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1 Introduction

Functional data have great —and growing— importance in Statistics. Most of the classical tech-

niques for the finite- and high-dimensional frameworks have been adapted to cope with the infinite

dimensions, but due to the curse of dimensionality, new and specific treatments are still required.

As with other type of data, statisticians must supervise different steps —registration, missing data,

representation, transformation, typicality— and tackle different tasks —modelization, discrimi-

nation or clustering, among others. In practice, curves can neither be registered continuously

nor at infinite points. Then, techniques dealing with high-dimensional data can sometimes be

applied: Hastie et al. (1995), for example, adapt the discriminant analysis to cope with many

highly correlated predictors, “such as those obtained by discretizing a function”.

Among the approaches specifically designed for functional data classification, the following

project the data into a finite-dimensional space of functions and therefore work with the coef-

ficients; this technique is called filtering. James and Hastie (2001) model the coefficients with

“Gaussian distribution with common covariance matrix for all classes, by analogy with LDA [lin-

ear discriminant analysis]”; their classification minimizes the distance to the group mean. The

classification method of Hall et al. (2001) maximizes the likelihood, and although they propose a

fully nonparametric density estimation, in practice multivariate Gaussian densities are considered,

leading to quadratic discriminant analysis. Biau et al. (2003) apply k-nearest neighbour to the

coefficients, while Rossi and Villa (2006) apply support vector machines. Berlinet et al. (2008)

extend the approach of Biau et al. (2003) to wavelet bases and to more general discrimination

rules. The following proposals are designed to make direct use of the continuity of the functional

data. Ferraty and Vieu (2003) classify new curves in the group with the highest posterior proba-

bility of membership kernel estimate. On the other hand, López-Pintado and Romo (2006) also

take into account the continuity feature of the data and propose two classification methods based

on the notion of depth for curves; in their first proposal new curves are assigned to the group with

the closest trimmed mean, while the second method minimizes a weighted average distance to

each element in the group. Abraham et al. (2006) extend the moving window rule for functional

data classification. Nerini and Ghattas (2007) classify density functions with functional regres-

sion trees. Báıllo and Cuevas (2008) provide some theoretical results on the functional k-nearest

neighbour classifier, and suggest —as a partial answer— that this method could play the same

central role for functional data as Fisher’s method for the finite-dimensional case. To use only

the most informative parts of the curves, Li and Yu (2008) have proposed a new idea: they use

F-statistics to select the place where linear discriminant analysis is applied into small intervals,

providing an output that is used as input in a final support vector machines step.

There are several works addressing the unsupervised classification or clustering problem. Abra-

ham et al. (2003) fit the functional data by B-splines and apply k-means on the coefficients. James

and Sugar (2003) project the data into a finite-dimensional space and consider a random-effects
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model for the coefficients; their method is effective when the observations are sparse, irregularly

spaced or occur at different time points for each subject. The continuity nature of the data is

used, in a more direct form, by the following works. The proposal of Tarpey and Kinateder

(2003) classifies using a k-means algorithm over the probability distributions. A hierarchical de-

scending procedure, using heterogeneity indexes based on modal and mean curves, is presented in

Dabo-Niang et al. (2006). Impartial trimming is combined with k-means in Cuesta-Albertos and

Fraiman (2007).

Functional data can be transformed in several ways. After the registration, spatial or temporal

alignments are sometimes necessary; references on this topic are Wang and Gasser (1997), Wang

and Gasser (1999) and Ramsay and Silverman (2006). On the other hand, Dabo-Niang et al.

(2007) use a distance invariant to small shifts. Examples of centering, normalization and derivative

transformations are found in Rossi and Villa (2006). The objective of the transformations is to

highlight some features of the data and to allow the information to be used more efficiently.

For this kind of data, when they are smooth enough, the most important transformation is the

derivation. Since the different derivatives can contribute new information, a possible combination

of them —or their information— should be taken into account. Mathematical Functional Analysis

has been working with such combinations for a long time, mainly through some norms (in norm

and Sobolev spaces), and Ramsay and Silverman (2006) find them frequently as a consequence of

model adjustments or system properties (for Canadian weather stations data, melanoma data or

lower lip movement data).

In order to obtain semimetrics, instead of metrics, Ferraty and Vieu (2006) consider derivatives

(one at a time) in the distances. This implies theoretical advantages —throughout the topological

structure induced by the semimetric— in the small ball probability function, providing a new way

to deal with the curse of dimensionality.

We transform the functional data classification problem into a classical multivariate data classi-

fication problem. While the filtering techniques encapsulate the functional information into a

set of coefficients, we construct a lineal combination of variables and coefficients. Given the

variables, the linear discriminant analysis determines the combination. Our proposal is based

on the interpretation as variables of the distances between a new curve and the transformed and

untransformed functional data. On the one hand, the classification can be improved, and, on

the other hand, the coefficients of the combination provide information about the importance of

each data transformation. When a nonnegativeness condition is applied to the coefficients, the

combination (discriminant function) can be interpreted as the difference of measurements with

a weighted distance. This metric automatically becomes a semimetric when the importance of

the distance to the untransformed data is null or not significant; but the user can decide, by

considering as input only the derivatives, that the methods output necessarily a semimetric.

The paper is organized as follows. In section 2 the classification method is presented and

described, from the optimization problem to the classification algorithm. In section 3, our proposal
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is evaluated with several simulation exercises. Two real data sets are classified in section 4. Finally,

in section 5 a summary of conclusions is given.

2 Classification Method

2.1 Motivation

Let X = (X1, . . . , Xp)
t be a random vector with mean µX = (E[X1], . . . ,E[Xp])

t and covariance

matrix ΣX = (σij) = (cov[Xi, Xj]) = E[(X − µX)(X − µX)t]; when there are P (k), k = 1, . . . , K,

populations where the vector distribution is X(k) = (X
(k)
1 , . . . , X

(k)
p )t, with parameters µ

(k)
X and

Σ
(k)
X , respectively, capturing the differences between the groups from the distribution of X is a

subject of great interest.

