using a different motivation, our proposal is akin to bagging —Breiman

(1996)—, which is known to reduce overfitting. Here we introduce diversity by com-

bining several local modes of the evidence, instead of different subsamples of training

data. Equation (3.8) is also presented in the context of GP bagging in Chen and Ren

(2009).

Predictive distribution pMix(y∗|x∗,D) is not Gaussian, but a Gaussian mixture. In-

stead of directly using it, it is preferable to define the predictive distribution of the

Marginalized Networks Mixture (MNmix) as the Gaussian that matches the moments

of (3.7), which are given by (3.8), i.e., pMNmix(y∗|x∗,D) = N (y∗|µMNmix∗, σ
2
MNmix∗).

Thus, pMNmix(y∗|x∗,D) is the Gaussian distribution with minimum Kullback-Leibler

divergence from pMix(y∗|x∗,D).

The mean value predictions of MNmix correspond again to the architecture of a

traditional network, this time with Km basis functions (with the output weights being

1/K times the output weights of each individual network).

Since MNs are trained independently and combining them is trivial, it is straight-

forward to asses the computational complexity of MNmix: O(Km2n) time for training

andO(Km2) time for each probabilistic prediction. It is therefore possible to trade the

number of basis functions for the number of networks and vice versa while remaining

within the same computational complexity. In particular, halving the number of ba-

sis functions and using four times as many networks keeps computation time roughly

identical, since one dependence is linear and the other quadratic. In practice, it turns

out that even using a very small number of networks we get very good generaliza-

tion abilities (almost no overfitting even for big m). Thus, in terms of computational

complexity we can directly compare MNmix to SPGP, using a combination of four

networks, each with half as many basis functions as pseudo-inputs are used in SPGP.

74

3.3 Marginalized Network Mixtures (MNmix)

Analogously, we can compare with SSGP using four networks, each with the same

number of basis functions as spectral points are used in SSGP.

3.3.1.2 MNmix as a posterior GP

The derivation above combines the outputs of K networks in a computationally ef-

ficient manner. However, though the marginal distributions over each output are ap-

proximated by Gaussians, it is unclear whether they jointly form a GP, i.e., if the joint

posterior of the outputs corresponding to any possible set of inputs is a multivariate

Gaussian distribution. In this section, we will derive a posterior GP (i.e., a GP given

the data set) whose marginal distributions correspond to (3.8).

The posterior over the output weights for the k-th MN is

p(wk|D) = N (wk|bk,Σk)

bk = A−1
k Φky

Σk = σ2
kA
−1
k

where Ak, Φk, and σ2
k correspond to the specific parametrization found for the k-th

MN after training.

Output weights from different MNs are therefore independent. We can introduce

dependencies among them by combining the independent posteriors in a single joint

posterior as follows:

p(w̃|D) ≡N (w̃|b,Σ)

b =[b>1 , b>2 , . . . , b>K]>

Σ = bd(σ2
1A
−1
1 + b1b

>
1 , . . . ,

σ2
KA−1

K + bKb>K) ·K − bb>

where w̃ = [w>1 , w>2 , . . . , w>K]>, and bd(·) arranges the matrices given as argument

in block-diagonal form.

This joint Gaussian posterior preserves the posterior means of the separate MNs

and introduces dependencies among the weights belonging to different networks (since

the form of Σ is not entirely block-diagonal). The way posteriors are combined in Σ

75

3. MARGINALIZED NETWORKS

might look strange, but it is necessary to obtain the desired posterior marginal distri-
butions. The output of the network mixture at any point x∗ is defined as

y∗MNmix(x∗) =
1

K

K∑
k=1

(w>k φk(x∗) +
√
Kεk(x∗))

i.e., the average of the outputs of each MN plus a white noise process. It is, therefore,
a GP:

y∗MNmix(x∗) ∼ GP(mMNmix(x∗), kMNmix(x∗,x
′
∗)) (3.9)

mMNmix(x∗) =
1

K
b>φ̃(x∗)

kMNmix(x∗,x
′
∗) =

1

K2

[
φ̃(x∗)

>Σφ̃(x′∗) + δx∗x′∗K
K∑
k=1

σ2
k

]

where φ̃(·) = [φ1(·)>, φ2(·)>, . . . , φK(·)>]> is a column vector containing the out-
puts of the basis functions of all networks. Remember that this GP is a posterior

process, not the usual GP prior imposed on f(x).

Note that the mean and variance of y∗MNmix(x∗) at any point x∗ are exactly those
given by (3.8). Equation (3.8) is computationally preferable, whereas (3.9) provides
richer details about the interdependence of the outputs of the mixture at different loca-
tions.

It is interesting to notice the way this networks mixture works: If we mix K net-
works that produce identical predictions, then mixture’s predictions are also identical
to the predictions of any of the involved networks, without any uncertainty reduction.
Obtaining this effect is straightforward with (3.8), but to achieve the same effect in the
derivation of this section, somewhat bizarre scalings with K must be introduced.

3.3.2 Marginalized Cosine Network Mixtures (MCNmix)

For the experiments, we will combine MNs with cosine basis functions, i.e., MCNs.
We call this combination MCNmix. Since each MCN within MCNmix is trained in-
dependently, there is no specific model selection procedure. Instead, the complete
procedure to compute predictive distributions using MCNmix is:

1. Train K different MCNs (using random initialization), as per Section 3.1.2.1
(i.e., minimize (3.5) wrt to {`}Dd=1, σ2

0 , σ2, {ωi}mi=1 and {ϕi}mi=1).

76

3.3 Marginalized Network Mixtures (MNmix)

2. Use the K MCNs to obtain the K predictive means and variances at new test

points.

3. Combine them using equation (3.8).

Since training a single MCN is a O(m2n) process, total training cost for MCNmix

is O(Km2n). Analogously, predictive means can be computed in O(Km2) time per

test point. Required storage space is dominated by the design matrices and is therefore

O(Kmn).

3.3.3 Experiments

Now we will show how MCNmix improves over MCN and how it stacks up against

SSGP and the current state of the art, SPGP, when run on our large data sets. Full GP

performance is also quoted as a reference. Both SPGP and full GP use the ARD SE

covariance function. SSGP, MCN and MCNmix are initialized to approximate it and

then have their spectral points and input weights selected as described in Sections 2.3

3.1.2.1 and 3.3.2, respectively. For our code implementing SSGP, MCN and MCNmix

check Appendix F. As before, for SPGP, the implementation from its authors is used.

All approximations run in O(m2n). Using the same number of basis functions m

for SSGP, MCN and SPGP also matches their constant multiplicative factor so that they

will all require roughly the same computation time. To match the multiplicative factor

of MCNmix we will combine four networks (K = 4) with half the number of basis

functions each (m/2), so that O(4(m/2)2n) = O(m2n). Probabilistic predictions

for new samples take O(m2) per network, so the constant multiplicative factor is also

matched at prediction time: O(4(m/2)2) = O(m2). As noted before, the combination

of a small number of networks is enough to achieve good results. Increasing this value

would result in enhanced robustness at higher computational cost.

We will report NMSE and MNLP as performance measures, as described by (2.21).

Recall that NMSE only measures the accuracy of the predictive means whereas MNLP

also measures the accuracy of the predictive variances. As usual, we report average

values over ten repetitions.

77

3. MARGINALIZED NETWORKS

3.3.3.1 The effect of mixing

The expected benefit of using a mixture of MCNs (in general, MNs) appears in Fig. 3.7.
Directly applying a MCN to the Pole Telecomm problem results, as we detailed in
Section 2.6, in overfitting. However, when as little as four networks are mixed, results
improve significantly. The improvement achieved by network mixing is better than
that obtained through noise-bounding in Section 3.2.4.1, and the difference is bigger
when the MNLP measure is considered. In general, network mixing is more effective
than noise bounding, and provides more accurate predictive variances.

10 24 50 100 250 500 1000

0.01

0.02

0.03

0.04

0.05

0.1

0.15

0.2

m

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP
MCNmix
SSGP
Full GP on 10000 data points

(a) NMSE (log-log plot)

10 24 50 100 250 500 1000
2.5

3

3.5

4

4.5

m

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP
MCNmix
SSGP
Full GP on 10000 data points

(b) MNLP (semilog plot)

Figure 3.7: NMSE and MNLP for MCN, SSGP (m basis functions), MCNmix (4

networks with m/2 basis functions) and full GP, for the Pole Telecomm problem.

3.3.3.2 Elevators and Pole Telecomm pole data sets

Data sets Elevators and Pole Telecomm are described in Section 2.4.2.

Fig. 3.8 shows results for the first data set. MCNmix provides slightly superior
results than SSGP and a huge improvement with respect to SPGP, for both performance
measures. The full GP is slightly outperformed, too.

For Pole Telecomm, Fig. 3.9, MCNmix and SSGP obtain clearly better results in
NMSE, whereas similar results are obtained for the MNLP.

78

3.3 Marginalized Network Mixtures (MNmix)

10 24 50 100 250 500 7501000

0.1

0.15

0.2

0.25

m

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP
MCNmix
SSGP
Full GP on 8752 data points

(a) NMSE (log-log plot)

10 24 50 100 250 500 7501000

−4.8

−4.6

−4.4

−4.2

−4

−3.8

m

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP
MCNmix
SSGP
Full GP on 8752 data points

(b) MNLP (semilog plot)

Figure 3.8: NMSE and MNLP for SPGP, SSGP (m basis functions), MCNmix (4

networks with m/2 basis functions) and full GP, for the Elevators problem.

10 24 50 100 250 500 1000

0.01

0.02

0.03

0.04

0.05

0.1

0.15

0.2

m

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP
MCNmix
SSGP
Full GP on 10000 data points

(a) NMSE (log-log plot)

10 24 50 100 250 500 1000
2.5

3

3.5

4

4.5

m

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP
MCNmix
SSGP
Full GP on 10000 data points

(b) MNLP (semilog plot)

Figure 3.9: NMSE and MNLP for SPGP, SSGP (m basis functions), MCNmix (4

networks with m/2 basis functions) and full GP, for the Pole Telecomm problem.

79

3. MARGINALIZED NETWORKS

3.3.3.3 Kin-40k and Pumadyn-32nm data sets

See Section 2.4.3 for a description of these data sets.

Results for Kin-40k are reported in Fig. 3.10. MCNmix and SSGP perform simi-

larly, with an advantage to MCNmix in MNLP for big m. The improvement in predic-

tive accuracy achieved by the mixture of networks stands out: MCNmix outperforms

the full GP both in terms of NMSE (as SSGP does) and MNLP (which SSGP is unable

to do). SPGP is also clearly outperformed again.

24 50 100 200 300 500 750 1250

0.001

0.005

0.01

0.05

0.1

0.5

m

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP
MCNmix
SSGP
Full GP on 10000 data points

(a) NMSE (log-log plot)

24 50 100 200 300 500 750 1250
−1.5

−1

−0.5

0

0.5

1

1.5

m

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP
MCNmix
SSGP
Full GP on 10000 data points

(b) MNLP (semilog plot)

Figure 3.10: NMSE and MNLP for SPGP, SSGP (m basis functions), MCNmix (4

networks with m/2 basis functions) and full GP, for the Kin-40k problem.

Fig. 3.11 shows the results for Pumadyn-32nm. Recall that only 4 out of the 32

input dimensions are useful to make predictions. Using the same length-scale initial-

ization as the other methods, MCNmix correctly performs ARD and singles them out

to be dimensions [4, 5, 15, 16]. Predictive means and variances keep being better than

those of SPGP.

80

3.3 Marginalized Network Mixtures (MNmix)

10 24 50 74 100
0.04

0.05

0.1

m

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP
MCNmix
SSGP
Full GP on 7168 data points

(a) NMSE (log-log plot)

10 24 50 74 100
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

m

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP
MCNmix
SSGP
Full GP on 7168 data points

(b) MNLP (semilog plot)

Figure 3.11: NMSE and MNLP for SPGP, SSGP (m basis functions), MCNmix (4

networks with m/2 basis functions) and full GP, for the Pumadyn-32nm problem.

3.3.3.4 Pendulum data set

We consider once again the Pendulum data set, described in Section 2.4.4, for which

both SSGP and BN-MCN produced exceedingly bad predictive variances.

In Fig. 3.12, we see that, although certainly predictive variances are not perfect,

they are much more reasonable than those obtained by SSGP and BN-MCN: Up to

m = 50, good predictive variances are obtained and up to m = 400 (which is even

more than the number of data points, 315) the degradation of the MNLP is not drastic.

Even though the predictive variances obtained for this data set are not entirely

satisfactory, they can be considered usable (it is also questionable whether anyone

would want to take advantage of sparse methods with m > 50 in a data set with only

315 samples). If more robustness is required, it is always possible to increase the

number of networks K.

On the other hand, MCNmix produces incredibly good NMSE results, much better

than those of BN-MCN and also outperforming the full GP for large m.

81

3. MARGINALIZED NETWORKS

10 24 50 100 200 400 800

0.25

0.3

0.4

0.5

0.6

0.7

m

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP
MCNmix
SSGP
Full GP on 315 data points

(a) NMSE (log-log plot)

10 24 50 100 200 400 800

2

4

6

8

10

12

14

16

18

m

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP
MCNmix
SSGP
Full GP on 315 data points

(b) MNLP (semilog plot)

Figure 3.12: NMSE and MNLP for SPGP, SSGP (m basis functions), MCNmix (4

networks with m/2 basis functions) and full GP, for the Pendulum problem.

3.3.3.5 Discussion

The mixture of independent MNs seems a powerful approach. Mean predictions are

clearly superior to those of SPGP, and on par or better than those of SSGP. Predictive

variances are also reasonably good with respect to SPGP in most cases, and not as

outrageous as those of SSGP or BN-MCN on problematic data sets.

This makes MCNmix a good replacement for classical networks (for the same rea-

sons mentioned in Section 3.2.4.5) and a tough competitor among probabilistic sparse

methods such as SPGP (though one should watch out for problematic data sets when

the predictive variance is of interest, a problem that does not exist with SPGP).

It should also be noted that, if we are only interested in mean predictions, and we

are going to train our model less often than we use it to make predictions, BN-MCN

may be a better suited alternative: The cost of computing the predictive mean of a

new test data point with MCNmix is O(4m/2) = O(2m), whereas using BN-MCN is

only O(m). Of course, this advantage disappears if predictive variances must also be

computed.

82

3.4 Efficient supervised linear dimensionality reduction

3.4 Efficient supervised linear dimensionality reduction

In many types of MN, the basis functions can be expressed as a function of the dot
product of the arguments

φ([ϕi, ω
>
i]>, x̃j) = φA(ω>i xj + ϕi)

where φA(·) is a scalar function accepting a scalar argument. This function is usually
called the “activation function”. For this type of networks, the design matrix can be
expressed as

Φf = φA(WX +ϕ1>n) (3.10)

where W = [ω1 . . .ωm]>, X = [x1 . . .xn], ϕ = [ϕ1 . . . ϕm]>, 1n is a column vector
with n ones and φA(·) is applied element-wise.

All models introduced so far, including SSGP, can be expressed in the form (3.10).
This means that the only dependence of the design matrix on input data X is through
the linear transformation WX. This fact can be used for supervised linear dimen-
sionality reduction. After training a model, we can expand the obtained input weight
matrix W using Singular Value Decomposition (SVD), as follows:

W
SVD→ Um×DSD×DV>D×D,

where the economy form of the SVD has been used. S is a matrix containing the
singular values in non-increasing order. According to the Eckart-Young theorem, rank
R matrix Ŵ (with R < D) that best approximates W in the sense of minimizing the
Frobenius norm of the difference is:

W ≈ Ŵ = Um×RSR×RV>D×R,

where Um×R and Vm×R result from truncating Um×D and Vm×D to the firstR columns
and SR×R is a diagonal matrix with the first R singular values (the result of truncating
SD×D to the first R rows and columns).

It is then possible to approximately re-express WX as

WX ≈ Um×RX̂R×n with X̂R×n = LpR×DX and LpR×D = SR×RV>D×R

Matrix LpR×D is a linear transformation that projects input data X to a space of
dimension R < D. We can still use the trained model on the reduced-dimension data

83

3. MARGINALIZED NETWORKS

X̂R×n provided that we replace the original weight matrix W with a new weight matrix
Um×R. Note that there is no problem to make predictions at new data points, since we
know how to transform them before applying the reduced-dimension model.

If we let R be the rank of W (which may be less than D), then the approximation
becomes exact (since we are only truncating null singular values) and what we are
really doing is finding the subspace where our model inherently lies. Only variations
of the input within that subspace produce variations in the output.

The fraction ||SR×R||F/||SD×D||F (where || · ||F is the Frobenius norm) determines
the amount of information that is retained after truncation, so we can let R be smaller
than the rank of W as long as this fraction remains close to one. Since the projec-
tion matrix is optimal, for any given R the subspace containing the biggest amount of
information from input data that is relevant for predictions will be selected.

1 3 5 7 9 11 13 15 17
0

0.5

1

1.5

2

2.5
x 10

5

d

[S
] dd

(a) Elevators

1 3 5 7 9 11 13 15 17 19 21 23 25 26
0

0.2

0.4

0.6

0.8

1

1.2

1.4

d

[S
] dd

(b) Pole Telecomm

Figure 3.13: Values of [S]dd for the Elevators and Pole Telecomm data sets, when the

number of basis functions is 10, 25, 50, 100, 250, 500, 750, 1000. Within each panel,

plots portraying bigger singular values correspond to bigger values of m.

This dimensionality reduction method is also computationally attractive, since the
only operation needed to compute the optimal projection matrix is an SVD on W,
which only takes O(mD2), so it adds almost no overhead to the process of training a
model.

We have computed the diagonal elements {[S]dd}Dd=1 of matrix SD×D for the data
sets considered in this chapter, using model BN-MCN and several values ofm. Results

84

3.4 Efficient supervised linear dimensionality reduction

for Elevators and Pole Telecomm are displayed in Fig. 3.13 and results for Kin-40k

and Pendulum are displayed in Fig. 3.14. Within each panel in the figures, several

plots corresponding to different values ofm are displayed, with biggest singular values

corresponding to bigger values of m.

1 3 5 7 8
0

5

10

15

d

[S
] dd

(a) Kin-40k

1 3 5 7 9
0

2

4

6

8

10

12

14

16

18

d

[S
] dd

(b) Pendulum

Figure 3.14: Values of [S]dd for the Kin-40k and Pendulum data sets, when the number

of basis functions are 25, 50, 100, 200, 300, 400, 500, 750, 1000, 1250 and 10, 25, 50,

200, 400, 800, respectively. Within each panel, plots portraying bigger singular values

correspond to bigger values of m.

From these figures, it is possible to infer what is the effective dimension of these

data sets for the purpose of regression. In Pole Telecomm and Kin-40k, there is no knee

point that suggests linear dimensionality reduction can be performed. However, in

Elevators it is possible to find a subspace of dimension 8 (out of 17 input dimensions)

containing the same information as the original data. For Pendulum it seems that a

subspace of dimension 4 (out of 9 input dimensions) would contain most of the relevant

information, despite SD×D not being low rank.

For Pumadyn-32nm we knew that only 4 out of the 32 input dimensions were rel-

evant. Fig. 3.15.(a) confirms this and Fig. 3.15.(b) shows the full projection matrix (if

we set R = 4, only the first 4 rows are used, yielding a 4 dimensional projection). The

linear projection correctly combines the relevant input dimensions 4, 5, 15 and 16.

85

3. MARGINALIZED NETWORKS

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 3132
0

1

2

3

4

5

6

d

[S
] dd

(a) Singular values

d

R
ow

s
of

 L
p

4 15 32

1

4

32

(b) Projection matrix Lp

Figure 3.15: (a) Values of [S]dd for the Pumadyn-32nm data set, when the number of

basis functions is 10, 25, 50, 75, 100. Plots portraying bigger singular values corre-

spond to bigger values of m. (b) Full projection matrix LpD×D = SD×DV>D×D.

3.5 Summary and conclusions

In this chapter, instead of starting from an expensive full GP and trying to simplify it,

we start from a traditional network and marginalize some, but not all, of their weights

to get the key benefits of a GP without incurring in its high computational costs.

Using this idea, Marginalized Networks (MNs) arise as a probabilistic tool for

regression that parallels classical frequentist regression networks. But MNs are not

without problems, so we have proposed two alternative methods to improve them:

Noise bounding and network mixing.

MNs with noise bounding have shown to be appropriate to replacement for old clas-

sical networks: While retaining the same structure and low computational cost, they

can achieve close to full-GP NMSE performance. They can also be used to provide

predictive variances, but often of poor quality.

Mixing several MNs provides better results both in terms of NMSE and MNLP

than noise bounding, for the same computational cost. The quality of the predictions

is in general similar or better than SSGP, and much better than SPGP. On some prob-

lematic data sets, predictive variances can be underestimated, but this problem is much

86

3.5 Summary and conclusions

less significant than it is with SSGP or BN-MCN. MNmix can be considered as a re-
placement for classical networks, but its full probabilistic predictions are good enough
to regard it as probabilistic sparse method.

Thus, we have provided two practical models for real world, large-scale regression,
that stand in between classical networks and full Gaussian Processes, while trying to
retain the advantages of both. Finally, a method for efficient dimensionality reduction
has been suggested.

87

88

Chapter 4

Inter-Domain GPs

In this chapter we present a general inference framework for inter-domain GPs, and

focus on its usefulness to build sparse GP models. The state-of-the-art SPGP model

introduced by Snelson and Ghahramani (2006) relies on finding a small, representative

pseudo data set ofm elements (from the same domain as the n available data elements)

which is able to explain those available data well, and then uses it to perform inference.

This reduces inference and model selection computation time fromO(n3) toO(m2n),

where m � n. Inter-domain GPs can be used to find a (possibly more compact)

representative set of features lying in a different domain, at the same computational

cost. Being able to specify a different domain for the representative features allows

to incorporate prior knowledge about relevant characteristics of data and detaches the

functional form of the covariance and basis functions. We will show how previously

existing models, such as the one introduced by Walder et al. (2008), fit into this frame-

work, and we will use it to develop two new sparse GP models. Tests on our already

known large regression data sets suggest that significant improvement with respect to

SPGP can be achieved, while retaining computational efficiency. This chapter is based

on Lázaro-Gredilla and Figueiras-Vidal (2010).

The remainder of this chapter is organized as follows: In Section 4.1 we formalize

the concept of Inter-Domain GPs (IDGPs); a sparse GP model framework based on

IDGPs is presented in Section 4.2 and two concrete instantiations are derived in Section

4.3. Model selection is detailed in Section 4.4. Experimental results are provided in

Section 4.5. Some general conclusions in Section 4.6 close the chapter.

89

4. INTER-DOMAIN GPS

4.1 Definition

In this section we will introduce Inter-Domain GPs (IDGPs), so that we can perform

inference across different domains. This will allow to enhance SPGP by removing

the constraint that the pseudo-inputs must remain within the same domain as input

data. As we will see, this added flexibility results in increased performance and allows

to encode prior knowledge about other domains where data can be represented more

compactly.

Consider a real-valued GP f(x) with x ∈ RD and some deterministic real function

g(x, z), with z ∈ RH . We define the following transformation:

u(z) =
∫

RD
f(x)g(x, z)dx . (4.1)

There are many examples of transformations that take on this form, the Fourier

transform being one of the best known. We will discuss possible choices for g(x, z) in

Section 4.3; for the moment we will deal with the general form. Since u(z) is obtained

by a linear transformation of GP f(x), it is also a GP. This new GP may lie in a

different domain of possibly different dimension. This transformation is not invertible

in general, its properties being defined by g(x, z).

IDGPs arise when we jointly consider f(x) and u(z) as a single, “extended” GP.

The mean and covariance function of this extended GP are overloaded to accept ar-

guments from both the input and transformed domains and treat them accordingly.

We refer to each version of an overloaded function as an instance, which will ac-

cept a different type of arguments. If the distribution of the original GP is f(x) ∼
GP(mOR(x), kOR(x,x′)), then it is possible to compute the remaining instances that

define the distribution of the extended GP over both domains. The transformed-domain

instance of the mean is

mTR(z) = E[u(z)] =
∫

RD
E[f(x)]g(x, z)dx =

∫
RD
mOR(x)g(x, z)dx .

The inter-domain instance of the covariance function is

kINT(x, z′) = E[f(x)u(z′)] = E
[
f(x)

∫
RD
f(x′)g(x′, z′)dx′

]
(4.2)

=
∫

RD
kOR(x,x′)g(x′, z′)dx′ ,

90

4.2 Sparse regression using inducing features

and the transformed-domain instance of the covariance function is

kTR(z, z′) = E[u(z)u(z′)] = E
[∫

RD
f(x)g(x, z)dx

∫
RD
f(x′)g(x′, z′)dx′

]
(4.3)

=
∫

RD

∫
RD
kOR(x,x′)g(x, z)g(x′, z′)dxdx′ .

