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We formulate necessary and sufficient conditions for a symplectic tomogram of a quantum state to

determine the density state. We establish a connection between the (re)construction by means of sym-

plectic tomograms with the construction by means of Naimark positive definite functions on the Weyl–

Heisenberg group. This connection is used to formulate properties which guarantee that tomographic

probabilities describe quantum states in the probability representation of quantum mechanics.

1. Introduction

It has been shown recently ([1–3], see also [4]) how to describe

quantum states by using a standard positive probability distribu-

tion called a symplectic probability distribution or symplectic to-

mogram. The symplectic tomogram W (X,µ,ν) is a nonnegative

function of the random position X measured in reference frames in

phase space with rotated and scaled axes q → µq, p → νp where

µ = eλ cos θ , ν = e−λ sin θ , θ is the angle of rotation and eλ is the

scaling parameter.

The symplectic tomographic probability distribution W (X,µ,ν)

contains complete information on quantum states in the sense that

for a given wave function ψ(x) or density operator ρ̂ (determining

the quantum state [5,6] in the conventional formulation of quan-

tum mechanics) the tomogram can be calculated.

On the other hand, for a given tomogram W (X,µ,ν) one can

reconstruct explicitly the density operator ρ̂ . It means that for a

given symplectic tomogram of a system with continuous variables

all the properties of the quantum system can be obtained as well

as for a given density operator ρ̂ .

Analogous complete information on the quantum states is con-

tained in the Wigner function [7] W (q, p) which is a real function

on the phase space of the system. The Wigner function is related

to the symplectic tomogram by means of an integral Radon trans-

form [8], however the Wigner function is not definite in sign, it
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takes negative values for some quantum states and cannot be con-

sidered as a positive probability distribution on phase space.

The necessary and sufficient conditions for a real function on

the phase space to describe the Wigner function of a quantum

state were found in [9] where the corresponding properties of the

function under consideration were associated with the so-called h-

positivity condition of a function on the Abelian translation group

on the phase space.

As we have shown elsewhere [10], in this description plays an

important role the Weyl–Heisenberg group and its group of au-

tomorphisms, along with the Abelian vector group which arises

as quotient group of Weyl–Heisenberg group by its central sub-

group.

In this Letter we would like to consider the tomographic de-

scription of quantum mechanics as another picture, on the same

footing as the Schrödinger, Heisenberg or Weyl–Wigner pictures.

To this aim, we have to provide a characterization of symplec-

tic tomograms which stands on its own, without relying on other

pictures. In other terms, we need necessary and sufficient con-

ditions for a function f (X,µ,ν) to be the symplectic tomogram

W (X,µ,ν) of a quantum state.

The strategy to find these conditions is based on Naimark’s

theorem [11] that provides a characterization of positive operator-

valued measures and that allows to characterize functions which

are elements of matrices of group representations.

In particular, we use the result that a function ϕ(g) on a

group G , g ∈ G , which is a diagonal matrix element of a unitary

representation of the group G , has the property of being positive

definite in the sense that the matrix

M jk = ϕ
(

g j g
−1
k

)

(1)
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for any j,k = 1,2, . . . ,N and arbitrary N , is positive definite.

Below we will show that symplectic tomograms can be asso-

ciated with positive definite functions ϕ on the Weyl–Heisenberg

group. Since Naimark’s theorem for positive operator-valued mea-

sures allows to construct and determine uniquely a Hilbert space

and a vector in it representing the function ϕ (using what today is

called the Gelfand–Naimark–Segal (GNS) method) the connection

established below of the symplectic tomograms with positive defi-

nite functions on the Weyl–Heisenberg group yields the necessary

and sufficient condition which we are looking for.

It is worthy to note that this condition can be also studied us-

ing the necessary and sufficient condition for a function to be a

Wigner function [9], but we do not use here the connection of

symplectic tomogram with the Wigner function and provide the

condition for the tomogram independently of any other result con-

cerning Wigner functions.

2. Symplectic tomography

In this section we briefly review the construction of tomo-

graphic probability densities determining the quantum state of a

particle in one degree of freedom [4]. Generalizations to many de-

grees of freedom are also possible. Hereafter, we put h̄ = 1.