On the other hand, it is frequently convenient or necessary to summarize the information

of a vector in a shorter one; that is, to consider Y = (Y1, . . . , Yq)
t, with q < p, instead of

X = (X1, . . . , Xp)
t.

The previous two tasks can be done simultaneously via the following multiple transformation,

where the coefficients can be interpreted as weights (in the sense explained in section 2.2.3):

Y
(k)
j = aj1X

(k)
1 + . . .+ ajpX

(k)
p , j = 1, . . . , q, (1)

or, in matrix notation,

Y(k) = AX(k), (2)

where A is the q × p matrix of the coefficients. Notice that A is independent of k, that is,

independent of the population. The superscript (k) has been maintained in the notation to

highlight that the new vector Y also has a different distribution in each population, and that the

election of A must preserve or increase this difference so that Y is suitable for discrimination.

The covariance matrix of Y(k) is Σ
(k)
Y = AΣ

(k)
X At.

Let us consider, for each population k, the sample

(x
(k)
1 , · · · ,x(k)

nk
) =


x
(k)
11 · · · x

(k)
nk1

...
. . .

...

x
(k)
1p · · · x

(k)
nkp

 , k = 1, . . . , K, (3)

where x
(k)
j , the j-th column of the matrix, contains the j-th element of the sample, and n =∑K

k=1 nk. In the following subsections some known theory of this multivariate framework is given

in order to motivate Fisher’s method criterion.

2.1.1 Parameter Estimation

The parameters of the distributions can be estimated from samples as follows. The quantity

x
(k)
i = n−1k

∑nk

j=1 x
(k)
ij estimates E(X

(k)
i ), while the quantity x(k) = n−1k

∑nk

j=1 x
(k)
j estimates µ

(k)
X .
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The matrixes Σ̂(k)
x = n−1k

∑nk

j=1(x
(k)
j − x(k))(x

(k)
j − x(k))t and S(k)

x = nk

nk−1
Σ̂(k)

x estimate Σ
(k)
X with

and without bias, respectively. The covariance matrix Σ
(k)
Y is estimated, with and without bias,

respectively, by Σ̂(k)
y = AΣ̂(k)

x At and S(k)
y = AS(k)

x At.

When Σ
(k)
X = ΣX for all k, the matrix Σ̂x =

∑K
k=1

nk

n
Σ̂(k)

x estimates ΣX with bias, while an

unbiased estimator is Sx = n
n−K Σ̂x.

2.1.2 Variability Information

Information about the within- and between-group variabilities are provided, respectively, by the

within-class scatter matrix

W =
K∑
k=1

nk∑
j=1

(x
(k)
j − x(k))(x

(k)
j − x(k))t, (4)

and the between-class scatter matrix

B =
K∑
k=1

nk(x
(k) − x)(x(k) − x)t, (5)

where x = n−1
∑K

k=1 nkx
(k) is the global mean. The total scatter matrix,

T =
K∑
k=1

nk∑
j=1

(x
(k)
j − x)(x

(k)
j − x)t, (6)

expresses the total variability and is the sum of the previous quantities, W + B = T.

These three matrixes are symmetric by definition. In addition, W is full rank and positive

definite, while B is positive semidefinite.

Remark 1: The discriminant analysis is a supervised classification technique where the member-

ship information is exploited through these variability matrixes.

Remark 2: An important observation is that from definition (4) it holds that

W =
K∑
k=1

nkΣ̂
(k)

x = (n−K)Sx. (7)

This implies that both matrixes, W and Sx, could be used in the statements of this document.

A positive constant factor does not change the optimization problems that will be considered.

Nevertheless, we shall use W since it maintains its meaning as variability matrix, while the

matrix Sx makes sense as an estimator only under the fulfilment of the equal group variability

assumption (homoscedasticity).

2.1.3 Splitting Criterion

Given a unique sample with elements of both populations, minimizing a functional of W or

maximizing a functional of B is a reasonable criterion for splitting the sample from the information

provided by the vector x. Many techniques are based on this idea.
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2.1.4 Case q = 1: One Function

Some methods in the literature choose —with different criteria— the linear combinations y
(k)
j one

at a time, so the case q = 1 is specially considered therefore:

y(k) = a1x
(k)
1 + . . .+ apx

(k)
p = atx(k), (8)

with a = (a1, . . . , ap)
t. For this new compound variable y(k) = atx(k) and (s

(k)
y )2 = atS(k)

x a, where

S(k)
x is the within-group sample covariance matrix. For classifying purposes, the variable y(k) must

discriminate as much as possible. Following the idea of the above-mentioned splitting criterion,

the interest is in finding a so as to minimize the within-group dispersion,

Wy =
K∑
k=1

nk∑
i=1

(y
(k)
i − y(k))(y

(k)
i − y(k))t

=
K∑
k=1

nk∑
i=1

(atx
(k)
i − atx(k))(atx

(k)
i − atx(k))t

=
K∑
k=1

nk∑
i=1

at(x
(k)
i − x(k))(x

(k)
i − x(k))ta

= at

[
K∑
k=1

nk∑
i=1

(x
(k)
i − x(k))(x

(k)
i − x(k))t

]
a = atWa, (9)

or to maximize the between-group dispersion,

By =
K∑
k=1

nk(y
(k) − y)(y(k) − y)t

=
K∑
k=1

nk(a
tx(k) − atx)(atx(k) − atx)t

=
K∑
k=1

nka
t(x(k) − x)(x(k) − x)ta

= at

[
K∑
k=1

nk(x
(k) − x)(x(k) − x)t

]
a = atBa. (10)

Then, the election of a can be formulated as an optimal weighting problem.