Mean m(·) and covariance function k(·, ·) are therefore defined both by the values
and domains of their arguments. The latter select whether the appropriate instance for
the covariance is kOR(·, ·), kINT(·, ·) or kTR(·, ·) and whether mOR(·) or mTR(·) is used
for the mean. This can be seen as if each argument had an additional domain indicator
used to select the instance. Apart from that, they define a regular GP, and all standard
properties hold. In particular k(a,b) = k(b, a).

This approach is related to Alvarez and Lawrence (2009), but here the latent space
is defined as a transformation of the input space, and not the other way around. This
allows to pre-specify the desired input-domain covariance. The transformation is also
more general: Any g(x, z) can be used.

We can sample an IDGP at n input-domain points f = [f1, f2, . . . , fn]> (with fj =

f(xj)) and m transformed-domain points u = [u1, u2, . . . , um]> (with ui = u(zi)).
With the usual assumption of f(x) being a zero mean GP and defining X = {xi}nj=1,
Z = {zi}mi=1, the joint distribution of these samples is:

p

([
f
u

]∣∣∣∣∣X, Z

)
= N

([
f
u

]∣∣∣∣∣0,
[

Kff Kfu

K>fu Kuu

])
, (4.4)

with [Kff]pq = kOR(xp, xq), [Kfu]pq = kINT(xp, zq), [Kuu]pq = kTR(zp, zq),

which allows to perform inference across domains. We will only be concerned with
one input domain and one transformed domain, but IDGPs can be defined for any
number of domains.

4.2 Sparse regression using inducing features

In the standard regression setting, we are asked to perform inference about the latent
function f(x) from a data set D lying in the input domain. Using IDGPs, we can use
data from any domain to perform inference in the input domain. Some latent functions
might be better defined by a set of data lying in some transformed space rather than in
the input space. This idea is used for sparse inference.

91

4. INTER-DOMAIN GPS

Following Snelson and Ghahramani (2006), we introduce a pseudo data set, but

here we place it in the transformed domain: D = {Z,u}. The following derivation

is analogous to that of SPGP. We will refer to Z as the inducing features and u as the

inducing variables. The key approximation leading to sparsity is to set m � n and

assume that f(x) is well-described by the pseudo data set D, so that any two samples

(either from the training or test set) fp and fq with p 6= q will be independent given

xp, xq and D. With this simplifying assumption, the prior over f can be factorized as a

product of marginals:

p(f |X,Z,u) ≈
n∏
j=1

p(fj|xj,Z,u). (4.5)

Marginals are in turn obtained from (4.4): p(fj|xj,Z,u) = N (fj|kjK−1
uuu, λj),

where kj is the j-th row of Kfu and λj is the j-th element of the diagonal of matrix

Λf = diag(Kf f − KfuK−1
uuKuf). Operator diag(·) sets all off-diagonal elements to

zero, so that Λf is a diagonal matrix. Using this approximation, the joint prior on the

latent and inducing variables is

p(f ,u|X,Z) = p(f |X,Z,u)p(u|Z) ≈ p(u|Z)
n∏
j=1

p(fj|xj,Z,u). (4.6)

It is important to mention that the right hand side of (4.6) is the probability distri-

bution that minimizes the Kullback-Leibler divergence from the exact joint prior (the

left hand side of (4.6)) among all approximations of the form p(u|Z)
∏n
j=1 qj(fj), for

any possible qj(fj), as argued in Snelson (2007, ch. 2). In other words, this is the best

possible approximation of the full GP prior among those which assume that the latent

variables are independent given the inducing variables (for a concrete set of inducing

variables, which in turn is defined by the inducing features).

Since p(u|Z) is readily available and also Gaussian, the inducing variables can be

integrated out from (4.5), yielding a new, approximate prior over f(x):

p(f |X,Z) =
∫
p(f |X,Z,u)p(u|Z)du ≈

∫ n∏
j=1

p(fj|xj,Z,u)p(u|Z)du

= N (f |0,KfuK−1
uuKuf + Λf). (4.7)

92

4.3 On the choice of g(x, z)

Using this approximate prior, the posterior distribution for a test case is:

pIDGP(y∗|x∗,D,Z) = N (y∗|µIDGP∗, σ
2
IDGP∗) (4.8a)

µIDGP∗ = k>u∗Q
−1K>fuΛ−1

y y (4.8b)

σ2
IDGP∗ = σ2 + k∗∗ + k>u∗(Q

−1 −K−1
uu)ku∗ , (4.8c)

where we have defined Q = Kuu + K>fuΛ−1
y Kfu and Λy = Λf + σ2In. Thus, the

posterior distribution over test points (1.15) is approximated by (4.8) with the informa-
tion available in the pseudo data set. After O(m2n) time precomputations, predictive
means and variances can be computed in O(m) and O(m2) time per test case, re-
spectively. This model is, in general, non-stationary, even when it is approximating
a stationary input-domain covariance, and can be interpreted as a degenerate GP plus
heteroscedastic white noise.

The negative log-marginal likelihood of the model, explicitly including the condi-
tioning on the kernel hyperparameters θ, can be expressed as

− log pIDGP(y|X,Z,θ) = +
1

2
[y>Λ−1

y y − y>Λ−1
y KfuQ−1K>fuΛ−1

y y

+ log(|Q||Λy|/|Kuu|) + n log(2π)] (4.9)

which is also computable in O(m2n) time.

Further computational savings and numerical accuracy can be achieved by using
the Cholesky decomposition, as detailed in Section D.4 of Appendix D. Storage space
is dominated by matrix Kfu, so that only O(nm) space is needed (as opposed to the
O(n2) space needed in a full GP to store the whole covariance matrix Kff).

Model selection will be performed by jointly optimizing the evidence with respect
to the hyperparameters and the inducing features. If analytical derivatives of the covari-
ance function are available, conjugate gradient optimization also takes O(m2n) time
per step, thus not increasing the complexity order of the complete training procedure.

4.3 On the choice of g(x, z)

Feature extraction function g(x, z) defines the transformed domain in which the pseudo
data set lies. According to (4.1), the inducing variables can be seen as projections of
the target function f(x) on the feature extraction function over the whole input space.

93

4. INTER-DOMAIN GPS

Therefore, each of them summarizes information about the behavior of f(x) every-

where. The inducing features Z define the concrete set of functions over which the

target function will be projected. It is desirable that this set captures the most signi-

ficative characteristics of the function. This can be achieved either using prior knowl-

edge about data to select {g(x, zi)}mi=1 or using a very general family of functions and

letting model selection automatically choose the appropriate set.

Another way to choose g(x, z) relies on the form of the posterior. The posterior

mean of a GP is often thought of as a linear combination of “basis functions”. For

full GPs and other approximations – such as Csató and Opper (2002); Seeger et al.

(2003); Smola and Bartlett (2001); Snelson and Ghahramani (2006); Tresp (2000);

Williams and Seeger (2001) – basis functions must have the form of the input-domain

covariance function. When using IDGPs, basis functions have the form of the inter-

domain instance of the covariance function, and can therefore be adjusted by choosing

g(x, z), independently of the input-domain covariance function.

If two feature extraction functions g(·, ·) and h(·, ·) can be related by g(x, z) =

h(x, z)r(z) for any function r(·), then both yield the same sparse GP model. This

property can be used to simplify the expressions of the instances of the covariance

function.

In this work we use the same functional form for every feature, i.e. our function set

is {g(x, zi)}mi=1, but it is also possible to use sets with different functional forms for

each inducing feature, i.e. {gi(x, zi)}mi=1 where each zi may even have a different size.

In the subsections below we will discuss different possible choices for g(x, z),

and will provide, for some input-domain covariance function, the corresponding inter-

domain and transformed-domain instances of the covariance function.

4.3.1 Relation with Sparse GPs using pseudo-inputs (SPGP)

IDGP innovation with respect to SPGP consists in letting the pseudo data set lie in a

different domain. If we set gSPGP(x, z) ≡ δ(x−z) where δ(·) is a Dirac delta, we force

the pseudo data set to lie in the input domain. Thus there is no longer a transformed

space and the original SPGP model is retrieved. In this setting, the inducing features

of IDGP play the role of SPGP’s pseudo-inputs.

94

4.3 On the choice of g(x, z)

4.3.2 Relation with Sparse Multiscale GPs (SMGP)

Sparse Multiscale GPs (SMGPs) are presented in Walder et al. (2008). Seeking to

generalize the SPGP model with ARD SE covariance function, they propose to use

a different set of length-scales for each basis function. The resulting model presents

a defective variance that is healed by adding heteroscedastic white noise. SMGPs,

including the variance improvement, can be derived in a principled way as IDGPs:

gSMGP(x, z) ≡ 1∏D
d=1

√
2π(c2

d − `2
d)

exp

[
−

D∑
d=1

(xd − µd)2

2(c2
d − `2

d)

]
with z =

[
µ
c

]
(4.10a)

kSMGP(x, z′) = exp

[
−

D∑
d=1

(xd − µ′d)2

2c′2d

]
D∏
d=1

√√√√ `2
d

c′2d
(4.10b)

kSMGP(z, z′) = exp

[
−

D∑
d=1

(µd − µ′d)2

2(c2
d + c′2d − `2

d)

]
D∏
d=1

√√√√ `2
d

c2
d + c′2d − `2

d

. (4.10c)

With this approximation, each basis function has its own centerµ = [µ1, µ2, . . . , µd]
>

and its own length-scales c = [c1, c2, . . . , cd]
>, whereas global length-scales {`d}Dd=1

are shared by all inducing features. Equations (4.10b) and (4.10c) are derived from

(4.2) and (4.3) using (1.5) and (4.10a). The integrals defining kSMGP(·, ·) converge if

and only if c2
d ≥ `2

d,∀d, which suggests that other values, even if permitted in Walder

et al. (2008), should be avoided for the model to remain well defined.

4.3.3 Frequency Inducing Features GP (FIFGP)

If the target function can be described more compactly in the frequency domain than

in the input domain, it can be advantageous to let the pseudo data set lie in the former

domain. We will pursue that possibility for the case where the input domain covariance

is the ARD SE. We will call the resulting sparse model Frequency Inducing Features

GP (FIFGP).

Directly applying the Fourier transform is not possible because the target function

is not square integrable (it has constant power σ2
0 everywhere, so (4.3) does not con-

verge). We will workaround this by windowing the target function in the region of

interest. It is possible to use a square window, but this results in the covariance being

defined in terms of the complex error function, which is very slow to evaluate. Instead,

95

4. INTER-DOMAIN GPS

we will use a Gaussian window1. Since multiplying by a Gaussian in the input do-

main is equivalent to convolving with a Gaussian in the frequency domain, we will be

working with a blurred version of the frequency space. This model is defined by:

gFIF(x, z) ≡ 1∏D
d=1

√
2πc2

d

exp

[
−

D∑
d=1

x2
d

2c2
d

]
cos

(
ω0 +

D∑
d=1

xdωd

)
with z = ω

(4.11)

kFIF(x, z′) = exp

[
−

D∑
d=1

x2
d + c2

dω
′2
d

2(c2
d + `2

d)

]
cos

(
ω′0 +

D∑
d=1

c2
dω
′
dxd

c2
d + `2

d

)
D∏
d=1

√√√√ `2
d

c2
d + `2

d

(4.12)

kFIF(z, z′) = exp

[
−

D∑
d=1

c2
d(ω

2
d + ω′2d)

2(2c2
d + `2

d)

](
exp

[
−

D∑
d=1

c4
d(ωd − ω′d)2

2(2c2
d + `2

d)

]
cos(ω0 − ω′0)

+ exp

[
−

D∑
d=1

c4
d(ωd + ω′d)

2

2(2c2
d + `2

d)

]
cos(ω0 + ω′0)

)
D∏
d=1

√√√√ `2
d

2c2
d + `2

d

. (4.13)

The inducing features are ω = [ω0, ω1, . . . , ωd]
>, where ω0 is the phase and

the remaining components are frequencies along each dimension. In this model, both

global length-scales {`d}Dd=1 and window length-scales {cd}Dd=1 are shared, thus c′d =

cd. Instances (4.12) and (4.13) are induced by (4.11) using (4.2) and (4.3).

Note that in this model the feature inducing function explicitly includes a phase,

as MCN does. It is possible to integrate that phase out using twice as many inducing

features, letting {ωi}2h
i=1 = {[0 ω′1 . . . ω

′
D]>r , [−π/2 ω′1 . . . ω

′
D]>r }hr=1, as SSGP does.

4.3.4 Time-Frequency Inducing Features GP (TFIFGP)

Instead of using a single window to select the region of interest, it is possible to use a

different window for each feature. We will use windows of the same size but different

centers. The resulting model combines SPGP and FIFGP, so we will call it Time-

Frequency Inducing Features GP (TFIFGP). It is defined by

1A mixture of m Gaussians could also be used as window without increasing the complexity order.

96

4.3 On the choice of g(x, z)

gTFIF(x,ω) ≡ 1∏D
d=1

√
2πc2

d

exp

[
−

D∑
d=1

(xd − µd)2

2c2
d

]
(4.14)

cos
(
ω0 +

D∑
d=1

(xd − µd)ωd
)

with z =

[
µ
ω

]

kTFIF(x,ω′) = exp

[
−

D∑
d=1

(xd − µ′d)2 + c2
dω
′2
d

2(c2
d + `2

d)

]
(4.15)

cos

(
ω′0 +

D∑
d=1

c2
dω
′
d(xd − µ′d)
c2
d + `2

d

)
D∏
d=1

√√√√ `2
d

c2
d + `2

d

kTFIF(ω,ω′) = exp

[
−

D∑
d=1

c2
d(ω

2
d + ω′2d) + (µd − µ′d)2

2(2c2
d + `2

d)

]
D∏
d=1

√√√√ `2
d

2c2
d + `2

d

(4.16)

(
exp

[
−

D∑
d=1

c4
d(ωd − ω′d)2

2(2c2
d + `2

d)

]
cos(ω0 − ω′0)

+ exp

[
−

D∑
d=1

c4
d(ωd + ω′d)

2

2(2c2
d + `2

d)

]
cos(ω0 + ω′0)

)

Note that this implies the following relations between FIFGP and TFIFGP:

gTFIF(x, z) = gFIF(x− µ,ω) with z =

[
µ
ω

]
kTFIF(x, z′) = kFIF(x− µ′,ω′)

kTFIF(z, z′) = kFIF(z, z′) exp

[
−

D∑
d=1

(µd − µ′d)2

2(2c2
d + `2

d)

]

FIFGP is trivially obtained by setting every center to zero, {µi = 0}mi=1, whereas
SPGP is obtained by setting window length-scales c and frequencies and phases {ωi}mi=1

to zero. If the window length-scales were individually adjusted, SMGP would be ob-
tained.

While FIFGP has the modeling power of both FIFGP and SPGP, it might perform
worse in practice due to it having roughly twice as many hyperparameters, thus making
the optimization problem harder. The same problem also exists in SMGP. A possible
workaround is to initialize the hyperparameters using a simpler model, as done in
Walder et al. (2008) for SMGP, though we will not do this here.

The same strategy used with FIFGP to integrate phases out can be applied here,
too.

97

4. INTER-DOMAIN GPS

4.4 Model selection

Model selection is performed as usual, minimizing the NLML of the model (ML-II).

Note that in contrast with methods from previous chapters, no overparametrization is

necessary for the length-scales to appear as separate hyperparameters. The detailed

procedure to train FIFGP and TFIFGP follows:

1. Initialize {`d}Dd=1, σ2
0 , σ2, {cd}Dd=1 to some sensible values. (We will use: One

half of the ranges of the input dimensions, the variance of the outputs {yj}nj=1,

σ2
0/4 and the standard deviation of input data, respectively). For TFIFGP, also

let {µi}mi=1 = 0.

2. Initialize {ωi}mi=1 from N (ω|0,L−2) and {ω0i}mi=1 from a uniform distribution

in [0, 2π).

3. Minimize (4.9), the NLML of the model, wrt to {`d}Dd=1, σ2
0 , σ2, {cd}Dd=1 and

{ωi}mi=1. For TFIFGP, also wrt {µi}mi=1. Since analytical derivatives are avail-

able, conjugate gradient descent can be used.

The initialization used in step 2 is taken from the initialization of MCN: If we used

no windowing ({cd}Dd=1 = ∞), both initializations would yield the same set of basis

functions, so it is probably a reasonable starting point. Detailed and numerically robust

equations to compute the derivatives of the NLML in step 3 are provided in Section

E.3 of Appendix E.

4.5 Experiments

We will now test the ability of FIFGP and TFIFGP to perform sparse regression on

our large-scale data sets and compare them with SPGP and a full GP. In all cases, the

(input-domain) covariance function is the ARD SE (1.5). All methods run inO(m2n).

To match computation time among the sparse algorithms, the same number of basis

functions (i.e. inducing features/pseudo-inputs) is used in all methods. As usual, aver-

ages over ten repetitions of NMSE and MNLP figures are reported for each data set,

for several choices of the number of basis functions. Unlike the other methods, FIFGP

98

4.5 Experiments

is not translation invariant2 (due to the Gaussian window of gFIF(x, z) being specifi-

cally centered at zero), so we will additionally center all data sets (by substracting the

sample mean from all inputs). This move does not affect the other algorithms.

Unlike the methods proposed in previous chapters, FIFGP and TFIFGP cannot be

interpreted as generalized linear regressors. They are also more constrained methods

because their approximate prior (4.6) is known to have minimum Kullback-Leibler

distance from the true prior, as explained in Section 4.2. Intuitively, this constraint

will force them to follow the full GP more closely (and will therefore render them less

prone to overfitting or producing inadequate predictive variances), but will also avoid

the flexibility that allowed previous models to have high performance in the sparser

regime.

4.5.1 Elevators and Pole Telecomm data sets

We start by considering the large regression data sets Elevators (Fig. 4.1) and Pole

Telecomm (Fig. 4.2), described in Section 2.4.2.

Both FIFGP and TFIFGP show a clear improvement over SPGP in terms of NMSE,

for both data sets. In terms of MNLP, there is a huge improvement for Elevators,

whereas there is little difference for Pole Telecomm. Quantization noise was taken into

account for this second data set, as described in previous chapters. We have explicitly

confirmed that if quantization noise was not considered, the MNLP performance of all

methods would increase slightly.

4.5.2 Kin-40k and Pumadyn-32nm data sets

For Kin-40k, Fig. 4.3, all three sparse methods perform similarly, though for high

sparseness (the most useful case) FIFGP and TFIFGP are slightly superior.

In Pumadyn-32nm, Fig. 4.4, we already know that only 4 out the 32 input dimen-

sions are relevant to the regression task, so it can be used as an ARD capabilities test.

We follow Snelson and Ghahramani (2006) and use a full GP on a small subset of the

training data (1024 data points) to obtain the initial length-scales for all methods. This

2FIFGP can be easily made translation invariant by regarding its Gaussian window center as an

additional hyperparameter.

99

4. INTER-DOMAIN GPS

10 25 50 100 250 500 7501000
0.1

0.15

0.2

0.25

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP
FIFGP
TFIFGP
Full GP on 8752 data points

(a) NMSE (log-log plot)

10 25 50 100 250 500 7501000

−4.8

−4.6

−4.4

−4.2

−4

−3.8

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP
FIFGP
TFIFGP
Full GP on 8752 data points

(b) MNLP (semilog plot)

Figure 4.1: NMSE and MNLP for SPGP, FIFGP, TFIFGP and full GP, for the Elevators

problem.

10 25 50 100 250 500 1000

0.01

0.02

0.03

0.04
0.05

0.1

0.15

0.2

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP
FIFGP
TFIFGP
Full GP on 10000 data points

(a) NMSE (log-log plot)

10 25 50 100 250 500 1000
2.5

3

3.5

4

4.5

5

5.5

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP
FIFGP
TFIFGP
Full GP on 10000 data points

(b) MNLP (semilog plot)

Figure 4.2: NMSE and MNLP for SPGP, FIFGP, TFIFGP and full GP, for the Pole

Telecomm problem.

100

4.5 Experiments

25 50 100 200 300 500 750 1250

0.001

0.005

0.01

0.05

0.1

0.5

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP
FIFGP
TFIFGP
Full GP on 10000 data points

(a) NMSE (log-log plot)

25 50 100 200 300 500 750 1250
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP
FIFGP
TFIFGP
Full GP on 10000 data points

(b) MNLP (semilog plot)

Figure 4.3: NMSE and MNLP for SPGP, FIFGP, TFIFGP and full GP, for the Kin-40k

problem.

10 25 50 75 100
0.04

0.05

0.1

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP
FIFGP
TFIFGP
Full GP on 7168 data points

(a) NMSE (log-log plot)

10 25 50 75 100
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP
FIFGP
TFIFGP
Full GP on 7168 data points

(b) MNLP (semilog plot)

Figure 4.4: NMSE and MNLP for SPGP, FIFGP, TFIFGP and full GP, for the

Pumadyn-32nm problem.

101

4. INTER-DOMAIN GPS

allows better minima to be found during optimization. All methods are able to properly

find the correct solution: The relevant dimensions are [4, 5, 15, 16]. However, FIFGP

and especially TFIFGP produce better results in the sparser regime.

4.5.3 Pendulum data set

It has been shown that for the Pendulum data set, described in Section 2.4.4, it was

difficult to obtain accurate predictive variances. This problem appeared clearly when

using SSGP and BN-MCN and, to a lesser extent when using MCNmix.

TFIFGP and FIFGP are approximations of a different nature, which properly han-

dle the uncertainties derived from the sparsity of the model. Fig. 4.5 shows the behavior

of these models with data set Pendulum.

10 24 50 100 200 400 800
0.25

0.3

0.4

0.5

0.6

0.7

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP
FIFGP
TFIFGP
Full GP on 315 data points

(a) NMSE (log-log plot)

10 24 50 100 200 400 800

0.5

1

1.5

2

2.5

3

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP
FIFGP
TFIFGP
Full GP on 315 data points

(b) MNLP (semilog plot)

Figure 4.5: NMSE and MNLP for SPGP, FIFGP, TFIFGP and full GP, for the Pendu-

lum problem.

Even using m > n and despite the relatively high number of parameters being

adjusted, proper predictive variances are obtained.

102

4.6 Summary and conclusions

4.6 Summary and conclusions

In this chapter we have introduced IDGPs, which are able to combine representations

of a GP in different domains, and have used them to extend SPGP to handle induc-

ing features lying in a different domain. This provides a general framework for sparse

models, which are defined by a feature extraction function. Using this framework, MS-

GPs proposed by Walder et al. (2008) can be reinterpreted as fully principled models

using a transformed space of local features, without any need for post-hoc variance

improvements. Furthermore, it is possible to develop new sparse models of practi-

cal use, such as the proposed FIFGP and TFIFGP, which are able to outperform the

state-of-the-art SPGP on some large data sets, especially for high sparsity regimes.

Choosing a transformed space for the inducing features enables to use domains

where the target function can be expressed more compactly, or where the evidence

(which is a function of the features) is easier to optimize. This added flexibility trans-

lates as a detaching of the functional form of the input-domain covariance and the set

of basis functions used to express the posterior mean.

IDGPs (including SPGP) approximate full GPs optimally in the KL sense noted in

Section 4.2, for a given set of inducing features. Using ML-II to select the inducing

features means that models providing a good fit to data are given preference over mod-

els that might approximate the full GP more closely. This, though rarely, might lead to

harmful overfitting. To more faithfully approximate the full GP and avoid overfitting

altogether, our proposal can be combined with the variational approach from Titsias

(2009), in which the inducing features would be regarded as variational parameters.

This would result in more constrained models, which would be closer to the full GP

but might show reduced performance.

IDGPs as a general tool can be used for other purposes, such as modeling noise

in the frequency domain, aggregating data from different domains or even imposing

constraints on the target function.

Models arising from the IDGP framework (including SPGP) are more constrained

than than the models seen in previous chapters (SSGP, BN-MN, MNmix), so the im-

provements of FIFGP and TFIFGP over SPGP are smaller. On the other hand, the

constraints of IDGP models allow them to properly handle the uncertainties derived

from the finiteness of the function set, so that no data set results in poorly determined

103

4. INTER-DOMAIN GPS

predictive variances. When considering an application in which the accuracy of every
predictive variance is an absolute must, this type of models are recommended over
those of previous chapters.