Given the density operator ρ̂ of a particle quantum state,

ρ̂ = ρ̂† , Tr ρ̂ = 1, and ρ̂ > 0, the symplectic tomogram of ρ̂ is de-

fined by:

W(X,µ,ν) = Tr
[

ρ̂δ(X 1̂ − µQ̂ − ν P̂ )
]

, X,µ,ν ∈ R. (2)

Here Q̂ and P̂ are the position and momentum operators. The

Dirac delta-function with operator arguments is defined by the

standard Fourier integral,

δ(X 1̂ − µQ̂ − ν P̂ ) =

∫

e−ik(X 1̂−µQ̂ −ν P̂ ) dk

2π
.

The symplectic tomogram W (X,µ,ν) has the properties which

follow from its definition by using the known properties of delta-

function, namely:

i. Nonnegativity:

W(X,µ,ν) > 0 (3)

(this holds by observing that the trace of the product of two

positive operators is a positive number).

ii. Normalization:
∫

W(X,µ,ν)dX = 1. (4)

iii. Homogeneity:

W(λX, λµ, λν) =
1

|λ|
W(X,µ,ν). (5)

However, the three above properties are by no means sufficient

to determine the quantum character of a tomographic function

f (X,µ,ν). For instance, consider

f (X,µ,ν) = exp

(

−
X2

2(µ2 + ν2)

)

5(µ2 + ν2) − X2

√

2(µ2 + ν2)3
. (6)

Despite the uncertainty relations are satisfied by such a function,

f is not a quantum tomogram because 〈 P̂2〉 = 〈Q̂ 2〉 = −1/2, as it

can be checked using

〈

P̂2
〉

=

∫

X2 f (X,µ,ν)|µ=0,ν=1 dX (7)

and analogously for 〈Q̂ 2〉.

On the other hand, it is easy to see that formula (2) has an

inverse [12]:

ρ̂ =
1

2π

∫

W(X,µ,ν)ei(X 1̂−µQ̂ −ν P̂ ) dX dµdν. (8)

Thus the knowledge of the symplectic tomogram W (X,µ,ν)

means that the density operator ρ̂ is also known, more precisely,

can be reconstructed. This correspondence between symplectic to-

mograms W (X,µ,ν) and density operators ρ̂ gives the possibility

to formulate the notion of quantum state using tomograms as the

primary notion. However to make this idea precise, we need to

formulate additional conditions to be satisfied by the function

W (X,µ,ν) which are extra to the conditions (3)–(5) and which

guarantee that by using the inversion formula (8) we get an opera-

tor with all the necessary properties of a density state. The general

recipe to formulate these demands can be given by checking the

nonnegativity condition of the integral (see [4]):

∫

W(X,µ,ν)ei(X 1̂−µQ̂ −ν P̂ ) dX dµdν > 0. (9)

It means that for a given function W (X,µ,ν) satisfying the con-

ditions (3)–(5) one has to check the nonnegativity of the opera-

tor (9), thus if the inequality (9) holds the function W (X,µ,ν) is

the symplectic tomogram of a quantum state, however it must be

realized that this is not an operative procedure.

Below we formulate the conditions for a function W (X,µ,ν)

to be a tomogram of a quantum state avoiding the integrations

in Eq. (9). As anticipated in the introduction, to be able to use

Naimark’s results we have to deal with functions defined on a

group. Thus, we have to show how symplectic tomograms may be

associated with the Weyl–Heisenberg group. In doing this we can

exploit results in [11] where the theorems on properties of diago-

nal matrix elements of unitary representations provide the key to

construct tomograms which represent quantum states.