2.2 The Optimization Problem

Fisher’s proposal is based on a tradeoff criterion between the two previous ones, as it maximizes

the —sometimes termed— generalized Rayleigh quotient : λ = By/Wy. To add each consecu-

tive compound function, this method also maximizes this quantity but with the imposition of
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incorrelation with the previous combination. Another interesting interpretation arises when the

generalized Rayleigh quotient is written as

λ(a) =
By

Wy

=
atBa

atWa
=

at(B + W −W)a

atWa
=

atTa

atWa
− 1. (11)

This decomposition shows that maximizing λ(a) can be interpreted as maximizing the total vari-

ability while minimizing the within-class variability.

Since our procedure is based on the use of Fisher’s discriminant analysis, with one (q = 1)

discriminant function y and several (p ≥ 1) discriminant variables x1, . . . , xp, our optimization

problem consists of finding a such that:

a = argmax {λ(a)} = argmax

{
By

Wy

}
= argmax

{
atBa

atWa

}
. (12)

This is a nonlinear (quadratic) optimization problem. As λ(ca) = λ(a) ∀c ∈ R, c 6= 0, the

solution —when it exists— will not be a unique vector but an infinite family of them, denoted by

E∗λ = {ca | c ∈ R, c 6= 0}.
The analytical resolution of the problem is obtained by solving:

∂λ

∂a
=

2[Ba(atWa)− (atBa)Wa]

(atWa)2
=

2[Ba− λWa)]

atWa
= 0, (13)

so

Ba− λWa = (B− λW)a = 0 (14)

is the eigenequation of the problem; for a nonnull solution to exist, it is necessary that |B−λW| =
0. As W be invertible (not singular),

W−1(B− λW)a = (W−1B− λI)a = 0. (15)

The interest is in the largest eigenvalue of the matrix W−1B. If a is a nonnull eigenvector of λ, so

is any element of E∗λ; that is, the set of eigenvectors is solution of (15). Let us denote the solution

of this optimization problem by the pair (EλF , λF ).

To avoid the arbitrary scale factor and obtain a unique solution, usually a constraint is added:

a = argmax
{
atBa

}
subject to atWa = 1 (16)

so that the solution is (aF , λF ), with atFWaF = 1 and λF = atFBaF . The computes leading to the

explicit expression of aF are given in section 2.3.

As a final general, theoretical comment, when the distributions of X(k) are normal, Fisher’s

approach is optimal in the sense of minimizing the misclassification probability.
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2.2.1 An Additional Constraint

In order to base the classification on a semimetric or on a metric, one version of our proposal adds

another constraint —in fact, several nonnegativity constraints— to the optimization problem:

a = argmax
{
atBa

}
subject to

{
atWa = 1

a ≥ 0
, (17)

where B is the between-class scatter matrix, W is the within-class scatter matrix, a = (a1, . . . , ap)
t,

and a ≥ 0 means ai ≥ 0, for i = 1, . . . , p. This is a nonlinear (quadratic) programming problem

with an equality constraint and nonnegativity constraints. The solution of this new optimization

problem can be represented by the pair (ap, λp), with atpWap = 1, ap ≥ 0 and λp = atpBap.

Although the optimization problem can be solved computationally, section 2.3 contains some

theory on obtaining the explicit expression of ap.

Geometrically, the set Eλ = E∗λ∪{a = 0} is a one-dimensional vectorial subspace of Rp. When

Eλ intersects the nonnegative orthant {a ∈ Rp | a ≥ 0} outside the origin, this last optimization

problem will provide the same solution as those without the nonnegativity constraints.

2.2.2 Case K = 2: Two Populations

We have considered the classification into two populations. It is well-known that this case can be

written as an equivalent linear regression problem; nevertheless, we have not used this interpreta-

tion.

Since

(x(1) − x) =
n2

n
(x(1) − x(2)) (18)

and

(x(2) − x) =
n1

n
(x(2) − x(1)) = −n1

n
(x(1) − x(2)), (19)

the term atBa can be expressed as

atBa = at

(
K∑
k=1

nk(x
(k) − x)(x(k) − x)t

)
a

= at
n1n2

n
(x(1) − x(2))(x(1) − x(2))ta

=
n1n2

n
[at(x(1) − x(2))][at(x(1) − x(2))]t

=
n1n2

n
[at(x(1) − x(2))]2. (20)

Furthermore, when the population covariance matrixes are supposed to be equal, the sample infor-

mation can be combined to estimate the common covariance matrix, and the previous optimization
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problems are equivalent, respectively, to the following ones:

a = argmax

{
[at(x(1) − x(2))]2

atWa

}
(21)

or

a = argmax
{

[at(x(1) − x(2))]2
}

subject to atWa = 1, (22)

and, finally, with our additional restriction,

a = argmax
{

[at(x(1) − x(2))]2
}

subject to

{
atWa = 1

a ≥ 0
. (23)

We have implemented the two last versions. Notice that with this formulation the numerator

highlights the objective of the optimization problem — maximizing the difference between the

means under control of the variability.

2.2.3 Interpretation of the Coefficients

Usually the variables of the vector x have been measured using different scales: localization,

variability or even units of measure. Then, the mathematical solution of the optimization problem

provides values ai not taking into account this fact. The function

y = a1x1 + . . .+ apxp = atx, (24)

with a = (a1, . . . , ap)
t, can, however, be used for classifying.

A possible transformation that can be applied to the previous values is: a translation so that

the axes origin coincide with the global centroid of the samples and an homothecy so that the

coordinates be referred to the standard deviation of each axis. Then,

ỹ = b0 + b1x1 + . . .+ bpxp = b0 + btx, (25)

with b = (b1, . . . , bp)
t, where bi can be interpreted as regression coefficients. When these val-

ues are computed from crude data, they are termed nonstandardized coefficients, that represent

the (absolute) contribution of the variables to the function but are not comparable among them.

Anyway, ỹ is also used for classifying. On the other hand, the typification of variables solves at

the same time the aforementioned scale problems —localization, variability and units—, so if b

is computed from typified —not crude— variables, this vector contents the standardized coeffi-

cients, that represent the relative contribution of the variables to the function and are comparable

among them. Nevertheless, now the function (25) cannot be used for classifying, as the important

information has been lost (in this case b0 = 0, for example).