104

Chapter 5

Extensions

The ideas introduced in previous chapters are readily amenable to variations and ex-
tensions, thus yielding a plethora of potentially useful algorithms. Without intending
to be exhaustive, in this chapter we show a few concrete extensions that we consider
to be of special interest or not-so-obvious development. They are:

• Multi-Layer Perceptrons as MNs: Marginalized Networks (MNs) were intro-
duced in Chapter 3, along with noise bounding and network mixing to render
them useful. However, our experiments were limited to the case of cosine-type
activations, so as to maintain the connection with SSGP. One might wonder if the
usefulness of these improved MNs can be extended to other activation functions.
In Section 5.1 we address this question by considering MNs with sigmoid acti-
vation function, which mimic the structure of Muti-Layer Perceptrons (MLPs).
The performance of SPGP with an “MLP” covariance function, a possibility
largely ignored so far in the literature, is also investigated.

• Non-Gaussian likelihoods: If any of the methods presented so far is coupled with
a non-Gaussian likelihood, approximate inference and model selection are still
possible within the same complexity order. Details are provided in Section 5.2.

• Sparse robust regression and classification: Varying the likelihood function, it
is possible to perform robust regression and classification. This is illustrated in
Section 5.3 using the BN-MCN model of Chapter 3 to perform robust regression
and in Section 5.4 using the FIFGP model of Chapter 4 to perform classification.
Experiments with these new models are also provided.

105

5. EXTENSIONS

5.1 Muti-Layer Perceptrons (MLPs) as MNs

In this section we first review MLPs and how they converge to full GPs as the num-

ber of hidden units tends to infinity (provided that Gaussian priors are placed on the

network weights). Then we marginalize MLPs and combine them with noise bound-

ing and network mixing, as described in Chapter 3. Finally, we provide experimental

results on our large data sets. We also include results for SPGP with MLP covariance

function, since under certain conditions it converges to the same full GP as a marginal-

ized MLP.

5.1.1 Multi-Layer Perceptrons

Neural Networks are a biologically inspired computational model which consists on a

set of interconnected processing units or “neurons”. They can be arranged in several

different structures, but here we will only be concerned with feedforward networks

with one hidden layer and sigmoid activation function, also known as MLPs. This ar-

chitecture stands out because it has been proved that, for a sufficiently large number of

hidden units, it can approximate a wide range of functions, with the notable exception

of polynomials, see Cybenko (1989); Hornik et al. (1989); Hornik (1993). The input-

to-output mapping of this class of networks can be expressed, for m hidden neurons,

as:

f(x) =
m∑
i=1

wiφMLP(ui,x) , (5.1)

where {wi}mi=1 are the output weights and φ(u,x) is a sigmoid activation function,

which in turn depends on input weights {ui}mi=1. The hyperbolic tangent is probably

the most frequently used activation function in classical texts, but any other sigmoid

function can be used. In our case, for analytical tractability, we will use

φMLP(u,x) = erf(u>x̃) = erf
(
u0 +

D∑
d=1

udxd

)
, (5.2)

where x̃ = [1, x>]> is the augmented input vector and u0 is regarded as the “bias”

term of the neuron. The error function is in turn defined as:

erf(z) =
2√
π

∫ z

0
e−t

2

dt . (5.3)

106

5.1 Muti-Layer Perceptrons (MLPs) as MNs

As we know, networks of this type are traditionally trained by selecting their weights

{wi,ui}mi=1 so as to minimize the squared error over the training set, i.e.
∑n
j=1(f(xj)−

yj)
2. This can be done by using the widely known backpropagation algorithm from

Bryson and Ho (1969) to efficiently compute the derivatives of the cost functional wrt

the network weights and then applying gradient based methods (typically, stochastic

gradient descent) to minimize it.

Training MLPs in this fashion has several drawbacks, as discussed at the beginning

of Section 3.1 for general classical networks: Overfitting for big m, risk of conver-

gence to poor local minima, need for cross-validation, and lack of proper probabilistic

predictions. The only benefit of these models, when compared with sparse GPs, seems

to be their reduced computational complexity, and this is only true when the simplest1

types of optimization are applied (which in turn are more likely to get stuck at unde-

sirable minima).

Some of the solutions proposed to reduce the impact of these issues address the op-

timization procedure rather than the cost functional being optimized. A typical exam-

ple of this is “early stopping”, a technique that stops the optimization process as soon

as the squared error on a separate validation set stops decreasing. This idea does work

to some extent to avoid overfitting, but it clearly serves two contradictory purposes:

We both try to find a (local) minimum and to avoid reaching it to prevent overfitting.

Having to stop the search half way to a local minimum seems to imply that we are

solving the wrong optimization problem. Also, the optimization path becomes more

important than the optimizer’s ability to minimize the cost function, which should be

the only concern.

It seems more reasonable to address this issues acting upon the MLP model itself,

changing it in such a way that the minimum of the cost functional corresponds to a

desirable model. One possible way to do this is to apply a Bayesian approach, as

described in the next subsection.

1There is only a computational advantage if the optimization procedure scales sub-quadratically

with the number of hidden units (this would include variants of gradient descent, but not more involved

methods such as Levenberg-Marquardt).

107

5. EXTENSIONS

5.1.2 MLPs in the infinite limit

A principled and elegant solution that avoids the previously mentioned drawbacks is to

resort to a non-parametric, Bayesian approach: Use an infinite number of hidden neu-

rons, place a prior on all the weights of the network, and integrate them out. Difficult

as it seems, it turns out that it is possible to do this analytically.

Following Neal (1996), we place independent zero-mean Gaussian priors on all the

network weights in (5.1). The prior variance is set to σ2
0/m for the output weights, to

`−2
d for the input weights corresponding to dimension d, and to `−2

0 for the input biases.

Then we can compute the first two moments of the output of the network taking the

expectation over the network weights:

E[f(x)] = 0 (5.4)

E[f(x)f(x′)] =
1

m

m∑
i=1

σ2
0E[φMLP(ui,x)φMLP(ui,x

′)]

= σ2
0E[φMLP(u,x)φMLP(u,x′)]

=
2σ2

0

π
sin−1

 2x̃>L̃
−2

x̃′√
1 + 2x̃>L̃

−2
x̃

√
1 + 2x̃′>L̃

−2
x̃′

 , (5.5)

where L̃ = diag([`0, `1, . . . , `D]) is a diagonal matrix containing the length-scales

and the bias prior `2
0.

Result (5.4) follows trivially, since all output weights {wi}mi=1 are zero mean and

independent from the input weights. Similarly, the first step of the second expectation

follows because all input weights {ui}mi=1 are i.i.d., drawn from N (u|0, L̃−2
), but the

second step is quite involved, see Williams (1997) for the complete proof.

Since the activation function is bounded, all the moments of f(x) are bounded, and

due to the Central Limit theorem, when the number of hidden units m tends to infinity,

f(x) converges to a zero-mean GP with covariance function (5.5). We will refer to

it as the ARD MLP covariance function, since regarding length-scales {`d}Dd=1 as hy-

perparameters provides the same Automatic Relevance Detection (ARD) capabilities

described for ARD SE in Section 1.1.2.

It is possible to use this infinite MLP to make predictions with finite computation by

invoking eq. (1.15), treating it as a GP and enjoying all its advantages. It does not come

as a surprise that the performance of this infinite MLP is very good, given that it is a

108

5.1 Muti-Layer Perceptrons (MLPs) as MNs

combination of all possible networks (with some non-zero a priori probability) having
an infinite number of hidden neurons. However, since this is a full GP, computational
complexity has now been raised to O(n3), making its use impractical for big data sets.

To workaround this, it is possible to use the SPGP approximation with covariance
function (5.5). This yields a sparse GP that approximates an MLP, though the original
MLP structure disappears: Predictions are now a combination of arcsine functions
instead of sigmoids.

5.1.3 Marginalized MLPs (MMLPs)

Instead of integrating out all the parameters of an MLP and then sparsifying the result-
ing model, we can follow the MN approach and integrate out only the output weights.
Predictive and NLML equations are then given by (3.4) and (3.5), with φMLP(u,x)

being the basis function family.

Constant σ2
p needed for both equations can be derived from the family of basis

functions
σ2

p = lim
L→∞

1

LD

∫
CL

erf2(u>i x̃)dx = 1, (5.6)

where region CL is a cube of edge L, centered at the coordinate origin.

The computational and storage requirements of MMLPs are the same as for any
other MN, as described towards the end of Section 3.1.1.

As usual, we reparametrize each input weight ui as ui = L̃
−1
ωi, so that the com-

ponents of any given dimension can be scaled at once for all input weights, using the
corresponding length-scale. With this definition, to completely define an MMLP we
must specify σ2

0 , σ2, {`}Dd=0 and {ωi}mi=1.

We know from Chapter 3 that MNs are zero-mean sparse GPs with covariance
function (3.3). Therefore, the covariance function of MMLPs can be expressed as

kMMLP(x,x′) =
σ2

0

m
φMLP(x)>φMLP(x′) = σ2

0

1

m

m∑
i=1

φMLP(ui,x)φMLP(ui,x
′) ,

which, apart from the scaling with σ2
0 , is the average of φMLP(u,x)φMLP(u,x′) over the

values of input weights u = {ui}mi=1. If the input weights are distributed according to
N (u|0, L̃−2

), this average is a Monte Carlo approximation of integral

kMMLP(x,x′) ≈ σ2
0

∫
RD
φMLP(u,x)φMLP(u,x′)N (u|0, L̃−2

)du , (5.7)

109

5. EXTENSIONS

which in turn is exactly ARD MLP covariance function (5.5) (the integral can be re-

expressed as the expectation in that equation). The Monte Carlo approximation be-

comes exact in the limit when the number of samples m tends to infinity.

Thus, we have proved that MMLPs approximate full GPs with ARD MLP covari-

ance function if the weights are distributed according toN (u|0, L̃−2
), or equivalently,

if {ωi}mi=1 are distributed according to N (ω|0, ID+1), with an exact correspondence

with the full GP when the number of basis functions is infinite.

The SPGP with ARD MLP covariance function, though different in nature, also

converges to the same full GP if the set of pseudo-inputs is a superset of the set of

actual input values in the data set.

Following Chapter 3, we can define MMLP-fixed as the algorithm that lets auxil-

iary vectors {ωi}mi=1 fixed to values drawn from N (ω|0, ID+1) and learns the remain-

ing D + 3 hyperparameters. Such a method would present no overfitting, but would

also have poor performance for small m (especially on high-dimensional problems,

since the volume of the space sampled by the Monte Carlo approximation grows expo-

nentially with the dimension of input data). As we also know from Chapter 3, directly

learning the input weights of MNs (such as MMLPs) may distort their distribution and

produce overfitting. Therefore, in the following, we will consider the improved MN

versions proposed in Sections 3.2 (noise bounding trick) and 3.3 (network mixing).

5.1.4 Bounded-Noise Marginalized MLPs (BN-MMLPs)

Applying the noise bounding trick described in Section 3.2 to MMLPs yields the same

algorithm used for BN-MCN, but with (5.2) as basis function family and σ2
p = 1 as per

(5.6). Also recall that ui = L̃
−1
ωi. In detail, the procedure is:

1. Run MMLP-fixed:

• Initialize {`d}Dd=1, `0, σ2
0 , and σ2 to some sensible values. (We will use:

One half of the ranges of the input dimensions,
√∑D

d=1 `
2
D, the variance of

the outputs {yj}nj=1 and σ2
0/4, respectively).

• Fix {ωi}mi=1 to random values drawn from N (ω|0, ID+1) (to approximate

the ARD MLP covariance function).

110

5.1 Muti-Layer Perceptrons (MLPs) as MNs

• Minimize (3.5), the NLML of the model, wrt to σ2
0 , σ2, and {`}Dd=1 (keeping

{ω}mi=1 fixed).

2. Run BN-MMLP:

• Initialize {`}Dd=0, σ2
0 , σ2 and {ωi}mi=1 to the values they had after MMLP-

fixed converged.

• Set σ2
min to the value found for σ2 after convergence of MMLP-fixed. Ini-

tialize σ2 slightly above σ2
min. (We will use 1.5σ2

min).

• Minimize (3.5), the NLML of the model, wrt to {`d}Dd=0, σ2
0 , σ2 and {ωi}mi=1

with the constraint σ2 > σ2
min.

As usual, the required minimizations will be performed by conjugate gradient de-

scent, using the analytic derivatives of the NLML. The expressions of these derivatives

are provided in Section E.2 of Appendix E.

5.1.4.1 Experiments

Here we reproduce the experiments of Section 3.2.4, using exactly the same settings,

but using BN-MMLP instead of BN-MCN. Also, in addition to our traditional bench-

mark (SPGP with ARD SE covariance function), we provide results for SPGP with

ARD MLP covariance function (5.5). Since this latter covariance function is not trans-

lation invariant, we additionally center all input data.

Results for Elevators and Pole Telecomm are shown in Fig. 5.1 and 5.2, respec-

tively. If we consider the NMSE error measure, BN-MMLP performs better than

SPGP with the ARD SE covariance function in both problems. However, when the

ARD MLP version is used, SPGP manages to beat BN-MMLP in the Pole Telecomm

problem. As expected, BN-MMLP does not perform specially well in the MNLP sense,

being beaten by both versions of SPGP in the Pole Telecomm problem.

Figs. 5.3 and 5.4 show results for data sets Kin-40k and Pumady-32nm. In both

problems, BN-MLP produces the best results in the NMSE sense (even outperform-

ing the full GP for a modest number of basis functions). For Kin-40k, the ARD MLP

version of SPGP hardly provides any advantage over the more typical ARD SE covari-

ance function. On the other hand, for Pumady-32nm, the ARD MLP roughly halves

111

5. EXTENSIONS

10 24 50 100 250 500 7501000

0.1

0.15

0.2

0.25

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP (ARD SE)
SPGP (ARD MLP)
BN−MMLP
Full GP on 8752 data points

(a) NMSE (log-log plot)

10 24 50 100 250 500 7501000

−4.8

−4.6

−4.4

−4.2

−4

−3.8

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP (ARD SE)
SPGP (ARD MLP)
BN−MMLP
Full GP on 8752 data points

(b) MNLP (semilog plot)

Figure 5.1: NMSE and MNLP for SPGP (with both ARD SE and ARD MLP cov.

functions), BN-MMLP and full GP, for the Elevators problem.

10 24 50 100 250 500 1000

0.01

0.02

0.03

0.04
0.05

0.1

0.15

0.2

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP (ARD SE)
SPGP (ARD MLP)
BN−MMLP
Full GP on 10000 data points

(a) NMSE (log-log plot)

10 24 50 100 250 500 1000
2.5

3

3.5

4

4.5

5

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP (ARD SE)
SPGP (ARD MLP)
BN−MMLP
Full GP on 10000 data points

(b) MNLP (semilog plot)

Figure 5.2: NMSE and MNLP for SPGP (with both ARD SE and ARD MLP cov.

functions), BN-MMLP and full GP, for the Pole Telecomm problem.

112

5.1 Muti-Layer Perceptrons (MLPs) as MNs

24 50 100 200 300 500 750 1250

0.001

0.005

0.01

0.05

0.1

0.5

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP (ARD SE)
SPGP (ARD MLP)
BN−MMLP
Full GP on 10000 data points

(a) NMSE (log-log plot)

24 50 100 200 300 500 750 1250
−1.5

−1

−0.5

0

0.5

1

1.5

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP (ARD SE)
SPGP (ARD MLP)
BN−MMLP
Full GP on 10000 data points

(b) MNLP (semilog plot)

Figure 5.3: NMSE and MNLP for SPGP (with both ARD SE and ARD MLP cov.

functions), BN-MMLP and full GP, for the Kin-40k problem.

10 24 50 74 100
0.04

0.05

0.1

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP (ARD SE)
SPGP (ARD MLP)
BN−MMLP
Full GP on 7168 data points

(a) NMSE (log-log plot)

10 24 50 74 100
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP (ARD SE)
SPGP (ARD MLP)
BN−MMLP
Full GP on 7168 data points

(b) MNLP (semilog plot)

Figure 5.4: NMSE and MNLP for SPGP (with both ARD SE and ARD MLP cov.

functions), BN-MMLP and full GP, for the Pumadyn-32nm problem.

113

5. EXTENSIONS

the NMSE when m is small. As usual, all methods correctly determine the relevant
dimensions in the Pumady-32nm problem to be [4, 5, 15, 16].

Results for our last data set, Pendulum, are shown in Fig. 5.5. We can confirm
the expected behavior: Though predictive means are accurate, even outperforming the
full GP when the number of basis functions is very high2, predictive variances are
exceedingly small, resulting in very poor values for the MNLP measure.

The performance of SPGP in this data set is again boosted when the ARD MLP
covariance function is used, with this sparse method outperforming a full GP with
ARD SE covariance function for m ≥ 200.

10 24 50 100 200 400 800

0.25

0.3

0.4

0.5

0.6

0.7

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP (ARD SE)
SPGP (ARD MLP)
BN−MMLP
Full GP on 315 data points

(a) NMSE (log-log plot)

10 24 50 100 200 400 800

2

4

6

8

10

12

14

16

18

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP (ARD SE)
SPGP (ARD MLP)
BN−MMLP
Full GP on 315 data points

(b) MNLP (semilog plot)

Figure 5.5: NMSE and MNLP for SPGP (with both ARD SE and ARD MLP cov.

functions), BN-MMLP and full GP, for the Pendulum problem.

5.1.5 Marginalized MLP Mixture (MMLPmix)

Combining several MMLPs as described in Section 3.3 improves their robustness. The
resulting algorithm, MMLPmix, is identical to MCNmix except for the basis function

2As we know, sparsity and computational advantages are lost when m > n, but the approach may

still be valid to obtain highly accurate predictions on some small data sets.

114

5.1 Muti-Layer Perceptrons (MLPs) as MNs

family and normalizing constant, which are now (5.2) and σ2
p = 1, respectively. Recall

that the input weights are defined as ui = L̃
−1
ωi. The procedure is:

1. Train K different MMLPs (using random initialization, as described in Section
5.1.4 for MMLP-fixed), minimizing (3.5) wrt to {`d}Dd=0, σ2

0 , σ2 and {ωi}mi=1.

2. Use the K MMLPs to obtain the K predictive means and variances at new test
points.

3. Combine them using equation 3.8.

Analytic derivatives wrt all hyperparameters are provided in Section E.2 of Ap-
pendix E, so that conjugate gradient descent can be used. Time and storage space
needs are identical to those of any other MN mixture, as described in Section 3.3.2.

5.1.5.1 Experiments

Now we will reproduce the experiments of Section 3.3.3, with identical setup, but using
MMLPmix instead of MCNmix. As before, we also include results for SPGP with
ARD MLP covariance function and center data before running the experiments (SPGP
with the ARD MLP covariance function is the only method affected by a translation of
the inputs).

We display results for Elevators and Pole Telecomm in Figs. 5.6 and 5.7 respec-
tively. MMLPmix gets surpassed by SPGP (using the ARD MLP covariance func-
tion) in Pole Telecomm, but only for big m, and only in the MNLP measure. Overall,
MMLPmix produces the best results.

If we turn to Kin-40k and Pumadyn-32nm, displayed in Figs. 5.8 and 5.9, we see
MMLPmix is the clear winner. For Kin-40k, it does not only beat the full GP in NMSE
(which also was achieved by BN-MMLP), but also in MNLP. For Pumadyn-32nm, it
quickly reaches full GP performance, closely followed by SPGP. All methods select
the correct set of relevant inputs, [4, 5, 15, 16].

Finally, we can see how mixing as little as four networks considerably improves
predictive variances. Fig. 5.10 shows results for the Pendulum data set, where a signif-
icant improvement in MNLP can be appreciated with respect to Fig. 5.5, where noise
bounding was applied.

115

5. EXTENSIONS

10 24 50 100 250 500 7501000

0.1

0.15

0.2

0.25

m

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP (ARD SE)
SPGP (ARD MLP)
MMLPmix
Full GP on 8752 data points

(a) NMSE (log-log plot)

10 24 50 100 250 500 7501000

−4.8

−4.6

−4.4

−4.2

−4

−3.8

m

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP (ARD SE)
SPGP (ARD MLP)
MMLPmix
Full GP on 8752 data points

(b) MNLP (semilog plot)

Figure 5.6: NMSE and MNLP for SPGP (ARD SE/ARD MLP, m basis functions),

MMLPmix (4 networks, m/2 bases each) and full GP, for the Elevators problem.

10 24 50 100 250 500 1000

0.01

0.02

0.03

0.04
0.05

0.1

0.15

0.2

m

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP (ARD SE)
SPGP (ARD MLP)
MMLPmix
Full GP on 10000 data points

(a) NMSE (log-log plot)

10 24 50 100 250 500 1000
2.5

3

3.5

4

4.5

5

m

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP (ARD SE)
SPGP (ARD MLP)
MMLPmix
Full GP on 10000 data points

(b) MNLP (semilog plot)

Figure 5.7: NMSE and MNLP for SPGP (ARD SE/ARD MLP, m basis functions),

MMLPmix (4 networks, m/2 bases each) and full GP, for the Pole Telecomm problem.

116

5.1 Muti-Layer Perceptrons (MLPs) as MNs

24 50 100 200 300 500 750 1250

0.001

0.005

0.01

0.05

0.1

0.5

m

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP (ARD SE)
SPGP (ARD MLP)
MMLPmix
Full GP on 10000 data points

(a) NMSE (log-log plot)

24 50 100 200 300 500 750 1250
−1.5

−1

−0.5

0

0.5

1

1.5

m

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP (ARD SE)
SPGP (ARD MLP)
MMLPmix
Full GP on 10000 data points

(b) MNLP (semilog plot)

Figure 5.8: NMSE and MNLP for SPGP (ARD SE/ARD MLP, m basis functions),

MMLPmix (4 networks, m/2 bases each) and full GP, for the Kin-40k problem.

10 24 50 74 100
0.04

0.05

0.1

m

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP (ARD SE)
SPGP (ARD MLP)
MMLPmix
Full GP on 7168 data points

(a) NMSE (log-log plot)

10 24 50 74 100
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

m

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP (ARD SE)
SPGP (ARD MLP)
MMLPmix
Full GP on 7168 data points

(b) MNLP (semilog plot)

Figure 5.9: NMSE and MNLP for SPGP (ARD SE/ARD MLP, m basis functions),

MMLPmix (4 networks,m/2 bases each) and full GP, for the Pumadyn-32nm problem.

117

5. EXTENSIONS

10 24 50 100 200 400 800

0.25

0.3

0.4

0.5

0.6

0.7

m

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP (ARD SE)
SPGP (ARD MLP)
MMLPmix
Full GP on 315 data points

(a) NMSE (log-log plot)

10 24 50 100 200 400 800

2

4

6

8

10

12

14

16

18

m

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP (ARD SE)
SPGP (ARD MLP)
MMLPmix
Full GP on 315 data points

(b) MNLP (semilog plot)

Figure 5.10: NMSE and MNLP for SPGP (ARD SE/ARD MLP, m basis functions),

MMLPmix (4 networks, m/2 bases each) and full GP, for the Pendulum problem.

5.1.6 Discussion

In the preceding sections, we have presented results of regression experiments with dif-

ferent types of sparse MLPs (BN-MMLP, MMLPmix and the SPGP with ARD MLP

covariance function). After careful inspection, and comparing with the results of Sec-

tions 3.2.4 and 3.3.3, where BN-MCN and MCNmix were put to test, we can draw the

following conclusions:

(a) Despite almost every mention of SPGP in the literature is tied to the ARD SE co-

variance function, the ARD MLP covariance function typically yields better per-

formance in the sparser regime.

(b) The predictive means obtained by BN-MMLP and MMLPmix are generally better

than those obtained by SPGP.

(c) BN-MMLP’s predictive variances are reasonable for most problems, but occasion-

ally they may be exceedingly small. Thus, one should watch out for overconfident

118

5.2 Non-Gaussian likelihoods

predictions when using BN-MMLP. In MMLPmix, this problem is greatly reduced.

SPGP does not seem to ever present this problem and is therefore a safer method.

(d) The functional form of the predictive mean for BN-MMLP and MMLPmix corre-

sponds exactly to the structure of an MLP, so both methods can be used to train

traditional MLPs. This is not possible with SPGP.

(e) The choice of the activation function (i.e., the definition of φ(u,x)) matters, but

not critically. Comparing these results with those obtained with BN-MCN and

MCNmix, we see that both cosine and sigmoid bases (which are functionally very

different) display similar behavior and performance.