3. Tomographic probability measures

To get a mathematical formulation of the tomographic picture

we invoke the spectral theory of Hermitian operators, which more-

over will provide us with a probabilistic interpretation of the sym-

plectic tomogram. We start rewriting the formal definition, Eq. (2),

for a quantum tomogram:

W(X,µ,ν) = Tr

[

ρ̂

∫

eik(X 1̂−µQ̂ −ν P̂ ) dk

2π

]

=

∫

eikX Tr
[

ρ̂e−ik(µQ̂ +ν P̂ )
] dk

2π
. (10)

Then we observe that

µQ̂ + ν P̂ = Sµν Q̂ S
†
µν (11)

where

Sµν = exp

[

iλ

2
(Q̂ P̂ + P̂ Q̂ )

]

exp

[

iθ

2

(

Q̂ 2 + P̂2
)

]

, (12)

with

µ = eλ cos θ, ν = e−λ sin θ. (13)

In other words, by acting with the unitary operators Sµν on the

position operator Q̂ we get out the iso-spectral family of Hermi-

tian operators

Xµν = µQ̂ + ν P̂ .
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This family is a symplectic tomographic set [13].

To any operator of this family is associated a projector-valued

measure Πµν on the σ -algebra of Borel sets on the real line:

µQ̂ + ν P̂ =

∫

λdΠµν(λ).

Given any density state ρ̂ , the projector-valued measure Πµν

yields a normalized probability measure mρ,µν on the Borel sets

E ∈ Bo(R) of the real line:

mρ,µν(E) = Tr
[

ρ̂Πµν(E)
]

, mρ,µν(R) = 1. (14)

We recall that mρ,µν(E) is the probability that a measure of the

observable µQ̂ + ν P̂ in the state ρ̂ is in E . All these measures

mρ,µν are absolutely continuous with respect to the Lebesgue

measure dX on the real line, so that densities Vρ(X,µ,ν) may

be introduced such that

mρ,µν(E) =

∫

E

Vρ(X,µ,ν)dX . (15)

We can write

Tr
(

ρ̂e−iλ(µQ̂ +ν P̂ )
)

= Tr
(

ρ̂Sµνe
−iλQ̂ S

†
µν

)

=

∫

e−iλX Vρ(X,µ,ν)dX (16)

so that

W(X,µ,ν) =

∫

eikX Tr
[

ρ̂e−ik(µQ̂ +ν P̂ )
] dk

2π

=

∫

eikX e−ikX ′

Vρ

(

X ′,µ,ν
)

dX ′ dk

2π

=

∫

δ
(

X − X ′
)

Vρ

(

X ′,µ,ν
)

dX ′ = Vρ(X,µ,ν).

(17)

In other words we have shown that the symplectic tomogram

W (X,µ,ν) of a given state ρ̂ is nothing but the density

Vρ(X,µ,ν) of the probability measure associated to the state by

means of the symplectic tomographic set. The tomographic charac-

ter of the family of observables Xµν is contained in the possibility

of reconstructing any state out of the corresponding probability

measures by means of the previous reconstructing formula. By us-

ing Eqs. (16) and (8), we get

ρ̂ =
1

2π

∫

Tr
[

ρ̂ei(µQ̂ +ν P̂ )
]

e−i(µQ̂ +ν P̂ ) dµdν, (18)

moreover

1

2π

∫

Tr
[

ei(µQ̂ +ν P̂ )
]

e−i(µQ̂ +ν P̂ ) dµdν = 1̂. (19)

The presence of the Weyl operators D(µ,ν) = ei(µQ̂ +ν P̂ ) suggests

that we are dealing with projective representations of the Abelian

vector group. We shall take up group theoretical aspects in next

section.

4. A group theoretical description of quantum tomograms

The probabilistic interpretation above allows to consider the to-

mographic description of quantum states as a picture of quantum

mechanics on the same footing as other well-known representa-

tions, like Schrödinger, Heisenberg and Wigner–Weyl for instance.

Thus, to be an alternative picture of quantum mechanics we need

criteria to recognize a function f (X,µ,ν) as a tomogram of a

quantum state. For this, the use of the reconstruction formula to

check if the obtained operator is a density operator would be

unsatisfactory, mainly because this check requires to switch from

tomographic to Schrödinger picture. In other words, we would like

to establish self-contained criteria for a function to be a quantum

tomogram. More precisely, we have to address the following prob-

lem: given a tomogram-like function f (X,µ,ν), that is a function

with the above properties Eqs. (3)–(5) of a tomogram, what are

the necessary and sufficient conditions to recognize f as a quan-

tum tomogram?