Our proposal has been described in terms of the function (24) suggested by the optimization

problem; nevertheless, the interpretation of the coefficients —through the figures— has been based

on the function

y = atx = atDD−1x = atDx̃, (26)
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where x̃ = D−1x, with D being the diagonal matrix with elements σ1, . . . , σp, where σi is the

standard deviation of the variable xi. After applying this univariate standardization, the new

variables have variance equal to one:

x̃ = D−1x = (σ−11 x1, . . . , σ
−1
p xp) ⇒ V ar(x̃i) = V ar(σ−1i xi) = 1. (27)

Note that the previous transformation does not change the mean of each variable. Thus, for the

interpretation we have considered the coefficients defined by atD, that is, the quantities

atD = (a1σ1, . . . , apσp). (28)

2.3 The Discriminant Function

For two populations, the resolution of the optimization problem, with and without the classical

constraint (when atWa = 1 or β = 0, respectively), is given at the same time by

0 =
∂

∂a

(
[at(x(1) − x(2))]2

atWa
− β(atWa− 1)

)

=
∂

∂a

(
[at(x(1) − x(2))]2

atWa

)
− β2Wa

=
2at(x(1) − x(2))(x(1) − x(2))atWa− [at(x(1) − x(2))]22Wa

(atWa)2

−β2Wa (29)

so
at(x(1) − x(2))atWa

[at(x(1) − x(2))]2 + β(atWa)2
(x(1) − x(2)) = Wa (30)

and, when W is invertible (not singular),

a =
at(x(1) − x(2))atWa

[at(x(1) − x(2))]2 + β(atWa)2
W−1(x(1) − x(2)). (31)

As at(x(1) − x(2)) and atWa are numbers, it does not matter whether the constraint atWa = 1 is

imposed or not, the solution for the classical linear discriminant analysis is that y is proportional

to (x(1) − x(2))tW−1, and, without loss of generality:

y = atFx = (x(1) − x(2))tW−1x. (32)

Since y ∈ R, it is sometimes written as y = yt = xtaF = xtW−1(x(1) − x(2)) in the literature.

The expression of the discriminant function with our additional constraint, y = atpx, is more

difficult to obtain. We present explicit expressions for some specific easy cases (notice that in this
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work we consider the cases p = 1, 2 or 3). Although we are interested in the K = 2 case, some

of the following calculations are done with the same difficulty for the general K-populations case:

that is, for the general problem (16) instead of the particular one (22). As was mentioned, when

the vectorial subspace Eλ of Rp intersects the nonnegative orthant {a ∈ Rp / a ≥ 0} outside the

origin, that is, when all the components of aF have the same sign, the new discriminant function

will be

y = atpx = αatFx = α(x(1) − x(2))tW−1x, (33)

with α = +1 or α = −1 so that the condition αaF ≥ 0 holds.

In general, when all the components of aF do not have the same sign, formal calculations

are necessary. The objective function —of the optimization problem— and the constraints are

combined in the Lagrangian, and the nonnegativeness is taken into account through the Karush-

-Kuhn-Tucker conditions : 

∂L

∂a
= 0

∂L

∂β
= 0

ai ≥ 0, µi ≥ 0 and µiai = 0

, (34)

where the Lagrangian is

L(a, β, µ) = atBa− β(atWa− 1) + atµ (35)

and µ = (µi, . . . , µp)
t and β are the multipliers. It holds that

∂L

∂a
= 2Ba− β2Wa + µ. (36)

The conditions (34) become

2(B− βW)a = −µ

atWa = 1

ai ≥ 0, µi ≥ 0 and µiai = 0,

(37)

that are a system with 2p + 1 conditions and variables. Giving explicit solution of this system is

only possible in some simple cases.

2.3.1 Case p = 1: One Variable

This case, with only one discriminant variable, is trivial since

λ(a) =
aBa

aWa
=
B

W
= constant. (38)
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2.3.2 Case p = 2: Two Variables

First of all, when two populations are considered, let us denote

W =

(
w11 w12

w21 w22

)
and B =

(
b11 b12

b21 b22

)
,

where by definition w12 = w21 and b12 = b21.

For two discriminant variables, three nonnull subcases arise from the Karush-Kuhn-Tucker

conditions.

(A) Case a1 > 0, µ1 = 0 and a2 = 0. In this case,

(a1) By hypothesis, µ1 = 0 and a2 = 0.

(a2) From atWa = 1 the value a1 = |
√
w−111 | is obtained.

(a3) Finally, 2(B−βW)a = −µ implies that β = w−111 b11 and µ2 = −2(b21−w−111 b11w21)|
√
w−111 |.

The discriminant function, if B− βW is negative semidefinite, would be

yA = atpx = |
√
w−111 |x1. (39)

(B) Case a1 = 0, a2 > 0 and µ2 = 0. In this case,

(b1) By hypothesis, a1 = 0 and µ2 = 0.

(b2) Now, atWa = 1 implies the value a2 = |
√
w−122 |.

(b3) From 2(B− βW)a = −µ the values β = w−122 b22 and µ1 = −2(b12 −w−122 b22w12)|
√
w−122 |

are obtained.

The discriminant function, if B− βW is negative semidefinite, would be

yB = atpx = |
√
w−122 |x2. (40)

(C) Case a1 > 0, µ1 = 0, a2 > 0 and µ2 = 0. In this case,

(c1) By hypothesis µ = 0, the nonnegativity constraint disappears from the Lagrangian and

the objective function is again L(a) = λ(a).

(c2) As (B − βW)a = 0, it is necessary that |B − βW| = 0; this condition implies, since

W is not singular, that

β =
−b±

√
b2 − 4|W||B|
2|W|

, (41)

with b = w12b21 + w21b12 − w11b22 − w22b11. This means that (W−1B− βI)a = 0, and

we are again interested in an eigenvector of an eigenvalue of W−1B. Nevertheless, now

the criterion is not selecting the largest eigenvalue, but selecting the largest one with

eigenvectors verifying the nonnegativity constraint (or nonpositiveness, since the scale

factor is never a problem).
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(c3) Given β, also from (B − βW)a = 0 there will be nontrivial solution if a2 = γa1, or,

equivalently, a1 = γ−1a2 with

γ = −b11 − βw11

b12 − βw12

, or, equivalently, γ = −b21 − βw21

b22 − βw22

, (42)

as |B− βW| = 0.