5.2 Non-Gaussian likelihoods

We have so far considered inference and model selection in sparse models with Gaus-

sian likelihood, i.e. p(y|f) = N (y|f , σ2In). In this section we will detail how all these

models can be extended to handle non-Gaussian likelihoods by resorting to approxi-

mate inference. As we will see in the next two sections, being able to use other types

of likelihoods enables us to use these models for robust regression and classification.

Two different schemes for approximate inference in GP models with non-Gaussian

likelihoods are typically used: The simple Laplace approximation of Williams and Bar-

ber (1998) and the more sophisticated Expectation Propagation (EP) of Minka (2001).

According to the work by Kuss (2006), the Laplace approximation is not well suited

to non-derivable likelihoods (such as the one we will be using for robust regression)

and produces less accurate posterior distributions than EP. The superiority of EP over

the Laplace approximation is extensively discussed in Kuss and Rasmussen (2005) and

Kuss and Rasmussen (2006), so it will be our tool of choice.

5.2.1 Expectation Propagation (EP)

Expectation Propagation (EP) is a technique for approximate inference in Bayesian

models. It was introduced by Minka (2001), and it can be applied to a variety of

settings. Here we will limit ourselves to describe it for the case of Bayesian models

119

5. EXTENSIONS

with GP prior and factorizing likelihood. We follow Kuss (2006) and Rasmussen and
Williams (2006), where further information about applying EP to GPs can be found.

First, let us introduce the so-called “natural parametrization” Nnat(f |ν,T) for the

Gaussian distribution, since some of the expressions below are simpler or more easy
to compute when considering this form:

Nnat(f |ν,T) =

∣∣∣∣∣ T2π
∣∣∣∣∣
1
2

exp
(
−1

2
ν>T−1ν

)
exp

(
−1

2
f>Tf + ν>f

)
,

where T is usually referred to as the “precision matrix”. We will combine this notation

with the usual one in terms of the mean and the covariance. Both are simply related:

N (f |µ,Σ) = Nnat(f |Σ−1µ,Σ−1) , Nnat(f |ν,T) = N (f |T−1ν,T−1) . (5.8)

Using this notation, we can express a general GP model as

p(f |X) = Nnat(f |0,K−1
ff) , p(y|f) =

n∏
j=1

p(yj|fj)

where the functional form of p(yj|fj) will determine whether it is a Gaussian-noise

regression model, a robust regression model, a classification model, etc. The likelihood
factorizes because each observation is assumed to depend only on its corresponding

latent value.

For any given likelihood, it is possible to express the posterior over latent values f

using Bayes formula (1.9):

p(f |X,y) =
1

Z
p(f |X)

n∏
j=1

p(yj|fj) , (5.9)

where Z is the evidence of the model:

Z = p(y|X) =
∫
p(f |X)

n∏
j=1

p(yj|fj)df . (5.10)

However, if likelihood p(yj|fj) is not Gaussian, the key equations for model selec-

tion and inference become intractable: Evidence (5.10) cannot be computed analyti-
cally (which in turn means that it is not possible to use ML-II for model selection) and

p(f |X,y) becomes non-Gaussian, so that it is no longer possible to obtain analytical
expressions for the marginals or the predictive distributions.

120

5.2 Non-Gaussian likelihoods

5.2.1.1 Approximate marginal posterior

To overcome these problems, EP seeks to replace the true posterior p(f |X,y) by an

approximate posterior q(f |X,y) which is Gaussian. In order to do this, the following

approximation is introduced:

p(yj|fj) ≈ t(fj, ν̃j, τ̃j, Z̃j) ≡ Z̃jNnat(fj|ν̃j, τ̃j) , (5.11)

where tj(fj) = t(fj, ν̃j, τ̃j, Z̃j) are called the site functions and {ν̃j, τ̃j, Z̃j}nj=1 are the

site parameters. The site functions are unnormalized, unidimensional Gaussians in fj
that locally approximate the likelihood. For notational convenience, we will omit the

dependence of the site functions on the site parameters and use simply tj(fj) to denote

them. Using (5.11), the joint likelihood can be expressed as

n∏
j=1

p(yj|fj) ≈
n∏
j=1

tj(fj) = Nnat(f |ν̃, T̃)
n∏
j=1

Z̃j (5.12)

where ν̃ = [ν̃1, . . . , ν̃n]> and T̃ = diag(τ̃1, . . . , τ̃n) collect the natural parameters of

all sites.

If we assume the site parameters as given, the approximate posterior over the latent

values can be computed by inserting (5.11) into (5.9) and (5.10):

p(f |X,y) ≈ q(f |X,y) =
1

ZEP
p(f |X)

n∏
j=1

tj(fj) = Nnat(f |ν,T) (5.13)

with ν = 0 + ν̃ , T = K−1
ff + T̃ , and

ZEP = q(y|X) =
∫
p(f |X)

n∏
j=1

tj(fj)df . (5.14)

Since (5.13) is the product of two Gaussians, it is also a Gaussian (correct nor-

malization is ensured by the constant ZEP, which corresponds to the approximate evi-

dence). The natural parameters of the posterior are straightforward to compute, since

they are the sum of those of the multiplying Gaussians. We emphasize this by explic-

itly including natural parameter 0 of the prior. Note that we use tilde variables to refer

to the site parameters and non-tilde variables to refer to the posterior parameters.

To obtain the posterior marginal distributions of each latent variable, it is more

convenient to rewrite (5.13) in the mean-covariance form q(f |X,y) = N (f |µ,Σ).

121

5. EXTENSIONS

Using the equivalence provided by (5.8) and the marginalization property (B.2), the
posterior mean and covariance matrix, as well as the marginals, are:

Σ = (K−1
ff + T̃)−1 with marginals σ2

j = [Σ]jj (5.15a)

µ = Σν̃ with marginals µj = [µ]j . (5.15b)

5.2.1.2 The cavity distribution

Another way to compute the approximate marginal posterior distribution is to start
from the approximate joint posterior and integrate out every other variable

q(fj|X,y) =
∫
q(f |X,y)df\j =

1

ZEP

∫
p(f |X)

n∏
q=1

tq(fq)df\j (5.16)

where we use f\j to refer to all latent values except fj . Since the j-th term of the
product in (5.16), tj(fj), does not depend on f\j , it can be taken out of the integral,
and we can express the marginal posteriors as

q(fj|X,y) =
1

ZEP
tj(fj)q\j(fj) with q\j(fj) =

∫
p(f |X)

n∏
q 6=j

tq(fq)df\j (5.17)

where q\j(fj) is known as the cavity distribution, and it has the form of an unnormal-
ized Gaussian, q\j(fj) ∝ Nnat(fj|ν\j, τ\j). The cavity distribution corresponds (up to
a scaling) to removing the approximate likelihood j from the joint posterior. Since
marginal posteriors are known from (5.15), we have that q(fj|X,y) = N (fj|µj, σ2

j),
so that

tj(fj)q\j(fj) ∝ N (fj|µj, σ2
j) (5.18)

Again, we have the product of two Gaussians, which is proportional to a Gaussian.
Since site parameters and posterior marginals are known, we can compute the cavity
parameters:

ν\j = σ−2
j µj − ν̃j (5.19a)

τ\j = σ−2
j − τ̃j (5.19b)

Despite the form of (5.19), cavity parameters ν\j and τ\j are independent of site
parameters ν̃j and τ̃j , as the very definition of q\j(fj), (5.17), states.

So, given the prior and the site parameters, it is possible to compute the approxi-
mate marginals, the approximate evidence, and the cavity parameters. But how do we
determine the site parameters?

122

5.2 Non-Gaussian likelihoods

5.2.1.3 Obtaining the site parameters

The key idea of EP is to select the site parameters so that the product of the site function
(the approximate likelihood) and the cavity distribution is as close as possible to the
product of the true likelihood p(yj|fj) and the cavity distribution:

t(fj, ν̃j, τ̃j, Z̃j)Nnat(fj|ν\j, τ\j) ≈ p(yj|fj)Nnat(fj|ν\j, τ\j) (5.20)

The left hand side of (5.20) is, up to a constant, the approximate marginal posterior
q(fj|X,y), which is Gaussian. The right hand side is known as the tilted distribution

and is not Gaussian in general. For both distributions to be as close as possible (in the
sense of minimizing the Kullback-Leibler divergence), the j-th site parameters must
be chosen so that the first and second moments of both distributions are matched. To
ensure proper normalization, also the zeroth moment must be matched.

In order to do this, the moments of the tilted distribution must be computed. The
concrete expressions will depend on the functional form of the likelihood. A general
technique to compute them is to use the moment generating function

Mj(λ) =
∫

exp(λfj)p(yj|fj)Nnat(fj|ν\j, τ\j)dfj (5.21)

and then evaluate the derivatives wrt λ at zero to obtain the non-central moments

m0j = Mj(0) , mkj =
1

m0j

∂Mj(λ)

∂λ

∣∣∣∣∣
λ=0

∀ k ∈ N : k > 0 , (5.22)

as described, for instance, in DeGroot and Schervish (2002). Matching these moments
with those of the left hand side of (5.20) and solving for the site parameters, yields:

τ̃j = (m2j −m2
1j)
−1 − τ\j (5.23a)

ν̃j = m1j(τ\j + τ̃j)− ν\j (5.23b)

Z̃j = m0j

√
2π(τ−1

\j + τ̃−1
j) exp

(τ−1
\j ν\j − τ̃

−1
j ν̃j)

2

2(τ−1
\j + τ̃−1

j)

 (5.23c)

(recall that the j-th cavity parameters were already known and independent of the j-th
site parameters). Of course, the expressions describing mkj will be different for each
possible likelihood function and depend on parameters yj , ν\j , τ\j .

After updating the site parameters, the posterior distribution must be updated ac-
cordingly using (5.15).

123

5. EXTENSIONS

5.2.1.4 Model selection and inference

The evidence of the model is approximated by ZEP, (5.14). Expanding in terms of the
covariance matrix and site parameters (after EP reaches a fixed point), we have

− log q(y|X) = − log
∫
p(f |X)

n∏
j=1

tj(fj)df = −1

2

n∑
j=1

log Z̃2
i τ̃j

+
1

2
log

∣∣∣T̃Kff + In
∣∣∣+ 1

2
ν̃>
(
T̃Kff T̃ + T̃

)−1
ν̃ +

n

2
log(2π) (5.24)

so that ML-II model selection can be performed by minimizing (5.24) wrt the hyper-
parameters of the model.

The posterior mean of f∗ = f(x∗), the latent function at test point x∗, under the
Gaussian approximation is

Eq[f∗|X,y,x∗] =
∫

E[f∗|X,x∗, f]q(f |X,y)df

=
∫

k>f∗Kff fq(f |X,y)df = k>f∗K
−1
ff Eq[f |X,y] = k>f∗K

−1
ff µ (5.25)

and the variance can be expressed following Rasmussen and Williams (2006) as

Vq[f∗|X,y,x∗] = Ep(f∗|X,x∗,f)[(f∗ − E[f∗|X,x∗, f])2]

+ Eq(f |X,y)[(E[f∗|X,x∗, f]− E[f∗|X,y,x∗])2]

= k∗∗ − k>f∗K
−1
ff kf∗ + k>f∗K

−1
ff (K−1

ff + T̃)−1K−1
ff kf∗

= k∗∗ − k>f∗(Kff + T̃
−1

)−1kf∗ (5.26)

so that the approximate posterior distribution of the latent variable at the new test point
is

q(f∗|X,y,x∗) = N (f∗| k>f∗K−1
ff µ, k∗∗ − k>f∗(Kff + T̃

−1
)−1kf∗)

= N (f∗| k>f∗(T̃Kff + In)−1ν̃,

k∗∗ − k>f∗T̃
1/2

(T̃
1/2

Kff T̃
1/2

+ In)−1T̃
1/2

kf∗) , (5.27)

where the last row expresses it in terms of the covariance matrix and site parameters
only.

The predictive distribution at any new test point corresponds to integrating out the
latent variable:

p(y∗|X,y,x∗) =
∫
p(y∗|f∗)q(f∗|X,y,x∗)df∗ (5.28)

This latter integral may or may not be tractable, depending on the form of the
likelihood.

124

5.2 Non-Gaussian likelihoods

5.2.1.5 Summary of the procedure

The above procedure can summarized as follows:

1. Initialization:

(a) Set all natural site parameters to zero {τ̃j}nj=1, {ν̃j}nj=1.

(b) The corresponding approximate posterior parameters will be Σ = Kff and
µ = 0.

2. For each j, compute

(a) The cavity parameters τ\j and ν\j using (5.19).

(b) The moments of the tilted distribution, using equations derived from (5.21)
and (5.22). (These equations will depend on the choice of the likelihood).

(c) The new site parameters τ̃j and ν̃j using (5.23).

(d) Update the approximate posterior parameters Σ andµ using (5.15). Marginals
{σ2

j}nj=1 and {µj}nj=1 are readily obtained from the diagonal of Σ and the el-
ements of µ respectively.

3. Repeat 2 until convergence.

4. Compute the NLML using (5.24).

Implementing EP in a fast and numerically stable way can be challenging in prac-
tice. There are several tricks and caveats that should be taken into account. We sum-
marize the most relevant from Rasmussen and Williams (2006):

• In step 2.(d) it is not necessary to recompute Σ from scratch. The updated matrix
can be expressed as a a rank-one update over the old one using (A.1). This means
that this step only takes O(n2) time.

• After a complete sweep over all sites, matrix Σ has received n rank-one updates,
with total cost of O(n3). To avoid loss of precision, it is recommended to re-
compute it form scratch after each complete sweep. This also takes O(n3) time.
Further numerical stability can be achieved by using the Cholesky decomposi-
tion to perform this step.

125

5. EXTENSIONS

• The order in which the sites are visited in step 2 should be randomized for en-
hanced stability.

• Convergence of EP is not guaranteed for any arbitrary likelihood function. It has
been conjectured that the algorithm always converge if likelihood is log-concave
(which results in unimodality of the posterior).

One should note that the computational complexity of this algorithm is the same
as that of a standard GP, O(n3). The bottleneck is step 2.(d), which takes O(n2) time,
since the remaining steps within the loop are performed in O(1). The actual running
time of this algorithm is of course much bigger in practice than that of a standard GP,
since it involves more computations and several sweeps are needed to reach a fixed
point.

5.2.2 EP for sparse GP models

The work of Quiñonero-Candela and Rasmussen (2005) suggests that most approxi-
mate GP models can be expressed as exact GP models in which the covariance function
has been replaced by an approximation. The approximate covariance function results
computationally advantageous because it yields a covariance matrix that can be ex-
pressed as Kff = D0 + P0R

>
0 R0P

>
0 , where D0 is an n × n diagonal matrix, P0 is

an n × m matrix, and R0 is an m × m upper Cholesky factor. With this structure,
the necessary operations (i.e. computing the NLML of the model, its derivatives and
the predictive distributions) can be performed is O(m2n) time, using matrix inversion
lemma (A.1), instead of the original O(n3) time. All the sparse GP models introduced
in this thesis have the mentioned structure so we have been able to use (A.1) to pro-
duce computationally efficient algorithms. However, when dealing with non-Gaussian
likelihoods, to perform the above mentioned operations we need to run EP to obtain an
approximate posterior over f , which in general is an O(n3) operation.

Now, we are going to show how to reduce the computational cost of the EP al-
gorithm to O(m2n) when the covariance matrix Kff has the cited structure, and pro-
vide expressions for the NLML and predictive variances that can also be computed in
O(m2n) time. This means that all models introduced so far can be used with non-
Gaussian likelihoods without increasing their computational complexity (though, as
mentioned before, the constant multiplying factor will be considerably increased).

126

5.2 Non-Gaussian likelihoods

5.2.2.1 Posterior updates

In order to be able to run EP inO(m2n), we just need to reduce the computational cost
of step 2.(d) to O(m2), so that the overall cost after updating the n sites is O(m2n).

Following Naish-Guzman and Holden (2008), instead of storing µ and Σ directly,
we define them as

µ = a + Pγ Σ = D + PR>RP>,

and store only auxiliary elements D (n × n diagonal matrix), P (n × m matrix), R

(m×m upper Cholesky factor), a (n× 1 vector), and γ (m× 1 vector).

Vectors a and γ are initialized to zero and the remaining matrices are initialized so
that Σ = Kff , as step 1 of EP requires. This must be possible, since the structure of
the covariance matrix of the sparse GP model was required to have this form.

Using this structure, marginal posteriors are no longer represented within Σ and µ,
but they can be obtained as follows

σ2
j = dj + ||Rpj||2 µj = aj + p>j γ, (5.29)

which are O(m2) and O(m) operations, respectively. Values pj , aj , and dj are the
rows of P (in column vector form), the elements of a, and the elements of the diagonal
of D, respectively.

The inverse approximate posterior covariance matrix is defined from (5.15) as
Σ−1 = K−1

ff + T̃, so that if site parameter τ̃j changes by ∆τ̃j = τ̃jnew− τ̃j , the updated
covariance matrix is related to the old one by

Σ−1
new = Σ−1 + ∆τ̃jee> (5.30)

where e is an n×1 vector with the j-th element set to 1 and the remaining elements set
to zero. We first expand the right hand side of (5.30) in terms of the defining matrices,
using matrix inversion lemma (A.1):

Σ−1 + ∆τ̃jee> = D−1 + ∆τ̃jee> −D−1PR>(RP>D−1PR> + Im)−1RP>D−1.

Collecting E = D−1 + ∆τ̃jee>, which is also diagonal, and inverting the previous
equation using matrix inversion lemma (A.1) once more,

Σnew = (Σ−1 + ∆τ̃jee>)−1 =

E−1 − E−1D−1PR>(RP>(DED)−1PR> − Im −RP>D−1PR>)−1RP>D−1E−1

= Dnew + PnewR>newRnewP>new, (5.31)

127

5. EXTENSIONS

so that the structure remains unchanged after the update. It is then possible to update
Σ without ever computing it, but updating its defining matrices instead. Identifying
terms in the last two rows of (5.31), we obtain the update equations:

Dnew = E−1 = D−
∆τ̃jd

2
j

1 + ∆τ̃jdj
ee> (5.32a)

Pnew = E−1D−1P = P− ∆τ̃jdj
1 + ∆τ̃jdj

ep>j (5.32b)

Rnew = chol(R>(RP>(DED)−1PR> − Im −RP>D−1PR>)−1R)

= chol

(
R>

(
Im −Rpj

∆τ̃j
1 + σ2

j

p>j R>
)

R

)
(5.32c)

Updates (5.32a) and (5.32b) can be computed inO(1) andO(m) time, respectively.
Update (5.32c) is actually a Cholesky downdate, since R>newRnew = R>R − vv>,
where v = Rpj

√
∆τ̃j/(1 + σ2

j). To be precise, this is only a downdate if ∆τ̃j
1+σ2

j
is pos-

itive. Downdates, together with loss of precision, can result in a non-positive definite
posterior covariance matrix. In the rare occasions in which this happens, the posterior
parameters must be recomputed from scratch. Updates, which will occur whenever
∆τ̃j

1+σ2
j

is negative, are not problematic since they guarantee positive definiteness. Both
updates and downdates of an m×m Cholesky factor can be computed in O(m2).

The posterior mean is computed from the relation Σ−1µ = ν̃. We know that the
covariance matrix has been updated to Σnew. If there is also a change in site parameter
∆ν̃j = ν̃jnew− ν̃j , the new mean and covariance matrices are related to the old ones by
Σ−1

newµnew = Σ−1µ + ∆ν̃je. Solving for µnew and using (5.30) to express Σ in terms
of Σnew and equating to the new expression for the mean, we have

µnew = Σnew(Σ−1
new −∆τ̃j)µ+ Σnew∆ν̃je = anew + Pnewγnew,

so that for that equality to hold, the values of anew and γnew must be

anew = a +
(∆ν̃j + ∆τ̃jaj)dj

1 + ∆τ̃jdj
e (5.32d)

γnew = γ +
(∆ν̃j −∆τ̃jµj)dj

1 + ∆τ̃jdj
R>newRnewpj, (5.32e)

with both updates involving O(1) and O(m2) computing time, respectively. We have
thus proved that for sparse GP models, it is possible to complete the main loop of EP
in a total time of O(m2n), using O(mn) storage space.

128

5.2 Non-Gaussian likelihoods

As said in the previous section, after a sweep through all sites has been completed,

it is recommendable to recompute the posterior parameters from scratch. This refresh

can also be performed in O(m2n), so it does not increase the overall computational

cost. The refresh equations follow.

Expanding Σ−1
new = K−1

ff + T̃ with Σnew = Dnew + PnewR>newRnewPnew and Kff =

D0 + P0R
>
0 R0P

>
0 and identifying terms, we have the covariance refresh equations

Dnew = (In + D0T̃)−1D0 (5.33a)

Pnew = (In + D0T̃)−1P0 (5.33b)

Rnew = ro180
(

chol
(
ro180(Im + R0P

>
0 T̃(In + D0T̃)−1P0R

>
0)
)>)
\R0 (5.33c)

where Cholesky factorization chol(·) and backslash (\) operators are described in Sec-

tion A.3 of Appendix A. Operator ro180(·) rotates a matrix 180◦, so that each of its

elements moves from position (p, q) to position (m − p + 1,m − q + 1). Refreshes

(5.33a), (5.33b) and (5.33c) takeO(n),O(mn) andO(m2n) time, respectively, as it is

clear from the involved operations.

Expanding now Σnew in µnew = Σnewν̃ = anew + Pnewγnew and identifying terms,

we obtain the refresh equations for the mean

anew = Dnewν̃ (5.33d)

γnew = R>newRnewP>newν̃ , (5.33e)

which are computable in O(n) and O(mn) time, respectively.

5.2.2.2 Model selection and inference

Expression for the NLML (5.24), needed for ML-II model selection, can be re-expressed

in a computationally cheaper form applying the matrix and determinant inversion lem-

mas (A.1), (A.2). Defining F = Im + D0T̃ and A = Im + R0P
>
0 F−1T̃P0R

>
0 , the

NLML is:

− log q(y|X) = −1

2

n∑
j=1

log Z̃2
i τ̃j(1 + τ̃jdj)) +

1

2
log |A|+ 1

2
ν̃>(FT̃)−1ν̃

− 1

2
(ν̃>F−1P0)R>0 A−1R0(P>0 F−1ν̃) +

n

2
log(2π) (5.34)

129

5. EXTENSIONS

which takesO(m2n) time, as can be deduced from considering the required operations.
Analytical derivatives of (5.34) wrt the hyperparameters can be usually computed in
O(m2n) time too (this is the case for all the sparse GP models introduced in the previ-
ous chapters).

Given the special structure of the covariance function, we can conclude that it is
possible to expand kf∗ = P0R

>
0 R0p∗ and k∗∗ = d∗ + p>∗R>0 R0p∗, where p∗ is a

vector of size m × 1 and d∗ is some scalar. With this considerations, the predictive
distribution (5.27) can be re-expressed as:

q(f∗|X,y,x∗) = N (f∗|µEP∗, σ
2
EP∗) (5.35a)

µEP∗ = p>∗R>0 A−1R0P
>
0 F−1ν̃ (5.35b)

σ2
EP∗ = d∗ + p>∗R>0 A−1R0p∗ . (5.35c)

which also takes O(m2n) time.

For enhanced numerical accuracy, it is recommended to code (5.34) and (5.35)
using Cholesky factorizations, as described in Section D.5 of Appendix D. The ex-
pressions provided in the appendix are, though equivalent, far simpler than those of
Naish-Guzman and Holden (2008). The implementation of the derivatives of (5.34)
using Cholesky factorizations is provided in Section E.4 of Appendix E.

5.2.2.3 Summary of the procedure

Fast EP for sparse GP models can be summarized as follows:

1. Initialization:

(a) Set all natural site parameters to zero {τ̃j}nj=1, {ν̃j}nj=1.

(b) Initialize the auxiliary matrices from the prior variance P = P0, R = R0,
D = D0, (from the structure of the prior covariance matrix Kff = D0 +

P0R
>
0 R0P

>
0).

(c) Initialize the auxiliary vectors from the prior mean, which is zero: a = 0

and γ = 0.

2. For each j, compute

(a) The cavity parameters τ\j and ν\j using (5.19).

130

5.3 Sparse Robust Regression

(b) The moments of the tilted distribution, using equations derived from (5.21)

and (5.22). (These equations will depend on the choice of the likelihood).

(c) The new site parameters τ̃j and ν̃j using (5.23).

(d) Update the auxiliary matrices and vectors of the posterior using (5.32). Com-

pute the marginals {σ2
j}nj=1 and {µj}nj=1 using (5.29).