To this aim we begin to observe that in the characteristic tomo-

graphic function

Tr
[

ρ̂ei(µQ̂ +ν P̂ )
]

= Tr
[

ρ̂D(µ,ν)
]

(20)

a projective representation of the translation group appears. This

projective representation can be lifted to a true unitary represen-

tation of the Weyl–Heisenberg group (see for instance [10] and ref-

erences therein for a detailed discussion of the subject) by means

of a central extension of the translation group. Such central exten-

sion defines the Weyl–Heisenberg group WH(2) whose elements

are denoted by (µ,ν, t) and the group law reads:

(µ,ν, t) ◦
(

µ′,ν ′, t′
)

=

(

µ + µ′,ν + ν ′, t + t′ +
1

2
ω

(

(µ,ν),
(

µ′,ν ′
))

)

, (21)

where ω((µ,ν), (µ′,ν ′)) = µν ′ −νµ′ denotes the symplectic form

on R
2 . The nontrivial unitary irreducible representations of the

Weyl–Heisenberg group are provided by the expression:

Uγ (µ,ν, t) = Dγ (µ,ν)eiγ t I (22)

where γ is a non-vanishing real number. In what follows we will

set γ = 1. Hence we immediately observe that

Tr
[

ρ̂D(µ,ν)
]

= e−it Tr
[

ρ̂U (µ,ν, t)
]

(23)

where the function Tr[ρ̂U (µ,ν, t)] is of positive type [11].

For convenience we recall the definition of functions of positive

type. Given a group G a function ϕ(g) on G (g ∈ G) is of posi-

tive type, or definite positive, if for any n-tuple of group elements

(g1, g2, . . . , gn) the matrix

M jk = ϕ
(

g j g
−1
k

)

j,k = 1,2, . . . ,n, (24)

is positive semi-definite for any n ∈ N, or in other words, if for

any finite family of elements g1, g2, . . . , gn ∈ G and for any family

of complex numbers ξ1, . . . , ξn , we have
∑n

j,k=1 ξ̄ jξkϕ(g j g
−1
k

) > 0,

for any n.

Moreover, a simple computation shows that given any unitary

representation U (g) of G and a state ρ , Tr[ρ̂U (g)] is a group

function of positive type. Vice versa any positive type group func-

tion ϕ(g) can be written in the form

Tr
[

ρ̂ξU (g)
]

=
〈

ξ,U (g)ξ
〉

, (25)

where U (g) is a unitary representation and ξ is a cyclic vector in

a suitable Hilbert space, obtained for instance by means of a GNS

construction [11].

So, the positivity condition on the matrix introduced in (24) is

a way to affirm that ϕ is associated with a state without making

recourse to a representation.

Thus we can state the required condition:

A tomogram-like function f (X,µ,ν) is a quantum tomo-

gram, i.e., there exists a quantum state ρ̂ such that f (X,µ,ν) =

Tr[ρ̂δ(X 1̂ − µQ̂ − ν P̂ )], if and only if its Fourier transform evalu-

ated at 1 may be written in the form
∫

f (X,µ,ν)ei X dX = e−itϕ f (µ,ν, t), (26)

3



where ϕ f (µ,ν, t) is a positive definite function on the Weyl–

Heisenberg group.

In fact if W is a quantum tomogram, then because of Eqs. (10)

and (23) we have
∫

W(X,µ,ν)ei X dX

= Tr
[

ρ̂D(µ,ν)
]

= e−it Tr
[

ρ̂U (µ,ν, t)
]

= e−itϕ(µ,ν, t), (27)

where ϕ(µ,ν, t) is a positive definite function on the Weyl–

Heisenberg group.

Moreover, if we define ψ(µ,ν) = Tr(ρ̂D(µ,ν)), then ψ(µ,ν)

is a function on the translation group considered as a quotient of

the Weyl–Heisenberg group by the central element. It means that

we are dealing with a projective representation and not a unitary

representation like in Naimark’s theorem Eq. (25).

Then, we could ask about the properties enjoyed by the ma-

trix M̃ jk constructed using ψ instead of ϕ . If we denote as above

by ω the 2-cocycle defining the projective representation, then we

will say that M̃ jk is of ω-positive type, i.e.

M̃ jk = ψ
(

(µ j,ν j)
−1 ◦ (µk,νk)

)

ei
1
2ω((µk,νk),(µ j,ν j)) (28)

is positive semi-definite.