(c4) Finally, the condition atWa = 1 implies that

a1 = |
√

[w11 + γ(w12 + w21) + γ2w22]−1|, (43)

or, respectively,

a2 = |
√

[γ−2w11 + γ−1(w12 + w21) + w22]−1|, (44)

so the discriminant function, if B− βW is negative semidefinite, would be

yC = atpx = a1x1 + γa1x2, (45)

or, respectively,

yC = atpx = γ−1a2x1 + a2x2, (46)

with γ and β as given above.

Remark 3: In the last computes it has been implicitly supposed that γ 6= 0 and γ 6= ∞.

Nevertheless, it is noteworthy that when γ → 0 or γ → ∞, the discriminant functions of the

cases (A) and (B) arise, respectively, as limit cases of (C). This is how the parameter γ acquires

an important role, since it provides information about each variable importance for classifying

purposes, that is, about each variable discriminant power. As a1 −→ |
√
w−111 | when γ → 0 and

a2 → |
√
w−122 | when γ →∞, respectively, then

yC −→ yA

γ→0
and

yC −→ yB

γ→∞
. (47)

Remark 4: This simple case, p = 2 (two variables), can be used to understand better the meaning

of the within-class scatter matrix. By definition,

W =
K∑
k=1

nkΣ̂
(k)
x =

K∑
k=1

nk

(
σ̂
(k)
ij

)
=

(
K∑
k=1

nkσ̂
(k)
ij

)
, (48)

where σ̂
(k)
ij = n−1k

∑nk

h=1(x
(k)
hi − x

(k)
i )(x

(k)
hj − x

(k)
j ). Then, for K populations,

W = (wij) =

(
K∑
k=1

nk∑
h=1

(x
(k)
hi − x

(k)
i )(x

(k)
hj − x

(k)
j )

)
, (49)

and, for two populations and two variables,

W =

(
w11 w12

w21 w22

)
=

(
n1σ̂

(1)
11 + n2σ̂

(2)
11 n1σ̂

(1)
12 + n2σ̂

(2)
12

n1σ̂
(1)
21 + n2σ̂

(2)
21 n1σ̂

(1)
22 + n2σ̂

(2)
22

)
. (50)
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Remark 5: From the Karush-Kuhn-Tucker conditions of the cases p = 3 or p = 4, several

subcases would arise after some work, providing explicit expressions for ap under some conditions

on the samples. Nevertheless, since it has been proved that there are no formula for the solution

of a five-degree general polinomial equation, for the cases p ≥ 5 it seems impossible to find —in

this way— the explicit expressions for ap.

2.4 The Classification

Geometrically, the classical linear discriminant analysis projects the data into one-dimensional

vectorial subspaces. For the first direction, this operation is analytically done by the y = atFx

operation; the multivariate vector x is projected by the (x(1) − x(2))tW−1 premultiplication. The

method classifies a new element in the population k as follows:
k = 1 if y > 1

2
(x(1) − x(2))tW−1(x(1) + x(2))

k = 2 otherwise

, (51)

where the value 1
2
(x(1)− x(2))tW−1(x(1) + x(2)), the cutoff point, is the projection of the midpoint

between the two population sample averages, 1
2
(x(1) + x(2)), into the same subspace.

The same ideas apply to the solution obtained with the nonnegativity constraint. Geometri-

cally, the condition a ≥ 0 restricts the possible directions into which the data should be projected.

We also determine the cutoff point by projecting 1
2
(x(1) + x(2)) with y = atpx, that is, via the atp·

premultiplication. The method classifies a new element in the population k as follows:
k = 1 if y > 1

2
atp(x

(1) + x(2))

k = 2 otherwise

, (52)

where the value 1
2
atp(x

(1) + x(2)) is the adjusted cutoff point. Notice that for the particular case

(33) the classification is just the same as that of the classical discriminant analysis.

Thus, for both y = atFx and y = atpx the classification of a multivariate point is done by the

simple comparison of its projection with the projection of the semisum of the group means. The

calculations with simulated and real data show that the classification provided by the two discrim-

inant functions is similar, while the nonnegativity restriction adds some theoretical advantages.

Remark 6: The use of data and the previous optimization problem provide a value for a. Then,

if there is interest in the stochastic character of the vectors X and Y (see the motivation at the

beginning of this section), the following discriminant function

Y = Y (X) = atFX = (x(1) − x(2))tW−1X (53)

and classification rule{
k = 1 if Y > 1

2
(x(1) − x(2))tW−1(x(1) + x(2))

k = 2 otherwise
(54)
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can be considered instead of (24) and (51), where X and Y are random variables again. This

can be interpreted as if some population information were unknown and the use of samples would

have allowed inferring it.

2.5 Our Discriminant Variables

In order to facilitate understanding of the classification criterion, so far we have used generic

discriminant variables x1, . . . , xp. Now we define the specific variables and explain how to construct

them from the functional data.

If f and g are functions in Cp−1[0, 1], that is, the set of functions defined in [0, 1], being

(p− 1)-times differentiable and with continuous (p− 1)-derivative; then the quantities d(f i), gi)),

for i = 0, 1, . . . , p− 1, are numeric when d(·, ·) is a distance and the superscript i) denotes the i-th

derivative (i = 0 represents no differentiation).

Assuming that there are two populations, K = 2, with models f(t) and g(t), and let f1, . . . , fnf

and g1, . . . , gng be samples of these populations, respectively; in this situation, for a function h(t)

we define the variables

xi = d(hi−1), f
i−1)

)− d(hi−1), gi−1)), (55)

for i = 1, 2, . . . , p, where f
i−1)

= 1
nf

∑nf

j=1 f
i−1)
j = ( 1

nf

∑nf

j=1 fj)
i−1) and gi−1) = 1

ng

∑ng

j=1 g
i−1)
j =

( 1
ng

∑ng

j=1 gj)
i−1). That is, xi is the difference between the distances from hi−1) to the (i − 1)-th

derivative of the population means.