3. After every site has been updated, refresh the posterior using (5.33).

4. Repeat 2 and 3 until convergence.

5. Compute the NLML using (5.34), make predictions using (5.35).

5.3 Sparse Robust Regression

The regression models considered so far assumed that every observation (output) yj
was the sum of a latent function of the input f(xj) plus Gaussian noise. This model

may not be well suited for all applications: Not only can noise contain spikes that

would be highly improbable under the Gaussian assumption, but also data corrup-

tion can lead to some observations not being even related to the input. Additionally,

depending on how data was collected, some samples may belong to a different input-

output mapping than the rest, thus violating the i.i.d. assumption. Observations that,

due to these or other problems, have an abnormally large deviation from their expected

value are called outliers. In this section we will show how to extend previous sparse

GP models to handle the presence of outliers in data.

5.3.1 Sparse GP models with Laplace noise

For a Gaussian noise prior, 99.7% of all observations should lie within 3 standard devi-

ations of the mean. Thus the posterior mean must bend and distort itself to accomodate

outliers within that distance. Adding a few outliers to a data set can completely spoil

the predictions of the model, rendering it useless. Regression models that show resis-

tance to outliers, producing valid predictions in spite of their presence are called robust

regression models.

131

5. EXTENSIONS

According to the Bayesian framework, one should reflect his beliefs about data in

the form of priors. If we think that large deviations from the mean are more probable

than a Gaussian would suggest, we should express that in the form of a leptokurtic

(i.e. fat-tailed) noise prior. Such a noise prior would result in a robust model. There

are several ways to specify a leptokurtic noise prior. One option is to model noise

as the combination of two Gaussian distributions with different widths, in which a

narrow Gaussian accounts for the usual Gaussian noise and a wider one takes care

of the outliers. Another option is to use a single leptokurtic distribution, such as the

Student-t or Laplace distributions.

Using a Laplace prior for the noise has two interesting advantages: It is log-concave

(and thus implies a log-concave likelihood, which is critical for EP to converge reliably,

as mentioned at the end of Section 5.2.1), and its probability density decays at the

minimum possible rate as we move away from the mean, i.e., it has maximally fat

tails (within the family of log-concave distributions). Neither the Student-t or the two-

Gaussian mixture are log-concave distributions.

For these reasons, the Laplace distribution will be our prior of choice for noise in

robust models. Most of the details for inference and model selection on sparse GP

models with non-Gaussian likelihoods were already provided in Section 5.2.2. The

only additional details that are specific to Laplace noise are the expression of the like-

lihood

p(yj|fj) =
1

2σL
exp

(
−|yj − fj|

σL

)
(5.36)

(where σL is the width parameter of the distribution, related to the noise power), and the

zeroth, first, and second non-central moments of the tilted distribution for the Laplace

likelihood. These can be computed using (5.21) and (5.22). From Kuss (2006), the

moments are

m0j = m̂0j/σL , m1j = m̂1jσL + yj , m2j = m̂2jσ
2
L + 2m̂1jσLyj + y2

j , (5.37)

132

5.3 Sparse Robust Regression

where {m̂kj}nj=1 are defined by

m̂0j =
aj + bj

4
exp(σ̂2

\j/2− µ̂\j) (5.38a)

m̂1j =
1

aj + bj
(aj(µ̂\j − σ̂2

\j) + bj(µ̂\j + σ̂2
\j)) (5.38b)

m̂2j =
aj

aj + bj
(σ̂2
\j + (µ̂\j − σ̂2

\j)
2) +

bj
aj + bj

(σ̂2
\j + (µ̂\j + σ̂2

\j)
2)

− 2

aj + bj
exp

−1

2

σ̂2
\j +

µ̂2
\j

σ̂2
\j
− log

2

π

+ µ̂\j +
3

2
log σ̂2

\j

 (5.38c)

and finally, aj , bj , µ̂\j and σ̂2
\j are all defined as a function of the cavity parameters and

target yj

µ̂\j = (τ−1
\j ν\j − yj)/σL (5.39a)

σ̂2
\j = τ−1

\j /σ
2
L (5.39b)

aj = erfc

 σ̂2
\j − µ̂\j√

2σ̂2
\j

 (5.39c)

bj = exp(2µ̂\j) erfc

 σ̂2
\j + µ̂\j√

2σ̂2
\j

 , (5.39d)

where erfc(·) = 1 − erf(·) is the complementary error function. The error function
erf(·) is defined in (5.3). As noted by Kuss (2006), it is necessary to take special care
when computing these expressions not to run into numerical problems.

Observations at test points y∗ are modeled as y∗ = f∗+ε, as usual, but in this case ε
stands for white Laplace noise. Since the posterior distribution of f∗ is given by (5.35)
and the distribution of ε is (5.36), the predictive mean and variance are straightforward
to obtain

qRob(y∗|X,y,x∗) = N (y∗|µRob∗, σ
2
Rob∗) (5.40a)

µRob∗ = p>∗R>0 A−1R0P
>
0 F−1ν̃ (5.40b)

σ2
Rob∗ = 2σ2

L + d∗ + p>∗R>0 A−1R0p∗ (5.40c)

where we have utilized the fact that V[ε] = 2σ2
L. These predictive equations, coupled

with minimizing (5.34) for ML-II model selection, can be used to perform robust re-
gression with any sparse GP model. The only difference among models is how each
one specifies D0 P0 and R0 (and therefore d∗ and p∗). In the next section we provide
details for the robust BN-MCN model.

133

5. EXTENSIONS

5.3.2 Robust BN-MCN

We already have all the equations for robust regression with any sparse GP model. To
use any MN model, we express its covariance matrix σ2

0

mσ2
p
Φ>f Φf in the required form

D0 = 0 , P0 =

√√√√ σ2
0

mσ2
p
Φf , R0 = Im , (5.41)

which for test values implies d∗ = 0 and p∗ =
√

σ2
0

mσ2
p
φ(x∗).

To specifically use BN-MCN, we apply the definitions of Section 3.1.2, φ(u,x) =

cos(u>x̃) (where x̃ = [1, x>]> is the augmented input vector) and σ2
p = 1/2. Recall

the parametrization ui = [ϕi, (L−1ωi)
>]>.

The complete algorithm is identical to 3.2.3, but uses EP to obtain the posterior
distributions:

1. Run robust MCN-fixed:

• Initialize {`d}Dd=1, σ2
0 , and σ2

L to some sensible values. (We will use: One
half of the ranges of the input dimensions, the variance of the outputs
{yj}nj=1 and σ2

0/4, respectively).

• Fix {ωi}mi=1 to random values drawn fromN (ω|0, ID) (to approximate the
ARD SE covariance function). Initialize {ϕi}mi=1 from a uniform distribu-
tion in [0, 2π).

• Run EP for sparse models as described in Section 5.2.2.3, using (5.41) for
the initialization and (5.37)-(5.39d) to compute the moments. Minimize
(5.34), the NLML of the model, wrt to σ2

0 , σ2
L, {`d}Dd=1, and {ϕi}mi=1.

2. Run robust BN-MCN:

• Initialize {`d}Dd=1, σ2
0 , σ2

L, {ωi}mi=1 and {ϕi}mi=1 to the values they had after
MCN-fixed converged.

• Set σ2
Lmin to the value found for σ2

L after convergence of MCN-fixed. Ini-
tialize σ2

L slightly above σ2
Lmin. (We will use 1.5σ2

Lmin).

• Run EP as above. Minimize (5.34), the NLML of the model, wrt to {`d}Dd=1,
σ2

0 , σ2
L, {ωi}mi=1 and {ϕi}mi=1 , with the constraint σ2

L > σ2
Lmin.

134

5.3 Sparse Robust Regression

Predictions are made using (5.40). Numerically stable equations using Cholesky

decompositions to compute the NLML and its derivatives are provided in Section D.5

of Appendix D and Section E.4.2 of Appendix E, respectively.

5.3.3 Experiments

This section has the modest aim of showing how the robust BN-MCN model performs,

as compared to regular BN-MCN or regular SPGP. We therefore do not claim that

robust BN-MCN produces better results than a possible robust version of SPGP, but

that it produces better results than plain BN-MCN in the presence of outliers.

To introduce outliers in our data sets, we have randomly replaced 10% of the targets

from the training set with random values. Those values are drawn from the distribu-

tion N (y| 1
n

∑n
j=1 yj,

1
n

∑n
j=1 y

2
j − (1

n

∑n
j=1 yj)

2), so that they have the same mean and

variance as the original set of targets. This, on the one hand, removes valuable data

for inference, and on the other hand, adds misleading information, since for those data

points there is no relation between inputs and outputs. Of course, the algorithms have

no information about whether a data point is an outlier or not. The test data sets are

left untouched. We use same performance measures (2.21) as in previous experiments.

Figs. 5.11 and 5.12 show results for the Elevators and Pole Telecomm data sets. In

both cases, the advantages of using a Laplace noise model over a Gaussian noise model

are evident. In Pole Telecomm this difference becomes far more evident as the number

of basis functions increases. Observe that neither the robust version of BN-MCN nor

the Gaussian-noise version of SPGP show any apparent overfitting or overconfidence.

Standard BN-MCN, on the other hand, is less robust against model misspecification

and shows some overfitting.

In Figs. 5.13 and 5.14 we see the advantages of the robust method for the Kin-

40k and Pumadyn-32nm data sets. For Kin-40k, the advantage is more noticeable

when looking at the NMSE measure. The predictions made by robust BN-MCN on

the Pumadyn-32nm data set are almost as good as those made with the original, non-

corrupt data set. Robust BN-MCN not only correctly performs ARD, but it also seems

to ignore the misleading information present in the outliers. In both data sets, SPGP

lags behind and regular BN-MCN overfits.

135

5. EXTENSIONS

10 24 50 100 250 500 7501000
0.1

0.15

0.2

0.25

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP
BN−MCN
Robust BN−MCN

(a) NMSE (log-log plot)

10 24 50 100 250 500 7501000

−4.7

−4.6

−4.5

−4.4

−4.3

−4.2

−4.1

−4

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP
BN−MCN
Robust BN−MCN

(b) MNLP (semilog plot)

Figure 5.11: NMSE and MNLP for SPGP, BN-MCN and Robust BN-MCN, for the

Elevators problem.

10 24 50 100 250 500 1000
0.01

0.02

0.03

0.04

0.05

0.1

0.15

0.2

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP
BN−MCN
Robust BN−MCN

(a) NMSE (log-log plot)

10 24 50 100 250 500 1000
3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP
BN−MCN
Robust BN−MCN

(b) MNLP (semilog plot)

Figure 5.12: NMSE and MNLP for SPGP, BN-MCN and Robust BN-MCN, for the

Pole Telecomm problem.

136

5.3 Sparse Robust Regression

24 50 100 200 300 500 750 1250

0.001

0.005

0.01

0.05

0.1

0.5

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP
BN−MCN
Robust BN−MCN

(a) NMSE (log-log plot)

24 50 100 200 300 500 750 1250
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP
BN−MCN
Robust BN−MCN

(b) MNLP (semilog plot)

Figure 5.13: NMSE and MNLP for SPGP, BN-MCN and Robust BN-MCN, for the

Kin-40k problem.

10 24 50 74 100
0.04

0.05

0.1

0.2

0.3

0.4

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP
BN−MCN
Robust BN−MCN

(a) NMSE (log-log plot)

10 24 50 74 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP
BN−MCN
Robust BN−MCN

(b) MNLP (semilog plot)

Figure 5.14: NMSE and MNLP for SPGP, BN-MCN and Robust BN-MCN, for the

Pumadyn-32nm problem.

137

5. EXTENSIONS

10 24 50 100 200 400 800
0.4

0.5

0.6

0.7

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

SPGP
BN−MCN
Robust BN−MCN

(a) NMSE (log-log plot)

10 24 50 100 200 400 800

2

4

6

8

10

12

14

16

18

Number of basis functions

M
ea

n
N

eg
at

iv
e

Lo
g−

P
ro

ba
bi

lit
y

SPGP
BN−MCN
Robust BN−MCN

(b) MNLP (semilog plot)

Figure 5.15: NMSE and MNLP for SPGP, BN-MCN and Robust BN-MCN, for the

Pendulum problem.

Finally, results for data set Pendulum are shown in Fig. 5.15. The robust version of
BN-MCN performs better than the regular one in terms on NMSE, but the clear winner
for this data set is SPGP: As in previous data sets, it does not overfit despite model
misspecification. For SPGP, inserting outliers in the data set only shows in the form of
a performance hit. Both robust and regular versions of BN-MCN are unable to model
this data set well and incur in low performance and overconfidence. If we compare
the MNLP of regular BN-MCN when trained on a) the original data set (Fig. 3.6);
and b) the data set corrupted with outliers (Fig. 5.15), it seems as if the inclusion of
outliers resulted in a performance enhancement. Actually, performance is very bad in
both cases, but inserting outliers increments the estimated noise level and therefore the
uncertainty absolute minimum. This in turn results in better (but still too bad) MNLP.

5.3.4 Discussion

Two general conclusions can be drawn from these experiments:

(a) When dealing with corrupt data sets or noise of unknown nature, the use of robust

138

5.4 Classification

versions of the proposed regression methods is clearly advantageous. (Computa-

tion time increases considerably, though).

(b) The standard SPGP approximation is quite resistant against overfitting even in the

presence of model misspecification.

5.4 Classification

Given a set of input-label pairs D ≡ {xj, yj}nj=1 with continuous inputs xj ∈ RD and

discrete labels yj ∈ {−1,+1}, the binary classification task consists in assigning the

appropriate label to some new, unseen test input x∗. In the Bayesian setting, we are

not only interested in knowing which of the two possible labels is more probable, but

also how probable it is.

Approaches to classification can be either generative or discriminative. In the gen-

erative case we need to model class-conditional distribution p(x|y) and prior p(y),

from which posterior p(y|x) is derived. In the discriminative approach the target prob-

ability distribution p(y|x) is modeled directly, so that no assumptions about underlying

distribution p(x) need to be made. In the GP framework, the latter approach is pre-

ferred.

In this section we show how the sparse GP models described in this thesis can be

extended to handle binary classification problems (with no increase in the complexity

order).

5.4.1 GP classification

Here we provide a brief summary of GPs for classification, considering only the bi-

nary case. For a complete review, including the multi-class case, see Rasmussen and

Williams (2006, Ch. 3).

A GP is an adequate prior to model arbitrary real-valued functions, so it can be

directly applied to model the outputs of a regression data set. For classification tasks,

however, we are interested in a model for p(y = +1|x), a function which only takes

values in the [0, 1] range. It is possible to account for this by placing a GP prior over

a latent, arbitrary-valued function f(x) to which a sigmoid function s(·) is applied.

139

5. EXTENSIONS

The sigmoid is required to fulfill 0 ≤ s(z) ≤ 1 ∀z ∈ R and s(−z) = 1 − s(z). The

probability of a label given the corresponding input is then modeled as

p(y = +1|x) = s(f(x)) with f(x) ∼ GP(m(x), k(x,x′)), (5.42)

where the GP is “squeezed” by the sigmoid so as to provide valid probability values.

Note that the usual assumption of zero-mean GP m(x) = 0 also makes sense in this

context: By making the latent GP default back to zero at some x, we make the corre-

sponding probability default to p(y|f(x) = 0) = s(0) = 0.5, so that both hypotheses

are equiprobable (the latter identity follows from the symmetry requirement of the

sigmoid).

Common choices for the sigmoid function are:

logit(z) =
1

1 + e−z
(5.43)

probit(z) =
∫ z

−∞
N (t|0, 1)dt =

1

2
erf

(
z√
2

)
+

1

2
, (5.44)

where erf(·) is the standard error function defined by (5.3). Both sigmoid functions

look quite similar (see Fig. 5.16) and can be used almost interchangeably, producing

very similar results in practice.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.25

0

0.25

0.5

0.75

1

1.25

z, input

p(
y|

x)
, o

ut
pu

t

 logit(z)
 probit(z)

Figure 5.16: Examples of sigmoid functions for GP classification.

Since the probability of each label yj only depends on the corresponding latent

value fj = f(xj), it is possible to express the likelihood of the model as

p(y|f) =
∏
j=1

p(yj|fj) with p(yj|fj) = s(yjfj) (5.45)

140

5.4 Classification

where the latter identity follows from (5.42): When yj = +1, p(yj|fj) = s(fj), and
when yj = −1, p(yj|fj) = 1−s(fj) = s(−fj). Both cases can be collected compactly
as p(yj|fj) = s(yjfj). Note that this is only possible due to the required sigmoid
symmetry 1− s(z) = s(−z).

Since (5.45) provides an expression for the (non-Gaussian) likelihood and the prior
over f(x) is a GP, it is possible to use the EP framework described in Section 5.2.1 for
approximate model selection and inference. After computing the posterior distribution
of the latent function at a new test point x∗, the posterior probability of the labels at
that point p(y∗|X,y,x∗) can be computed using (5.28).

The expressions for the moments of the tilted distribution, required for EP (see
Section 5.2.1.3), as well as the (one-dimensional) integral (5.28) needed to compute
the posterior probability, will depend of the chosen sigmoid function and may or may
not be analytically tractable. In particular, when s(z) = probit(z), the mentioned
expressions are analytically tractable. In other cases, numerical integration may be
needed.

Using s(z) = probit(z), the moments of the tilted distribution are defined from the
(natural) cavity parameters as

µ\j = τ−1
\j ν\j σ2

\j = τ−1
\j (5.46)

m0j = probit(z) with z =
yjµ\j√
1 + σ2

\j
(5.47)

m1j = µ\j +
σ2
\jN (z|0, 1)

m0jyj
√

1 + σ2
\j

(5.48)

m2j = 2µ\jm1j − µ2
\j + σ2

\j −
zσ4
\jN (z|0, 1)

m0j(1 + σ2
\j)

(5.49)

and the posterior probability is determined from the posterior mean and variance of the
latent function as

p(y∗|X,y,x∗) =
∫
p(y∗|f∗)q(f∗|X,y,x∗)df∗

=
∫

probit(y∗f∗)N (f∗|µEP∗, σ
2
EP∗)df∗ = probit

 y∗µEP∗√
1 + σ2

EP∗

 .
(5.50)

In principle, it could be interesting to adjust the scale of the probit(z) function
by introducing some hyperpameter hw and using probit(z/hw) instead. However, as

141

5. EXTENSIONS

explained in Rasmussen and Williams (2006, Ch. 3), adding a constant white noise

term to the covariance function (i.e., a term σ2δxx′ where δxx′ is a Kronecker delta)

has the same scaling effect. The scale is then adjusted by learning σ2.

5.4.2 Sparse GP classification

Using the framework from Section 5.2, it is straightforward to extend GP classification

to sparse GP models. If the prior covariance matrix can be expressed as a low-rank ma-

trix plus a diagonal matrix, the efficient version of EP in Section 5.2.2 for sparse GP

models can be used to compute EP updates (5.32), NLML (5.34) and posterior distri-

bution over the latent function (5.35) in O(m2n). As noted before, numerically stable

versions of (5.34) and (5.35), described in Section D.5 of Appendix D, are preferred.

Assuming s(z) = probit(z), posterior probability p(y∗|X,y,x∗) is obtained by

plugging the posterior marginal (5.35) obtained after EP convergence into (5.50):

p(y∗|X,y,x∗) = probit

 y∗µEP∗√
1 + σ2

EP∗

 = probit

 y∗p
>
∗R>0 A−1R0P

>
0 F−1ν̃√

1 + d∗ + p>∗R>0 A−1R0p∗

 .
(5.51)

More efficient computation of µEP∗ and σ2
EP∗ can be achieved using (D.5).

5.4.3 FIFGP for Classification (FIFGPC)

The description above applies to any sparse GP model with the specified covariance

structure. We provide here the exact details for the FIFGP model, which will be used

in the experimental section, but the procedure is analogous for any of the regression

models presented so far.

The prior covariance matrix (including noise) of any IDGP is Kff = KfuK−1
uuK>fu+

Λy, where Kfu and Kuu are defined in terms of kINT(·, ·) and kTR(·, ·), as per (4.4).

The covariance structure required in Section 5.2.2 is already present, so by direct iden-

tification we have:

D0 = Λy , P0 = Kfu , R0 = chol(K−1
uu) . (5.52)

142

5.4 Classification

To avoid the explicit inversion of Kuu (the covariance matrix of the inducing fea-

tures), it is also possible to use

R0 = chol(K−1
uu) = ro180(chol(ro180(Kuu))>\Im),

where Cholesky factorization chol(·) and backslash (\) operators are described in Sec-

tion A.3 of Appendix A. Operator ro180(·) rotates a matrix 180◦, as described in Sec-

tion 5.2.2.1.

For a test case, the corresponding diagonal element is d∗ = σ2 + k∗∗−k>u∗K
−1
uuku∗

and the corresponding row of P0 is p∗ = ku∗.

These definitions are valid for any IDGP, including SPGP. To specifically use

FIFGP, definitions (4.12) and (4.13) of Section and 4.3.3 must be used. These defi-

nitions approximate the ARD SE covariance function in the input domain. Since we

will make comparisons with methods that use an isotropic Gaussian kernel, a single

length-scale ` will be used for every input dimension, so that FIFGP approximates the

isotropic SE covariance function. The complete algorithm, which we will call FIFGPC

to note that it is a classification extension to FIFGP, is:

1. Initialize σ2
0 = 1, σ2 = 1, ` to the average of the ranges of all input dimensions

and {cd}Dd=1 to the standard deviation of input data.

2. Initialize {ω}mi=1 from N (ω|0, `−2ID) and {ω0i}mi=1 from a uniform distribution

in [0, 2π).

3. Run EP for sparse models as described in Section 5.2.2.3, using (5.52) for the

initialization and (5.49) to compute the moments. Minimize (5.34), the NLML

of the model, wrt to `, σ2
0 , σ2, {cd}Dd=1 and {ωi}mi=1. Since analytical derivatives

are available, conjugate gradient descent can be used.

The probability that a new instance x∗ belongs to class y∗ can be computed using

(5.51). Numerically stable equations using Cholesky decompositions to compute the

NLML and its derivatives are provided in Section D.5 of Appendix D and Section E.4.1

of Appendix E, respectively.

143

5. EXTENSIONS

5.4.4 Experiments

SPGP for classification (SPGPC) was introduced in Naish-Guzman and Holden (2008)
and compared to several standard classification methods: Full GP Classification (GPC),
Support Vector Machines (SVM) and Informative Vector Machines (IVM). The latter
two are described, e.g., in Cortes and Vapnik (1995) and Lawrence et al. (2003), re-
spectively. In this section we reproduce their results and add FIFGPC to the compari-
son.

For the experiments, the standard benchmark suite of Rätsch et al. (2001), con-
sisting of 13 classification data sets, is used. Training sets sizes range between 400
and 1300, so that full GP classification is also feasible. All methods use the isotropic
Gaussian as covariance function (also known as kernel in the SVM context). For each
data set, 5 different random initializations on 10 different data splits are averaged.
Hyperparameters are selected using ML-II, for which a maximum of 20 conjugate
gradient iterations are allowed. For the SVM, hyperparameters are selected through
cross-validation3. The error measures are:

Erate =
of incorrectly classified samples

of test samples

NLP =
1

n∗

n∗∑
j=1

log p(y∗j|x∗j,D).

In previous experiments we have plotted the evolution of the error measures withm
(the number of basis functions). In this case, since we are comparing so many data sets
and methods, we will present the results in a more compact and comprehensive form:
We follow Naish-Guzman and Holden (2008) and provide only the sparsest competi-
tive solution for each method and data set. I.e., we select a value for m that, if reduced,
would deteriorate performance, but if increased would not significantly improve it. For
SVMs m is the number of support vectors, which is determined automatically.

Data sets, number of training and test instances and results for all methods are pro-
vided in Table 5.1. NLP is not provided for SVMs since they lack a direct probabilistic
interpretation. Observe that FIFGPC, when compared with state-of-the-art classifiers

3This is the reason why an isotropic kernel is used in the experiments: It only needs 2 hyperparame-

ters, as opposed to the ARD SE kernel, which requires D + 1. Given that cross-validation computation

time scales exponentially with the number of hyperparameters, using the ARD SE kernel could make

model selection unfeasible for some data sets.

144

5.4 Classification

such as SVMs or IVMs turns out to be quite competitive: It provides roughly the same
performance whereas using only a fraction of the basis functions. SPGPC is even bet-
ter: The number of basis functions required to solve some problems is astonishingly
small: In 6 out the 13 data sets, state-of-the-art performance was achieved with only
2 basis functions! This seems to imply that in those data sets the boundary between
classes was very simple, with data points corresponding to each class being well local-
ized. Since SPGPC uses local basis functions, it yields very sparse solutions for this
type of problems. FIFGPC, on the other hand, uses global basis functions and, for very
simple problems, cannot compete with SPGPC in terms of sparsity. Notice, however,
that if we turn to a more complex data set such as “splice”, both SPGPC and FIFGPC
require 200 basis functions and they both achieve the same performance.