This yields the corresponding condition:

A tomogram-like function f (X .µ,ν) is a quantum tomogram if

and only if its Fourier transform evaluated at 1 may be written in

the form
∫

f (X,µ,ν)ei X dX = ψ f (µ,ν) (29)

where ψ f (µ,ν) is a function of the translation group of ω-positive

type.

We observe that ψ f (µ,ν) may be at the same time of posi-

tive and ω-positive type on the translation group. Then by Bochner

theorem ψ f (µ,ν) is the Fourier transform of a probability mea-

sure on the phase space. In other words f (X,µ,ν) is the (classi-

cal) Radon transform of such a probability measure, i.e. a classical

tomogram. The tomogram of the ground state of the harmonic os-

cillator provides an example of the above situation. In that case,

the GNS construction yields a Hilbert space of square integrable

functions on phase space with respect to the measure provided by

the Bochner theorem.

To finish this analysis let us notice that if ψ is a function

of ω-positive type on the translation group, then the function

ϕ(µ,ν, t) = eitψ(µ,ν) will be a positive definite function on the

Weyl–Heisenberg group W H(2) and, by Naimark’s theorem, there

will exist a unitary representation U of W H(2) and a cyclic state

vector |ξ〉 such that ϕ(µ,ν, t) = 〈ξ,U (µ,ν, t)ξ〉.

On the other hand, ψ(µ,ν) is obtained by f (X,µ,ν), which

is a tomogram of a quantum state ρ̂ . Up to a unitary transforma-

tion ρ̂ will coincide with ρ̂ξ iff it is a pure state.

Notably, the purity of ρ̂ can be expressed, with v = (µ,ν), as:

tr ρ̂2 =
1

2π

∫

W(X, v)W(Y ,−v)ei(X+Y ) dX dY dv

=
1

2π

∫

R2

∣

∣ψ(v)
∣

∣

2
dv (30)

so that the above condition can be stated as:
∫

R2

∣

∣ψ(v)
∣

∣

2
dv = 1. (31)

The case of a mixed density state ρ , when Eq. (31) does not

hold, will be discussed elsewhere.

5. Conclusions and outlooks

To conclude we resume the main results of our work. The sym-

plectic tomographic probability distribution, considered as the pri-

mary concept of a particle quantum state alternative to the wave

function or density matrix, was shown to be associated with a uni-

tary representation of the Weyl–Heisenberg group.

This connection was used to formulate an autonomous con-

ditions for the symplectic tomogram to describe quantum states

using the positivity properties of the matrix M jk of Eq. (24) in-

troduced in [11] and connected with the diagonal elements of the

unitary representation (positive type function ϕ(g) on the group).

The function f (X,µ,ν), satisfying the necessary properties of

tomographic probability distribution, i.e. nonnegativity, homogene-

ity and normalization, was shown to be a quantum tomogram iff

its Fourier transform in the quadrature variable X can be written

in the form of Eq. (26) as the product of a positive type function

on the Weyl–Heisenberg group and a phase factor associated with

central elements of the group.

By using the quantum Radon anti-transform Eq. (8), this con-

dition guarantees that the function f (X,µ,ν) provides a density

state, so that f is the symplectic tomogram of a quantum state.

The criterion, formulated in terms of positivity properties of a

group function obtained from the tomographic function, is not easy

to implement operatively. Nevertheless, it is simpler than the cri-

terion based on checking the nonnegativity of the operator given

by the quantum Radon anti-transform.

Also, we have shown that the purity of the quantum state can

be expressed as the square of the L2-norm of that positive group

function, which is obtained by tomograms measured directly in op-

tical experiments, without considering density matrices or Wigner

functions.

As a spin-off we have shown that the notion of h-positivity

may be subsumed under the notion of positivity for a centrally

extended group.

In this Letter we have considered tomograms associated with

the Weyl–Heisenberg group. In a forthcoming paper we will show

how to deal with the tomographic picture for general Lie groups

and for finite groups. In this connection we shall also elaborate

more on the C∗-algebraic approach to quantum mechanics and its

counterpart in terms of tomograms.
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