With these definitions, the discriminant analysis will provide information about the usefulness

of each derivative for classification purposes.

2.5.1 Standardization and Coefficients

At this point, it is advisable to study the relation between the variables just defined and the

interpretation of the coefficients provided by the optimization problem (see section 2.2.3).

Supposing that a variable t and a function f(t) are not dimensionless (scalars without units of

measure), nor is df/dt. Besides, the derivative has a different dimension than its original function,

as the term df has the same units than f while the term dt has not them. As a consequence, all

the variables defined in (55) are dimensionless only when so are t and f .

Anyway, for classification and descriptive purposes the transformation and the standardization

of the data must be applied, respectively, as explained in section 2.2.3. In our methodology this

could be done —tried doing— over the functions (definitions of mean and standard deviation for

functional data are given, for example, in Ramsay and Silverman [2006]), but it is preferable to

operate over the multivariate data, as they are just in the input of the multivariate optimization

problem and it is not sure that the changes were preserved in the functional-to-multivariate data

transformation step.
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2.6 The Algorithm

Let f1, . . . , fnf
and g1, . . . , gng be samples of functions from the two populations, then:

1. From functional to multivariate data. For each fj, j = 1, . . . , nf , the following vector

is constructed

x
(f)
j = (x

(f)
j1 , . . . , x

(f)
jp )t, (56)

where x
(f)
ji = d(f

i−1)
j , f

i−1)
)− d(f

i−1)
j , gi−1)). These vectors form the multivariate sample

(x
(f)
1 , · · · ,x(f)

nf
) =


x
(f)
11 · · · x

(f)
nf1

...
. . .

...

x
(f)
1p · · · x

(f)
nfp

 . (57)

The multivariate sample (x
(g)
1 , · · · ,x(g)

ng ) is defined in an analogous way.

2. The discriminant function. These samples are used as input in the optimization problem

to obtain the discriminant function:

y(x) = atx, (58)

where x = (x1, . . . , xp)
t, and a = aF or a = ap depending on whether or not the additional

constraint is imposed.

3. The allocation of new curves. To classify a new curve h, its multivariate vector is

constructed:

x(h) = (x
(h)
1 , . . . , x(h)p )t, (59)

where x
(h)
i = d(hi−1), f

i−1)
) − d(hi−1), gi−1)). Finally, the value y(x(h)) is used to assign the

curve h to one of the two populations, as mentioned in subsection 2.4.

Remark 7: As a distance measurement, d(·, ·), between two functions we have taken the L1

distance (and norm) that, for the functions g and f , is defined as:

d(f, g) = ‖f − g‖1 =

∫ 1

0

|f − g|. (60)

But other distances can be used following the same approach.

Several versions of this algorithm have been implemented and compared in the following sec-

tions.
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2.7 Weighted Semidistances or Distances

Let us substitute, for the function h, the discriminant variables into the expression of the discrim-

inant function:

y(x(h)) = atx(h) =

p∑
i=1

aix
(h)
i

=

p∑
i=1

aid(hi−1), f
i−1)

)−
p∑
i=1

aid(hi−1), gi−1)). (61)

For the linear combinations
∑p

i=1 aid(hi−1), f
i−1)

) and
∑p

i=1 aid(hi−1), gi−1)) to take nonnegative

values, our additional restrictions (ai ≥ 0) is necessary; so only the function y = atpx —not

the classical linear discriminant function— can be seen as providing a classification based on the

minimization of a weighted distance.

As in a space of functions the derivation can imply a loss of information, then

ρ(h, f) =

p∑
i=1

aid(hi−1), f
i−1)

) and ρ(h, g) =

p∑
i=1

aid(hi−1), gi−1)), (62)

with ai ≥ 0 can be interpreted as measurements with a weighted distance if and only if a1 6=
0; otherwise, it can be interpreted as a measurement with a weighted semidistance, since two

functions can differ in a constant and verify ρ(f, g) = 0 when a1 = 0. An important general

property of ρ(·, ·) is that it takes into account at the same time the functions, their smoothness,

their curvature, etcetera.

Similarly, when the distance d(·, ·) is defined from a norm, that is,

d(f, g) = ‖f − g‖, (63)

the expression (62) can be seen as a weighted norm if, an only if, a1 6= 0, or as a weighted seminorm

otherwise.

3 Simulation Results

In order to illustrate the behavior of our two procedures, we perform a Monte Carlo study using

three different settings. In all cases we consider two functional populations in the space C[0, 1] of

continuous functions defined in the interval [0, 1]. The methods used to classify are the following:

• Distance to the sample functional mean calculated using the functions in the training set

(DFM0 ). That is, using the rule
k = 1 if x1 < 0

k = 2 otherwise

. (64)
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• Distance to the sample functional mean calculated using the first derivatives of functions in

the training set (DFM1 ). That is, using the rule
k = 1 if x2 < 0

k = 2 otherwise

. (65)

• Weighted indicator (WI ) obtained using our first procedure. Using the algorithm with

x = (x1, x2)
t and without the nonnegativity constraint.

• Weighted distance (WD) obtained using our second procedure. Using the algorithm with

x = (x1, x2)
t and the nonnegativity constraint.

We generate 200 functions from each population. The training set consists of the first 100

functions from each population, and the remaining 100 observations from each sample are the

testing set. For each setting we run 1000 replications, so the results are based on 1000 estimates

of the misclassifications rates.

Now, we describe the three considered settings.

Simulation setting 1: We consider the following two functional data generating

models:

Model B1 fi(t) = t+ui, where ui is a uniform random variable on the interval (0, 1).

Model R1 gi(t) = t + vi, where vi is a uniform random variable on the interval

(1/2, 3/2).