5.4.5 Discussion

We can sum up the results of these experiments as follows:

(a) We have shown with a practical example how the introduced sparse GP models
can be extended from regression to classification.

(b) At least one of these models (FIFGP) is able to beat state-of-the-art classification
methods in terms of computational cost (smaller m), while roughly keeping up in
performance.

(c) SPGPC already achieved this, and it seems doubtful whether this method can
be consistently outperformed, since it already attains state-of-the-art performance
with an extraordinarily low number of basis functions.

145

5. EXTENSIONS

D
at

a
se

t
G

PC
SV

M
IV

M
SP

G
PC

FI
FG

PC

na
m

e
tr

ai
n:

te
st

D
E

ra
te

N
L

P
E

ra
te

m
E

ra
te

N
L

P
m

E
ra

te
N

L
P

m
E

ra
te

N
L

P
m

ba
na

na
40

0:
49

00
2

0.
10

5
0.

23
7

0.
10

6
15

1
0.

10
5

0.
24

2
20

0
0.

10
7

0.
26

1
20

0.
10

7
0.

24
3

20

br
ea

st
-c

an
ce

r
20

0:
77

9
0.

28
8

0.
55

8
0.

27
7

12
2

0.
30

7
0.

69
1

12
0

0.
28

1
0.

55
7

2
0.

29
4

0.
57

9
4

di
ab

et
es

46
8:

30
0

8
0.

23
1

0.
47

5
0.

22
6

27
1

0.
23

0
0.

48
6

40
0

0.
23

0
0.

48
5

2
0.

23
8

0.
48

7
20

fla
re

-s
ol

ar
66

6:
40

0
9

0.
34

6
0.

57
0

0.
33

1
55

6
0.

34
0

0.
62

8
55

0
0.

33
8

0.
56

9
3

0.
34

3
0.

57
1

20

ge
rm

an
70

0:
30

0
20

0.
23

0
0.

48
2

0.
24

7
46

1
0.

29
0

0.
65

8
45

0
0.

23
6

0.
49

1
4

0.
23

1
0.

49
2

20

he
ar

t
17

0:
10

0
13

0.
17

8
0.

42
3

0.
16

6
92

0.
20

3
0.

45
5

12
0

0.
17

2
0.

41
4

2
0.

18
2

0.
44

3
20

im
ag

e
13

00
:1

01
0

18
0.

02
7

0.
07

8
0.

04
0

46
2

0.
02

8
0.

08
2

40
0

0.
03

1
0.

08
7

20
0

0.
04

9
0.

13
0

20
0

ri
ng

no
rm

40
0:

70
00

20
0.

01
6

0.
07

1
0.

01
6

15
7

0.
01

6
0.

10
1

10
0

0.
01

4
0.

08
9

2
0.

05
6

0.
20

2
80

sp
lic

e
10

00
:2

17
5

60
0.

11
5

0.
28

1
0.

10
2

69
8

0.
22

5
0.

40
3

70
0

0.
12

6
0.

30
6

20
0

0.
12

4
0.

30
4

20
0

th
yr

oi
d

14
0:

75
5

0.
04

3
0.

09
3

0.
05

6
61

0.
04

1
0.

12
0

40
0.

03
7

0.
12

8
6

0.
04

5
0.

12
6

20

tit
an

ic
15

0:
20

51
3

0.
22

1
0.

51
4

0.
22

3
11

8
0.

24
2

0.
57

8
10

0
0.

23
1

0.
52

0
2

0.
22

8
0.

51
9

2

tw
on

or
m

40
0:

70
00

20
0.

03
1

0.
08

5
0.

02
7

22
0

0.
03

1
0.

08
5

30
0

0.
02

6
0.

08
6

2
0.

02
7

0.
08

2
10

w
av

ef
or

m
40

0:
46

00
21

0.
10

0
0.

22
9

0.
10

7
14

8
0.

10
0

0.
23

2
25

0
0.

09
9

0.
22

8
10

0.
09

9
0.

21
8

50

Ta
bl

e
5.

1:
Te

st
er

ro
rr

at
e

(E
ra

te
),

N
eg

at
iv

e
L

og
Pr

ob
ab

ili
ty

(N
L

P)
an

d
nu

m
be

ro
fb

as
is

(m
)f

or
th

e
13

cl
as

si
fic

at
io

n
da

ta
se

ts
in

th
e

be
nc

hm
ar

k
su

ite
of

R
ät

sc
h,

us
in

g
a

fu
ll

G
P

an
d

se
ve

ra
ls

pa
rs

e
m

et
ho

ds
,i

nc
lu

di
ng

th
e

pr
op

os
ed

FI
FG

PC
.

146

5.5 Summary and conclusions

5.5 Summary and conclusions

In this chapter we have explored a few possible extensions of the ideas presented in
previous chapters. Though far from complete, this exploration shows how classical
networks can be trained as MNs and should help anyone interested in extending sparse
GP models to non-Gaussian likelihoods to get a detailed and complete picture of the
process.

We have shown how MLPs can be expressed in the form of MNs (a type of sparse
GP introduced in Chapter 3). Using this structure (enhanced with simple noise bound-
ing or more sophisticated network mixing), it is possible to outperform state-of-the-art
SPGP. Furthermore, the similarity of the results of this chapter with those obtained in
Chapter 3 (which used cosine activation functions, very different from the sigmoids
used here), suggests that the form of the activation functions is not very relevant.

We have given step-by-step details on how to extend GP models with low rank plus
diagonal covariance matrices to handle non-Gaussian likelihoods. These steps are also
described (in a less general manner) in Naish-Guzman and Holden (2008), but here we
provide much simpler expressions for the computation of the posterior distributions.

We have developed a robust regression extension for sparse GP models and ap-
plied it to BN-SSGP. Experiments show clearly improved robustness to model mis-
specification and data outliers with respect to the non-robust version.

Finally, the extension of sparse GP models for classification was described and ap-
plied to FIFGP. Though competitive with SVMs and IVMs, FIFGP for classification
hardly provides any advantage with respect to SPGP for classification, a method intro-
duced in Naish-Guzman and Holden (2008) and which we expect will be increasingly
adopted, given its high accuracy and low computational cost.

147

148

Chapter 6

Conclusions and further work

In this thesis we have developed and evaluated several sparse GP models along with
different model selection strategies. These sparse GP models try to retain the advan-
tages of full GPs (high accuracy, probabilistic predictions, no overfitting) while being
computationally efficient, reducing computation time and storage space from O(n3)

and O(n2) to O(m2n) and O(mn), respectively. Comparisons with the current state-
of-the-art approximation, the Sparse Pseudo-inputs GP (SPGP), show that the novel
methods provide significant improvement in practice and can therefore be useful to
tackle large-scale problems. Regression models with Gaussian noise have been the
main focus of this work, but we have shown in Chapter 5 how these models can be
readily extended to perform robust regression, classification, etc.

In the following we will summarize the main contributions of this thesis; provide
a big picture of the proposed algorithms, contrasting their specific advantages and
disadvantages; and wrap up with a brief discussion about further possible extensions
of this work.

6.1 Contributions

• The Sparse Spectrum GP (SSGP). In Chapter 2 we introduced SSGP, in which
the spectral interpretation of GPs was exploited to achieve sparsity. SSGP has
several properties that set it apart from other sparse models: It has a truly sta-
tionary covariance (whereas most sparse GPs only approximate stationarity), it
has no location parameters (such as the pseudo-inputs of SPGP, or the active set

149

6. CONCLUSIONS AND FURTHER WORK

of other models), and it uses global, periodic, basis functions (as opposed to the
localized bases of most sparse GPs). Three equivalent interpretations of SSGP
were provided, and in particular we showed how SSGP corresponds to a gener-
alized linear model using cosine bases in which the phases have been integrated
out.

Two different strategies to select the spectral points were proposed:

(a) Fixed spectral points: If we draw them from some probability distribution
p(sr) and let them fixed, SSGP approximates a stationary full GP whose co-
variance function is (up to a scaling) the inverse Fourier transform of p(sr).
Convergence is achieved as the number of spectral points tends to infinity.
Very few hyperparameters (the same as for the full GP) need to be selected,
so model selection is fast and no overfitting appears. The downside of this
option is its limited performance.

(b) Selectable spectral points: If we learn the spectral points (in addition to
the hyperparameters) using ML-II, accuracy is greatly increased. However,
the additional degrees of freedom introduced in the approximation imply a
risk of overfitting if the number of spectral points is large. We have shown
empirically that overfitting (in the sense explained in Section 2.5) is rarely
a problem (probably due to the phase integration property of the model),
but predictive variances can sometimes be very poor (i.e. models may be
overconfident).

• Marginalized Networks (MNs). In Chapter 3 we introduced MNs along with
two overfitting reduction strategies. MNs are essentially generalized linear mod-
els in which the output weights have been integrated out. The input weights can
be obtained from some distribution and fixed, or learned together with signal
and noise hyperparameters. Just as with SSGP, fixing the input weights avoids
overfitting altogether, but more basis functions are needed to obtain high per-
formance. When input weights are learned, only a moderate number of basis
functions are needed, but overfitting problems may appear. In order to overcome
them, two new methods were proposed: Noise bounding and network mixing.

(a) Noise bounding is straightforward to apply: It first estimates the amount
of noise present in data and then it lower bounds the noise hyperparam-
eter with that estimate. We argued from a theoretic perspective how this

150

6.1 Contributions

could help to avoid overfitting and confirmed it experimentally. Though

this method seems to avoid overfitting, it still may produce poor predictive

variances.

(b) Network mixing is a procedure akin to bagging, where diversity is in-

troduced using different random initializations, instead of using different

subsets of data. We have shown empirically that this procedure enhances

both predictive mean and variances, and it yields very accurate predictions.

It is possible to cast SSGP as particular type of MN with additional constraints

on the input weights. These constraints (that produce a phase integration effect)

seem to be the cause of SSGP’s built-in overfitting resistance. As shown in

Chapter 2, SSGP provides good results even without resorting to noise bounding

or network mixing. Nonetheless, if the number of spectral points is not small in

comparison with the number of samples, combining SSGP with noise bounding

is recommended to avoid possible overfitting.

We have also explicitly shown how the structure of MNs allows for low-cost

linear dimensionality reduction. This can be achieved by:

(a) Enforcing dimensionality reduction by design, i.e., learning a linear pro-

jection of the input data in a space of prespecified, smaller dimension.

(b) Discovering the intrinsic dimension of the learned function after train-

ing by means of Singular Value Decomposition (SVD) of the input weights

matrix, which only takes O(mD2) time.

• Inter-Domain GPs (IDGPs). In Chapter 4 we extended GPs across domain

boundaries, showing how it was possible to couple variables lying in different

domains to make joint inference. This was exploited to extend SPGP, allowing

the inducing variables to lie in a different domain than input data. We intro-

duced the concept of “inducing features”, which describes how each inducing

variable summarizes information about the data set. Previously existing approx-

imations, such as the SPGP approximation itself or the Sparse Multi-scale GP

(SMGP) from Walder et al. (2008), can be interpreted as particular instances of

this framework. Regarding an approximation as a type of IDGP can provide

further insights about it. For the concrete case of SMGPs, some post-hoc vari-

ance adjustments that were needed in the original model arise on their own in

151

6. CONCLUSIONS AND FURTHER WORK

the IDGP framework and also additional constraints are shown to be necessary

for the model to remain probabilistically well-defined.

IDGPs can be applied to any domain which linearly transforms the input domain

(including convolutions, integrals and derivatives). In this work we developed

(a) IDGPs for (a “blurred” version of) the frequency domain in the form of a

Frequency Inducing-Features GP (FIFGP)

(b) IDGPs for a mixed Time-Frequency Inducing-Features GP (TFIFGP).

Both methods share the main properties of SPGP, but yield an overall higher

performance on the tested data sets.

• Extension of MNs to the Multi-Layer Perceptron (MLP) case and general ex-

tension of sparse methods to non-Gaussian likelihoods. In Chapter 5 we do not

introduce any new ideas, but provide concrete details and some experiments on

how previous approaches can be extended. MNs are extended to the MLP case

and previously seen sparse methods are adapted to handle non-Gaussian likeli-

hoods, thus enabling them to perform robust regression and classification.

In summary, this thesis provides a set of new sparse GP models that can be used

to tackle large-scale problems and compare favorably to the current state of the art.

Flexibility and extendability have been emphasized throughout, so that tailoring these

models to the specific needs of any concrete task is straightforward.

6.2 A comprehensive comparison of the new techniques

A comparison of the models discussed in this thesis is provided in Table 6.1. Each

model class is marked according to three relevant characteristics: Accuracy (of mean

predictions), overfitting resistance (in the sense described in Section 2.5), and quality

of the predictive variances (i.e., whether they avoid overconfident predictions). As one

could expect, none of the proposed models excels in every aspect. However, given the

wide range of available options, we can expect at least one of them to be appropriate

for any given task.

152

6.2 A comprehensive comparison of the new techniques

Method Accuracy
Overfitting
resistance

Uncertainty
estimate quality

SSGP-fixed, MN-fixed
(MCN-fixed, MMLP-fixed)

medium very high high

SSGP high medium low-medium

BN-MNs
(BN-MCN, BN-MMLP)

high high low

MNmix
(MCNmix, MMLPmix)

very high high medium-high

IDGPS
(SPGP, FIFGP, TFIFGP)

medium-high high high

Table 6.1: Comparative chart of the strengths and weaknesses of the methods intro-
duced in this thesis. See the text for a description of each column.

It is also possible to further group these classes in two fundamentally different

types of models:

(a) Models which fit in the MN template (i.e., have the structure of generalized

linear models). When the input weights are learned, they achieve high accuracy

but will probably overfit if used directly. Resorting to certain tricks, such as phase

marginalization in SSGP, or the more general noise bounding and network mixing

presented in Chapter 3, it is possible to reduce the impact of this problem while

retaining the highly accurate predictions. Predictive variance quality may be not

so good.

(b) Models which fit in the IDGP template (i.e., assume that all the values of the

latent function are conditionally independent given a set of inducing variables).

They have additional constraints to ensure that the target full GP is approximated

as well as possible for the selected set of inducing features (by minimizing the

Kullback-Leibler divergence, see Section 4.2). The proper handling of uncertain-

ties in these models implies that high-quality predictive variances are provided.

153

6. CONCLUSIONS AND FURTHER WORK

However, being more constrained models, they are usually unable to achieve the

high accuracy of MNs. They are also more complex models, so that their imple-

mentations will typically have longer computation times for the same number of

basis functions.

6.3 Further work

Some of the relevant extensions to the main ideas of this thesis were already provided

in Chapter 5. Many others, however, were left out and will be the subject of further

research. To name a few:

• Extensions to handle multiple outputs and multi-task learning. The concept

of “weight sharing” is used in NNs —among other things— to introduce some

sort of coupling between different observations belonging to either the same

input sample (multi-output regression) or different tasks (multi-task regression).

This idea could not be used with standard GPs, since weights are integrated out,

but can be applied to many of the models developed in this thesis (those that fit

in the “MN template”, first four rows of Table 6.1). This might be useful to build

multi-output sparse GPs that benefit from the performance gains achieved by the

discussed methods.

Since multi-task learning deals with multiple data sets at once, its computational

burden is particularly high. Bonilla et al. (2008) resort to the Nytröm approxima-

tion to speed up computation, and also mention other alternatives such as SPGP.

Some of our proposals, particularly IDGPs could also be well suited for this

task, while providing a performance improvement. Furthermore, IDGPs would

allow for a new type of coupling between tasks: “Inducing features sharing”. By

reusing the same inducing features over different tasks, it might be possible to

learn them accurately with a smaller number samples per task, thus increasing

predictive power.

• New “feature extraction functions”. In this thesis we consider four differ-

ent feature extraction functions, yielding SPGP, SMGP, FIFGP and TFIFGP. It

would be interesting to explore other instances of this framework in the future;

in particular it seems reasonable that using different windowing schemes (such

154

6.3 Further work

as multiple windows following the input data distribution) could result in better
performing methods.

• Combination with Titsias (2009) variational framework. Another promising
line of work would be to combine IDGPs with the variational method of Titsias
(2009) to obtain sparse regression algorithms that more faithfully follow the full
GP as the number of inducing features grows, eventually converging to it.

• Applications needing cross-domain inference. We mentioned this possibility
in Chapter 4. Though we are not currently aware of applications where avail-
able data come from different, linearly related domains, such applications may
arise in the future. Also, even when all data belongs to a single domain, this
technique may be useful to make inference about features in another one (e.g.,
probabilistically inferring the amplitude of frequency components from data in
time domain).

• Combination of MNs with new regularization techniques. One of the main
problems that prevent the direct usage of MNs is the overfitting problem. Though
we have provided specific workarounds in this thesis, it might be interesting to
combine them with other (existing or future) regularization techniques.

155

156

Appendix A

Matrix algebra

The results stated in this appendix can be found in Golub and Loan (1989); Harville

(1997); Lütkepohl (1996); Press et al. (2002).

A.1 Matrix inversion lemma

The matrix inversion lemma, also known as the Sherman–Morrison–Woodbury for-

mula states that:

(Z + UWV>)−1 = Z−1 − Z−1U(W−1 + V>Z−1U)−1V>Z−1 (A.1)

When Z is an n× n diagonal matrix, U and V are n×m and W is m×m, direct

evaluation of the left hand side is O(n3), whereas the right hand side can be cheaply

evaluated in O(m2n).

A.2 Matrix determinant lemma

Analogously, the matrix determinant lemma states that:

|Z + UWV>| = |Z||W||W−1 + V>Z−1U| (A.2)

The same considerations as for matrix inversion lemma apply.

157

A. MATRIX ALGEBRA

A.3 The Cholesky factorization

Any positive definite matrix can be expressed as a product of a lower triangular matrix
and its transpose as follows:

A = R>R → R = chol(A). (A.3)

R is the upper Cholesky factor of A. The lower Cholesky factor is defined as
L = R>. If A is of size n× n, the Cholesky factor can be computed in O(n3/6) time
and is a numerically very stable operation. This factorization is useful to solve linear
systems, since

Ax = b ⇔ x = R\(R>\b), (A.4)

where C\c denotes the solution to the linear system Cx = c. The solution of the two
linear systems can be computed by forward and backward substitution inO(n2/2) time
each, rendering this method faster and more accurate than directly solving Ax = b.

As a by-product of the computation of R, the determinant of A is readily available

|A| =
n∏
i=1

R2
ii, or equivalently

1

2
log |A| =

n∑
i=1

log Rii, (A.5)

where Rii denotes the i-th element of the diagonal of R.

A.4 Matrix derivatives

The derivative of the elements of the inverse matrix A−1 is

∂

∂θ
A−1 = −A−1∂A

∂θ
A−1. (A.6)

If A is a positive definite symmetric matrix, the derivative of the log determinant is

∂

∂θ
log |A| = trace

(
A−1∂A

∂θ

)
. (A.7)

158

Appendix B

Gaussian identities

The results stated in this Appendix can be found in most statistics textbooks, e.g. Mar-
dia et al. (1979, ch. 3).

B.1 Multivariate Gaussian distribution

A random vector x is said to have a normal multivariate distribution with mean µ and
covariance matrix Σ if and only if

p(x) = N (x|µ,Σ) ≡ |2πΣ|−1/2 exp
[
−1

2
(x− µ)>Σ−1(x− µ)

]
. (B.1)

B.2 Marginal and conditional distributions

Given a joint Gaussian multivariate distribution

p(x1,x2) = N
([

x1

x2

] ∣∣∣∣∣
[
µ1

µ2

]
,

[
A C
C> B

])
,

the marginal distribution of x1 is

p(x1) = N (x1|µ1,A), (B.2)

and the distribution of x1 conditioned on x2 is

p(x1|x2) = N (x1|µ1 + CB−1(x2 − µ2),A−CB−1C>). (B.3)

159

B. GAUSSIAN IDENTITIES

B.3 Integral of the product of two Gaussians

The following identity∫
N (x|a,A)N (a|b,B)da = N (x|b,A + B) (B.4)

is useful to compute marginal likelihood p(x) from likelihood p(x|a) and prior p(a)

when both are Gaussian.

B.4 Gaussian likelihood with linear parameter

If the mean of a Gaussian depends linearly on some parameter with Gaussian prior, it
is possible to obtain the joint and posterior probabilities in closed form. Assume the
following parametrization for the likelihood and the prior:

p(y|w,X) = N (y|Xw,Σy)

p(w) = N (w|a,Σw) .

The joint distribution is then p(y,w|X) = p(y|w,X)p(w). This product can be
conveniently arranged as:

p(y,w|X) = N
([

y
w

] ∣∣∣∣∣
[
Xa
a

]
,

[
Σy + XΣwX> XΣw

ΣwX> Σw

])
. (B.5)

The marginal likelihood of y is trivially contained in the previous expression due to
the marginalization property of Gaussian distributions (B.2). The posterior distribution
over w given y and X is obtained applying (B.3) to (B.5):

p(w|y,X) = N (w|µw|y,Σw|y) (B.6a)

µw|y = a + ΣwX>(Σy + XΣwX>)−1(y −Xa) (B.6b)

Σw|y = (Σ−1
w + X>Σ−1

y X)−1 . (B.6c)

B.5 Linear transformations

If x is a random vector following a multivariate Gaussian distribution

p(x) = N (x|µ,Σ), (B.7)

160

B.6 Generation of random samples

then the linear transformation y = R>x + r is also Gaussian distributed, as follows:

p(y) = N (y|R>µ+ r,R>ΣR). (B.8)

B.6 Generation of random samples

Multivariate Gaussian samples of arbitrary covariance and mean can be obtained from
univariate normal samples of mean 0 and variance 1. Just build a vector x of the
desired dimension using independent univariate normal samples for each component.
The desired sample y is then obtained as

y = R>x + µ (B.9)

where µ is the desired mean and R is the upper Cholesky factor from the desired
covariance matrix. This procedure follows trivially from (B.8).

161

162

Appendix C

Mathematical proofs

C.1 Rectangular-polar coordinate conversion

Here we prove the equivalence of two coordinate distributions when they are expressed
in polar and rectangular form respectively. This equivalence is used to describe SSGP
as a phase-integrating model in Section 2.1.2.2.

Let a and b be two independent random variables with known Gaussian probability
densities

p(a) = N (a|0, v) and p(b) = N (b|0, v)

and c ∈ R and ϕ ∈ [0, π] other two r.v. that satisfy the relation{
a = c cosϕ
b = c sinϕ

(C.1)

Pair {c, ϕ} can be considered as the polar coordinates corresponding to rectangular
coordinates {a, b}, with the particularity that c can take negative values and ϕ is re-
stricted to one half of its usual range. Our task is to find the relation between the joint
probability density of {c, ϕ} and {a, b}:

pa,b(a, b) =
1

2πv
exp

(
−a

2 + b2

2v

)

Since the transformation of (C.1) provides a one-to-one mapping between them,
the joint probability density of {c, ϕ} is

pc,ϕ(c, ϕ) = pa,b(a, b)|J | = pa,b(c cosϕ, c sinϕ)|J |,

163

C. MATHEMATICAL PROOFS

where |J | is the absolute value of Jacobian

J =

∣∣∣∣∣ ∂a/∂c ∂a/∂ϕ
∂b/∂c ∂b/∂ϕ

∣∣∣∣∣ =

∣∣∣∣∣ cosϕ −c sinϕ
sinϕ c cosϕ

∣∣∣∣∣ = c

yielding

pc,ϕ(c, ϕ) =
1

π

1

2v
|c| exp

(
− c

2

2v

)
.

The marginals are

pc(c) =
∫ π

ϕ=0

1

π

1

2v
|c| exp

(
− c

2

2v

)
dc =

1

2v
|c| exp

(
− c

2

2v

)

and

pϕ(ϕ) =
∫ ∞
c=−∞

1

2v
|c| exp

(
− c

2

2v

)
dϕ =

1

π
,

and, since pc,ϕ(c, ϕ) = pc(c)pϕ(ϕ), we know that c and ϕ are independent.

The probability density of c is symmetric Rayleigh. Due to its symmetry, it is
trivially zero mean, and its variance is

V[c] =
∫ ∞
−∞

c2 1

2v
|c| exp

(
− c

2

2v

)
dc = 2

∫ ∞
0

1

2v
c3 exp

(
− c

2

2v

)
dc = 2v

In this derivation, ϕ is uniform in [0, π], but it is clear from the symmetry of (C.1)
that any uniform density with range [n1π, n2π], where n1, n2 ∈ Z : n1 < n2, yields the
same densities in a and b.

Given the one-to-one mapping between rectangular and polar coordinates, the con-
verse must also be true; i.e., independent polar coordinates with the derived densities
will result into the corresponding independent Gaussian densities when transformed
back to rectangular.

C.2 Convergence of SSGP-fixed to a full GP for infinite

bases

First recall the SSGP stochastic model (2.12), from Subsection 2.1.2.1, for the latent
function:

f(x) =
h∑
r=1

[
ar cos(2πs>r x) + br sin(2πs>r x)

]
,

164

C.2 Convergence of SSGP-fixed to a full GP for infinite bases

where both ar and br are random variables with densities

p(ar) = N (ar|0, σ2
0/h) , p(br) = N (br|0, σ2

0/h) .

Since f(x) is a linear combination of Gaussian-distributed random variables, it is

a GP. The mean of this GP is zero:

E[f(x)] =
h∑
r=1

[
E[ar] cos(2πs>r x) + E[br] sin(2πs>r x)

]
= 0.

Its covariance is

E[f(x)f(x′)]

= E
[
h∑
r=1

h∑
t=1

[
ar cos(2πs>r x) + br sin(2πs>r x)

] [
at cos(2πs>t x′) + bt sin(2πs>t x′)

]]

= E
[
h∑
r=1

h∑
t=1

arat cos(2πs>r x) cos(2πs>t x′) +
h∑
r=1

h∑
t=1

brbt sin(2πs>r x) sin(2πs>t x′)

]

=
h∑
r=1

[
σ2

0

h
cos(2πs>r x) cos(2πs>r x′) +

σ2
0

h
sin(2πs>r x) sin(2πs>r x′)

]

=
σ2

0

h

h∑
r=1

cos(2πs>r (x− x′)),

which is the sample average of σ2
0 cos(2πs>r (x − x′). If spectral samples {sr}hr=1 are

distributed according to pS(s) = S(s)
σ2
0
h, when h tends to infinity, this average can be

computed using an integral over the spectrum space. Calling τ = x − x′ and using

(2.1):

lim
h→∞

E[f(x)f(x′)] =
∫

RD
σ2

0 cos(2πs>τ)
S(s)

σ2
0

ds = Re[k(τ)] = k(τ).

Thus a full GP with any stationary covariance k(τ) can be recovered by using the

SSGP model with infinite spectral points (equivalently, infinite basis functions) if they

have the appropriate distribution, which can be derived from (2.2).

165

C. MATHEMATICAL PROOFS

C.3 Convergence of MCN-fixed to a full GP for infinite

bases

This demonstration is analogous to the previous one, but for the MCN stochastic model
described in Section 3.1.2. Recall the model describing the latent function:

f(x) =
m∑
i=1

ci cos(2πs>i x− ϕi) ,

where {ci}mi=1 are random variables with densities p(ci) = N (ci|0, 2σ2
0/m).

Since f(x) is a linear combination of Gaussian-distributed random variables, it is
a GP. The mean of this GP is zero:

E[f(x)] =
m∑
i=1

E[ci] cos(2πs>i x− ϕi) = 0.

Its covariance is:

E[f(x)f(x′)] = E
[
m∑
i=1

m∑
t=1

cict cos(2πs>i x− ϕi) cos(2πs>t x′ − ϕt)
]

=
m∑
i=1

2σ2
0

m
cos(2πs>i x− ϕi) cos(2πs>i x′ − ϕi)

=
2σ2

0

m

m∑
i=1

1

2

[
cos(2πs>i (x + x′)− 2ϕi) + cos(2πs>i (x− x′))

]
=
σ2

0

m

m∑
i=1

cos(2πs>i (x− x′)) +
σ2

0

m

m∑
i=1

cos(2πs>i (x + x′)− 2ϕi). (C.2)

The first term is identical to that found for the convergence of SSGP in Section
C.2. It is the sample average of σ2

0 cos(2πs>i (x − x′). If spectral samples {si}mi=1 are
distributed according to pS(s) = S(s)

σ2
0

, when m tends to infinity, this average can be
computed as an expectation over the spectrum space. Calling τ = x − x′ and using
(2.1):

lim
m→∞

σ2
0

m

m∑
i=1

cos(2πs>i (x− x′)) =
∫

RD
σ2

0 cos(2πs>τ)
S(s)

σ2
0

ds = Re[k(τ)] = k(τ).

The second term of covariance (C.2) can be interpreted as a perturbation to the
SSGP covariance function due to explicitly considering phases (i.e., not integrating
them out). However, when m tends to infinity, this perturbation vanishes, provided

166

C.3 Convergence of MCN-fixed to a full GP for infinite bases

that phases {ϕj}mj=1 are uniformly distributed in any [n1π, n2π] range with n1, n2 ∈
Z : n2 > n1. As before, in the infinite limit, the average can be replaced by an
expectation:

lim
m→∞

σ2
0

m

m∑
i=1

cos(2πs>i (x + x′)− 2ϕi)

=
∫ n2π

n1π
σ2

0 cos(2πs>(x + x′)− 2ϕ)
1

(n2 − n1)π
dϕ

=
−σ2

0

2π(n2 − n1)
(sin(2πs>(x + x′)− 2πn2)− sin(2πs>(x + x′)− 2πn1)) = 0.

Therefore
lim
m→∞

E[f(x)f(x′)] = k(τ) .

Hence a full GP with any stationary covariance k(τ) can be recovered by using
the MCN model with infinite basis functions if their frequencies and phases have the
appropriate distribution, which can be derived from (2.2).

167

168

Appendix D

Model implementation

The algorithms developed in this thesis can be implemented in a faster and numerically

wiser way using Cholesky factorizations, detailed in Section A.3. These implementa-

tions are derived applying (A.3), (A.4) and (A.5) to the original descriptions. Rii

denotes the i-th element of the diagonal of R. Recall that C\c denotes the solution to

the linear system Cx = c.

D.1 Full GP

Eqs. (1.15) and (1.18) can be implemented as:

R = chol(Kff + σ2In) (D.1a)

α = R\(R>\y) (D.1b)

v = R>\kf∗ (D.1c)

µ∗ = k∗fα (D.1d)

σ2
∗ = k∗∗ − v>v (D.1e)

− log p(y|X) =
1

2
y>α+

1

2

n∑
i=1

Rii −
n

2
log(2π) . (D.1f)

169

D. MODEL IMPLEMENTATION

D.2 Sparse Spectrum GP

Equations (2.10) and (2.11) can be implemented as:

R = chol

(
ΦfΦ

>
f +

hσ2

σ2
0

I2h

)
(D.2a)

µ∗ = φ(x∗)
>R\(R>\(Φfy)) (D.2b)

σ2
∗ = σ2 + σ2||R>\φ(x∗)||2 (D.2c)

− log p(y|X) =
1

2σ2

[
||y||2 − ||R>\ (Φfy) ||2

]
+

1

2

m∑
i=1

log R2
ii − h log

hσ2

σ2
0

+
n

2
log 2πσ2 . (D.2d)

Remember that h is used to name the number of spectral points; there are m = 2h

basis functions.

D.3 Marginalized Networks

(also Bounded Noise and Network Mixture cases)

The implementation of (3.4) and (3.5) is as follows:

R = chol

(
ΦfΦ

>
f +

mσ2σ2
p

σ2
0

Im

)
(D.3a)

µ∗ = φ(x∗)
>R\(R>\(Φfy)) (D.3b)

σ2
∗ = σ2 + σ2||R>\φ(x∗)||2 (D.3c)

− log p(y|X) =
1

2σ2

[
||y||2 − ||R>\ (Φfy) ||2

]
+

1

2

m∑
i=1

log R2
ii −

m

2
log

mσ2σ2
p

σ2
0

+
n

2
log 2πσ2 . (D.3d)

170

D.4 Inter-Domain GP

D.4 Inter-Domain GP

The following implements (4.8) and (4.9):

Ruu = chol(Kuu + εIm) (D.4a)

Λ = σ−2Λy (D.4b)

Φs = (R>uu\K>fu)Λ−1/2 (D.4c)

R = chol(ΦsΦs
> + σ2Im) (D.4d)

ys = Λ−1/2y (D.4e)

H = R>\Φs (D.4f)

β = Hys (D.4g)

v1 = R>uu\ku∗ (D.4h)

v2 = R>\v1 (D.4i)

µIDGP∗ = β>v2 (D.4j)

σ2
IDGP∗ = σ2 + k∗∗ − ||v1||2 + σ2||v2||2 (D.4k)

− log p(y|X) =
1

2σ2
(||y2

s || − ||β||2) +
1

2

m∑
i=1

log[R]2ii

+
n−m

2
log σ2 +

1

2

n∑
j=1

log 2π[Λ]jj , (D.4l)

where ε is some jitter noise to enhance numerical condition, typically 10−6.

D.5 EP for sparse models

The main loop of EP for sparse models can be implemented as summarized in Sub-
section 5.2.2.3, where efficient and numerically stable update equations are provided.
Here, we provide the corresponding expressions to compute the Negative Log-Marginal
Likelihood (NLML) of the model and make inference at new test points.

After EP has converged, we have access to site parameters {ν̃j, τ̃j}nj=1, cavity
parameters {ν\j, τ\j}nj=1, moments of the tilted distribution {m0j,m1j,m2j}nj=1, and
defining vectors and matrices for the posterior mean and covariance matrix anew, γnew,
Dnew, Pnew, Rnew (see Subsections 5.2.1 and 5.2.2). Also recall from Subsection
5.2.2.1 that the prior covariance matrix can be expressed as Kff = D0 + P0R

>
0 R0P

>
0

171

D. MODEL IMPLEMENTATION

(where D0 is a diagonal n × n matrix with elements {dj}nj=1, P0 is an n ×m matrix,
and R0 is an m × m upper Cholesky factor) and for any test point, it is possible to
expand kf∗ = P0R

>
0 R0p∗ and k∗∗ = d∗ + p>∗R>0 R0p∗, where p∗ is a vector of size

m× 1 and d∗ is some scalar.

Using these values and some algebra, NLML (5.34) and the posterior distribution
at some test point (5.35) can be expressed in a numerically safer and more stable way:

µEP∗ = p>∗ γnew (D.5a)

σ2
EP∗ = d∗ + ||Rnewp∗||2 (D.5b)

− log q(y|X) = −1

2

m∑
i=1

log[Rnew]2ii +
1

2

m∑
i=1

log[R0]2ii +
1

2

n∑
j=1

log(1 + τ̃jdj)

− 1

2

n∑
j=1

log

(
1 +

τ̃j
τ\j

)
− 1

2

n∑
j=1

log(ν̃j[µnew]j)−
1

2

n∑
j=1

logm2
0j

− 1

2

n∑
j=1

ν\j(τ̃jτ\j − 2ν̃j)− ν̃2
j

τ̃j + τ\j
(D.5c)

172

Appendix E

Model log-evidence derivatives

This appendix provides, without proof, the derivatives of the Negative Log-Marginal

Likelihood (NLML) of the models developed throughout this thesis. The NLML of

each model is given in the text as a function of the hyperparameters, so obtaining these

expressions is a mechanical (yet tedious) task. We use ∂A/∂θ to denote element-wise

derivation of matrix A wrt scalar θ.

E.1 Length-scale and power hyperparameters

Unconstrained optimization algorithms (such as conjugate gradient descent) need the

objective function to be defined in terms of arbitrary-valued hyperparameters. How-

ever, length-scales {`d}Dd=1 and power hyperparameters {σ2
0 , σ2} only accept positive

values. Furthermore, σ2 is sometimes constrained to be above some known value σ2
min.

In order to apply unconstrained optimization to our models, we transform the hyper-

parameters as follows

θ`d = log(`d) , θσ2
0

=
1

2
log(σ2

0) , θσ2 =
1

2
log(σ2 − σ2

min) ,

and optimize over {θ`d}Dd=1, θσ2
0

and θσ2 instead.

Therefore, in the following sections, we will provide (among others) derivatives

wrt these auxiliary hyperparameters so that they can be used with any gradient-based

optimization procedure.

173

E. MODEL LOG-EVIDENCE DERIVATIVES

E.2 MNs log-evidence derivatives

Here we show how to compute the NLML derivatives for MNs, which are introduced

in Chapter 3. Assume R defined as in (D.3). Then compute:

H = (R>\Φf)/σ ; β = Hy ; b = y/σ2 − (H>β)/σ (E.1)

A = [H>, b]> ; DA = diag(A>A) ; DΦ = diag(Φ>f Φf) (E.2)

F>Φ = (ΦfA
>)A−Φf/σ

2 . (E.3)

After these O(m2n) precomputations, derivatives wrt power hyperparameters (as

defined in Section E.1) can be obtained from

−∂ log p(y|X)

∂θσ2
0

=
σ2

0

mσ2
p
(trace(DΦ)/σ2 − trace((ΦfA

>)(ΦfA
>)>)) (E.4)

−∂ log p(y|X)

∂θσ2

= (σ2 − σ2
min) trace(σ−2 −DA) , (E.5)

also in O(m2n) time.

Derivatives wrt the remaining hyperparameteres can be computed using

−∂ log p(y|X)

∂θ
= − σ2

0

mσ2
p

trace

(
F>Φ

∂Φf

∂θ

)
. (E.6)

Note that these latter derivatives can be computed in O(mn) time each, so that a

total of O(m) derivatives can be computed without increasing the complexity of the

procedure. Usually, derivative matrix ∂Φf

∂θ
has a single non-zero row, so computation

time takes only O(n) time per derivative. Concrete expressions for ∂Φf

∂θ
corresponding

to the MN models in this thesis follow.

E.2.1 SSGP design matrix derivatives

First we define the common part of the derivatives

C> =


− sin(2πs>1 x1) cos(2πs>1 x1) . . . − sin(2πs>h x1) cos(2πs>h x1)
− sin(2πs>1 x2) cos(2πs>1 x2) . . . − sin(2πs>h x2) cos(2πs>h x2)

...
− sin(2πs>1 xn) cos(2πs>1 xn) . . . − sin(2πs>h xn) cos(2πs>h xn)


n×2h

,

174

E.2 MNs log-evidence derivatives

and then compute the derivatives wrt the length-scales and (unscaled) spectral points
as [

∂Φf

∂θ`d

]
ij

=

{
−[C]ij2π[xj]d[s i+1

2
]d i odd

−[C]ij2π[xj]d[s i
2
]d i even

(E.7)[
∂Φf

∂[ωr]d

]
ij

=

{
[C]ij2π[xj]d/`d i/2 = r or (i+ 1)/2 = r
0 otherwise (E.8)

where, as usual, j ∈ 1 . . . n, i ∈ 1 . . .m, and r ∈ 1 . . . h, with m = 2h. For any given
r, the latter derivative will only have two non-zero rows.

E.2.2 MCN design matrix derivatives (also BN-MCN, MCNmix)

Again, we define the common part of the derivatives as

aij = − sin(x̃>j ui) (recall that ui = [ϕi, (L−1ωi)
>]>)

and then compute the derivatives wrt the length-scales and (unscaled) input weights as[
∂Φf

∂θ`d

]
ij

= −aij[x̃j]d[ui]d ;

[
∂Φf

∂[ωi′]d

]
ij

= aij[x̃j]d/`dδii′ , (E.9)

where Kronecker delta δii′ equals one when i = i′ and zero otherwise. Only the i′-th
row of ∂Φf

∂[ωi′]d
is different from zero.

Analogously, the derivatives wrt the phase hyperparameters are[
∂Φf

∂ϕi′

]
ij

= aijδii′ . (E.10)

E.2.3 MMLP design matrix derivatives (also BN-MMLP,
MMLPmix)

All derivatives share a common term

aij =
2√
π

exp(−(x̃>j ui)
2) (recall that for MMLPs, ui = L̃

−1
ωi).

The derivatives of the design matrix wrt the length-scales and (unscaled) input
weights are[

∂Φf

∂θ`d

]
ij

= −aij[x̃j]d[ui]d ;

[
∂Φf

∂[ωi′]d

]
ij

= aij[x̃j]d/`dδii′ , (E.11)

175

E. MODEL LOG-EVIDENCE DERIVATIVES

where Kronecker delta δii′ equals one when i = i′ and zero otherwise. Only the i′-th
row of ∂Φf

∂[ωi′]d
is different from zero.

E.3 Inter-Domain GP log-evidence derivatives

We consider Ruu, Λ, Φs, ys, H, and β as defined by (D.4) and precompute the follow-
ing matrices:

b = (ys −H>β)/σ (E.12)

A = [H>, b]>Λ−1/2 ; DA = diag(A>A) ; DΦ = diag(Φ>s Φs) (E.13)

F>fu = Ruu\((ΦsA
>)A−ΦsDA)/σ2 (E.14)

Fuu = −Ruu\(ΦsFfu) . (E.15)

The derivatives of the NLML wrt power hyperparameters (defined in Section E.1) are:

−∂ log p(y|X)

∂θσ2
0

= (σ2
0 trace(Λ−1 −DA) + trace(ADΦA>)

− trace((ΦsA
>)(ΦsA

>)>))σ−2 (E.16)

−∂ log p(y|X)

∂θσ2

= trace(Λ−1 −DA) . (E.17)

All the above operations take O(m2n) time. If we express the derivative of the
transformed domain covariance matrix wrt the remaining hyperparameters as

∂Kuu

∂θ
=

[
∂Kuu

∂θ

]
half

+

[
∂Kuu

∂θ

]>
half

, (E.18)

(which is possible, since it is symmetric), the derivatives of the NLML wrt the remain-
ing hyperparameters can be computed using

−∂ log p(y|X)

∂θ
= − trace

(
F>fu

∂Kfu

∂θ
+ Fuu

[
∂Kuu

∂θ

]
half

)
, (E.19)

which takes O(mn) time. Therefore, O(m) derivatives can be computed without in-
creasing the overall complexity of the procedure. For our models, many of these oper-
ations only takeO(n) time because ∂Kfu

∂θ
and

[
∂Kuu

∂θ

]
half

have a single non-zero row per
derivative. Expressions for the derivatives of the inter-domain and transformed domain
prior covariance matrices are given in the following subsections.

176

E.3 Inter-Domain GP log-evidence derivatives

E.3.1 TFIFGP prior covariance derivatives (also FIFGP)

Here we describe the derivatives of the inter-domain and transformed domain instances

of TFIFGP’s covariance. Instead of directly optimizing window length-scales {cd}Dd=1

(which must be positive), we we will prefer to optimize their logarithms θcd = log(cd)

(which can take any real value), so that we can use unconstrained optimization algo-

rithms. Therefore, derivatives wrt {θcd}Dd=1 are provided. The same is done for power

hyperparameters and length-scales, see Section E.1.

We consider inter-domain covariance Kfu first. Defining the auxiliary values

aji = exp

[
−

D∑
d=1

([xj]d − [µi]d)
2 + c2

d[ωi]
2
d

2(c2
d + `2

d)

]
(E.20)

bji = [ωi]0 +
D∑
d=1

c2
d[ωi]d([xj]d − [µi]d)

c2
d + `2

d

(E.21)

v =
D∏
d=1

√√√√ `2
d

c2
d + `2

d

, (E.22)

it is possible to compute the derivatives wrt all hyperparameters as

[
∂Kfu

∂θ`d

]
ji

= ajiv

((
c2
dv

2

`2
d

+
c2
d`

2
d[ωi]

2
d

(c2
d + `2

d)
2

)
cos(bji)

+
2c2
d`

2
d[ωi]d([xj]d − [µi]d)

(c2
d + `2

d)
2

sin(bji)

)
(E.23)[

∂Kfu

∂θcd

]
ji

= −
[
∂Kfu

∂θ`d

]
ji

(E.24)[
∂Kfu

∂[µi′]d

]
ji

= ajiv
([xj]d − [µi]d) cos(bji) + c2

d[ωi]d sin(bji)

c2
d + `2

d

δii′ (E.25)[
∂Kfu

∂[ωi′]d

]
ji

= ajivc
2
d

([xj]d − [µi]d) sin(bji) + [ωi]d cos(bji)

c2
d + `2

d

δii′ (E.26)[
∂Kfu

∂[ωi′]0

]
ji

= −ajiv sin(bji)δii′ (E.27)

in O(m2n) time. Note for that the last three derivatives, only the i′-th column of the

matrix needs to be computed.

177

E. MODEL LOG-EVIDENCE DERIVATIVES

Similarly, for intra-domain covariance Kuu, we define

aji = exp

[
−

D∑
d=1

(c4
d + c2

d)([ωi]
2
d + [ωj]

2
d) + ([µi]d − [µj]d)

2

2(2c2
d + `2

d)

]
(E.28)

bji = exp

[
D∑
d=1

c4
d[ωi]d[ωj]d
2c2
d + `2

d

]
(E.29)

v =
D∏
d=1

√√√√ `2
d

2c2
d + `2

d

(E.30)

gji = bji cos([ωi]0 − [ωj]0) + b−1
ji cos([ωi]0 + [ωj]0) (E.31)

g′ji = bji cos([ωi]0 − [ωj]0)− b−1
ji cos([ωi]0 + [ωj]0) , (E.32)

and then compute one “half” of the derivatives

[
∂Kuu

∂θ`d

]
half, ji

=
1

2
ajiv

(
gji

(
`2
d((c

4
d + c2

d)([ωi]
2
d + [ωj]

2
d) + ([µi]d − [µj]d)

2)

(2c2
d + `2

d)
2

+
c2
dv

2

`2
d

)
+ g′ji

2`2
dc

4
d[ωi]d[ωj]d

(2c2
d + `2

d)
2

)
(E.33)[

∂Kuu

∂θcd

]
half, ji

=
1

2
ajiv

(
gji

(
c2
d(2(c4

d + c2
d)− (2c2

d + `2
d)(2c

2
d + 1))([ωi]

2
d + [ωj]

2
d)

(2c2
d + `2

d)
2

−c
2
dv

2

`2
d

+
2c2
d([µi]d − [µj]d)

2

(2c2
d + `2

d)
2

)

+g′ji
4(c2

d + `2
d)c

4
d[ωi]d[ωj]d

(2c2
d + `2

d)
2

)
(E.34)[

∂Kuu

∂[µi′]d

]
half, ji

= ajigjiv
−([µi]d − [µj]d)

2c2
d + `2

d

δii′ =
−([µi]d − [µj]d)

2c2
d + `2

d

[Kuu]jiδii′ (E.35)[
∂Kuu

∂[ωi′]d

]
half, ji

= ajiv

(
−gji

[ωi]d(c
4
d + c2

d)

2c2
d + `2

d

+ g′ji
c4
d

2c2
d + `2

d

)
δii′ (E.36)[

∂Kuu

∂[ωi′]0

]
half, ji

= −ajiv(bji sin([ωi]0 − [ωj]0) + b−1
ji sin([ωi]0 + [ωj]0))δii′ . (E.37)

Again, for the last three derivatives, all entries are zero except those in column i′.

Full derivatives of Kuu, though not needed, can be obtained combining these equations

with (E.18). Derivatives for FIFGP are obtained by letting {µi}mi=1 = 0 in (E.20)-

(E.37).

178

E.3 Inter-Domain GP log-evidence derivatives

E.3.2 SPGP ARD MLP prior covariance derivatives

We limit ourselves here to the case of the ARD MLP covariance function. Derivatives

for the more common ARD SE covariance function are detailed in Snelson (2007, App.

C).

For covariance matrix Kfu we first compute

x̂j = L̃
−1

x̃j ; ûi = L̃
−1

ũi (E.38)

aji = 2x̂>j ûi ; bj = (1 + 2x̂>j x̂j)
− 1

2 ; ci = (1 + 2û>i ûi)
− 1

2 (E.39)

gji =
4σ2

0bjci

π
√

1− (ajibjci)2
, (E.40)

so that we can obtain the derivatives wrt length-scales and pseudo-inputs as

[
∂Kfu

∂θ`d

]
ji

= gji(aji(b
2
j [x̂j]

2
d + c2

i [ûi]
2
d)− 2[x̂j]d[ûi]d) (E.41)[

∂Kfu

∂[ui′]d

]
ji

=
1

`d
gji([x̂j]d − ajic2

i [ûi]d)δii′ . (E.42)

For covariance matrix Kuu we redefine

aji = 2û>j ûi (E.43)

gji =
4σ2

0cjci

π
√

1− (ajicjci)2
, (E.44)

and consider the same ci as before. Then we obtain one “half”of the derivatives wrt

the length-scales and pseudo-inputs:

[
∂Kuu

∂θ`d

]
half, ji

=
1

2
gji(aji(c

2
j [ûj]

2
d + c2

i [ûi]
2
d)− 2[ûj]d[ûi]d) (E.45)[

∂Kuu

∂[ui′]d

]
half, ji

=
1

`d
gji([ûj]d − ajic2

i [ûi]d)δii′ . (E.46)

Last derivative matrix has a single non-zero column. Full derivatives can be ob-

tained using (E.18).