Remark 8: Figure 1(a) displays a random sample for these two models. The sample functional

mean for model B1 is marked by circles and for model R1 by squares. Notice that models B1 and

R1 differ in level when ui takes value in (0, 1/2) and vi in (1, 3/2) but they coincide when ui and

vi take values in (1/2, 1). This intersection causes a theoretical misclassification rate equal to 25%

when the method DFM0 is used. Moreover, the first derivative of functions fi and gi coincides,

so method DFM1 will fail in this setting.

Simulation setting 2: We consider the following two functional data generating

models:

Model B2 fi(t) = (t + ui)
2, where ui is a uniform random variable on the interval

(0, 1).
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Model R2 gi(t) = t2+vi, where vi is a uniform random variable on the interval (0, 1).

Remark 9: Figure 1(b) displays a random sample for these two models. The sample functional

mean for model B2 is marked by circles and for model R2 by squares. Notice that models B2 and

R2 generate functional observations that cross one another; but if we consider the first derivative,

f
1)
i and g

1)
i , then they have significant level differences. The theoretical misclassification rate is

equal to 12.5% when the method DFM1 is used.

Simulation setting 3: We consider the following two functional data generating

models:

Model B3 fi(t) = (t + ui)
2 + 5/4, where ui is a uniform random variable on the

interval (0, 1).

Model R3 gi(t) = (t + vi)
2, where vi is a uniform random variable on the interval

(1/2, 3/2).

Remark 10: Figure 1(c) displays a random sample for these two models. The sample functional

mean for model B3 is marked by circles and for model R3 by squares. Notice that models B3 and

R3 also generate functional observations that cross one another (the term +5/4 in f is added in

order to maximize the crossing) but if we consider the first derivatives, f
1)
i and g

1)
i , then these

have level differences in the same way as fi and gi generated by models B1 and R1, respectively.

So, we have a theoretical misclassification rate equal to 25% when the method DFM1 is used.

In figure 2 we present the results for the first simulation setting. Figure 2(a) gives the boxplots

of the misclassification rates estimates for the four methods. As expected, the method DFM0 has

a misclassification rate of around 25% and the method DFM1 is useless in this setting. Figures

2(b) and 2(c) give the boxplots of the estimated weights for methods WI and WD. Both methods

give positive weights for the variable associated to f and g and zero weights for the variable

associated to f 1) and g1). Notice that in this case the variable Df 1) −Dg1) has variance equal to

zero since f
1)
i = g

1)
i = 1 for all i. In this simulation setting, methods DFM0, WI and WD have

the same performance.

In figure 3, we present the results for the second simulation setting. Figure 3(a) gives the

boxplots of the misclassification rates estimates for the four methods. In this case, method DFM0

is outperformed by method DFM1, which obtains misclassification rates around the expected

12.5%. Method WD has a performance similar to DFM1, and both are outperformed by method

WI. Figures 3(b) and 3(c) give the boxplots of the estimated weights for methods WI and WD.

In this case, method WI gives positive weights for the variable associated to f and g and negative
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Figure 1: Plots of samples from the three simulation settings: (a) Functions following models B1

and R1; (b) Functions following models B2 and R2; (c) Functions following models B3 and R3.

19



DFM0 DFM1 WI WD
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
is

cl
a

ss
ifi

ca
tio

n
 r

a
te

s

Df − Dg Df’ − Dg’

0

0.5

1

1.5

2

2.5

3

3.5

4

W
e

ig
h
ts

 (
W

I)

Df − Dg Df’ − Dg’

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

W
e
ig

h
ts

 (
W

D
)

(a)

(b) (c)

Figure 2: First simulation setting results: (a) Boxplots of the misclassification rates for methods

DFM0, DFM1, WI and WD ; (b) Boxplots of the weights obtained for method WI ; (c) Boxplots

of the weights obtained for method WD.

weights for the variable associated to f 1) and g1), so the classification rule with WI is not a

distance. Once we impose the positiveness on the weights, method WD gives positive weights for

the variable associated to f 1) and g1) and zero weights for the variable associated to f and g. So,

the classification rule with WD is a semidistance. In this setting and in the previous one, method

WD selects the variable that has lower misclassification rates.

In figure 4, we present the results for the third simulation setting. Figure 4(a) gives the boxplots

of the misclassification rates estimates for the four methods. In this case, method DFM0 is again

outperformed by method DFM1, which obtains misclassification rates around the expected 25%.

Both methods perform worse than the weighted procedures, WI and WD ; method WI has the

best performance. Here, the improvement comes from the combination of variables associated

to functions and their first derivatives. Figures 4(b) and 4(c) give the boxplots of the estimated

weights for methods WI and WD. In this case, method WI gives positive weights for the variable

associated to f and g in more than 25% of the replications and negative weights in the remaining

ones. In all replications, WI gives negative weights for the variable associated to f 1) and g1). For

those replications where there are sign differences, the classification rule with WI is not a distance.

This “inconvenience” is avoided by using the method WD. In this setting, the classification rule

with WD is a semidistance in all cases and a distance in 75% of the replications.
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Figure 3: Second simulation setting results: (a) Boxplots of the misclassification rates for methods

DFM0, DFM1, WI and WD ; (b) Boxplots of the weights obtained for method WI ; (c) Boxplots

of the weights obtained for method WD.
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Figure 4: Third simulation setting results: (a) Boxplots of the misclassification rates for methods

DFM0, DFM1, WI and WD ; (b) Boxplots of the weights obtained for method WI ; (c) Boxplots

of the weights obtained for method WD.
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4 Real Data Examples

In this section we illustrate the performance of our proposal in two benchmark data sets: (a)

Spectrometric data set, consisting of 215 near-infrared spectra of meat samples obtained by a

Tecator Infratec Food and Feed Analyzer; (b) Growth curves data set, consisting of the height (in

centimeters) of 44 girls and 39 boys measured at a set of 31 ages from 1 to 18 years old.