179

E. MODEL LOG-EVIDENCE DERIVATIVES

E.4 Non-Gaussian log-evidence derivatives

Derivatives described in Sections E.2 and E.3 apply to standard MNs and IDGPs using

a Gaussian likelihood. In the following we detail the derivatives for these models when

used with non-Gaussian likelihoods.

E.4.1 Log-evidence derivatives for IDGP with non-Gaussian like-
lihood

In regression models, latent function f(x) is usually regarded as noiseless, and noise is

introduced through a Gaussian likelihood function. When dealing with non-Gaussian

likelihoods, it may be convenient to also include Gaussian noise in the latent function.

This is the case in classification, see Subsection 5.4.1. Therefore, in the derivations

below we consider Gaussian noise with power σ2. Inducing variables {ui}mi=1 remain

noiseless.

Define Λf as an n × n diagonal matrix, with j-th element of the diagonal being

σ2 +k(xj,xj)+ku(xj)
>K−1

uuku(xj). Here a noiseless k(·, ·) is used and noise is added

explicitly. Consider Ruu, and Φf defined as per (D.4). Then compute the following

matrices

Λ̃
−1

= T̃(In + Λf T̃)−1 ; Φs = Φf Λ̃
−1/2

(E.47)

R = chol(Im + ΦsΦs
>) ; H = R>\(ΦsΛ̃

−1/2
) (E.48)

c = Φ>f (Φf ν̃) + Λf ν̃ ; b = ν̃ − (Λ̃
−1

c− (H>(Hc))) (E.49)

A = [H>, b]> ; DA = diag(A>A) ; DΦ = diag(Φ>f Φf) (E.50)

F>fu = Ruu\((ΦfA
>)A−ΦfDA) (E.51)

Fuu = −Ruu\(ΦfFfu) , (E.52)

where T̃ and ν̃ are the site parameters after EP convergence.

Derivatives of the approximate NLML wrt the power hyperparameters can be ob-

180

E.4 Non-Gaussian log-evidence derivatives

tained with

−∂ log q(y|X)

∂θσ2
0

= σ2
0 trace(Λ̃

−1 −DA) + trace(ADΦA>) (E.53)

− trace((ΦfA
>)(ΦfA

>)>) (E.54)

−∂ log q(y|X)

∂θσ2

= σ2 trace(Λ̃
−1 −DA) (E.55)

All the above operations takeO(m2n) time. Expressing the derivative of the trans-

formed domain covariance matrix according to (E.18), the derivatives of the approxi-

mate NLML wrt the remaining hyperparameters can be computed using

−∂ log q(y|X)

∂θ
= − trace

(
F>fu

∂Kfu

∂θ
+ Fuu

[
∂Kuu

∂θ

]
half

)
, (E.56)

which takes O(mn) time. As noted in Section E.3, this allows to compute O(m)

derivatives without increasing the overall complexity of the procedure.

E.4.1.1 FIFGPC log-evidence derivatives

The approximate NLML derivatives for the FIFGPC model from Section 4.3.4 can be

obtained following the above procedure and plugging the FIFGP covariance derivatives

from Section E.3.1 in (E.56).

E.4.2 Log-evidence derivatives for MNs with non-Gaussian likeli-
hood

As above, we will consider the general case in which a noisy latent function with noise

power σ2 is used. Compute

Λ̃
−1

= T̃(In + σ2T̃)−1 ; Φs = Φf Λ̃
−1/2

(E.57)

R = chol(Im + ΦsΦs
>) ; H = R>\(ΦsΛ̃

−1/2
) (E.58)

c = Φ>f (Φf ν̃) + σ2ν̃ ; b = ν̃ − (Λ̃
−1

c− (H>(Hc))) (E.59)

A = [H>, b]> ; DA = diag(A>A) ; DΦ = diag(Φ>f Φf) (E.60)

F>Φ = (ΦfA
>)A−Φf Λ̃

−1
. (E.61)

181

E. MODEL LOG-EVIDENCE DERIVATIVES

where T̃ and ν̃ are the site parameters after EP convergence. After these O(m2n)

precomputations, derivatives of the approximate NLML wrt power hyperparameters
(as defined in Section E.1) can be obtained from

−∂ log q(y|X)

∂θσ2
0

=
σ2

0

mσ2
p
(trace(DΦΛ̃

−1
)− trace((ΦfA

>)(ΦfA
>)>)) (E.62)

−∂ log q(y|X)

∂θσ2

= (σ2 − σ2
min) trace(Λ̃

−1 −DA) , (E.63)

also in O(m2n) time.

Derivatives wrt the remaining hyperparameteres can be computed using

−∂ log q(y|X)

∂θ
= − σ2

0

mσ2
p

trace

(
F>Φ

∂Φf

∂θ

)
, (E.64)

which takes O(mn) time. Therefore, when computing O(m) derivatives, the whole
procedure will take O(m2n) time.

E.4.2.1 Robust BN-MCN log-evidence derivatives

The NLML derivatives of the robust BN-MCN model from Section 5.3.2 can be com-
puted using the above equations. For (E.64), the covariance matrix derivatives from
Section E.2.2 must be used. Gaussian noise power σ2

0 can be set to 0 (as we did in
our experiments) or learned, thus modeling a Gaussian noise term in addition to the
Laplace noise term.

Robust regression with Laplace noise has an additional hyperparameter, σL, which
is not part of the covariance, but of the likelihood function. Instead of directly learning
σL, we will learn its logarithm θσ2

L
= 1

2
log(σ2

L), which is not constrained to be posi-
tive, and therefore amenable to conjugate gradient optimization. The derivative of the
approximate NLML wrt this hyperparameter is

−∂ log q(y|X)

∂θσ2
L

= −(σ2
L − σ2

Lmin)
n∑
j=1

gj
4m̂0jσ2

L
, (E.65)

where m̂0j is defined by (5.38) and gj is

gj =

√
8σ̂2
\j

π
exp

− µ̂2
\j

2σ̂2
\j

−exp

(
σ̂2
\j

2
− µ̂\j

)
((1+σ̂2

\j−µ̂\j)aj+(1+σ̂2
\j+µ̂\j)bj) ,

in turn parametrized by µ̂\j , σ̂2
\j , aj and bj , which are defined by (5.39).

182

E.5 Full GP log-evidence derivatives

E.5 Full GP log-evidence derivatives

For standard regression GP models with covariance matrix Kff +σ2In and observations
y, the derivative wrt the noise power hyperparameter can be computed as

R = chol(Kff + σ2In) H = R>\In α = R\(R>\y) (E.66)

−∂ log p(y|X)

∂θσ2

=
σ2

2
(||α||2 − ||H||2Frob) (E.67)

and wrt the remaining hyperparameters as

Rder = chol

(
∂Kff

∂θ

)
(E.68)

−∂ log p(y|X)

∂θ
=

1

2
(||Rderα||2 − ||RderH||2Frob) , (E.69)

where || · ||Frob stands for the Frobenius norm.

The cost of this procedure is dominated by the Cholesky factorizations that take
O(n3) time (per hyperparameter).

183

184

Appendix F

Code

Code implementing the described algorithms can be found online:

http://www.tsc.uc3m.es/∼miguel/

185

http://www.tsc.uc3m.es/~miguel/

186

Bibliography

Alvarez, M. and Lawrence, N. D. (2009). Sparse convolved Gaussian processes for

multi-output regression. In Advances in Neural Information Processing Systems 21,

pages 57–64. 91

Baker, C. T. H. (1977). The Numerical treatment of integral equations. Clarendon

Press. 13

Bonilla, E., Chai, K. M., and Williams, C. (2008). Multi-task Gaussian process pre-

diction. In Advances in Neural Information Processing Systems 20, pages 153–160.

MIT Press. xix, 154

Breiman, L. (1996). Bagging predictors. Machine Learning, 26:123–140. xv, 74

Bretthorst, G. L. (2000). Nonuniform sampling: Bandwidth and aliasing. In Maximum

Entropy and Bayesian Methods, pages 1–28. Kluwer. 34

Bryson, A. E. and Ho, Y. C. (1969). Applied optimal control: optimization, estimation,

and control. Blaisdell Publishing Company. 107

Carlson, A. B. (1986). Communication Systems. McGraw-Hill, 3rd edition. 24

Chen, T. and Ren, J. (2009). Bagging for Gaussian process regression. Neurocomput-

ing, 72:1605–1610. 74

Cortes, C. and Vapnik, V. (1995). Support vector networks. Machine Learning,

20:273–297. 144

Csató, L. and Opper, M. (2002). Sparse online Gaussian processes. Neural Computa-

tion, 14(3):641–669. 12, 16, 19, 94

Each reference is followed by the page numbers where the corresponding citation appears.

187

BIBLIOGRAPHY

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Math-

ematics of Control, Signals and Systems, 2:303–314. 106

DeGroot, M. H. and Schervish, M. J. (2002). Probability and Statistics. Addison-

Wesley. 123

Gibbs, M. N. (1997). Bayesian Gaussian processes for regression and classification.

PhD thesis. 20

Golub, G. H. and Loan, C. F. V. (1989). Matrix Computations. John Hopkins Univer-

sity Press. 157

Harville, D. A. (1997). Matrix Algebra From a Statistician’s Perspective. Springer.

157

Hornik, K. (1993). Some new results on neural network approximation. Neural Net-

works, 6:1069–1072. 106

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks

are universal approximators. Neural Networks, 2:359–366. 106

Kuss, M. (2006). Gaussian Process Models for Robust Regression, Classification, and

Reinforcement Learning. PhD thesis, Technische Universität Darmstadt. 119, 120,

132, 133

Kuss, M. and Rasmussen, C. E. (2005). Assessing approximate inference for binary

Gaussian process classification. Journal of Machine Learning Research, 6:1679–

1704. 119

Kuss, M. and Rasmussen, C. E. (2006). Assessing approximations for Gaussian pro-

cess classification. In Advances in Neural Information Processing Systems 18, pages

699–706. MIT Press. 119

Lawrence, N. D., Seeger, M., and Herbrich, R. (2003). Fast sparse Gaussian process

methods: The informative vector machine. In Advances in Neural Information Pro-

cessing Systems 15, pages 609–616. MIT Press. 13, 144

Lazaro-Gredilla, M., Candela, J. Q., and Figueiras-Vidal, A. (2007). Sparse spectral

sampling Gaussian processes. Technical report, Microsoft Research. 23

188

BIBLIOGRAPHY

Lázaro-Gredilla, M. and Figueiras-Vidal, A. (2010). Inter-domain Gaussian processes
for sparse inference using inducing features. In Advances in Neural Information

Processing Systems 22, pages 1087–1095. MIT Press. 89

Lütkepohl, H. (1996). Handbook of Matrices. John Wiley & Sons. 157

MacKay, D. J. C. (2003). Information Theory, Inference, and Learning Algorithms.
Cambridge University Press. 28

Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979). Multivariate Analysis. Academic
Press. 159

Matheron, G. (1973). The intrinsic random functions and their applications. Advances

in Applied Probability, 5:439–468. 2

Minka, T. P. (2001). Expectation Propagation for approximate Bayesian inference.
PhD thesis, Massachusetts Institute of Technology. 119

Naish-Guzman, A. and Holden, S. (2008). The generalized FITC approximation. In
Advances in Neural Information Processing Systems 20, pages 1057–1064. MIT
Press. 1, 127, 130, 144, 147

Neal, R. M. (1992). Bayesian training of backpropagation networks by the hybrid
Monte Carlo method. Technical report, University of Toronto. 72

Neal, R. M. (1993). Bayesian learning via stochastic dynamics. In Advances in Neural

Information Processing Systems 5, pages 475–482. Morgan Kaufmann. 72

Neal, R. M. (1996). Bayesian Learning for Neural Networks. Springer-Verlag. 72,
108

O’Hagan, A. (1978). Curve fitting and optimal design for prediction. Journal of the

Royal Statistical Society, 40:1–42. 2

Potgietera, G. and Engelbrecht, A. P. (2002). Pairwise classification as an ensemble
technique. In Proceedings of the 13th European Conference on Machine Learning,
pages 97–110. Springer-Verlag. 39

Potgietera, G. and Engelbrecht, A. P. (2007). Evolving model trees for mining data sets
with continuous-valued classes. Expert Systems with Applications, 35:1513–1532.
39

189

BIBLIOGRAPHY

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2002). Numerical

Recipes in C++. Cambridge University Press. 157

Qi, Y., Minka, T., and Picard, R. (2002). Bayesian spectrum estimation of unevenly

sampled nonstationary data. In IEEE Intl. Conf. on Acoustics, Speech and Signal

Processing, volume 2, pages 1473–1476. 34

Quiñonero-Candela, J. and Rasmussen, C. E. (2005). A unifying view of sparse ap-

proximate Gaussian process regression. Journal of Machine Learning Research,

6:1939–1959. 13, 16, 17, 18, 20, 126

Rahimi, A. and Recht, B. (2008). Random features for large-scale kernel machines.

In Advances in Neural Information Processing Systems 20, pages 1177–1184. MIT

Press, Cambridge, MA. 23

Rasmussen, C. E. (1996). Evaluation of Gaussian Processes and other Methods for

Non-linear Regression. PhD thesis, University of Toronto. 1

Rasmussen, C. E. (2003). Gaussian processes in machine learning. In Advanced Lec-

tures on Machine Learning, volume 3176 of Lecture Notes in Computer Science,

pages 63–71. Springer. 10

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine

Learning. MIT Press. 2, 16, 120, 124, 125, 139, 142

Rätsch, G., Onoda, T., and Müler, K. R. (2001). Soft margins for Adaboost. Machine

Learning, 42:287–320. 144

Seeger, M., Williams, C. K. I., and Lawrence, N. D. (2003). Fast forward selection to

speed up sparse Gaussian process regression. In Proceedings of the 9th International

Workshop on AI Stats. 12, 13, 16, 17, 42, 68, 94

Shen, Y., Ng, A., and Seeger, M. (2006). Fast Gaussian process regression using kd-

trees. In Advances in Neural Information Processing Systems 18, pages 1227–1234.

MIT Press. 20

Silverman, B. W. (1985). Some aspects of the spline smoothing approach to non-

parametric regression curve fitting. Journal of the Royal Statistical Society, 47:1–52.

12, 15

190

BIBLIOGRAPHY

Smola, A. J. and Bartlett, P. (2001). Sparse greedy Gaussian process regression. In

Advances in Neural Information Processing Systems 13, pages 619–625. MIT Press.

12, 16, 94

Snelson, E. (2007). Flexible and efficient Gaussian process models for machine learn-

ing. PhD thesis, University of Cambridge. 92, 179

Snelson, E. and Ghahramani, Z. (2006). Sparse Gaussian processes using pseudo-

inputs. In Advances in Neural Information Processing Systems 18, pages 1259–

1266. MIT Press. 12, 17, 19, 42, 43, 68, 89, 92, 94, 99

Stein, M. L. (1999). Interpolation of Spatial Data. Springer-Verlag. 24

Titsias, M. K. (2009). Variational learning of inducing variables in sparse Gaussian

processes. In Proceedings of the 12th International Workshop on AI Stats. xix, 103,

155

Torgo, L. and da Costa, J. P. (2000). Clustered partial linear regression. In Proceedings

of the 11th European Conference on Machine Learning, pages 426–436. Springer.

39

Tresp, V. (2000). A Bayesian committee machine. Neural Computation, 12:2719–

2741. 12, 19, 94

Walder, C., Kim, K. I., and Schölkopf, B. (2008). Sparse multiscale Gaussian process

regression. In 25th International Conference on Machine Learning. ACM Press,

New York. xii, xvi, 21, 89, 95, 97, 103, 151

Weiss, S. M. and Indurkhya, N. (1995). Rule-based machine learning methods for

functional prediction. Journal of Artificial Intelligence Research, 3:383–403. 41

Wiener, N. (1949). Bayesian Learning for Neural Networks. MIT Press. 2

Williams, C. and Barber, D. (1998). Bayesian classification with Gaussian processes.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20:1342–1351.

119

Williams, C. K. I. (1997). Computing with infinite networks. In Advances in Neural

Information Processing Systems 9, pages 1069–1072. MIT Press. 55, 108

191

BIBLIOGRAPHY

Williams, C. K. I. and Rasmussen, C. E. (1996). Gaussian processes for regression. In
Advances in Neural Information Processing Systems 8. MIT Press. 2

Williams, C. K. I. and Seeger, M. (2001). Using the Nyström method to speed up
kernel machines. In Advances in Neural Information Processing Systems 13, pages
682–688. MIT Press. 12, 13, 94

Yang, C., Duraiswami, R., and Davis, L. (2005). Efficient kernel machines using
the improved fast Gauss transform. In Advances in Neural Information Processing

Systems 17, pages 1561–1568. MIT Press. 20

192

	Agradecimientos
	Abstract
	Resumen extendido en español
	Contents
	Symbols and notation
	1 Introduction
	1.1 Gaussian Processes (GPs)
	1.1.1 What is a GP?
	1.1.2 Covariance functions
	1.1.3 Regression using GPs
	1.1.3.1 Likelihood
	1.1.3.2 Prior
	1.1.3.3 Posterior over the latent function
	1.1.3.4 Posterior over the outputs
	1.1.3.5 Computation and storage costs

	1.1.4 Robust regression and classification
	1.1.5 Model selection

	1.2 Summary of previous sparse GP approximations
	1.2.1 Subset of data
	1.2.2 The Nyström method
	1.2.3 Subset of regressors
	1.2.4 Projected Latent Variables
	1.2.5 Sparse pseudo-Input Gaussian Processes
	1.2.6 Other approximations

	1.3 Overview of the rest of the thesis

	2 Sparse Spectrum GPs
	2.1 The model: Sparse Spectrum GP (SSGP)
	2.1.1 SSGP as a Monte Carlo approximation to a full GP
	2.1.2 SSGP as a trigonometric Bayesian model
	2.1.2.1 The sine-cosine model
	2.1.2.2 The cosine-phase model

	2.1.3 Example: the ARD SE covariance case

	2.2 SSGP properties
	2.2.1 Stationary nature
	2.2.2 No location parameters
	2.2.3 Periodicity
	2.2.4 Sparse Fourier Transform

	2.3 Model selection
	2.3.1 SSGP with selectable spectral points
	2.3.2 SSGP with fixed spectral points

	2.4 Experiments
	2.4.1 One-dimensional toy problem
	2.4.2 Elevators and Pole Telecomm data sets
	2.4.3 Kin-40k and Pumadyn-32nm data sets
	2.4.4 Pendulum data set

	2.5 Overfitting versus overconfidence
	2.6 On the effect of learning the phases
	2.7 Summary and conclusions

	3 Marginalized Networks
	3.1 The Marginalized Network (MN) model
	3.1.1 Definition
	3.1.2 Marginalized Cosine Networks (MCN)
	3.1.2.1 Model selection
	3.1.2.2 SSGP as an MCN

	3.1.3 Drawbacks of MNs

	3.2 Bounded-Noise Marginalized Networks (BN-MN)
	3.2.1 Noise bounding
	3.2.2 Obtaining a noise power estimate
	3.2.3 Bounded-Noise Marginalized Cosine Networks (BN-MCN)
	3.2.3.1 Model selection

	3.2.4 Experiments
	3.2.4.1 The effect of noise bounding
	3.2.4.2 Elevators and Pole Telecomm pole data sets
	3.2.4.3 Kin-40k and Pumadyn-32nm data sets
	3.2.4.4 Pendulum data set
	3.2.4.5 Discussion

	3.3 Marginalized Network Mixtures (MNmix)
	3.3.1 Combining MNs
	3.3.1.1 MN mixture model and matching moments Gaussian
	3.3.1.2 MNmix as a posterior GP

	3.3.2 Marginalized Cosine Network Mixtures (MCNmix)
	3.3.3 Experiments
	3.3.3.1 The effect of mixing
	3.3.3.2 Elevators and Pole Telecomm pole data sets
	3.3.3.3 Kin-40k and Pumadyn-32nm data sets
	3.3.3.4 Pendulum data set
	3.3.3.5 Discussion

	3.4 Efficient supervised linear dimensionality reduction
	3.5 Summary and conclusions

	4 Inter-Domain GPs
	4.1 Definition
	4.2 Sparse regression using inducing features
	4.3 On the choice of g(x, z)
	4.3.1 Relation with Sparse GPs using pseudo-inputs (SPGP)
	4.3.2 Relation with Sparse Multiscale GPs (SMGP)
	4.3.3 Frequency Inducing Features GP (FIFGP)
	4.3.4 Time-Frequency Inducing Features GP (TFIFGP)

	4.4 Model selection
	4.5 Experiments
	4.5.1 Elevators and Pole Telecomm data sets
	4.5.2 Kin-40k and Pumadyn-32nm data sets
	4.5.3 Pendulum data set

	4.6 Summary and conclusions

	5 Extensions
	5.1 Muti-Layer Perceptrons (MLPs) as MNs
	5.1.1 Multi-Layer Perceptrons
	5.1.2 MLPs in the infinite limit
	5.1.3 Marginalized MLPs (MMLPs)
	5.1.4 Bounded-Noise Marginalized MLPs (BN-MMLPs)
	5.1.4.1 Experiments

	5.1.5 Marginalized MLP Mixture (MMLPmix)
	5.1.5.1 Experiments

	5.1.6 Discussion

	5.2 Non-Gaussian likelihoods
	5.2.1 Expectation Propagation (EP)
	5.2.1.1 Approximate marginal posterior
	5.2.1.2 The cavity distribution
	5.2.1.3 Obtaining the site parameters
	5.2.1.4 Model selection and inference
	5.2.1.5 Summary of the procedure

	5.2.2 EP for sparse GP models
	5.2.2.1 Posterior updates
	5.2.2.2 Model selection and inference
	5.2.2.3 Summary of the procedure

	5.3 Sparse Robust Regression
	5.3.1 Sparse GP models with Laplace noise
	5.3.2 Robust BN-MCN
	5.3.3 Experiments
	5.3.4 Discussion

	5.4 Classification
	5.4.1 GP classification
	5.4.2 Sparse GP classification
	5.4.3 FIFGP for Classification (FIFGPC)
	5.4.4 Experiments
	5.4.5 Discussion

	5.5 Summary and conclusions

	6 Conclusions and further work
	6.1 Contributions
	6.2 A comprehensive comparison of the new techniques
	6.3 Further work

	A Matrix algebra
	A.1 Matrix inversion lemma
	A.2 Matrix determinant lemma
	A.3 The Cholesky factorization
	A.4 Matrix derivatives

	B Gaussian identities
	B.1 Multivariate Gaussian distribution
	B.2 Marginal and conditional distributions
	B.3 Integral of the product of two Gaussians
	B.4 Gaussian likelihood with linear parameter
	B.5 Linear transformations
	B.6 Generation of random samples

	C Mathematical proofs
	C.1 Rectangular-polar coordinate conversion
	C.2 Convergence of SSGP-fixed to a full GP for infinite bases
	C.3 Convergence of MCN-fixed to a full GP for infinite bases

	D Model implementation
	D.1 Full GP
	D.2 Sparse Spectrum GP
	D.3 Marginalized Networks (also Bounded Noise and Network Mixture cases)
	D.4 Inter-Domain GP
	D.5 EP for sparse models

	E Model log-evidence derivatives
	E.1 Length-scale and power hyperparameters
	E.2 MNs log-evidence derivatives
	E.2.1 SSGP design matrix derivatives
	E.2.2 MCN design matrix derivatives (also BN-MCN, MCNmix)
	E.2.3 MMLP design matrix derivatives (also BN-MMLP, MMLPmix)

	E.3 Inter-Domain GP log-evidence derivatives
	E.3.1 TFIFGP prior covariance derivatives (also FIFGP)
	E.3.2 SPGP ARD MLP prior covariance derivatives

	E.4 Non-Gaussian log-evidence derivatives
	E.4.1 Log-evidence derivatives for IDGP with non-Gaussian likelihood
	E.4.1.1 FIFGPC log-evidence derivatives

	E.4.2 Log-evidence derivatives for MNs with non-Gaussian likelihood
	E.4.2.1 Robust BN-MCN log-evidence derivatives

	E.5 Full GP log-evidence derivatives

	F Code
	Bibliography