In both examples, the original data was smoothed using a cubic smoothing spline with smooth-

ing parameter equal to 1/(1 +h3/6), where h is the average spacing of the data sites (see De Boor

[1978]).

In this section, the nomenclature for the different versions of the algorithm is that used in the

previous section. Furthermore,

• DFM2 denotes de classification with the distance to the sample functional mean calculated

using the second derivatives of functions in the training set. That is, using the rule
k = 1 if x3 < 0

k = 2 otherwise

. (66)

• Now the weighted approaches consider up to the second derivative by taking x = (x1, x2, x3)
t.

4.1 Spectrometric Data

The classification problem in the spectrometric data set consists in separating meat samples with

a high fat content (more than 20%) from samples with low fat content (less than 20%). Among the

215 samples, 77 have high fat content and 138 have low fat content. Figure 5 shows a sample of

these 100-channel absorbance spectrum in the wavelength 850–1050 nm and the first and second

derivatives.

Among others, Ferraty and Vieu (2003), Rossi and Villa (2006) and Li and Yu (2008) had

considered the original spectrum and its derivatives for classification purpose and had concluded

that the second derivative produces the lower misclassification rates.

In order to evaluate the performance of our proposal, we will split the data set into 120 spectra

for training and 95 spectra for testing as in Rossi and Villa (2006) and Li and Yu (2008). The

classification results shown in figure 6 are based on 1000 replications. Methods WI and WD

obtain a mean misclassification rate equal to 2.02% and 2.32%, respectively. They improve the

classification rule based on the second derivative, DFM2, which obtains 3.70%.

In this example, method WI gives positive weights to the variable associated with f and g,

and negative weights for the variables associated with f 1) and g1) and with f 2) and g2); so the

classification rule with WI is not a distance. Method WD gives positive weights to the variables

associated with f 1) and g1) and with f 2) and g2), and zero weights for the variable associated with
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Figure 5: Sample from the spectrometric data set (wavelengths 850–1050 nm): (a) Spectrum; (b)

First derivative; (c) Second derivative.

f and g. Notice that both procedures give the higher weights to the variable associated with f 2)

and g2), which is consistent with the results of Ferraty and Vieu (2003), Rossi and Villa (2006)

and Li and Yu (2008).

The functional support vector machine proposed by Rossi and Villa (2006) obtains 3.28%

(7.5%) using a linear (Gaussian) kernel and the spectra, and a 2.6% (3.28%) using a Gaussian

(linear) kernel and the second derivative of the spectra.

The nonparametric functional method proposed by Ferraty and Vieu (2003) obtains a mean

error of around 2% using the second derivative. Notice that Ferraty and Vieu (2003) use a

training set with 160 spectra. In that setting, our mean misclassification rates are equal to 1.89%

and 2.27%, respectively.

Li and Yu (2008) obtain 3.98%, 2.91% and 1.09% using the raw data, the first derivative and

the second derivative, respectively. Notice that Li and Yu’s method selects the data segments

where the two populations have large differences, and then it combines the linear discriminant as

a data reduction tool and the support vector machine as classifier. Li and Yu’s method has three

tuning parameters — number of segments, the separation among segments and the regularization

parameter of the support vector machine.

If we repeat our procedures using the channels in the wavelengths 1000–1050 nm, then we

obtain 1.49% and 1.30%, using WI and WD, respectively. Figure 7 shows a sample of these

spectrum in the wavelength 1000–1050 nm and the first and second derivatives. This segment,

1000–1050 nm, was obtained by cross-validation through a grid search. The design of a segmenta-
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Figure 6: Spectrometric data set classification results: (a) Boxplots of the misclassification rates

for methods DFM0, DFM1, WI and WD ; (b) Boxplots of the weights obtained for method WI ;

(c) Boxplots of the weights obtained for method WD.

tion approach for selecting more than one segment is beyond the scope of this paper and probably

deserves separate research.

4.2 Growth Data

The classification problem in the growth data set consist of separating samples by sex, taking the

growth curves as variables. Figure 8 shows a sample of these curves, measured in ages ranging from

in [1, 18], and their first and second derivatives. López-Pintado and Romo (2006) had considered

the growth curves (but not their derivatives) for classification purpose.

In order to evaluate the performance of our proposal, we will split the data set into 60 curves

for training and the remaining 33 for testing. The classification results shown in figure 9 are

based on 1000 replications. Weighted methods WI and WD have similar behavior, with means

misclassification rates equal to 3.65% and 3.75%, respectively. They improve the classification rules

based on the raw data, on the first derivative or on the second derivative, which obtain 31.08%,

5.30% and 18.85%, respectively. The best result with the depth-based classification procedure

proposed by López-Pintado and Romo (2006) was 14.86%.

In this example, method WI gives positive weights for the variable associated to f 2) and g2)

and negative weights for the variables associated to f 1) and g1); so the classification rule with WI

is not a distance. Method WD gives positive weights for the variables associated to f and g and
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Figure 7: Sample from the spectrometric data set (wavelengths 1000–1050 nm): (a) Spectrum;

(b) First derivative; (c) Second derivative.
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Figure 8: Sample from the growth data set: (a) Spectrum; (b) First derivative; (c) Second

derivative.
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Figure 9: Growth data set classification results: (a) Boxplots of the misclassification rates for

methods DFM0, DFM1, WI and WD ; (b) Boxplots of the weights obtained for method WI ; (c)

Boxplots of the weights obtained for method WD.

to f 1) and g1); then, the classification rule is a distance.

5 Conclusions

In this paper we have proposed a new approach for discriminating functional data. This method

involves the use of distances to a representative function and its successive derivatives. Our

simulation studies and our applications show that the method performs very well resulting in

small training and testing classification errors. Applications to real data show that our procedure

performs as well as —and in some cases better than— other classifications methods. In addition,

our methodology provides, through the weights, information about the importance of each data

transformation. Finally, some adaptability of our methodology to the different types of functional

data can be achieved by selecting the distance d(·, ·) or the multivariate classification technique.
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